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Using Stacking to Average Bayesian Predictive
Distributions (with Discussion)

Yuling Yao*, Aki Vehtari, Daniel Simpson?, and Andrew Gelman?®

Abstract. Bayesian model averaging is flawed in the M-open setting in which the
true data-generating process is not one of the candidate models being fit. We take
the idea of stacking from the point estimation literature and generalize to the com-
bination of predictive distributions. We extend the utility function to any proper
scoring rule and use Pareto smoothed importance sampling to efficiently compute
the required leave-one-out posterior distributions. We compare stacking of pre-
dictive distributions to several alternatives: stacking of means, Bayesian model
averaging (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized
using the Bayesian bootstrap. Based on simulations and real-data applications, we
recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA
as an approximate alternative when computation cost is an issue.

Keywords: Bayesian model averaging, model combination, proper scoring rule,
predictive distribution, stacking, Stan.

1 Introduction

A general challenge in statistics is prediction in the presence of multiple candidate mod-
els or learning algorithms M = (M, ..., Mg). Choosing one model that can give opti-
mal performance for future data can be unstable and wasteful of information (see, e.g.,
Piironen and Vehtari, 2017). An alternative is model averaging, which tries to find an
optimal model combination in the space spanned by all individual models. In Bayesian
context, the natural target for prediction is to find a predictive distribution that is
close to the true data generating distribution (Gneiting and Raftery, 2007; Vehtari and
Ojanen, 2012).

Ideally, we would avoid the Bayesian model combination problem by extending the
model to include the separate models M}, as special cases (Gelman, 2004). In practice,
constructing such an expansion requires a lot of conceptual and computational effort.
Hence, in this paper we focus on simpler tools that work with existing inferences from
models that have been fitted separately.

This paper is organized as follows. In Section 2, we give a brief review of some
existing model averaging methods. Then we propose our stacking method in Section 3. In
Section 4, we compare stacking, Bayesian model averaging, and several other alternatives
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through a Gaussian mixture model, a series of linear regression simulations, two real data
examples, and an application in variational inference. We conclude with Section 5 where
we give general recommendations. We provide the R and Stan code in the Suplement
material (Yao et al., 2018).

2 Existing approaches

In Bayesian model comparison, the relationship between the true data generator and
the model list M = (Mj,..., Mk) can be classified into three categories: M-closed,
M-complete and M-open. We adopt the following definition from Bernardo and Smith
(1994) (see also Key et al. (1999), and Clyde and Iversen (2013)):

e M-closed means the true data generating model is one of M} € M, although it
is unknown to researchers.

e M-complete refers to the situation where the true model exists and is out of
model list M. But we still wish to use the models in M because of tractability
of computations or communication of results, compared with the actual belief
model. Thus, one simply finds the member in M that maximizes the expected
utility (with respect to the true model).

e Me-open refers to the situation in which we know the true model M; is not in M,
but we cannot specify the explicit form p(gly) because it is too difficult concep-
tually or computationally, we lack time to do so, or do not have the expertise,
etc.

Bayesian model averaging If all candidate models are generative, the Bayesian solu-
tion is to simply average the separate models, weighing each by its marginal posterior
probability. This is called Bayesian model averaging (BMA) and is optimal if the method
is evaluated based on its frequency properties evaluated over the joint prior distribution
of the models and their internal parameters (Madigan et al., 1996; Hoeting et al., 1999).
If y = (y1,- .., yn) represents the observed data, then the posterior distribution for any
quantity of interest A is p(Aly) = Zi{zlp(A\Mk,y)p(Mﬂy). In this expression, each
model is weighted by its posterior probability,

Py My )p(M;
p(ly) = NPT
> k1 Py My )p(My)
and this expression depends crucially on the marginal likelihood under each model,
p(y[My) = [p(yl0k, Mi)p(0r|My)dby, .

BMA is appropriate for the M-closed case. In M-open and M-complete cases, BMA
will asymptotically select the one single model on the list that is closest in Kullback—
Leibler (KL) divergence.

A further problem with BMA is that the marginal likelihood is sensitive to the spe-
cific prior p(0x|M},) in each model. For example, consider a problem where a parameter
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has been assigned a normal prior distribution with center 0 and scale 10, and where its
estimate is likely to be in the range (—1,1). The chosen prior is then essentially flat,
as would also be the case if the scale were increased to 100 or 1000. But such a change
would divide the posterior probability of the model by roughly a factor of 10 or 100.

Stacking Stacking (Wolpert, 1992; Breiman, 1996; LeBlanc and Tibshirani, 1996) is a
direct approach for averaging point estimates from multiple models. In supervised learn-
ing, where the data are ((z;,y;),? = 1,...,n ) and each model M}, has a parametric form
Ik = fr(x|0k), stacking is done in two steps (Ting and Witten, 1999). First, each model
is fitted separately and the leave-one-out (LOO) predictor f( 1)( ) = EyilOky_., My]
is obtained for each model k and each data point 7. In the second step, a weight for each
model is obtained by minimizing the LOO mean squared error

2
argmmZ(yz Zwkf( 2 ) . (1)

Breiman (1996) claims that either a positive constraint wy > 0,k = 1,...K, or a
simplex constraint: wy > 0, Zszl wg = 1 guarantees a solution. Better predictions may
be attainable using regularization (Merz and Pazzani, 1999; Yang and Dunson, 2014).
Finally, the point prediction for a new data point with feature vector  is

K

y= @kfk(f‘ékyln)
k=1

It is not surprising that stacking typically outperforms BMA when the criterion is
mean squared predictive error (Clarke, 2003), because BMA is not optimized to this
task. Wong and Clarke (2004) emphasize that the BMA weights reflect the fit to the
data rather than evaluating the prediction accuracy. On the other hand, stacking is not
widely used in Bayesian model combination because the classical stacking only works
with point estimates, not the entire posterior distribution (Hoeting et al., 1999).

Clyde and Iversen (2013) give a Bayesian interpretation for stacking by considering
model combination as a decision problem when the true model M; is not in the model
list. If the decision is of the form a(y,w) = Zle Wk, then the expected utility under
quadratic loss is,

E; [u (7, a(y, w / 1 - Zwkykn p(ily, My)di,

where gy, is the predictor of new data § in model k. Hence, the stacking weights are the
solution to the LOO estimator

A~ 1 -
W = arg max EZU Yir a(y—i, w)),
i=1

where a(y_;, w) = Zszl wrE[y:|y—i, My].
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Le and Clarke (2017) prove the stacking solution is asymptotically the Bayes so-
lution. With some mild conditions on distributions, the following asymptotic relation
holds:

[ taatvw)pids - 5 S aty-i,w) S

where [ is the squared loss, I(, a) = (§ — a)?. They also prove that when the action is a
predictive distribution a(y_;, w) = Zle wip(yi|y—i, M), the asymptotic relation still
holds for negative logarithm scoring rules.

However, most early literature limited stacking to averaging point predictions, rather
than predictive distributions. In this paper, we extend stacking from minimizing the
squared error to maximizing scoring rules, hence make stacking applicable to combining
a set of Bayesian posterior predictive distributions. We argue this is the appropriate
version of Bayesian model averaging in the M-open situation.

Akaike weights and pseudo Bayesian model averaging Leave-one-out cross-validation
is related to various information criteria (see, e.g. Vehtari and Ojanen, 2012). In case of
maximum likelihood estimates, leave-one-out cross-validation is asymptotically equal to
Akaike’s information criterion (AIC, Stone, 1977). In a statistical model with the num-
ber of parameters to be k and the maximized likelihood to be L, AIC = —2log L + 2k.
Akaike (1978) proposed to use exp(—3AIC) for model weighting (see also Burnham
and Anderson, 2002; Wagenmakers and Farrell, 2004). More recently we have seen also
Watanabe-Akaike information criterion (WAIC, Watanabe, 2010) and leave-one-out
cross-validation estimates used to compute model weights following the idea of AIC
weights.

In a Bayesian setting Geisser and Eddy (1979; see also, Gelfand 1996) proposed
pseudo Bayes factors where marginal likelihoods p(y|M}) are replaced with a product
of Bayesian leave-one-out cross-validation predictive densities []}_, p(y:|y—:, My). Fol-
lowing the naming by Geisser and Eddy, we call AIC-type weighting which uses Bayesian
cross-validation predictive densities as pseudo Bayesian model averaging (Pseudo-BMA).

Exact leave-one-out cross-validation can be computationally costly. For example,
in the econometric literature, Geweke and Amisano (2011, 2012) suggest averaging
prediction models by maximizing predictive log score, while they only consider time
series due to the computational challenges of exact LOO for general data structures.
In the present paper we demonstrate that Pareto smoothed importance sampling leave-
one-out cross-validation (PSIS-LOO) (Vehtari et al., 2017a,b) is a practically efficient
way to calculate the needed leave-one-out predictive densities p(y;|y—_;, My).

In this paper we show that the uncertainty in the future data distribution should
be taken into account when computing Pseudo-BMA weights. We will propose an AIC-
type weighting using the Bayesian bootstrap and the expected log predictive density
(elpd), which we call Pseudo-BMA+ weighting. We show that although Pseudo-BMA+
weighting gives better results than regular BMA or Pseudo-BMA weighting (in M-
open settings), it is still inferior to the log score stacking. Due to its simplicity we use
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Pseudo-BM A+ weighting as an initial guess for optimization procedure in the log score
stacking.

Other model weighting approaches Besides BMA, stacking, and AIC-type weighting,
some other methods have been introduced to combine Bayesian models. Gutiérrez-Pena
and Walker (2005) consider using a nonparametric prior in the decision problem stated
above. Essentially they are fitting a mixture model with a Dirichlet process, yielding a
posterior expected utility of

n K

Un(wr, 0k) = > wi fu(yil6k)-

i=1 k=1
They then solve for the optimal weights Wy, = arg maxy, o, Un(wk, Ok ).

Li and Dunson (2016) propose model averaging using weights based on divergences
from a reference model in M-complete settings. If the true data generating density
function is known to be f*, then an AIC-type weight can be defined as

__ e(-nKL(f* )
S exp(—nKL(f*, fi))

The true model can be approximated with a reference model My with density fo(:|0o)
using nonparametric methods like Gaussian process or Dirichlet process, and KL(f*, fi)
can be estimated by its posterior mean,

Wk

(2)

KL (foofi) = [ [ KL(foCl60). 161))p(64 Ly, Mu)p(Boly. Mo)dsy o,

or by the Kullback—Leibler divergence for posterior predictive distributions,
RLa(fo. f) = KL( [ fo(1600)0(60ly. Ma)dbo. [ £160))p(61 . M)

Here, KL; corresponds to Gibbs utility, which can be criticized for not using the poste-
rior predictive distributions (Vehtari and Ojanen, 2012). Although asymptotically the

two utilities are identical, and KL; is often computationally simpler than KLs.

Let p(g]|y, M}.C) = ffk(g\ﬁk)p(9k|y, Mk)d(gk, k=0,...,K, then

KLo(fo fi) = — / log p(ily, My )p(ily, Mo)dij + / log p(ily, Mo)p(ily, Mo)d.

As the entropy of the reference model [log p(§ly, Mo)p(gly, Mo)dy is constant, the cor-
responding terms cancel out in the weight (2), leaving

_ exp(n [log p(gly, My )p(gly, Mo)dy)
Sy exp(n [log p(§ly, My)p(§ly, Mo )dg)

It is proportional to the exponential expected log predictive density, where the expec-
tation is taken with respect to the reference model My. Comparing with definition 8 in
Section 3.4, this method could be called Reference-Pseudo-BMA.

Wk
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3 Theory and methods

We label the classical stacking procedure (1) as stacking of means because it combines
models by minimizing the mean squared error of the point estimate. In general, we
can use a proper scoring rule (or equivalently the underlying divergence) to compare
distributions. After choosing that, stacking can be extended to combining the whole
distributions.

3.1 Stacking using proper scoring rules

Adapting the notation of Gneiting and Raftery (2007), we label Y as the random variable
on the sample space (£2,.4) that can take values on (—o0,00). P is a convex class of
probability measure on §2. Any member of P is called a probabilistic forecast. A scoring
rule is a function S : P x Q — IR = [00,00] such that S(P,-) is P-quasi-integrable for
all P € P. In the continuous case, every distribution P € P is identified with its density
function p.

For two probabilistic forecasts P and Q, we write S(P,Q) = [S(P. (w). A
scoring rule S is called proper if S(Q,Q) > S(P,Q) and strictly proper 1f equahty
holds only when P = ) almost surely. A proper scoring rule defines the divergence
d:PxP — (0,00) as d(P,Q) = 5(Q,Q) — S(P,Q). For continuous variables, some
popularly used scoring rules include:

1. Quadratic score: QS(p,y) = 2p(y) — ||p||3 with the divergence d(p,q) = ||p — q||3-

2. Logarithmic score: LogS(p,y) = log(p(y)) with d(p, ¢) = KL(g, p). The logarithmic
score is the only proper local score assuming regularity conditions

3. Continuous-ranked probabzlzty score: CRPS(F,y) = — f]R —1(y > y))%dy
with d(F,G) = [R(F G(y))3dy, Where F and G are the correspondlng dis-
tribution functionb

4. Energy score: ES(P,y) = LEp|[Y —Y'||5 —Ep||Y —y||5, where Y and Y’ are two
independent random variables from distribution P. When 8 = 2, this becomes
ES(P,y) = —||[Ep(Y) — y||?>. The energy score is strictly proper when 3 € (0,2)
but not when § = 2.

5. Scoring rules depending on first and second moments: Examples include S(P,y) =
—logdet(Xp) — (y — up)" S, (y — pup), where pp and Xp are the mean vector
and covariance matrix of distribution P.

The ultimate goal of stacking a set of K predictive distributions built from the
models M = (M, ..., Mg) is to find the distribution in the convex hull C = {Zk 1 W X
p(-|My) = > wi = 1 ,wg > 0} that is optimal according to some given criterion. In this
paper, we propose the use of proper scoring functions to define the optimality criterion.

If we define S = {w € [0,1]¥ : Zle wy = 1}, then we can write the stacking
problem as
K K

min d(z wrp(-ly, My), pe(- |y)> or néax S(Z wrp(-ly, M), pe(- |y)) (3)

west N R



Y. Yao, A. Vehtari, D. Simpson, and A. Gelman 923

where p(g|y, My) is the predictive density of new data ¢ in model M} that has been
trained on observed data y and p;(§|y) refers to the true distribution.

An empirical approximation to (3) can be constructed by replacing the full predictive
distribution p(g|y, M) evaluated at a new datapoint § with the corresponding LOO
predictive distribution pr,—i(vi) = [p(vil0k, Mk)p(Ok|y—i, My )db. The corresponding
stacking weights are the solution to the optimization problem

n

K
1
— S( D —iy Z) 4
gk 29 (2 by @

=1
The stacked estimate of the predictive density is

K

Ply) = wrp(@ly, My). (5)
k=1

When using logarithmic score (corresponding to Kullback—Leibler divergence), we call
this stacking of predictive distributions:

1 n K
max — ZIOngkp(in—iaMk)-
k=1

weSK N —

The choice of scoring rules can depend on the underlying application. Stacking of
means (1) corresponds to the energy score with § = 2. The reasons why we prefer
stacking of predictive distributions (corresponding to the logarithmic score) to stacking
of means are: (i) the energy score with S = 2 is not a strictly proper scoring rule and can
give rise to identification problems, and (ii) without further smoothness assumptions,
every proper local scoring rule is equivalent to the logarithmic score (Gneiting and
Raftery, 2007).

3.2 Asymptotic behavior of stacking

The stacking estimate (3) finds the optimal predictive distribution within the convex
set C, that is the closest to the data generating process with respect to the chosen
scoring rule. This is different from Bayesian model averaging, which asymptotically
with probability 1 will select a single model: the one that is closest in KL divergence to
the true data generating process.

Solving for the stacking weights in (4) is an M-estimation problem. Under some mild
conditions (Le and Clarke, 2017; Clyde and Iversen, 2013; Key et al., 1999), for either
the logarithmic scoring rule or the energy score (negative squared error) and a given set
of weights w; ... wg, as sample size n — oo, the following asymptotic limit holds:

1 n K K I
7 4 S(Z Wk Dk, i yz> - Eg|y5<z wip(§ly, M), @) 0.
i=1 k=1 k=1
Thus the leave-one-out-score is a consistent estimator of the posterior score. In this
sense, stacking gives optimal combination weights asymptotically.
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In terms of Vehtari and Ojanen (2012, Section 3.3), the proposed stacking of predic-
tive distributions is the M,-optimal projection of the information in the actual belief
model M, to w, where explicit specification of M, is avoided by re-using data as a proxy
for the predictive distribution of the actual belief model and the weights wy, are the free
parameters.

3.3 Pareto smoothed importance sampling

One challenge in calculating the stacking weights proposed in (4) is that we need the
leave-one-out (LOO) predictive density,

p(yily—i, M) = /p(yi‘akvMk)p(0k|y7i7Mk)d0k'

Exact LOO requires refitting each model n times. To avoid this onerous computation,
we use the following approximate method. For the k-th model, we fit to all the data,
obtaining S simulation draws 65(s = 1,...5) from the full posterior p(6i|y, M}) and
calculate
s _ 1 p(Orly—i, M)
7”1- k= 5 X S .
" p(yilby, M) p(O;ly, My)

(6)

The ratio 77, has a density function and can be unstable, due to a potentially long
right tail. This problem can be resolved using Pareto smoothed importance sampling
(PSIS, Vehtari et al., 2017a). For each fixed model k and data y;, we fit the generalized
Pareto distribution to a set of largest importance ratios 7 i» and calculate the expected
values of the order statistics of the fitted generalized Pareto distribution. These value
are used to obtain the smoothed importance weight w7, which is used to replace r} .
For details of PSIS, see Vehtari et al. (2017a). PSIS-LOO importance sampling (Vehtari
et al., 2017b) computes the LOO predictive density as

o M) = (ol p(Orly—i, M)
p(yily—i, My,) —/p(szHk,Mk) o0x 9. M) p(Or|y, My,)dbs, 7
XS w6y M) @)
~ — .
Zs:l w%,k

The reliability of the PSIS approximation can be determined by the estimated shape
parameter k in the generalized Pareto distribution. For the left-out data points where
k> 0.7, Vehtari et al. (2017b) suggest replacing the PSIS approximation of those
problematic cases by the exact LOO or k-fold cross-validation.

One potential drawback of LOO is the large variance when the sample size is small.
We see in simulations that when the ratio of relative sample size to the effective number
of parameters is small, the weighting can be unstable. How to adjust this small sample
behavior is left for the future research.
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3.4 Pseudo-BMA

In this paper, we also consider an AIC-type weighting using leave-one-out cross-valida-
tion. As mentioned in Section 2, these weights estimate the same quantities as Li and
Dunson (2016) that use the divergence from the reference model based inference.

To maintain comparability with the given dataset and to get easier interpretation
of the differences in scale of effective number of parameters, we define the expected
log pointwise predictive density(elpd) for a new dataset § as a measure of predictive
accuracy of a given model for the n data points taken one at a time (Gelman et al.,
2014; Vehtari et al., 2017b). In model My, elpd® = S | [p,(5:)log p(5ily, My.)dg;,
where p;(;) denotes the true distribution of future data ;.

Given observed data y and model k, we use LOO to estimate the elpd as

n n S
—k . Zs: w; . p(yil 07, My)
elpd,o, = g log p(yily—i, Mk) = E log < : R '
=1 i=1 Es:l wi,k

The Pseudo-BMA weighting for model k is defined as

—k
Ipd
wy, = eXp(e p loo)

= —
E?:l eXp(elpdloo)

However, this estimation doesn’t take into account the uncertainty resulting from having
a finite number of proxy samples from the future data distribution. Taking into account
the uncertainty would regularize the weights making them go further away from 0 and
1.

(8)

—k
The computed estimate elpd,,, is defined as the sum of n independent components
S0 it is trivial to compute their standard errors by computing the standard deviation of
the n pointwise values (Vehtari and Lampinen, 2002). As in (7), define
—k
elpdy,, ; = log p(yily—i, My),

and then we can calculate

—k —k
(elpdloo,i - elpdloo/n)Q'
1

—k
Se(elpdlom'i) =

n
1=

A simple modification of weights is to use the log-normal approximation:

—k ok
exp | elpd,,, — 5se(elpd,, )

WE = .
—k —k
Zszl exp (elpdlOO — %se(elpdloo)>

Finally, the Bayesian bootstrap (BB) can be used to compute uncertainties related
to LOO estimation (Vehtari and Lampinen, 2002). The Bayesian bootstrap (Rubin,
1981) gives simple non-parametric approximation to the distribution. Having samples
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of z1,...,z, from a random variable Z, it is assumed that posterior probabilities for
all observed z; have the distribution Dirichlet(1,...,1) and values of Z that are not
observed have zero posterior probabilities. Thus, each BB replication generates a set of
posterior probabilities a;., for all observed zy.,,

n

. —
a1, ~ Dirichlet(1,...,1), P(Z = z;j|a) = a;.

This leads to one BB replication of any statistic ¢(Z) that is of interest:
d(Zla) = aip(z).
i=1
The distribution over all replicated é(Z |v) (i.e., generated by repeated sampling of «)

produces an estimation for ¢(Z).

—k
As the distribution of elpd,,, ; is often highly skewed, BB is likely to work better
than the Gaussian approximation. In our model weighting, we can define
K gk ,
zi =elpdyp,, i=1,...1.
n

. . HR . . .
We sample vectors (a1 p, . .., 0n p)b=1,... B from the Dirichlet (1, ..., 1) distribution, and
compute the weighted means,
n
Z;lf = Z ai7bzf.
i=1

Then a Bayesian bootstrap sample of wy with size B is,

Wg,b = —;Xp(n25)7 , b=1,...,B,
2k exp(nZy)
and the final adjusted weight of model k is,
1 &
WE = E ; wkvb, (9)

which we call Pseudo-BMA+ weight.

4 Simulation examples

4.1 Gaussian mixture model

This simple example helps us understand how BMA and stacking behave differently.
It also illustrates the importance of the choice of scoring rules when combining distri-
butions. Suppose the observed data y = (y;,¢ = 1,...,n) come independently from a
normal distribution N(3.4,1), not known to the data analyst, and there are 8 candidate
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models, N(ug, 1) with pup = k for 1 < k < 8. This is an M-open problem in that none
of the candidates is the true model, and we have set the parameters so that the models
are somewhat separate but not completely distinct in their predictive distributions.

For BMA with a uniform prior Pr(My) = %, k=1,...,8, we can write the posterior
distribution explicitly:

exp(—3 Z? 1(yi — m)?)
>k exp(— Zi:1(yi — pur)?)’

from which we see that wEMA %51 and WwEMA L5 0 for k # 3 as sample size n — oo.
Furthermore, for any given n,

. 1 &
Ey~N(u,1)[wEMA] x £, <exp(—§ Z(yi - uk)2)>

i=1

B8 (/_O;eXp (—% ((y = m)* + (y — u)Q))) dy>n

x exp (—%)

This example is simple in that there is no parameter to estimate within each of the
models: p(gly, My) = p(§|My). Hence, in this case the weights from Pseudo-BMA and
Pseudo-BMA+ are the same as the BMA weights.

WM = P(Mgly) =

For stacking of means, we need to solve

8
W= argmlnz Zwkk s.t. Zwk =1, wg>0.
k=1

For point prediction, the stacked prediction is always 22:1 Wik = % 2?21 4;, but it can

lead to different predictive distributions 22:1 wiN(k, 1). To get one reasonable result,
we transform the least squares optimization to the following normal model and assign
a uniform prior to w:

8
yiNN<Zwkkva2> ) p(wlv"'7w87a):1'
k=1

Then we could use the posterior means of w as model weights.

For stacking of predictive distributions, we need to solve

— k)2 8
maXZlog(Zwkexp( yk2k) )), s.t.Zwk:L wyg > 0.
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sample size n = 3 n=4 n=5 n=10 n=20 n =200

BMA

Stacking
of means

| 20 Ty gy -y ™

M\ ' A A |
ur Uy uW Ny Uy .

0 2
y y

the posterior density of the combination

00 01 02 03 04 0500 01 02 03 04 0500 01 02 03 04 05

Stacking
of predictive distributions

Figure 1: For the Gaussian mixture example, the predictive distribution p(g|y) of BMA
(green curve), stacking of means (blue) and stacking of predictive distributions (red). In
each graph, the gray distribution represents the true model N(3.4,1). Stacking of means
matches the first moment but can ignore the distribution. For this M-open problem,
stacking of predictive distributions outperforms BMA as sample size increases.

In fact, this example is a density estimation problem. Smyth and Wolpert (1998)
first applied stacking to non-parametric density estimation, which they called stacked
density estimation. It can be viewed as a special case of our stacking method.

We compare the posterior predictive distribution p(g|y) = >, wrp(y|y, M) for these
three methods of model averaging. Figure 1 shows the predictive distributions in one
simulation when the sample size n varies from 3 to 200. Stacking of means (the middle
row of graphs) gives an unappealing predictive distribution, even if its point estimate is
reasonable. The broad and oddly spaced distribution here arises from nonidentification
of w, and it demonstrates the general point that stacking of means does not even try to
match the shape of the predictive distribution. The top and bottom row of graphs show
how BMA picks up the single model that is closest in KL divergence, while stacking
picks a combination; the benefits of stacking becomes clear for large n.

In this trivial non-parametric case, stacking of predictive distributions is almost the
same as fitting a mixture model, except for the absence of the prior. The true model
N(3.4,1) is actually a convolution of single models rather than a mixture, hence no
approach can recover the true one from the model list. From Figure 2 we can compare
the mean squared error and the mean logarithmic score of these three combination
methods. The log scores and errors are calculated through 500 repeated simulations
and 200 test data. The left panel shows the logarithmic score (or equivalent, expected
log predictive density) of the predictive distribution. Stacking of predictive distributions
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Figure 2: (a) The left panel shows the expected log predictive density of the combined
distribution under BMA, stacking of means and stacking of predictive distributions.
Stacking of predictive distributions performs best for moderate and large sample sizes.
(b) The middle panel shows the mean squared error treating the posterior mean of § as
a point estimation. Stacking of predictive distributions gives almost the same optimal
mean squared error as stacking of means, both of which perform better than BMA. (c)
The right panel shows the expected log predictive density of stacking and BMA when
adding some more N(4, 1) models to the model list, where sample size is fixed to be 15.
All average log scores and errors are calculated through 500 repeated simulation and
200 test data generating from the true distribution.

always gives a larger score except for extremely small n. In the middle panel, it shows
the mean squared error by considering the posterior mean of predictive distribution to
be a point estimate, even if it is not our focus. In this case, it is not surprising to see that
stacking of predictive distributions gives almost the same optimal mean squared error
as the stacking of means, both of which are better than the BMA. Two distributions
close in KL divergence are close in each moment, while the reverse does not necessarily
hold. This illustrates the necessity of matching the distributions, rather than matching
the moments.

Stacking depends only on the space expanded by all candidate models, while BMA
or Pseudo-BMA weighting may by misled by such model expansion. If we add another
N(4,1) as the 9th model in the model list above, stacking will not change at all in
theory, even though it becomes non-strictly-convex and has infinite same-height mode.
For BMA, it is equivalent to putting double prior mass on the original 4th model, which
doubles the final weights for it. The right panel of Figure 2 shows such phenomenon:
we fix sample size n to be 15 and add more and more N(4, 1) models. As a result, BMA
(or Pseudo-BMA weighting) puts larger weight on N(4, 1) and behaves worse, while the
stacking is essentially unchanged. It illustrates another benefit of stacking compared to
BMA or Pseudo-BMA weights. If the performance of a combination method decays as
the list of candidate models is expanded, this may indicate disastrous performance if
there are many similar weak models on the candidate list. We are not saying BMA can



930 Using Stacking to Average Bayesian Predictive Distributions

never work in this case. In fact some other methods are proposed to make BMA overcome
such drawbacks. For example, George (2010) establishes dilution priors to compensate
for model space redundancy for linear models, putting smaller weights on those models
that are close to each other. Fokoue and Clarke (2011) introduce prequential model
list selection to obtain an optimal model space. But we propose stacking as a more
straightforward solution.

4.2 Linear subset regressions

The previous section demonstrates a simple example of combining several different non-
parametric models. Now we turn to the parametric case. This example comes from
Breiman (1996) who compares stacking to model selection. Suppose the true model is

Y=0X1++06;Xs+e¢

where € ~ N(0,1). All the covariates X; are independently from N(5,1). The number
of predictors J is 15. The coeflicient j is generated by

ﬁj =7 ((1‘j—4\<h(h - ‘] - 4|)2 + (1|j—8\<h)(h — |j — 8|)2 + (1\j—12|<h)(h - |j - 12|)2) )
where 7 is determined by fixing the signal-to-noise ratio such that

Var(y_, 8;X;) 4

1+Var(zj Bij) 5

The value h determines the number of nonzero coeflicients in the true model. For h = 1,
there are 3 “strong” coefficients. For h = 5, there are 15 “weak” coefficients. In the
following simulation, we fix h = 5. We consider the following two cases:

1. M-open: Each subset contains only one single variable. Hence, the k-th model is
a univariate linear regression with the k-th variable Xj. We have K = J = 15
different models in total. One advantage of stacking and Pseudo-BMA weighting
is that they are not sensitive to prior, hence even a flat prior will work, while
BMA can be sensitive to the prior. For each single model My, : Y ~ N(8, Xy, 0?),
we set prior B ~ N(0,10), 0 ~ Gamma(0.1,0.1).

2. M-closed: Let model k be the linear regression with subset (Xi,...,X)). Then
there are still K = 15 different models. Similarly, in model M, : Y ~
N(35_1 Bj X, 02), we set prior 8; ~ N(0,10),j = 1,....k, o ~ Gamma(0.1,0.1).

In both cases, we have seven methods for combining predictive densities: (1) stacking
of predictive distributions, (2) stacking of means, (3) Pseudo-BMA, (4) Pseudo-BMA+,
(5) best model selection by mean LOO value, (6) best model selection by marginal
likelihood, and (7) BMA. We generate a test dataset (Z;,9;), ¢ = 1,...,200 from the
underlying true distribution to calculate the out of sample logarithm scores for the com-
bined distribution under each method and repeat the simulation 100 times to compute
the expected predictive accuracy of each method.
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Figure 3: Mean log predictive densities of 7 combination methods in the linear regression
example: the k-th model is a univariate regression with the k-th variable (1 <k <15).
We evaluate the log predictive densities using 100 repeated experiments and 200 test
data.

Figure 3 shows the expected out-of-sample log predictive densities for the seven
methods, for a set of experiments with sample size n ranging from 5 to 200. Stacking
outperforms all other methods even for small n. Stacking of predictive distributions is
asymptotically better than any other combination method. Pseudo-BMA+ weighting
dominates naive Pseudo-BMA weighting. Finally, BMA performs similarly to Pseudo-
BMA weighting, always better than any kind of model selection, but that advantage
vanishes in the limit since BMA picks up one model. In this M-open setting, model
selection can never be optimal.

The results change when we move to the second case, in which the k-th model con-
tains variables X1, ..., X} so that we are comparing models of differing dimensionality.
The problem is M-closed because the largest subset contains all the variables, and we
have simulated data from this model. Figure 4 shows the mean log predictive densities of
the seven combination methods in this case. For a large sample size n, almost all meth-
ods recover the true model (putting weight 1 on the full model), except BMA and model
selection based on marginal likelihood. The poor performance of BMA comes from the
parameter priors: recall that the optimality of BMA arises when averaging over the
priors and not necessarily conditional on any particular chosen set of parameter values.
There is no general rule to obtain a “correct” prior that accounts for the complexity for
BMA in an arbitrary model space. Model selection by LOO can recover the true model,
while selection by marginal likelihood cannot due to the same prior problems. Once
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Figure 4: Mean log predictive densities of 7 combination methods in the linear regression
example: the k-th model is the regression with the first k& variables (1 <k < 15). We
evaluate the log predictive densities using 100 repeated experiments and 200 test data.

again, BMA eventually becomes the same as model selection by marginal likelihood,
which is much worse than any other methods asymptotically.

In this example, stacking is unstable for extremely small n. In fact, our compu-
tations for stacking of predictive distributions and Pseudo-BMA depend on the PSIS
approximation to logp(y;|y—;). If this approximation is crude, then the second step
optimization cannot be accurate. It is known that the parameter k in the generalized
Pareto distribution can be used to diagnose the accuracy of PSIS approximation. When
k> 0.7 for a datapoint, we cannot trust the PSIS-LOO estimate and so we re-run the
full inference scheme on the dataset with that particular point left out (see Vehtari
et al., 2017b).

Figure 5 shows the comparison of the mean elpd estimated by LOO and the mean
elpd calculated using 200 independent test data for each model and each sample size in
the simulation described above. The area of each dot in Figure 5 represents the relative
complexity of the model as measured by the effective number of parameters divided
by sample size. We evaluate the effective number of parameters using LOO (Vehtari
et al., 2017b). The sample size n varies from 30 to 200 and variable size is fixed to be
20. Clearly, the relationship is far from the line y = x for extremely small sample size,
and the relative bias ratio (elpdjoo/€lpdiest) depends on model complexity. Empirically,
we have found the approximation to be poor when the sample size is less than 5 times
the number of parameters. Further diagnostics for PSIS are described by Vehtari et al.
(2017a).
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Figure 5: Comparison of the mean elpd estimated by LOO and the mean elpd calculated
from test data, for each model and each sample size in the simulation described above.
The area of each dot represents the relative complexity of the model as measured by
the effective number of parameter divided by sample size.

As a result, in the small sample case, LOO can lead to relatively large variance,
which makes the stacking of predictive distributions and Pseudo-BMA/ Pseudo-BMA+
unstable, with performance improving quickly as n grows.

4.3 Comparison with mixture models

Stacking is inherently a two-step procedure. In contrast, when fitting a mixture model,
one estimates the model weights and the status within parameters in the same step. In
a mixture model, given a model list M = (M, ..., M}), each component in the mixture
occurs with probability wy. Marginalizing out the discrete assignments yields the joint

likelihood
K

pylwik, 01:) = > wip(ylox, My).
k=1

The mixture model seems to be the most straightforward continuous model ex-
pansion. Nevertheless, there are several reasons why we may prefer stacking to fitting
a mixture model. Firstly, Markov chain Monte Carlo (MCMC) methods for mixture
models are difficult to implement and generally quite expensive. Secondly, if the sample
size is small or several components in the mixture could do the same thing, the mixture
model can face non-identification or instability problem unless a strong prior is added.

Figure 6 shows a comparison of mixture models and other model averaging methods
in a numerical experiment, in which the true model is

Y ~N(61 Xy + B2Xo + f3X2,1), Bk is generated from N(0, 1),

and there are 3 candidate models, each containing one covariate:
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Figure 6: Log predictive densities of the combined distribution obtained by stacking
of predictive distributions, BMA, Pseudo-BMA, Pseudo-BMA+, model selection by
marginal likelihood, and mixture models. In each case, we evaluate the predictive density
by 100 testing data and 100 repeated simulations. The correlation of variables ranges
from —0.3 to 0.9, and sample size ranges from 3 to 50. Stacking of predictive distributions
and Pseudo-BMA+ outperform mixture models in all cases.

My, : Y ~ N(B Xy, 02), with a prior 8 ~N(0,1), k=1,2,3.

In the simulation, we generate the design matrix by Var(X;) = 1 and Cor(X;, X;) =
p. p determines how correlated these models are and it ranges from —0.3 to 0.9.

Figure 6 shows that both the performance of mixture models and single model
selection are worse than any other model averaging methods we suggest, even though
the mixture model takes much longer time to run (about 30 more times) than stacking or
Pseudo-BMA+. When the sample size is small, the mixture model is too complex to fit.
On the other hand, stacking of predictive distributions and Pseudo-BM A+ outperform
all other methods with a moderate sample size.

Clarke (2003) argues that the effect of (point estimation) stacking only depends on
the space spanned by the model list, hence he suggests putting those “independent”
models on the list. Figure 6 shows high correlations do not hurt stacking and Pseudo-
BMA+ in this example.

4.4 Variational inference with different initial values

In Bayesian inference, the posterior density of parameters § = (61,...,60,,) given ob-
served data y = (y1 ...y, ) can be difficult to compute. Variational inference can be used
to give a fast approximation for p(|y) (for a recent review, see Blei et al., 2017). Among
a family of distributions Q, we try to find one ¢ € Q such that the Kullback—Leibler
divergence to the true posterior distribution is minimized:

q" = arg co min KL(q(G),p(0|y)) =arg,co min(Eq log ¢(8) — E4 log p(8, y)) (10)

One widely used variational family is mean-field family where parameters are as-
sumed to be mutually independent Q = {q(6) : q(61,...,0,) = [}~ ¢;(6;)}. Some
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Figure 7: (1) A multi-modal posterior distribution of (1, u2). (2-3) Posterior draws from
variational inference with different initial values. (4-5) Averaged posterior distribution
using stacking of predictive distributions and Pseudo-BMA+ weighting.

recent progress is made to run variational inference algorithm in a black-box way. For
example, Kucukelbir et al. (2017) implement Automatic Differentation Variational In-
ference in Stan (Stan Development Team, 2017). Assuming all parameters 6 are continu-
ous and model likelihood is differentiable, it transforms € into real coordinate space IR™
through ¢ = T'(#) and uses normal approximation p(¢|u, 0%) = [;2; N((jlps, 7). Plug-
ging this into (10) leads to an optimization problem over (u,c?), which can be solved
by stochastic gradient descent. Under some mild condition, it eventually converges to
a local optimum ¢*. However, ¢* may depend on initialization since such optimization
problem is in general non-convex, particularly when the true posterior density p(f|y) is
multi-modal.

Stacking of predictive distributions and Pseudo-BMA+ weighting can be used to
average several sets of posterior draws coming from different approximation distribu-
tions. To do this, we repeat the variational inference K times. At time k, we start
from a random initial point and use stochastic gradient descent to solve the optimiza-
tion problem (10), ending up with an approximation distribution ¢;. Then we draw S

samples (9,&1), . ,9,(65)) from g;(0) and calculate the importance ratio 7, defined in

(6) as 77, = l/p(yi|9,(:)). After this, the remaining steps follow as before. We obtain
stacking or Pseudo-BMA+ weights w; and average all approximation distributions as

K
2 k1 Wk

Figure 7 gives a simple example that the averaging strategy helps adjust the opti-
mization uncertainty of initial values. Suppose the data is two-dimensional y = (y(l), y(2))
and the parameter is (1, u2) € IR?. The likelihood p(y|u1, po) is given by
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y ~ Cauchy(p1,1), @ ~ Cauchy(us, 1).

A N(0,1) prior is assigned to p1 — 2. We generate two observations (ygl) =3, y§2) =2)
and (yél) = —2,y§2) = —2). The first panel shows the true posterior distribution of
= (p1, p2), which is bimodal. We run mean-field normal variational inference in Stan,
with two initial values to be (u1,12) = (5,5) and (—5,—5) separately. This produces
two distinct approximation distributions as shown in panel 2 and 3. We then draw
1000 samples each from these two distributions and use stacking or Pseudo-BMA+ to
combine them. The lower 2 panels show the averaged posterior distributions. Though
neither can recover the true distribution, the averaged version is closer to it.

4.5 Proximity and directional models of voting

Adams et al. (2004) use US Senate voting data from 1988 to 1992 to study voters’
preference for the candidates who propose policies that are similar to their political
beliefs. They introduce two similar variables that indicate the distance between voters
and candidates. Proximity voting comparison represents the i-th voter’s comparison
between the candidates’ ideological positions:

Ui(D) — Ui(R) = (zr — :)*> — (xp — 7;)?,

where x; represents the i-th voter’s preferred ideological position, and zp and xr repre-
sent the ideological positions of the Democratic and Republican candidates, respectively.
In contrast, the i-th voter’s directional comparison is defined by

Ui(D) = Ui(R) = (xp — Xn)(zi — XN) — (zr — Xn) (@i — XN),
where X is the neutral point of the ideology scale.

Finally, all these comparison is aggregated in the party level, leading to two party-
level variable Democratic proximity advantage and Democratic directional advantage.
The sample size is n = 94.

For both of these two variables, there are two ways to measure candidates’ ideolog-
ical positions xp and z g, which lead to two different datasets. In the Mean candidate
dataset, they are calculated by taking the average of all respondents’ answers in the
relevant state and year. In the Voter-specific dataset, they are calculate by using re-
spondents’ own placements of the two candidates. In both datasets, there are 4 other
party-level variables.

The two variables Democratic proximity advantage and Democratic directional ad-
vantage are highly correlated. Montgomery and Nyhan (2010) point out that Bayesian
model averaging is an approach to helping arbitrate between competing predictors in a
linear regression model. They average over all 2° linear subset models excluding those
containing both variables Democratic proximity advantage and Democratic directional
advantage, (i.e., 48 models in total). Each subset regression is with the form

M,y =yl (X, Bo, By) ~ N(Bo + X'yﬂ”/vo'2)~
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Full model BMA Stacking of Pseudo-BMA + weighting
predictive distributions

Mean Voter- Mean Voter- Mean Voter- Mean Voter-

Candidate specific Candidate specific Candidate specific Candidate specific
prox. adv. -3.05 (1.32) -2.01 (1.06) -0.22 (0.95) 0.75 (0.68) 0.00 (0.00)  0.00 (0.00)  -0.02 (0.08) 0.04 (0.24)
direct. adv. 7.95 (2.85) 418 (1.36)  3.58 (2.02) 2.36 (0.84) 2.56 (2.32)  1.93 (1.16)  1.60 (4.91) 1.78 (1.22)
incumb. adv. 1.06 (1.20)  1.14 (1.19) 1.61 (1.24) 1.30 (1.24) 0.48 (1.70)  0.34 (0.89) 0.66 (1.13) 0.54 (1.03)
quality adv. 3.12 (1.24) 238 (1.22) 296 (1.25) 2.74 (1.22) 2.20 (1.71)  2.30 (1.52) 2.05 (2.86) 1.89 (1.61)
spend adv. 0.27 (0.04)  0.27 (0.04)  0.32 (0.04) 0.31 (0.04) 0.31 (0.07)  0.31 (0.03) 0.31 (0.04) 0.30 (0.04)
partisan adv. 0.06 (0.05)  0.06 (0.05)  0.08 (0.06) 0.07 (0.06) 0.01 (0.04)  0.00 (0.00) 0.03 (0.05) 0.03 (0.05)
constant 533 (1.2) 520 (0.8) 514 (1.0) 51.6(0.8) 519 (L1)  51.6(0.7) 515 (1.2) 51.4 (0.8)

Figure 8: Regression coefficients and standard errors in the voting example, from the full
model (columns 1-2), the averaged subset regression model using BMA (columns 3-4),
stacking of predictive distributions (columns 5-6) and Pseudo-BMA+ (columns 7-8).
Democratic proximity advantage and Democratic directional advantage are two highly
correlated variables. Mean candidate and Voter-specific are two datasets that provide
different measurements on candidates’ ideological placement.

Accounting for the different complexity, they used the hyper-g prior (Liang et al., 2008).
Let ¢ to be the inverse of the variance ¢ = % The hyper-g prior with a hyper-parameter
« is,

p(6) x5,
g _
8196, %) ~N(0. S(XTX) ),
plgla) = S (1 4+9) 2, g >0

The first two columns of Figure 8 show the linear regression coefficients as estimated
using least squares. The remaining columns show the posterior mean and standard er-
ror of the regression coefficients using BMA, stacking of predictive distributions, and
Pseudo-BMA+ respectively. Under all three averaging strategies, the coefficient of prox-
imity advantage is no longer statistically significantly negative, and the coefficient of
directional advantage is shrunk. As fit to these data, stacking puts near-zero weights
on all subset models containing proximity advantage, whereas Pseudo-BMA+ weight-
ing always gives some weight to each model. In this example, averaging subset models
by stacking or Pseudo-BMA+ weighting gives a way to deal with competing variables,
which should be more reliable than BMA according to our previous argument.

4.6 Predicting well-switching behavior in Bangladesh

Many wells in Bangladesh and other South Asian countries are contaminated with
natural arsenic. People whose wells have arsenic levels that exceed a certain threshold
are encouraged to switch to nearby safe wells (for background details, see Gelman and
Hill (2006, Chapter 5.4)). We are analyzing a dataset including 3020 respondents to
find factors predictive of the well switching. The outcome variable is
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1, if household ¢ switched to a safe well.

vi= {0, if household 4 continued using its own well.

And we consider following input variables:

e dist: the distance (in meters) to the closest known safe well,
e arsenic: the arsenic level (in 100 micrograms per liter) of the respondent’s well,
e assoc: whether a member of the household is active in any community association,

e educ: the education level of the head of the household.

We start with what we call Model 1, a simple logistic regression with all variables
above as well as a constant term,

y ~Bernoulli(9),
0 =logit ™! (By + Bidist + Byarsenic + Bsassoc + Byeduc).

Model 2 contains the interaction between distances and arsenic levels,
0 = logit™ (8 + Brdist + Paarsenic + Bsassoc + Bueduc + Bsdist x arsenic).

Furthermore, we can use spline to capture the nonlinear relational between the logit
switching probability and the distance or the arsenic level. Model 3 contains the B-
splines for the distance and the arsenic level with polynomial degree 2,

0= logit_l(ﬁo + Bidist + Bearsenic + Bzassoc 4+ Baeduc + gis Bais + QarsBars)s

where By is the B-spline basis of distance with the form (Bg;s 1(dist), . .., Bas,q(dist))
and ag;s, aqrs are vectors. We also fix the number of spline knots to be 10. Model 4 and
5 are the similar models with 3-degree and 5-degree B-splines, respectively.

Next, we can add a bivariate spline to capture nonlinear interactions,
6 = logit ! (Bo + Prdist + Baarsenic+ Bzassoc+ Baeduc + Bydist x arsenic+ aBgis ars)s

where Byis qrs is the bivariate spline basis with the degree to be 2x2,3x3 and 5x5 in
Model 6,7 and 8 respectively.

Figure 9 shows the inference results in all 8 models, which are summarized by the
posterior mean, 50% confidence interval and 95% confidence interval of the probability
of switching from an unsafe well as a function of the distance or the arsenic level. Any
other variables assoc and educ are fixed at their means. It is not obvious from these
results which one is the best model. Spline models give a more flexible shape, but also
introduce more variance for posterior estimation.

Finally, we run stacking of predictive distributions and Pseudo-BMA+ to combine
these 8 models. The calculated model weights are printed above each panel in Figure 9.
For both combination methods, Model 5 (univariate splines with degree 5) accounts



Y. Yao, A. Vehtari, D. Simpson, and A. Gelman 939

Pseudo-BMA+ weight= 0 Pseudo-BMA+ weight= 0
Model 1 - stacking weight= 0.09 Model 2 - stacking weight= 0
1.0 —
>
£ 08
8
8 06 . ﬁ = probability as a function of distance; fix arsenic=0.5
& m probability as a function of distance; fix arsenic=1
% = probability as a function of arsenic level; fix distance=0
£ = probability as a function of arsenic level; fix distance=50
; 02
@
0.0
Pseudo-BIA+ weight= 0.02 Pseudo-BVIA+ weight= 0.07 Pseudo-BMA weight= 0.62
Model 3 stacking weight= 0 Model 4 :  stacking weight= 0 Model 5 : slackmg weight= 0.

B

switching probability
o o o
2 e @

°
s

°
o

Pseudo-BMA+ welgh( 0.01 Pseudo-BMA+ welgh( 0.02 Pseudo-BMA+ welgh( 0.06
Model 6 stacking weight= 0 Model 7 :  stacking weight= 0 Model 8 :  stacking weight= 0

switching probability
o o o o =
5 2 o = b

°
S

50 150 250 2 4 6 8 10 50 150 250 2 4 6 8 10 50 150 250 2 4 6 8 10

distance arsenic level distance arsenic level distance arsenic level

Figure 9: The posterior mean, 50% and 95% confidence interval of the well switching
probability in Models 1-8. For each model, the switching probability is shown as a
function of (a) the distance to the nearest safe well or (b) the arsenic level of the existing
well. In each subplot, other input variables are held constant. The model weights by
stacking of predictive distributions and Pseudo-BMA+ are printed above each panel.
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Figure 10: The posterior mean, 50% and 95% confidence interval of the well switching
probability in the combined model via stacking of predictive distributions. Pseudo-
BMA+ weighting gives a similar result for the combination.

for the majority share. Model 8 is the most complicated one, but both stacking and
Pseudo-BMA+ avoid overfitting by assigning it a negligible weight.

Figure 10 shows the posterior mean, 50% confidence interval, and 95% confidence
interval of the switching probability in the stacking-combined model. Pseudo-BMA+
weighting gives a similar combination result for this example. At first glance, the com-
bination looks quite similar to Model 5, while it may not seem necessary to put an
extra 0.09 weight on Model 1 in stacking combination since Model 1 is completely con-
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tained in Model 5 if setting ag;s = @urs = 0. However, Model 5 is not perfect since
it predicts that the posterior mean of switching probability will decrease as a function
of the distance to the nearest safe well, for small distances. In fact, without further
control, it is not surprising to find boundary fluctuation as a main drawback for higher
order splines. This decreasing trend around the left boundary is flatter in the combined
distribution since the combination contains part of straightforward logistic regression
(in stacking weights) or lower order splines (in Pseudo-BMA+ weights). In this example
the sample size n = 3020 is large, hence we have reasons to believe stacking of predictive
distributions gives the optimal combination.

5 Discussion
5.1 Sparse structure and high dimensions

Yang and Dunson (2014) propose to combine multiple point forecasts, f = Zszl Wi fk,
through using a Dirichlet aggregation prior, w ~ Dirichlet(4%5, ..., %), and the adap-
tive regression. Their goal is to impose the sparsity structure (certain models can receive
zero weights). They show their combination algorithm can achieve the minimax squared
risk among all convex combinations,
sup inf sup E|f - f{|],
fi,-fx€Fo [ fY€FT

where Fo = (f : || flloo < 1).

The stacking method can also adapt to sparsity through stronger regularizations.
When the dimension of model space is high, we can use a hierarchical prior on w in
estimation (4) to pull toward sparsity if that is desired.

5.2 Constraints and regularity

In point estimation stacking, the simplex constraint is the most widely used regulariza-
tion so as to overcome potential problems with multicollinearity. Clarke (2003) suggests
relaxing the constraint to make it more flexible.

When combining distributions, there is no need to worry about multicollinearity
except in degenerate cases. But in order to guarantee a meaningful posterior predictive
density, the simplex constraint becomes natural, which is satisfied automatically in BMA
and Pseudo-BMA weighting. As mentioned in the previous section, stronger priors can
be added.

Another assumption is that the separate posterior distributions are combined lin-
early. There could be gains from going beyond convex linear combinations. For instance,
in the subset regression example when each individual model is a univariate regression,
the true model distribution is a convolution instead of a mixture of each possible mod-
els distribution. Both of them lead to the additive model in the point estimation, so
stacking of the means is always valid, while stacking of predictive distributions is not
possible to recover the true model in the convolution case.
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Our explanation is that when the model list is large, the convex span should be large
enough to approximate the true model. And this is the reason why we prefer adding
stronger priors to make the estimation of weights stable in high dimensions.

5.3 General recommendations

The methods discussed in this paper are all based on the idea of fitting models separately
and then combining the estimated predictive distributions. This approach is limited in
that it does not pool information between the different model fits: as such, it is only
ideal when the K different models being fit have nothing in common. But in that
case we would prefer to fit a larger super-model that includes the separate models
as special cases, perhaps using an informative prior distribution to ensure stability in
inferences.

That said, in practice it is common for different sorts of models to be set up without
any easy way to combine them, and in such cases it is necessary from a Bayesian per-
spective to somehow aggregate their predictive distributions. The often-recommended
approach of Bayesian model averaging can fail catastrophically in that the required
Bayes factors can depend entirely on arbitrary specifications of noninformative prior
distributions. Stacking is a more promising general method in that it is directly focused
on performance of the combined predictive distribution. Based on our theory, simula-
tions, and examples, we recommend stacking (of predictive distributions) for the task of
combining separately-fit Bayesian posterior predictive distributions. As an alternative,
Pseudo-BMA+ is computationally cheaper and can serve as an initial guess for stack-
ing. The computations can be done in R and Stan, and the optimization required to
compute the weights connects directly to the predictive task.

Supplementary Material

Supplementary Material to “Using Stacking to Average Bayesian Predictive Distribu-
tions” (DOI: 10.1214/17-BA1091SUPP; .pdf).
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Invited Discussion

Bertrand Clarke*

1 Introduction and Summary

Yao, Vehtari, Simpson, and Gelman have proposed a useful and incisive extension to
the usual model average predictor based on stacking models. The extension uses score
functions as a way to determine weights on predictive densities, thereby giving a full
stacking-based distribution for a future outcome. The authors are to be commended for
their perceptivity and I am grateful to the Editor-in-Chief of Bayesian Analysis for the
opportunity to contribute to the discussion.

The authors develop their ideas logically: Initally, they review the concept of statis-
tical problem classes, namely M-closed, -complete, and -open. These classes are defined
by the relative position of the unknown true model (assuming it exists) to the models on
a model list that are available for use. Then, they recall the definitions of various model
averaging techniques, including the original form of stacking due to Wolpert (1992).
Typically, model averaging techniques are most useful for large M-closed problems
(where model selection may not be effective) and M-complete problems.

The authors then state the definition of a proper scoring rule and define a model
averaging procedure with respect to one. Intuitively, a scoring rule S is a real valued
function of two variables: One is a distribution (usually assumed to have a density)
and the other is an outcome of a data generator (DG). When a DG is stochastic,
i.e., its outcomes are drawn according to a probability distribution, it makes sense to
regard its outcomes as corresponding to a random variable. The scoring rule is meant
to encapsulate how far a P chosen to generate predictions is from a realized outcome y.
The idea is that our P can be (and probably is) wrong whereas by definition y is ‘right’
because it came from the DG. Hence, loosely, S(P,y) is small, possibly negative, when
P is poorly chosen and large when P is well-chosen, both relative to y.

The definition of a scoring rule can be extended to include the case that Y = y has
a distribution. This gives a real valued function that behaves somewhat like a distance
between two distributions, say P and @, and is of the form S(P,Q) = [ S(P,y)dQ(y).

To state the authors’ central definition, which defines their new methodology as an
extension of Wolpert (1992), write

K
max 5 (Z wkp(' | Y = y7Mk)7PT(' | Y = y)) ’ (1)

K
weS 1

where: i) S¥ is the simplex in K dimensions with generic element w = (wy, . .., wk), ii)
the Mj’s are candidate models and pr denotes the density of the true model, and, iii)
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Y= (y1,-..,Yn) is an outcome of Y = (Y1, ...,Y,,) ~ p} in which the Y;’s are IID. It is
understood that the integration in .S is with respect to pr. The first and second entries
of S in (1) use the predictive densities for a new Y, 11 = ynt1, given Y = y, under the
K candidate models and pr, respectively.

Since (1) is intractable as written, the authors replace p(yn+1 | Y = y, M) with

Pr,—i(yi) = /p(y,» | Ok, My )p(Ok | y—i, My)dOs (2)

in which the subscript —¢ indicates that the i-th data point, ¢ = 1,...,n, has been left
out. It is also assumed that model M} is defined by a conditional density for Y; and
includes a prior p(6)) where 6 is the parameter for model Mj. Using (2) in (1) and
reverting to the initial definition of the score function, the stacking weights are

n K
1
AfL',...,A - - S D —i\" )y Yi 5 3
(w W) = arg max - > (g_lwkpk, () y) (3)

i=1

assuming they exist and are unique. It is important to note the interchangeability of
pr and Y; = y; which is ‘true’ in the sense that it is a valid outcome of py. Now, the
‘stack’ of predictive densities is

K
Pyni1 | Y =) =D p(ynir | Y =y, My), (4)
k=1

where the coefficients come from (3). Expression (4) can be used to obtain point and
interval predictors for Y, 1.

2 Prequentialism, Problem Classes, and Comparisons

The central methodological contribution of the paper is a general technique, essentially
Expression (4), for using a score function to find coefficients that can be used to form
a stack of densities that happen to be the predictive densities from K models. Thus,
it is a method for producing predictors and it can be compared to other methods that
produce predictors. One natural way to do this is to invoke the Prequential Principle
as enunciated in Dawid (1984): Any criterion for assessing the agreement between the
predictor and the DG should depend only on the predictions and outcomes. There are
two key features to this: i) There should be no conflict/confluence of interest between
the assessment and the generation of the values fed into the assessment, and ii) The
values of either the DG or predictor that were not used are not relevant. At root,
Prequentiality primarily requires that the comparison of predictions with outcomes be
disjoint from how the predictions were generated.

The Prequential Principle is very general: It does not require that the outcomes of
the DG even follow a distribution. So, the Prequential Principle accommodates any sort
of streaming data or data that can be regarded as having a time-ordering — even if the
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ordering is imposed by the analysis. Parallel to this generality, and given the ubiquity
of data that is not plausibly stochastic, it makes sense to merge the definitions of M-
complete and M-open and redefine M-open as those DG’s that are not meaningfully
described by any stochastic process, i.e., no true probability model exists. Indeed, the
definition of M-complete and M-open offered originally in Bernardo and Smith (2000)
p. 384-5 allows for this but permits M-complete and M-open problems to overlap.
Redefining the M-open class of problems so it is disjoint from the M-complete (and
M-closed) classes of problems seems logical. Doing this also helps focus on model list
selection which deserves more attention; see the comparisons in Clarke et al. (2013).

In the context of the Prequential Principle, the assumption built into the paper
(and comments) is that stacking the posterior predictive densities is done using only
the first n data points and the goal is to predict the n+ 1. That is, n data points (z;,y;)
for ¢ = 1,...,n are available to form a predictor such as p and that the predictor is
evaluated at x,,11 to predict Yy, +1(z,+1) and its performance assessed in some way that
does not involve S. Implicitly, it is assumed the prediction problem will be repeated
many times and we are looking only at the n-th stage so as to examine the updating of
the predictor. In this way the authors’ framework may be seen as Prequential (although
this is a point on which reasonable people might disagree). Aside from the formula
(4), updating can include changing the models, the M}’s, or even the model averaging
technique itself. This is done chiefly by the comparing the predictions with the realized
values. Here, the x;’s are regarded as deterministic explanatory variables and the Y;’s
are random. In much of the paper, the x;’s are suppressed in the notation.

In their Gaussian mixture model example (Section 4.1), the authors treat their prob-
lem as M-open because the true model is not on the model list. While this is reasonable
for the sake of argument, it actually underscores the importance of model list selection
because choosing a better model list would make the problem M-closed. Nevertheless,
in this example, the authors make a compelling point by comparing three different pre-
dictors: Bayes model averaging (BMA), stacking of means (under squared error), and
stacking of predictive distributions by using a log score as in (4). Figure 1 shows that
BMA converges to the model on the model list closest to the true model i.e., BMA has
unavoidable (and undetectable) bias. By contrast, stacking of means and stacking of
predictive distributions both do well in terms of their means (Figure 2, middle panel)
and stacking of predictive densities outperforms both BMA and stacking of means in
other senses (Figure 2, left and right panels) because, as shown in Figure 1, it converges
to the correct predictive distribution. The distribution associated with the stacking
of means converges to a broad lump that does not seem useful. This example shows
that matching whole distributions is feasible and sensible. It also shows BMA does not
routinely perform well despite its asymptotic optimality; see Raftery and Zheng (2003).

In the example of Section 4.2, Figures 3 and 4 show that, again, stacking means
and stacking predictive densities are the best among seven model averaging methods
while BMA ties for fourth place or is in last place. Other comparisons have found BMA
to have similarly disappointing finite sample behavior. (There is good evidence that a
technique called Pseudo-BMA+ is competitive with the two versions of stacking.)

In the example of Section 4.3 where the goal is to obtain a density, the authors show
stacking predictive densities and Pseudo-BMA+ outperform four other techniques for
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obtaining a density; one is BMA. The remaining examples show further properties of
stacking predictive densities (Section 4.4) or use the method to do predictive inference
(Sections 4.5 and 4.6). The results on real data seem reasonable.

A remaining question is the relationship between using predictions from stacked
predictive distributions and the Prequential Principle. Obviously, point predictors from
stacked predictive distributions can be compared directly to outcomes and hence the
Prequential Principle is satisfied. However, one of the authors’ arguments is that ob-
taining a full distribution, as can be done by using their method, is better than simply
using point predictors; this is justified by using what appear to be non-Prequential as-
sessments such as the mean log density; see Figures, 2, 3, 4, and 6. First, the log-score
was used to form the stacks. So, is log really the right way to assess performance? Sec-
ond, all too often, taking a mean requires a distribution to exist and so the evaluation of
the predictor may therefore depend on the true distribution if only to define the mode
of convergence. It’s hard to tell if this is the case with the present predictor; these are
points on which the authors should comment. Moreover, effectively, the new method
gives a prediction distribution (4) that leaves us with two questions: i) How should
we use the distributional information, including that from the smoothing and Bayesian
bootstrap, assuming it’s valid? and ii) Is the distributional information associated with
the stacking of means or densities valid, i.e., an accurate representation of its variability?

The answer to i) might simply be the obvious: It’s a distribution and therefore any
operation we might wish to perform on it, e.g., extract interval or percentile predictors,
is feasible and it can be assessed in the score function of our choice. Of course, in
practice, we do not know the actual distribution of the future outcome; we have only an
estimate of it that we hope is good. Perhaps the consistency statement in Section 3.2
is enough. The answer to ii) seems to require more thought on what exactly the Pareto
smoothing and Bayesian bootstrap are producing. This is important because an extra
quantity, the score function, has been introduced and the solution in (4) — and hence
the distribution assigned to stacked means or predictive densities — can depend on it,
possibly delicately. The effect of the score function and the validity of the distribution
the authors have associated to stacking of means are points for which the authors might
be able to provide some insight.

3 What About Score Functions in the M-Open Case?

One can plausibly argue that the authors’ methodology really only applies to M-closed
and -complete problems. In other words, the examples they use are simulated and so
are M-closed or real data for which one might believe a stochastic model exists even
if it is tremendously complex. Of course, even if such arguments are accepted, one can
use the authors’ techniques in M-open problems — it just might not work as well as
methods that are designed for M-open problems.

One technique that was invented with M-open problems in mind is due to Shtarkov
(1987). The analogous Bayesian problem and solution was given in Le and Clarke (2016).
In both cases the log score was used; however, the authors’ work suggests that this
technique can be generalized to other score functions.
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Recall the idea behind Shtarkov’s original formulation is that prediction can be
treated as a game in which a Forecaster chooses a density ¢ (for prediction) and Nature
chooses an outcome y not constrained by any rule. The payoff to Nature (or loss to
the Forecaster) is log ¢(y), i.e., log loss. Naturally, the Forecaster wants to minimize the
loss. So, assume the Forecaster has ‘Advisors’ represented by densities pg; each Advisor
corresponds to a . The advisors announce their densities before Nature issues a y. If the
Forecaster has a pre-game idea about the relative abilities of the advisors to give good
advice, this may be formulated into a prior p(6). Now it makes sense for the Forecaster
to minimize the maximum regret, i.e., to seek the smallest loss (incurred by the best
Advisor). This means finding the ¢ that minimizes

1 . 1
Sil’[log w3 |9>] ' )

The solution exists in closed form and can be computed; see Le and Clarke (2016).
Following the authors, consider replacing the log loss in (5) by a general score function,
S. Now, the Forecaster wants the ¢ € Q, say gopt,s, that minimizes

sup [S(a().) ~ igf SGOC 0.0 ©

Y

where Q is a collection of densities. Expression (6) may be converted to a form analo-
gous to (3), possibly releasing the sum-to-one constraint that some have argued is not
appropriate for M-open problems. It is not obvious that a closed form for (6) can be
given; gopt,s might only be available computationally. In either case, gopt,s would depend
on S, give an alternative solution to Shtarkov’s problem, and might perform better for
M-open data than score based stacking. If the authors had any insight on these points,
many readers would be glad to hear them.
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Invited Discussion
Meng Li*f

1 Introduction

I would like to offer my congratulations to Yao et al. for a welcome and interesting
addition to the growing literature on model averaging. Earlier papers on stacking cited
by the authors have mostly focused on averaging models to improve point estimation.
The authors now demonstrate that the same idea can be extended to the combination of
predictive distributions in the M-open case. In the next several pages, I will first review
the paper connecting it to the related literature (Section 2), then comment on the M-
complete case (Section 3) and an application that may be favorable to the proposed
method (Section 4). Section 5 concludes this comment.

2 Overview

Suppose we have a list of parametric models under consideration M = {My,..., Mg}
for the observations y(™ = {y1,...,yn}t € Y™ with Y the sample space. Yao et al.
(2017) address a general problem of model aggregation from an interesting perspective:
how to average the multiple models in M such that the resulting model combination
has an optimal predictive distribution. This distinguishes its goal from two areas that
have been well studied, i.e., weighing models targeted to an optimal point prediction
and selecting a single model possibly with uncertainty quantification. Yao et al. (2017)
particularly focus on the M-open case (Bernardo and Smith, 1994) to allow the true
model to fall outside of M.

One of the most popular approaches is to use Bayesian model probabilities pr(My, |
y™) as weights, with these weights forming the basis of Bayesian Model Averaging
(BMA). Philosophically, in order to interpret pr(M; | ™) as a model probability, one
must rely on the assumption that one of the models in the list M is exactly true,
known as the M-closed case. This assumption is arguably always flawed, although one
can still use pr(Mj | ™) as a model weight from a pragmatic perspective, regardless
of the question of interpretation. In the case of M-complete or M-open, an alternative
approach is to formulate the model selection problem in a decision theoretic framework,
selecting the model in M that maximizes expected utility. Yao et al. (2017) adopt a
stacking approach along the line of this decision theoretic framework (Bernardo and
Smith, 1994; Gutiérrez-Pena et al., 2009; Clyde and Iversen, 2013).

There are various scoring rules available when defining the unity function in a de-
cision theoretic framework. The choice can and probably should depend on the specific

*This work was partially supported by the Ralph E. Powe Junior Faculty Enhancement Award by
ORAU.

fNoah Harding Assistant Professor, Department of Statistics, Rice University, Houston, TX, U.S.A.,
meng@rice.com
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application—similar principle has been demonstrated by Claeskens and Hjort (2003)
that model selection may focus on the parameter singled out for interest. The classi-
cal stacking method uses quadratic loss (or energy score with 5 = 2 in the paper),
targeting at an optimal point prediction. Yao et al. (2017) consider a range of scoring
rules generalizing the stacked density estimation by Smyth and Wolpert (1998). The
authors recommend to use the log scoring rule, which essentially finds the Kullback—
Leibler divergence projection of the true data generating density to the convex hull
C = {Zszl wep(- | M) - Zle wy = 1wy > 0} where p(- | My) is the predictive
density under model My, targeting at an optimal predictive density.

The decision theoretic framework used in the paper bypasses the need to philosoph-
ically interpret or calibrate model weights, but has to evaluate the expected utility.
Expected utility can be approximated either via cross-validation (Clyde and Iversen,
2013) or using a nonparametric prior (Gutiérrez-Penia and Walker, 2005; Gutiérrez-Penia
et al., 2009). The authors use leave-one-out cross-validation to construct an approxima-
tion of the expected utility, while one may generally consider a k-fold cross-validation as
in Clyde and Iversen (2013). While Bayesian model probabilities often have analytical
forms available thus are computationally appealing (Liang et al., 2008), the computa-
tional burden in cross-validation is unfavorably intensive. The authors overcome this
difficulty by using the Pareto smoothed importance sampling (Vehtari and Lampinen,
2002; Vehtari et al., 2012) to approximate leave-one-out predictive densities, which self
diagnoses the reliability of the approximation based on some estimated parameter and
leads to manageable computation. The authors thoughtfully design simple but effective
simulations to illustrate and compare how stacking of distributions and selected existing
methods behave, and provide R and Stan code for routine implementation.

3 M-complete and nonparametric references

The nonparametric Bayes literature provides a rich menu of possibilities to approximate
the true data generating scheme, ranging from Dirichlet processes to Gaussian processes;
refer to Hjort et al. (2010) for a review. There is a rich literature showing that Bayesian
nonparametric models often have appealing frequentist asymptotic properties, such as
appropriate notions of consistency (Schwartz, 1965) and optimal rates of convergence
(van der Vaart and van Zanten, 2009; Bhattacharya et al., 2014; Castillo, 2014; Shen
and Ghosal, 2015; Li and Ghosal, 2017; Ghosal and van der Vaart, 2017). When an
optimal predictive density is the goal, one may ask why not pursue the direction of
flexible modeling utilizing the rapidly developed nonparametric Bayes literature?

While I look forward to open discussions about the question above, one possible
argument is that although Bayesian nonparametric models are appealing from a pre-
diction viewpoint, they also have disadvantages in terms of not only interpretability
but also in involving large numbers of parameters, which increase automatically as the
sample size increases. This may lead to daunting memory, storage and communication
issues in modern applications involving large data sets. It is thus often preferable from
a variety of viewpoints to approximate the performance of a very rich and provably
flexible nonparametric model by taking a weighted average of much simpler parametric
models.
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Keeping the interpretability in mind while being aware of flexible nonparametric
models, we indeed reach to the case of M-complete which “refers to the situation where
the true model exists and is out of model list M. But we still wish to use the models
in M because of tractability of computations or communication of results, compared
with the actual belief model. Thus, one simply finds the member in M that maximizes
the expected utility (with respect to the true model)”, according to the definition from
Bernardo and Smith (1994). As a result, we can use a nonparametric Bayes surrogate
for the true model and calculate the expected utility based on this surrogate, a general
approach that fits into the M-complete case. Li and Dunson (2018) use a nonparametric
Bayesian reference to assign weights to models based on Kullback—Leibler divergence
to define a model weight that can be used in goodness-of-fit assessments, comparing
imperfect models, and providing model weights to be used in model aggregation. It
seems promising to migrate this idea to the two stacking approaches used in the paper,
one based on optimization using proper scoring rules and the other called pseudo-BMA
in Section 3.4 in a form of exponential weighting (Rigollet and Tsybakov, 2012):

e Stacking using proper scoring rules. One may obtain the weights by optimizing
an approximated version of (3):

K K
min d (Z wkp(~|y,Mk),ﬁt(-|y)> or max S <Z wkp(~|y,Mk),ﬁt(-y)> . (@)

wGSlK k=1 wES] k=1

where p;(9;) is a nonparametric Bayes model and other notations are defined in
Yao et al. (2017).

e Pseudo-BMA. We replace the empirical observations used in Section 3.4 by the
nonparametric surrogate. Specifically, the quantity elpdk can be estimated by

K n ~ ~ ~
clpd" = 3 [ 5150 o p(aily. M) i (2)
=1

—k
instead of elpd,,, used in the paper, and the final weights become

—k
Ipd
LG 3)

K — k.
> r—1 exp(elpd )

The use of nonparametric reference models eliminates the need of cross-validation
that gives rise to the main computational hurdle in stacking of distributions. In addi-
tion, this estimate based on nonparametric reference potentially induces an inherent
complexity penalty, a phenomenon observed in Li and Dunson (2018), thus the log-
normal approximation for weights regularization in Section 3.4 may be not necessary.

Although we here focus on Bayesian machinery, one can approximate the expected
utility using any method that estimates d(ZkK=1 wrp(-ly, Mg), pe(-|y)). For example,
if we use the recommended Kullback-Leibler divergence, i.e., d(p,q) = KL(g,p), then
there is substantial work that has focused on estimating the Kullback—Leibler divergence
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between two unknown densities based on samples from these densities (Leonenko et al.,
2008; Pérez-Cruz, 2008; Bu et al., 2018). Here the setting is somewhat different as there
is only one sample, but the local likelihood methods of Lee and Park (2006) and the
Bayesian approach of Viele (2007) can potentially be used, among others.

Furthermore, all of these methods in a decision theoretic framework or BMA are
focused on providing weights for model aggregation, and are not useful for goodness-
of-fit assessments of (absolute) model adequacy. The nonparametric reference models
in the M-complete case enables the assessment the quality of each individual model in
M as well as the entire model list. One of course needs to specify an absolute scale to
define what is adequate, but rules of thumb such as the one provided by Li and Dunson
(2018) based on the convention of Bayes factors may be obtainable.

4 Data integration

Section 5.3 makes a great point that an ideal case for stacking is that the K models in
the model list are orthogonal. This ideal case is not fully demonstrated by the paper, but
it insightfully points to a possible solution to a challenging problem—data integration.

Modern techniques enable researchers to acquire rich data from multiple platforms,
thus it becomes possible to combine various data types of fundamental differences to
make a single decision, hopefully more informative than any decision based on an indi-
vidual data resource. In response to this demand, there has been a recent surge of interest
in data integration expanding into a variety of emerging areas, for example, imaging
genetics, omics data, and analysis of covariate adjusted complex objects (such as func-
tions, images, trees, and networks). One concrete example that I have been working on
comprises a cohort of patients with demographic, clinical and omics data; the omics data
include single nucleotide polymorphisms (SNPs), expression, and micro-ribonucleic acids
(miRNAs). In these cases, the dramatic heterogeneity across data structures, which is
one of root causes that fail many attempts especially those trying to map various data
structures to a common space such as the Euclidean space, seems to be a characteristic
favorable to the stacking approach. The sample size is usually not large, thus even the
cross-validation approach without approximation may be computationally manageable.

5 Summary

To summarize, Yao et al. (2017) have tackled the model averaging problem that is one of
fundamental tasks in statistics. They have proposed improvements to existing stacking
methods for stacking of densities. This method requires intensive leave-one-out posterior
distributions to approximate the expected utility, and the authors propose to use Pareto
smoothed importance sampling to scale up the implementation.

I would like to thank Yao et al. for writing an interesting paper. I appreciated that
the paper has several detailed and thoughtful demonstrations to compare the proposed
methods to existing model weights and help readers understand how stacking and BMA
behave differently. The integration with R and Stan makes the method immediately
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available to practitioners. I find the work useful and expect the proposed methods
positively impact model averaging and its application to a wide range of problems
in practice. I hope the comments on M-complete and a possible application to data
application add some useful insights to a paper already rich in content.
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