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Optimal Bayesian Minimax Rates
for Unconstrained Large Covariance Matrices

Kyoungjae Lee∗ and Jaeyong Lee†‡

Abstract. We obtain the optimal Bayesian minimax rate for the unconstrained
large covariance matrix of multivariate normal sample with mean zero, when both
the sample size, n, and the dimension, p, of the covariance matrix tend to infinity.
Traditionally the posterior convergence rate is used to compare the frequentist
asymptotic performance of priors, but defining the optimality with it is elusive.
We propose a new decision theoretic framework for prior selection and define
Bayesian minimax rate. Under the proposed framework, we obtain the optimal
Bayesian minimax rate for the spectral norm for all rates of p. We also consid-
ered Frobenius norm, Bregman divergence and squared log-determinant loss and
obtain the optimal Bayesian minimax rate under certain rate conditions on p.
A simulation study is conducted to support the theoretical results.
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1 Introduction

Estimating covariance matrix plays a fundamental role in multivariate data analysis.
Many statistical methods in multivariate data analysis such as the principle compo-
nent analysis, canonical correlation analysis, linear and quadratic discriminant analysis
require the estimated covariance matrix as the starting point of the analysis. In the
risk management and the longitudinal data analysis, the covariance matrix estimation
is a crucial part of the analysis. The log-determinant of covariance matrix is used for
constructing hypothesis test or quadratic discriminant analysis Anderson (2003).

Suppose we observe a random sample Xn = (X1, . . . , Xn), Xi ∈ Rp, i = 1, . . . , n,
from the p-dimensional normal distribution with mean zero and covariance matrix Σ,
i.e.

X1, . . . , Xn | Σ iid∼ Np(0,Σ).

We assume the zero mean and focus on the covariance matrix.

With advance of technology, data arising from various areas such as climate predic-
tion, image processing, gene association study, and proteomics, are often high dimen-
sional. In such high dimensional settings, it is often natural to assume that the dimension
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of the variable p tends to infinity as the sample size n gets larger, i.e. p = pn −→ ∞ as
n −→ ∞. This assumption can be justified as follows. First, when p is large in compari-
son with n, often the limiting scenario with p tending to infinity approximates closer to
the reality than that with p fixed. Second, in many cases we can postulate the reality
is infinitely complex and involves infinitely many variables, and with limited resources
and time, we can collect only a portion of variables and observations. If we have more
resources to collect more data, it is natural to collect more observations as well as more
variables, i.e. to increase both n and p.

When p tends to infinity as n −→ ∞, the traditional covariance estimator is not
optimal Johnstone and Lu (2009). The sparsity or bandable assumptions on large ma-
trices have been used frequently in the literature. Many researchers have studied the
large sample properties under the restrictive matrix classes. Bickel and Levina (2008b)
considered the bandable covariance/precision classes and studied the convergence rate
of banding estimator on those classes. Verzelen (2010) derived the convergence rate for
precision matrices via sparse Cholesky factors and showed that it is the minimax rate
under the Frobenius norm. In addition, the minimax convergence rates for the sparse
or bandable covariance matrices were established by Cai et al. (2010), Cai and Zhou
(2012a,b) and Xue and Zou (2013). For a comprehensive review on the convergence rate
for the covariance and precision matrices, see Cai et al. (2016).

The posterior convergence rate has been investigated by Pati et al. (2014), Banerjee
and Ghosal (2014), and Gao and Zhou (2015). Pati et al. (2014) showed that their
continuous shrinkage priors are optimal for the sparse covariance estimation under the
spectral norm in the sense that the posterior convergence rate is quite close to the
frequentist minimax rate. They achieved a nearly minimax rate up to a

√
log n term

under the spectral norm and sparse assumption even when n = o(p). Banerjee and
Ghosal (2014) considered Bayesian banded precision matrix estimation using graphical
models. They obtained the posterior convergence rate of the precision matrix under
matrix �∞ norm when log p = o(n). Gao and Zhou (2015) developed a prior distribution
for the sparse principal component analysis (PCA) and showed that it achieves the
minimax rate under the Frobenius norm. They also derived the posterior convergence
rate under the spectral norm.

Most of the previous works on the Bayesian estimation of large covariance matrix
concentrate on the constrained covariance or precision matrix. To the best of our knowl-
edge, only Gao and Zhou (2016) considered asymptotic results for large unconstrained
covariance matrix under the “large p and large n” setting. However, they attained the
Bernstein-von Mises theorems under somewhat restrictive assumptions on the dimen-
sion p.

In this paper, we fill the gap in the literature. At first, we propose a new decision
theoretic framework to define Bayesian minimax rate. The posterior convergence rate is
the primary concept when the asymptotic optimality is studied in the Bayesian sense.
But it is not completely satisfactory. The following is a quote from Ghosal and van der
Vaart (2017) which they write just after defining the posterior convergence rate.

‘We defined “a” rather than the rate of contraction, and hence logically any
rate slower than a contraction rate is also a contraction rate. Naturally we
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are interested in a fastest decreasing sequence εn, but in general this may
not exist or may be hard to establish. Thus our rate is an upper bound for a
targeted rate, and generally we are happy if our rate is equal to or close to
an “optimal” rate. With an abuse of terminology we often make statements
like “εn is the rate of contraction.” ’

In the proposed new decision theoretic framework, a probability measure on the param-
eter space is an action and a prior is a decision rule for it gives a probability measure
(the posterior) for a given data set. In this setup, we define the convergence rate and
the Bayesian minimax rate.

We investigate the Bayesian minimax rates for unconstrained large covariance ma-
trix. We consider four losses for the covariance inference: spectral norm, Frobenius norm,
Bregman divergence and squared log-determinant loss. For the spectral norm, we have
the complete result of the Bayesian minimax rate. We show that the Bayesian minimax
rate is min(p/n, 1) for all rates of p. For the Frobenius norm and Bregman divergence,
we show the Bayesian minimax lower bound is p ·min(p,

√
n)/n for all rates of p, but

obtained the upper bound under the constraint p ≤ √
n. Thus, under the condition

p ≤ √
n, the Bayesian minimax rate is p2/n. We also show that the Bayesian minimax

rate under the squared log-determinant loss is p/n when p = o(n).

The rest of the paper is organized as follows. In Section 2, we define the model,
the covariance classes we consider, and introduce some notations. We propose the new
decision theoretical framework and define the Bayesian minimax rate. The Bayesian
minimax rates under the spectral norm, the Frobenious norm, the Bregman matrix di-
vergence, and the squared log-determinant loss are presented in Section 3. A simulation
study is given in section 4. The discussion is given in Section 5, and the proofs are given
in Supplementary Material (Lee and Lee (2017)).

2 Preliminaries

2.1 The Model and the Inverse-Wishart Prior

Suppose we observe a random sample from the p-dimensional normal distribution

X1, · · · , Xn | Σn
iid∼ Np(0,Σn), (1)

where Σn is a p × p positive definite matrix, and p is a function of n such that p =
pn −→ ∞ as n −→ ∞. The true value of the covariance matrix is denoted by Σ0 or
Σ0n, which is dependent on n.

For the prior of the covariance matrix Σn in model (1), we consider the inverse-
Wishart prior

Σn ∼ IWp(νn, An), (2)

where νn > p − 1, An is a p × p positive definite matrix for a proper prior. The mean
of Σn is An/(νn − p − 1). The condition νn > p − 1 is needed for the distribution to
have a density in the space of p × p positive definite matrices. If νn is an integer with
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νn ≤ p− 1, (2) defines a singular distribution on the space of p× p positive semidefinite
matrices Uhlig (1994).

We also consider the truncated inverse-Wishart prior. The inverse-Wishart prior
with parameter ν and A whose eigenvalues are restricted in [K1,K2] with 0 < K1 < K2

is denoted by IWp(ν,A,K1,K2). The truncated inverse-Wishart prior was adopted for
technical reason. By Lemma E.1, to connect the Frobenius norm with Bregman ma-
trix divergence, the eigenvalues of argument matrices have to be bounded. The trun-
cated inverse-Wishart prior guarantees that the posterior covariance matrix has bounded
eigenvalues.

2.2 Matrix Norms and Notations

We define the spectral norm (or matrix �2 norm) for matrices by

‖A‖ := sup
‖x‖2=1

‖Ax‖2,

where ‖ · ‖2 denotes the vector �2 norm defined by ‖x‖2 := (
∑p

i=1 x
2
i )

1/2, x =

(x1, . . . , xp)
T ∈ Rp and A is p×pmatrix. The spectral norm is the same as

√
λmax(ATA)

or λmax(A) if A is symmetric, where λmax(B) denotes the largest eigenvalue of B.

The Frobenius norm is defined by

‖A‖F :=

⎛
⎝ p∑

i=1

p∑
j=1

a2ij

⎞
⎠

1
2

,

where A = (aij) is a p × p matrix. It is the same as
√

tr(ATA), where tr(B) denotes
the trace of B. The Frobenius norm is the vector �2 norm with p × p matrices treated
as p2-dimensional vectors.

The Bregman divergence Bregman (1967) is originally defined for vectors, but it can
be extended to the real symmetric matrices. Let φ be a differentiable and strictly convex
function that maps real symmetric p× p matrices to R. The Bregman divergence with
φ between two real symmetric matrices is defined as

Dφ(A,B) := φ(A)− φ(B)− tr[(∇φ(B))T (A−B)],

where A and B are real symmetric matrices and ∇φ is the gradient of φ, i.e., ∇φ(B) =
(∂φ(B)/∂Bi,j).

In this paper, we consider a class of φ such that φ(X) =
∑p

i=1 ϕ(λi) where ϕ is a
differentiable and strictly convex real-valued function and λi’s are the eigenvalues of
A. Furthermore, we assume that ϕ satisfies the following properties for some constant
τ1 > 0:

(i) ϕ is a twice differentiable and strictly convex function over λ ∈ (τ1,∞);

(ii) there exist some constants C > 0 and r ∈ R such that |ϕ(λ)| ≤ Cλr for all
λ ∈ (τ1,∞); and
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(iii) for any positive constants τ > τ1, there exist some positive constants ML and MU

such that ML ≤ ϕ′′(λ) ≤ MU for all λ ∈ [τ1, τ ].

The above class of Bregman matrix divergences includes the squared Frobenius norm,
von Neumann divergence and Stein’s loss. For their use in statistics and mathematics,
see Cai and Zhou (2012b), Dhillon and Tropp (2007) and Kulis et al. (2009).

If ϕ(λ) = λ2, the Bregman divergence is the squared Frobenius norm Dφ(A,B) =
‖A − B‖2F . If ϕ(λ) = λ log λ − λ, it is the von Neumann divergence Dφ(A,B) =
tr(A logA−A logB −A+B), where logA is the matrix logarithm, i.e., A = V DV T is
mapped to logA = V logDV T . Here, D = diag(di) is a p× p diagonal matrix where di
is the ith eigenvalue of A, and V = [V1, · · · , Vp] is a p× p orthogonal matrix where Vi is
an eigenvector of A corresponding to the eigenvalue di. If ϕ(λ) = − log λ, the Bregman
divergence is the Stein’s loss Dφ(A,B) = tr(AB−1) − log det(AB−1) − p. The Stein’s
loss is the Kullback–Leibler divergence between two multivariate normal distributions
with means zero and covariance matrices A and B, respectively.

Finally, we introduce some notations for asymptotic analysis which will be used
subsequently. For any positive sequences an and bn, we say an 
 bn if there exist
positive constants c and C such that c ≤ an/bn ≤ C for all sufficiently large n. We
define an = o(bn), if an/bn → 0 as n → ∞ and an = O(bn), if there exist positive
constants N and M such that |an| ≤ M |bn| for all n ≥ N . For any random variables

Xn and X, Xn
d−→ X means the convergence in distribution. For any real symmetric

matrix A, A > 0 (A ≥ 0) means that the matrix A is positive definite (nonnegative
definite). We denote δA as the dirac measure at A.

2.3 A Class of Covariance Matrices

Let Cp denote the set of all p× p covariance matrices. For any positive constants τ , τ1
and τ2, define the class of covariance matrix

C(τ) = Cp(τ) := {Σ ∈ Cp : ‖Σ‖ ≤ τ,Σ ≥ 0},
C(τ1, τ2) = Cp(τ1, τ2) := {Σ ∈ Cp : λmin(Σ) ≥ τ1, ‖Σ‖ ≤ τ2},

where λmin(Σ) is the smallest eigenvalue of Σ. Throughout the paper, we consider the
model (1) and assume that the true covariance matrix belongs to C(τ) or C(τ1, τ2).

Often the subgaussian property is used to relax the Gaussian distribution assump-
tion. The distribution of random vectorX has subgaussian property with variance factor
τ > 0, if

P (|vT (X − EX)| > t) ≤ e−t2/(2τ)

for all t > 0 and ‖v‖ = 1. The subgaussian property with variance factor τ implies
‖Var(X)‖ ≤ 2τ . In the literature, the subgaussian distribution is frequently used as
a basic assumption, for examples, Cai et al. (2010), Cai and Zhou (2012a,b) and Xue
and Zou (2013). If X follows a multivariate normal distribution, ‖Σ‖ ≤ τ is a sufficient
condition for X to have the subgaussian property.
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2.4 Decision Theoretic Prior Selection

Let d(Σ,Σ′) be a pseudo-metric that measures the discrepancy between two covariance
matrices Σ and Σ′. A sequence εn −→ 0 is called a posterior convergence rate at the
true parameter Σ0 if for any Mn −→ ∞,

π(d(Σ,Σ0) ≥ Mnεn | Xn) −→ 0

in PΣ0 -probability as n −→ ∞. The convergence rate is measured by the rate of εn,
which allows that the posterior contraction probability converges to zero in probability

PΣ0 , where PΣ0 is the distribution for random sample (X1, . . . , Xn)
iid∼ Np(0,Σ0). In

the literature, the posterior is said to achieve the minimax rate if its convergence rate
is the same as the frequentist minimax rate (Pati et al. (2014); Gao and Zhou (2015);
Hoffmann et al. (2015)). Since the posterior convergence rate cannot be faster than
the frequentist minimax rate (Hjort et al. (2010)), it is often called the optimal rate of
posterior convergence (Shen and Ghosal (2015); Rocková (2017)). However, its definition
is elusive as the quote from Ghosal and van der Vaart (2017) indicates.

As an alternative framework for the evaluation of the prior and the posterior, we
take a frequentist decision theoretical approach. For each n, the parameter space is Cp
and the action space is the set of all probability measures on Cp. After the data Xn

is collected, the posterior π(·|Xn) is computed for the given prior π and the posterior
takes a value in the action space. In this setup, the prior can be considered as a decision
rule, because the prior and observations together produce the posterior. A probability
measure in the action space will be used as a posterior for the inference, but it does not
have to be generated from a prior. We define the loss and risk function of the parameter
Σ0 and the prior π as

L(Σ0, π(·|Xn)) := Eπ
(
d(Σ,Σ0)|Xn),

R(Σ0, π) := EΣ0L(Σ0, π(·|Xn)) = EΣ0E
π
(
d(Σ,Σ0)|Xn).

Note that the risk function measures the performance of the prior π. To distinguish
them from the usual loss and risk, we call the above loss and risk as posterior loss (P-
loss) and posterior risk (P-risk). The P-risk itself is not new. For example, the P-risk
was also used in Castillo (2014) for density estimation on the unit interval.

There are a couple of benefits of the proposed decision theoretic prior selection. First,
the decision theoretic prior selection makes the definition of the minimax rate of the
posterior mathematically concrete. Although the minimax rate of the posterior is used
frequently, it has been used without a rigorous definition. The frequentist minimax
rate is used as a proxy of the desired concept. Second, in the study of the posterior
convergence rate, the scale of the loss function needs to be carefully chosen so that the
posterior consistency holds. But in the proposed decision theoretic prior selection, the
inconsistent priors can be compared without any conceptual difficulty. Thus, the scale
of the loss function does not need to be chosen.

We now define the minimax rate and convergence rate for P-loss. Let Πn be the
class of all priors on Σn. A sequence rn is said to be the minimax rate for P-loss (P-loss
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minimax rate) or simply the Bayesian minimax rate for the class C∗
p ⊂ Cp and the space

of the prior distributions Π∗
n ⊂ Πn, if

inf
π∈Π∗

n

sup
Σ0∈C∗

p

EΣ0L(Σ0, π(·|Xn)) 
 rn.

A prior π∗ is said to have a convergence rate for P-loss (P-loss convergence rate) or
convergence rate an, if

sup
Σ0∈Cp

EΣ0L(Σ0, π
∗(·|Xn)) � an,

and, if an 
 rn where rn is the minimax rate for P-loss, π∗ is said to attain the minimax
rate for P-loss or the Bayesian minimax rate. If it is clear from context, we will drop P-
loss and refer them as the minimax rate and the convergence rate. For a given inference
problem, we wish to find a prior π∗ which attains the minimax rate for P-loss.

Remark. The P-loss convergence rate implies the posterior convergence rate by Propo-
sition A.1 in Supplementary Material (Lee and Lee (2017)). By obtaining the P-loss
convergence rate, we also get the traditional posterior convergence rate. The converse
may not be true, because for certain loss functions, the P-loss may not even converge
to 0 while the posterior convergence rate converges to 0.

Remark. The P-loss convergence rate is slower than or equal to the frequentist minimax
rate by Proposition A.2 in Supplementary Material (Lee and Lee (2017)). To obtain a P-
loss minimax lower bound, the mathematical tools for frequentist minimax lower bound
can be used.

Remark. If we assume that the prior class Πn includes the data dependent priors,
the P-loss minimax rate is the same as the frequentist minimax rate. Take π = δΣ̂∗

where Σ̂∗ is an estimator attaining the frequentist minimax rate. Then, π attains the
frequentist minimax rate and thus attains the Bayesian minimax rate. However, the
data-dependent prior is not acceptable for legitimate Bayesian analysis unless the prior
is dependent on ancillary statistics. Even if Πn does not contain data-dependent priors,
in most cases the frequentist and P-loss minimax rates are the same.

However, if we consider a restricted class of priors, the P-loss minimax rate might
differ from the usual frequentist minimax rate. In such cases, the frequentist minimax
rate will not be a natural concept to study the asymptotic properties of the posterior.
See Remark in subsection 3.2.

3 Bayesian Minimax Rates under Various Matrix Loss
Functions

3.1 Bayesian Minimax Rate under Spectral Norm

In this subsection, we show that the Bayesian minimax rate for covariance matrix under
the spectral norm is min(p/n, 1). We also show that the prior

πn(Σn) = IWp(Σn | νn, An)I
(
p ≤ n

2

)
+ δIp(Σn)I

(
p >

n

2

)
(3)
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attains the Bayesian minimax rate for the class C(τ1, τ2) under the spectral norm, where
IWp(Σ | νn, An) is the inverse-Wishart distribution, νn > p−1 and An is a p×p positive
definite matrix. We have the complete result for all values of n and p. The Bayesian
minimax rate holds for any n and p, regardless of their relationship. The number 1/2
in the prior (3) can be replaced by any number in (0, 1) and the prior still renders the
minimax rate.

The main result of the section is given in Theorem 1 whose proof is given in Supple-
mentary Material (Lee and Lee (2017)). We divide the proof into two parts: lower bound
and upper bound parts. First, we show that the lower bound of the frequentist minimax
rate is min(p/n, 1), which may be of interest in its own right, and it in turn implies
that min(p/n, 1) is a Bayesian minimax lower bound. After that, the P-loss convergence
rate with the prior (3) is derived, which is the same as the Bayesian minimax lower
bound when ν2n = O(np) and An = Sn. Consequently, we obtain the following theorem
by combining these two results. Throughout the paper, Πn is the class of all priors on
Σn ∈ Cp as we have defined in subsection 2.4.

Theorem 1. Consider the model (1). For any positive constants τ1 < τ2,

inf
π∈Πn

sup
Σ0∈C(τ1,τ2)

EΣ0E
π(‖Σn − Σ0‖2 | Xn) 
 min

( p

n
, 1
)
.

Furthermore, the prior (3) with ν2n = O(np) and ‖An‖2 = O(np) attains the Bayesian
minimax rate.

Remark. The proof for the lower bound holds even for τ1 and τ2 depending on n and
possibly for τ1 −→ 0 and τ2 −→ ∞ as n −→ ∞. In such cases, the rate of the minimax
lower bound is τ22 · min(p/n, 1). For details, see Theorem B.1 in the Supplementary
Material (Lee and Lee (2017)). Note that τ2 affects the minimax lower bound, while
τ1 does not. A similar phenomenon occurs for estimation of sparse spiked covariance
matrices. See Theorem 4 of Cai et al. (2016).

We have complete results of the Bayesian minimax rate under the spectral norm.
In words, the results above do not have any condition on the rate of p and n. For a
given rate of p, we obtained the Bayesian minimax rate. When p grows the same rate
as n, the above theorem shows that estimating the covariance under the spectral norm
is hopeless. Indeed, this can be seen from the form of the prior (3). When p ≥ n/2, the
point mass prior δIp gives the Bayesian minimax rate. In words, you can not do better
than the useless point mass prior δIp .

Applying techniques used in the proof of the upper bound, one can show that the
prior (3) also gives the same P-loss convergence rate for precision matrix.

Corollary 1. Consider the model (1) and prior (3) with ν2n = O(np) and ‖An‖2 =
O(np). For any positive constants τ1 < τ2,

sup
Σ0∈C(τ1,τ2)

EΣ0E
π(‖Σ−1

n − Σ−1
0 ‖2 | Xn) ≤ c ·min

( p

n
, 1
)

for all sufficiently large n and some constant c > 0.
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We remark here that Gao and Zhou (2016) derived a posterior convergence rate
for unconstrained covariance matrix under the spectral norm when p = o(n). In this
paper, we obtained a P-loss convergence rate which implies the stronger convergence
than a posterior convergence rate, for any n and p. Gao and Zhou (2016) also attained a
posterior convergence rate for precision matrix under p2 = o(n). In this paper, Corollary
1 gives a P-loss convergence rate for any n and p.

3.2 Bayesian Minimax Rate under Frobenius Norm

Throughout this subsection, τ > 0 can depend on n and possibly τ −→ ∞ as n −→ ∞.
In this subsection, we show that the rate of the Bayesian minimax lower bound for
covariance matrix under Frobenius norm is τ2 ·min(p,

√
n) · p/n for the class C(τ), and

the inverse-Wishart prior attains the Bayesian minimax lower bound when p ≤ √
n.

The following theorem gives the Bayesian minimax lower bound. The proof of Theo-
rem 2 is given in Supplementary Material (Lee and Lee (2017)). In the proof of the theo-
rem, we prove that the lower bound of the frequentist minimax rate is τ2·min(p,

√
n)·p/n

as a by-product.

Theorem 2. Consider the model (1). For any τ > 0,

inf
π∈Πn

sup
Σ0∈C(τ)

EΣ0E
π(‖Σn − Σ0‖2F | Xn) ≥ c · τ2 · p

n
·min(p,

√
n)

for all sufficiently large n and some constant c > 0.

Theorem 3. Consider the model (1) and prior (2) with νn > 0 and An > 0 for all n.
If νn = p and ‖An‖2 = O(n), for any τ > 0,

sup
Σ0∈C(τ)

EΣ0E
π(‖Σn − Σ0‖2F | Xn) ≤ c · τ2 · p

2

n

for some constant c > 0 and all sufficiently large n. Furthermore, if p ≤ √
n, ν2n = O(np)

and ‖An‖2 = O(np) is the necessary and sufficient condition for achieving the rate p2/n.

Note that if τ > 0 is a fixed constant, from the relationship between the spectral
norm and Frobenius norm, one can obtain a P-loss convergence rate min(p, n) · p/n
instead of p2/n in Theorem 3. However, in this case, one should restrict the parameter
space to C(τ1, τ2) instead of the more general parameter space C(τ).

In practice, we recommend using νn = p and small An such as An = Op or An = Ip,
where Op denotes a p× p zero matrix because it guarantees the rate p2/n regardless of
the relation between n and p. Note that the Jeffreys prior Jeffreys (1961)

π(Σn) ∝ det(Σn)
−(p+2)/2,

the independence-Jeffreys prior Sun and Berger (2007)

π(Σn) ∝ det(Σn)
−(p+1)/2
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and the prior proposed by Geisser and Cornfield (1963)

π(Σn) ∝ det(Σn)
−p

satisfy the above conditions. They can be viewed as inverse-Wishart priors, IW (νn, An),
with parameters (1, Op), (0, Op) and (p−1, Op), respectively. Furthermore, the IW (p+
1, Sn) prior, whose mean is Sn, also satisfies the conditions in Theorem 3.

By Theorem 3 and Theorem 2, we have the Bayesian minimax rate τ2 · p2/n for
covariance matrix under the Frobenius norm when p ≤ √

n. Thus, with the inverse-
Wishart prior, we attain the Bayesian minimax rate under the Frobenius norm.

Theorem 4. Consider the model (1). If p ≤ √
n, for any τ > 0,

inf
π∈Πn

sup
Σ0∈C(τ)

EΣ0E
π(‖Σn − Σ0‖2F | Xn) 
 τ2 · p

2

n
.

Furthermore, ν2n = O(np) and ‖An‖2 = O(np) is the necessary and sufficient condition
for the prior (2) to achieve the Bayesian minimax rate when p ≤ √

n.

Remark. In Section 2.4, we have said that the Bayesian minimax rate can be different
from the frequentist minimax rate when a restricted prior class is considered, and that
the frequentist minimax rate will not be a natural concept to address the asymptotic
properties of the posteriors from a restricted prior class. We give an example here.
Consider a prior class Π∗

n = {π ∈ IWp(νn, An) : νn ≥ n, An ∈ Cp} and assume p ≤ √
n.

It is easy to check that

inf
π∈Π∗

n

sup
Σ0∈C(τ)

EΣ0E
π(‖Σn − Σ0‖2F | Xn) 
 τ2 · p,

from the proof of Theorem 3. Note that the obtained P-loss minimax rate differs from
the usual frequentist minimax rate, τ2 · p2/n.

3.3 Bayesian Minimax Rate under Bregman matrix Divergence

In this section, we obtain the Bayesian minimax rate under a certain class of Bregman
matrix divergences. Let Φ be the class of differentiable and strictly convex real-valued
functions satisfying (i)–(iii) conditions in the subsection 2.2, and let DΦ be the class
of Bregman matrix divergences Dφ where φ(X) =

∑p
i=1 ϕ(λi) for symmetric matrix X

and ϕ ∈ Φ.

To achieve the Bayesian minimax convergence rate for Bregman matrix divergences,
we use the truncated inverse-Wishart distribution IWp(νn, An,K1,K2) whose eigenval-
ues are all in [K1,K2] for some positive constants K1 < K2. The density function of
IWp(νn, An,K1,K2) is given by

πn,K1,K2(Σn) =
det(Σn)

−(ν+p+1)/2e−
1
2 tr(AnΣ

−1
n )I(Σn ∈ C(K1,K2))∫

C(K1,K2)
det(Σ′

n)
−(ν+p+1)/2e−

1
2 tr(AnΣ

′−1
n )dΣ′

n

, (4)

where νn > p− 1 and An is a p× p positive definite matrix.
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Theorem 5. Consider the model (1). If p ≤ √
n, for any positive constants τ1 < τ2

inf
π∈Πn

sup
Σ0∈C(τ1,τ2)

EΣ0E
π(Dφ(Σn,Σ0) | Xn) 


p2

n

for all Dφ ∈ DΦ. Furthermore, the prior (4) with ν2n = O(np), ‖An‖2 = O(np), K1 < τ1
and K2 > τ2 achieves the Bayesian minimax rate when p ≤ √

n.

To extend the minimax result for the squared Frobenius norm to the Bregman
matrix divergence, the posterior distribution for Σn and the true covariance Σ0 should
be included in the class C(K1,K2) and C(τ1, τ2), respectively, for some positive constants
K1 < τ1 and K2 > τ2. The truncated inverse-Wishart prior was needed to restrict the
posterior distribution for Σn within the class C(K1,K2). In practice, we recommend
using sufficiently small K1 and large K2. According to the above theorem, the minimax
convergence rate for the class DΦ is equivalent to that for the Frobenius norm if we
consider the parameter space C(τ1, τ2). Moreover, the truncated inverse-Wishart prior
IWp(νn, An,K1,K2) achieves the Bayesian minimax rate. The proof of the theorem is
given in Supplementary Material (Lee and Lee (2017)).

3.4 Bayesian Minimax Rate of Log Determinant of Covariance
Matrix

In this subsection, we establish the Bayesian minimax rate for the log-determinant of
the covariance matrix under squared error loss. The frequentist minimax lower bound
was derived by Cai et al. (2015). We prove that the inverse-Wishart prior achieves the
Bayesian minimax rate when p = o(n).

The estimator of the log-determinant of the covariance matrix can be used as a
basic ingredient for constructing hypothesis test or the quadratic discriminant analysis
Anderson (2003). The log-determinant of the covariance matrix is needed to compute
the quadratic discriminant function for multivariate normal distribution

−1

2
log detΣ− 1

2
(x− μ)TΣ−1(x− μ),

where x is the random sample from Np(μ,Σ). Furthermore, the differential entropy of
Np(μ,Σ) is given by

p

2
+

p log(2π)

2
+

log detΣ

2
,

so the estimation of the differential entropy is equivalent to estimation of the log-
determinant of the covariance matrix, when we consider the multivariate normal dis-
tribution. The differential entropy has various applications including independent com-
ponent analysis (ICA), spectroscopy, image analysis, and information theory. See Beir-
lant et al. (1997), Dudewicz and Mommaerts (1991), Hyvärinen (1998) and Cover and
Thomas (1991).
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Cai et al. (2015) showed that the minimax rate for the log-determinant of the covari-
ance matrix under squared error loss is p/n and their estimator achieves this optimal
rate when p = o(n).

On the Bayesian side, Srivastava and Gupta (2008) and Gupta and Srivastava (2010)
suggested a Bayes estimator for log-determinant of the covariance matrix of the mul-
tivariate normal. They proposed using the inverse-Wishart prior and showed that the
posterior mean minimizes expected Bregman divergence. In this subsection, we support
their argument by showing that the inverse-Wishart prior achieves the P-loss minimax
rate for log-determinant of the covariance matrix under squared error loss. Thus, we
show that the inverse-Wishart prior gives the optimal result in the Bayesian sense.
We also show the sufficient conditions for achieving the Bayesian minimax rate. The
following theorem presents the Bayesian minimax rate for the log-determinant of the
covariance matrix under the squared error loss. The proof of the theorem is given in
Supplementary Material (Lee and Lee (2017)).

Theorem 6. Consider the model (1). If p = o(n), we have

inf
π∈Πn

sup
Σ0∈Cp

EΣ0E
π((log detΣn − log detΣ0)

2 | Xn) 

p

n
.

Furthermore, prior (2) with ν2n = O(n/p) and An = Op attains the Bayesian minimax
rate.

Remark. One can also show that the optimal minimax convergence rate is achieved
by using the prior (2) with ν2n = O(n/p), An = cnSn and c2n = O(n/p).

Remark. Gao and Zhou (2016) showed the Bernstein-von Mises result for the log-
determinant of covariance, which implies a posterior convergence rate. However, they
considered a restrictive parameter space C(τ1, τ2) and the stronger condition p3 = o(n).
In this paper, the more general parameter space Cp and weaker condition p = o(n) are
sufficient for the stronger result, a P-loss convergence rate.

4 Simulation study

In this section, we support our theoretical results by a simulation study. The simulations
for three loss functions, spectral norm, square of scaled Frobenius norm and squared
log-determinant loss, were conducted. We compare the performance of the minimax
priors with those of some frequentist estimators.

We choose the posterior mean as a Bayesian estimator. The posterior mean obtained
from the minimax prior attains the minimax rate in Theorem B.2, Theorem 3 and
Theorem 6 by the Jensen’s inequality.

We generated dataset X1, . . . , Xn from Np(0,Σ0) where true covariance matrix Σ0

was either diagonal or full covariance matrix. A full covariance matrix is a covariance
matrix which does not have any restriction on its elements such as sparsity or banding.

In the diagonal covariance setting, the true covariance is Σ0 = diag(σ0,ii) where σ0,ii
iid∼
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Unif(0, 5). In the full covariance setting, we made the true covariance Σ0 = V TV where

V = (vij) is a p×p matrix with vij
iid∼ N(0, 5/p). In the simulation study, the dimensions

of the true covariance matrices are 25, 50, 100 and 200, and the numbers of data n are
either n = p2 or n = �p3/2�. For each setting, we generated a true covariance once for
which we generated 100 data sets and calculated estimators of the covariance.

For the spectral norm and square of scaled Frobenius norm loss, we computed the
posterior mean of the inverse-Wishart prior, IW (νn, An), for comparison. We chose
νn = 2,

√
n/p, p and n to see the effect of the νn, but fixed An = Op to remove the prior

effect on the structure of the covariance estimate. By Theorems B.2 and 3, when n = p2,
the inverse-Wishart prior with νn = 2,

√
n/p and p are minimax priors, while that with

νn = n is not. We also computed the sample covariance Sn and the tapering estimator Σ̂k

Cai et al. (2010) for comparison. As mentioned before, the sample covariance matrix is
a Bayesian estimator using inverse-Wishart prior with νn = p+ 1 and An = Op, which
satisfies the conditions in Theorem 3. We used k =

√
n as the threshold of tapering

estimator. It corresponds to α = 0 in Cai et al. (2010), which gives the minimal sparse
constraint for the covariance matrix in their class.

Figure 1 summarizes the simulation results for the spectral norm. Each point of the
plot was calculated by

1

100

100∑
s=1

‖Σ0 − Σ̂(s)
n ‖,

where Σ̂
(s)
n is the estimate of the true covariance Σ0 in s-th simulation. The first and

second rows of Figure 1 show the results when the true covariance matrix is a diagonal
and full covariance, respectively; the left and right columns are the results when n = p2

and n = �p3/2�, respectively.
The inverse-Wishart prior with νn = p and the sample covariance performed well

in all cases. They are either the best or comparable to the best. When n = �p3/2�, the
truncated inverse-Wishart prior with νn = n is not minimax, and the simulation results
show that it performed the worst or the second to the worst. The inverse-Wishart priors
with νn = 2 and

√
n/p are minimax, and thus their risks decrease as n −→ ∞ in all

cases, but their performance are slightly worse than that with νn = p. The tapering
estimator Σ̂k performed the best in diagonal settings because it gives zero to many of
upper and lower diagonal elements or shrink them toward zero. However, in the full
covariance settings, it performed the worst or close to the worst for the same reason.

Figure 2 summarizes the simulation results for Frobenius norm. Each point of the
plot was calculated by

1

100

100∑
s=1

1

p
‖Σ0 − Σ̂(s)

n ‖2F ,

where Σ̂
(s)
n is the estimate of the true covariance Σ0 in s-th simulation. The results are

quite similar to the spectral norm case.



1228 Bayesian Minimax Rates for Covariance Matrices

Figure 1: The risks for the Bayes estimator with IW (νn, Op,K), the sample covariance

Sn and tapering estimator Σ̂k under the spectral norm loss function. The true covari-
ances were generated in diagonal setting (top row) and full covariance setting (bottom
row). The number of the observation was chosen by either n = p2 (left column) or
n = �p3/2� (right column).

For the square of log-determinant loss, we chose the maximum likelihood estimator
(MLE) log detSn and the uniformly minimum variance unbiased estimator (UMVUE)
for comparison. The UMVUE of log detΣ is given by

log detSn + p log
(n
2

)
−

p−1∑
j=0

ψ

(
n− k

2

)
,

where ψ is the digamma function which is defined by ψ(x) = d/dz log Γ(z)|z=x where Γ
is the gamma function. See Ahmed and Gokhale (1989) for more details. We tried the
same settings for inverse-Wishart prior as before. Note that for n = p2 and n = �p3/2�,
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Figure 2: The risks for the Bayes estimator with IW (νn, Op,K), the sample covariance

Sn and tapering estimator Σ̂k under the squared Frobenius norm loss function. The
true covariances were generated in diagonal setting (top row) and full covariance setting
(bottom row). The number of the observation was chosen by either n = p2 (left column)
or n = �p3/2� (right column).

the choices νn = 2 and
√
n/p satisfy the sufficient condition in Theorem 6 while νn = p

and n do not. The posterior mean of the log-determinant for the inverse-Wishart prior is

log det

(
Sn +

An

n

)
+ p log

(n
2

)
−

p−1∑
j=0

ψ

(
n+ νn − k

2

)
.

Thus, the UMVUE is the same as the Bayesian estimator using inverse-Wishart prior
with νn = 0 and An = Op, which satisfies the sufficient condition in Theorem 6.

Figure 3 summarizes the simulation results for log-determinant. Each point of the
plot was calculated by
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Figure 3: The squared log-determinant loss function plot. The true covariances were
generated in diagonal setting (top row) and full covariance setting (bottom row). The
number of the observation was chosen by either n = p2 (left column) or n = �p3/2�
(right column).

1

100

100∑
s=1

(log detΣ0 − ̂log detΣ
(s)

n )2,

where ̂log detΣ
(s)

n is the estimate of log detΣ in s-th simulation and Σ0 is the true
covariance. The top and bottom rows are for the diagonal and full true covariance
cases, respectively; the left and right columns are for n = p2 and �p3/2�, respectively.

For the squared log-determinant loss, the inverse-Wishart priors with νn = 2 and√
n/p are minimax, while those with νn = p and n are not. The UMVUE or the Bayes

estimator of the inverse-Wishart priors with νn = 0 performed the best in all cases. The
inverse-Wishart priors with νn = 2 and

√
n/p performed comparable to the UMVUE.
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Interestingly, the inverse-Wishart priors with νn = p, which was the best under the
spectral norm, performed worst in all cases. When n = �p3/2�, the results for νn = p do
not appear in the Figure 3 because of its large risk values. This signifies the fact that
we need to choose different prior parameter for different loss function.

5 Discussion

In this paper, we develop a new framework for the Bayesian minimax theory, and in-
troduce Bayesian minimax rate and P-loss convergence rate. The proposed decision
theoretic framework gives an alternative way to distinguish the good priors from the
inadequate ones and makes the definition of the minimax rate of the posterior clear. We
obtain the Bayesian minimax rates for the normal covariance model under the various
loss functions: spectral norm, the squared Frobenius norm, Bregman matrix divergence
and squared log-determinant loss for large covariance estimation. We show that the
inverse-Wishart prior or truncated inverse-Wishart prior attains the Bayesian minimax
rate. The simulation results support the theory obtained.

Supplementary Material

Supplementary Material for “Optimal Bayesian Minimax Rates for Unconstrained Large
Covariance Matrices” (DOI: 10.1214/18-BA1094SUPP; .pdf).
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