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A General Method for Robust Bayesian
Modeling

Chong Wang* and David M. Bleif

Abstract. Robust Bayesian models are appealing alternatives to standard mod-
els, providing protection from data that contains outliers or other departures
from the model assumptions. Historically, robust models were mostly developed
on a case-by-case basis; examples include robust linear regression, robust mixture
models, and bursty topic models. In this paper we develop a general approach to
robust Bayesian modeling. We show how to turn an existing Bayesian model into
a robust model, and then develop a generic computational strategy for it. We use
our method to study robust variants of several models, including linear regres-
sion, Poisson regression, logistic regression, and probabilistic topic models. We
discuss the connections between our methods and existing approaches, especially
empirical Bayes and James—Stein estimation.

Keywords: robust statistics, empirical Bayes, probabilistic models, variational
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1 Introduction

Modern Bayesian modeling enables us to develop custom methods to analyze complex
data (Gelman et al., 2014; Bishop, 2006; Murphy, 2013). We use a model to encode the
types of patterns we want to discover in the data—either to predict about future data or
explore existing data—and then use a posterior inference algorithm to uncover the real-
ization of those patterns that underlie the observations. Modern Bayesian modeling has
had an impact on many fields, including natural language processing (Blei et al., 2003;
Teh, 2006), computer vision (Fei-Fei and Perona, 2005), the natural sciences (Pritchard
et al., 2000), and the social sciences (Grimmer, 2009). Innovations in scalable inference
allow us to use Bayesian models to analyze massive data (Hoffman et al., 2013; Welling
and Teh, 2011; Ahn et al., 2012; Xing et al., 2013); innovations in generic inference
allow us to easily explore a wide variety of models (Ranganath et al., 2014; Wood et al.,
2014; Hoffman and Gelman, 2014).

But, as George Box famously quipped, all models are wrong (Box, 1976). Every
Bayesian model will fall short of capturing at least some of the nuances of the true
distribution of the data. This is the important problem of model mismatch, and it is
prevalent in nearly every application of modern Bayesian modeling. Even if a model is
not wrong in theory, which is rare, it is often wrong in practice, where some data are
inevitably corrupted such as by measurement error or other problems.
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One way to cope with model mismatch is to refine our model, diagnose how it falls
short and try to fix its issues (Gelman et al., 1996). But refining the model ad infinitum is
not a solution to model mismatch—taking the process of model refinement to its logical
conclusion leaves us with a model as complex as the data we are trying to simplify.
Rather, we seek models simple enough to understand the data and to generalize from
it, but flexible enough to accommodate its natural complexity. These are models that
both discover important predictive patterns in the data and flexibly ignore unimportant
issues, such as outliers due to measurement error. Of course, this is a trade off: A model
that is too flexible will fail to generalize; a model that is too rigid will be lead astray
by unsystematic deviations in the data.

To develop appropriately flexible procedures, statisticians have traditionally ap-
pealed to model robustness, the idea that inferences about the data should be “insensi-
tive to small deviations from the assumptions.” (Huber and Ronchetti, 2009). Robust
models are powerful, but traditionally each must be developed on a case-by-case basis.
Beginning with an existing non-robust model, each requires a researcher to derive a
specific algorithm for a robust version of that model. This is in contrast to more general
Bayesian modeling, which has evolved to a point where researchers can often posit a
model and then easily derive a Gibbs sampler or variational inference algorithm for that
model; robust modeling does not yet enjoy the same ease of use for the modern applied
researcher.

In this paper, we aim to facilitate robustness in general Bayesian models. We outline
a method for building a robust version of a Bayesian model and derive a generic inference
algorithm for computing with it. We note that by “robustness” we mean our proposed
method will be less sensitive to model mismatch (but not necessarily robust against all
contaminated situations). By “generic inference” we mean an easy-to-derive procedure
for approximating the posterior in a wide class of models (Section 4). Our method allows
us to easily build robust Bayesian models, models that are less sensitive to inevitable
deviations from their underlying assumptions.

Technical summary. We use two ideas to build robust Bayesian models: local-
ization and empirical Bayes (Efron and Morris, 1973). At its core, a Bayesian model
involves a parameter § for a conditional model p(x;|3), a prior over the parameter
p(B| @), and a hyperparameter a. In other words, we assume

iid. .
IL’1|B Np(xl‘ﬁ)a ﬂwp(ﬂ|04), Z:].,...,Tl.
Then the joint distribution of (8,x) given the hyperparameter « is

n

p(B,x|a) =p(B|a) [ [ p(x: | B)- (1)

i=1

To make it robust, we turn this classical model into a localized model. In a localized
model, each data point is assumed drawn from an individual realization of the parameter
p(z; | B;) and that realization is drawn from the prior p(5; | «). That is

zi | Birep(zi | B), B K p(Bile), i=1,...,n.
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Let 8= (B1,...,05n). Then the joint distribution of (3,x) is given by

n

p(B,x|a) =[] p(Bi | a)p(x: | ). (2)

i=1

This is a more heterogeneous and robust model because it can explain unlikely data
points by deviations in their individualized parameters. Of course, this perspective is not
new—it describes and generalizes many classical distributions that are used for robust
modeling. For example, the student’s t distribution, Dirichlet-multinomial distributions,
and negative Binomial distribution all arise from marginalizing out the local parameter
[3; under various prior distributions.

But there is an issue. The model of (1) uses the parameter 8 to share information
across data points; the hyperparameter can be safely fixed, and often is in many appli-
cations of Bayesian models. In the localized model of (2), however, each data point is
independent of the others conditionally on the parameter 5. To effectively share infor-
mation across data we must estimate (or infer) the hyperparameter .

To achieve this in classical hierarchical Bayes (Gelman et al., 2014), we usually put
a prior over a and compute its posterior, which introduces addtional computational
challenges. In this paper, for simplicity, we choose to use empirical Bayes estimate of «
instead. This algorithm is a major contribution of this paper; it generalizes the case-by-
case algorithms of many existing robust models and expands the idea of robustness to a
wider class of models, including those that rely on approximate posterior inference. As
a demonstration, we use our strategy to study robust generalized linear models (McCul-
lagh and Nelder, 1989)—Ilinear regression, Poisson regression, and logistic regression—as
well as robust topic models (Blei et al., 2003; Doyle and Elkan, 2009). We find that ro-
bust Bayesian models enjoy improved predictive performance and better estimates of
unknown quantities. We also want to point out that the approximate inference algorithm
can be generalized to the case when « also has a prior.

Related work. The goal of robust statistics is to safeguard against the kinds of
deviations that are too difficult or not important enough to diagnose. One popular
approach to robust modeling is to use M-estimators (Huber, 1964), where the basic
idea is to reweigh samples to account for data irregularity. Another approach, which
we build on here, is to replace common distributions with heavy-tailed distributions,
distributions that allow for extra dispersion in the data. Earlier work in this direction
includes using heavy-tailed (flat-tailed) distributions (Berger et al., 1994) instead of
normal distributions. For example, this is also the motivation for replacing a Gaussian
with a student’s t in robust linear regression (Lange et al., 1989; Ferndndez and Steel,
1999; Gelman et al., 2014) and robust mixture modeling (Peel and McLachlan, 2000;
Svensén and Bishop, 2005). In Polson and Scott (2010), authors use local variances
for each data point for linear regression with different with sparsity-promoting priors.
In discrete data, robustness arises via contagious distributions, such as the Dirichlet-
multinomial, where seeing one type of observation increases the likelihood of seeing it
again. For example, this is the type of robustness that is captured by the bursty topic
model of Doyle and Elkan (2009). In the area of generalized linear models (GLM) (Mc-
Cullagh and Nelder, 1989), random intercept GLM (Rabe-Hesketh and Skrondal, 2008;
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McCulloch and Neuhaus, 2001) introduces random effects to more effectively capture
individual variations. Our approach of using localized model in (2) can be seen as a
generalization and unification of many of these ideas from the literature. More details
on the connections will be discussed in Section 3.

In our approach, we choose to the fit the hyperparameter a to achieve robustness
of the model. This is a type of empirical Bayes estimation (Robbins, 1964; Copas,
1969; Efron and Morris, 1973, 1975; Robbins, 1980; Maritz and Lwin, 1989; Carlin and
Louis, 2000b,a). The general idea behind empirical Bayes is to use data to estimate a
hyperparameter. Specifically, setting « to maximize p(x|«) (obtained by integrating
out B in (2)) gives a parametric empirical Bayes estimate of the prior on 5; (Morris,
1983; Kass and Steffey, 1989). While localization is not typically part of the empirical
Bayes recipe—one can just as easily fit the hyperparameters to maximize the marginal
probability of the data under the original Bayesian model—hierarchical models of the
form of (2) appear extensively in the empirical Bayes literature (Efron and Morris,
1973, 1975; Morris, 1983; Kass and Steffey, 1989; Efron, 1996; Carlin and Louis, 2000a;
Efron, 2010). Other names for the localized model include a compound sampling model,
a two-stage sampling model, and an empirical Bayes model. For perspective on empirical
Bayes, see the excellent review by Carlin and Louis (2000b).

Organization of this paper. Section 2 reviews classic Bayesian modeling and
introduces the idea of localization to robustify a Bayesian model. Section 3 presents
several examples of how to apply this idea, developing robust variants of exponential
family models, generalized linear models, and topic models. Section 4 describes how
to solve a robust Bayesian model using expectation maximization and nonconjugate
variational inference. Finally, Section 5 reports results with several models on both
synthetic and real data.

2 A general method for robust Bayesian modeling

We first describe standard Bayesian modeling, and the key ingredients that we will build
on. We then develop robust Bayesian modeling.

2.1 Bayesian models

Bayesian modeling uses probability to capture uncertainty around unknown parameters
in a statistical model (Gelman et al., 2014). A parametric Bayesian model is a joint
distribution of parameters 8 and a data set x. In an exchangeable model, this joint
factorizes into a product of likelihood terms for each data point p(z; | 8) and a prior of
the parameters p(8|a) (1). The prior is governed by the hyperparameter «.

Figure 1 (a) shows the graphical model. This model easily generalizes to include
conditional models, such as in Bayesian linear regression and logistic regression (Bishop,
2006), local latent variables, such as in Bayesian mixtures (Corduneanu and Bishop,
2001) and topic models (Blei et al., 2003; Blei, 2012), and non-exchangeable data, such
as in a hidden Markov model (Rabiner, 1989) or Kalman filter (Kalman, 1960). For now
we focus on the simplest setting in (1).
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Figure 1: (a) A graphical model for a standard Bayesian model (b) A graphical model
for a localized model. By drawing a new parameter (3; for each data point, the localized
model allows individual data points to vary more than the standard Bayesian model as
in (a). Note the robust model requires that we fit the hyperparameter a.. Otherwise the
data are rendered completely independent.

When we use a model we condition on data and compute the corresponding poste-
rior, the conditional distribution of the parameter given the data. We then employ the
posterior in an application, such as to form predictions or to investigate properties of
the data.

The posterior p(f|x,«) is proportional to the joint in (1). We can use the poste-
rior to form the posterior predictive distribution, the distribution of a new data point
conditional on the observed data. The posterior predictive distribution is

P(new | %,0) = / P(news | B)P(B | %, 2)dB. 3)

It integrates the data likelihood p(Znew | 3) under the posterior distribution p(f | x, «).
The posterior predictive distribution is an important idea in Bayesian modeling. It
is used both to form predictions about the future and to check, diagnose, and select
models (Geisser and Eddy, 1979; Rubin, 1984; Gelman et al., 1996).

2.2 Robust Bayesian models

One of the virtues of Bayesian modeling is that the model’s prediction about the future
does not rely on a single point estimate of the parameter, and averaging over the poste-
rior can mitigate overfitting. However, the Bayesian pipeline does not explicitly aim for
a good predictive distribution on future data—the posterior predictive of (3) is the true
distribution of unseen data only when the chosen model represents the true distribution
of the data (Bernardo and Smith, 1994).

In practice, we use models to simplify a complex data generating process (Box,
1980). Thus there is always a mismatch between the posterior predictive distribution
and the true distribution of future data. This motivates the philosophy behind robust
statistics (Huber and Ronchetti, 2009), which aims to develop methods that are not
sensitive to small changes in the modeling assumptions.

We develop robust Bayesian models, models that can usefully accommodate devia-
tion from the underlying assumptions. We will use two ideas: localization and empirical
Bayes.

The localized model. The first idea is localization. As we discussed above, a
traditional Bayesian model independently draws the data x conditional on the parameter
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[, which is drawn from the prior. The localized model relaxes this to a hierarchical
model, which governs each data point with an individual parameter 3; that is drawn
from the prior. In (2), the joint distribution of the individualized parameters 8 = f3.,.
The localized model captures heterogeneity in the data; it explains atypical data that
deviates from the norm (i.e., outliers) by deviations in their parameters.

One way to view the localized model is as one where each data point is drawn
independently and identically distributed from an integrated likelihood,

p(:] ) = / pla: | B:)p(B: | @) dB;. (4)

When the parameter g; controls the dispersion of the data, this results in a heavier-tailed
distribution than the original conditional observation model in (1).

For example, suppose the original model assumes data are from a Gaussian dis-
tribution. Localizing the variance under an inverse gamma prior reveals the student’s
t-distribution, a commonly-used distribution for adding robustness to models of contin-
uous data (Gelman et al., 2014). In Section 3 we show that many methods in robust
statistics can be interpreted in this way.

Empirical Bayes estimation. Crucially, localization requires that we infer the
hyperparameter—it is now « that carries common information about the data. We
can see this graphically. Localization takes us from the traditional Bayesian model in
Figure 1 (a) to the model in Figure 1 (b). In Figure 1 (b), fixing « renders the data
completely independent.

One way to infer the hyperparameter « is via the hierarchical Bayes method (Gelman
et al., 2014), where we put a prior distribution on « and (approximately) compute its
posterior. Another way is to use empirical Bayes (Carlin and Louis, 2000b), where we
find the maximum likelihood estimate of «. In this paper, we adopt the latter for its
simplicity. Mathematically, we find & that maximizes the integrated likelihood of the
data in the robust model,

6 = argmax 3 log [ pla | 6)p(5: | a)d5:. (5)
=1

Here we marginalize out the individualized parameters j; from (2). Thus fitting a robust
model implicitly optimizes the predictive distribution.

Directly optimizing the likelihood can be difficult because of the integral inside
the log function. We defer this issue to Section 4, where we show how to optimize
with a combination of variational inference (Jordan et al., 1999) and the expectation
maximization algorithm (Dempster et al., 1977). Our approach—localizing a global
variable and then fitting its prior—allows us to develop robust variants of many Bayesian
models. As we mentioned in the introduction, this perspective has close connections to
empirical Bayes (Efron and Morris, 1973, 1975; Efron, 2010) and the empirical Bayes
approach laid out in Carlin and Louis (2000a).
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The predictive distribution. With a localized model and estimated hyperpa-
rameter, we form predictions about future data with the corresponding predictive dis-
tribution

p(a™]a) = / p(a™ | F)p(B" | 4)dB".

Notice this has the same form as the likelihood term in the objective of (5).

This predictive procedure motivates our approach to localize parameters and then
fit hyperparameters with empirical Bayes. One goal of Bayesian modeling is to make
better predictions about unseen data by using the integrated likelihood, and the tradi-
tional Bayesian approach of (3) is to integrate relative to the posterior distribution. For
making predictions, however, the traditional Bayesian approach is mismatched because
the posterior is not formally optimized to give good predictive distributions of each data
point. As we mentioned, it is only the right procedure when the data comes from the
model (Bernardo and Smith, 1994).

In contrast, the robust modeling objective of (5)—the objective that arises from
localization and empirical Bayes—explicitly values a distribution of 5 that gives good
predictive distributions for each data point, even in the face of model mismatch.

3 Practicing robust Bayesian modeling

Machine learning and Bayesian statistics have produced a rich constellation of Bayesian
models and general algorithms for computing about them (Gelman et al., 2014; Bishop,
2006; Murphy, 2013). We have described an approach to robustifying Bayesian models in
general, without specifying a model in particular. The recipe is to form a model, localize
its parameters, and then fit the hyperparameters with empirical Bayes. In Section 4,
we will develop general algorithms for implementing this procedure. First we describe
some of the types of models that an investigator may want to make robust, and give
some concrete examples.

First, many models contain hidden variables within p(x; | 8), termed local variables
in Hoffman et al. (2013). Examples of local variables include document-level variables
in topic models (Blei et al., 2003), component assignments in mixture models (McLach-
lan and Peel, 2000), and per-data point component weights in latent feature mod-
els (Salakhutdinov and Mnih, 2008). We will show how to derive the algorithm for
robust versions of Bayesian models with local hidden variables. For example, the bursty
topic models of Doyle and Elkan (2009) and the robust mixture models of Peel and
McLachlan (2000) can be seen as variants of robust Bayesian models.

Second, some models contain two kinds of parameters, and the investigator may only
want to localize one of them. For example the Gaussian is parameterized by a mean
and variance. Robust Gaussian model need only localize the variance; this results in
the student’s t-distribution. In general, these settings are straightforward. Divide the
parameter into two parts 8 = [f1, f2] and form a prior that divides similarly a = a1, as).
Localize one of the parameters and estimate its corresponding hyperparameter.
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Last, many models are not fully generative, but draw each data point conditional on
covariates. Examples include linear regression, logistic regression, and all other gener-
alized linear models (McCullagh and Nelder, 1989). This setting is also straightforward
in our framework. We will show how to build robust generalized linear models, such as
Poisson regression and logistic regression, and how to fit them with our algorithm.

We now show how to build robust versions of several types of Bayesian models.
These models connect to existing robust methods in the research literature, each one
originally developed on a case-by-case basis.

3.1 Conjugate exponential families

The simplest Bayesian model draws data from an exponential family and draws its pa-
rameter from the corresponding conjugate prior. The density of the exponential family is

p(z|n) = h(z)exp {n t(z) — az(n)},

where ¢(z) is the vector of sufficient statistics, 1 is the natural parameter, and h(x) is
the base measure. The log normalizer a,(n) ensures that the density integrates to one,

az(n) = log/h(x) exp {n't(z)} da. (6)

The density is defined by the sufficient statistics and natural parameter. When z; comes
from an exponential family we use the notation x; ~ ExpFAM(n, t(x)).

Every exponential family has a conjugate prior (Diaconis and Ylvisaker, 1979). Sup-
pose the data come from z; ~ EXPFAM(n, x), i.e., the exponential family where z is its
own sufficient statistic. The conjugate prior on 7 is

p(n|a) = h(n)exp{a’[n,—az(n)] — ay(a)}.

This is an exponential family whose sufficient statistics concatenate the parameter n
and the negative log normalizer —a,(n) in the likelihood of the data. The parameter
divides into two components « = [ay, ae] where ag has the same dimension as 1 and
ay is a scalar. Note the difference between the two log normalizers: a,(n) normalizes
the data likelihood; a,(a) normalizes the prior. In our notation, n ~ EXPFAM([a1, ara),

[777 —01(77)])-

Given data x, the posterior distribution of 7 is in the same exponential family as
the prior,

n|x,a ~ EXPFAM ([a1 + >, @i, as + 1], [0, —az(n)]) . (7)

This describes the general set-up behind all commonly used conjugate prior-likelihood
pairs, such as the Beta-Bernoulli, Dirichlet-Multinomial, Gamma-Poisson, and others.
Each of these models first draws a parameter 7 from a conjugate prior, and then draws
n data points z; from the corresponding exponential family.
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Here we define a generic localized conjugate exponential family,

i~ ExpFAM ([alv Otg], [7” 70%(77)]) )
x; ~ EXPFAM (n;, x) .

We fit the hyperparameters a to maximize the likelihood of the data in (5). In a conju-
gate exponential-family pair, the integrated likelihood has a closed form expression. It
is a ratio of normalizers,

plai | a) = / pla: | m)p(n | @)dn
= exp {a,([a1 + 2, a2 + 1]) — ay([a1, a2])}. (8)

In this setting the log likelihood of (5) is

Lo, a0;x) = (O an(ar + zi, a0 + 1)) — nay(aq, az).

This general story connects to specific models in the research literature. As we de-
scribed above, it leads to the student’s t-distribution when the data come from a Gaus-
sian with a fixed mean and localized variance z; ~ N (u,0?), and when the variance o2
has an inverse Gamma prior. It is “robust” when the dispersion parameter is individ-
ualized; the model can explain outlier data by a large dispersion. Fitting the hyperpa-

rameters amounts to maximum likelihood estimation of the student’s t-distribution.

This simple exchangeable model also connects to James—Stein estimation, a pow-
erful method from frequentist statistics that can be understood as an empirical Bayes
procedure (Efron and Morris, 1973; Efron, 2010). Here the data are from a Gaussian
with fixed variance and localized mean z; ~ N (j;, 02), and the mean p; has a Gaussian
prior y1; ~ N(0,A%). This is the conjugate prior. We recover a shrinkage estimate similar
to James—Stein estimation by fitting the prior variance with maximum likelihood.

3.2 Generalized linear models

Generalized linear models (GLM) are conditional models of a response variable y given a
set of covariates  (McCullagh and Nelder, 1989). Specifically, canonical GLMs assume
the response is drawn from an exponential family with natural parameters equal to a
linear combination of coefficients w and covariates.

i = wTIm
yi ~ EXPFAM(n;,y).

Many conditional models are generalized linear models; some of the more common
examples are linear regression, logistic regression, and Poisson regression. For example,
Poisson regression sets 17; = w ' x; to be the log of the rate of the Poisson distribution
of the response. This fits our notation—the log of the rate is the natural parameter of
the Poisson.
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We use the method from Section 2.2 to construct a robust GLM. We replace the
deterministic natural parameter with a Gaussian random variable,

ni ~ N(w' i, \2).

Its mean is the linear combination of coefficients and covariates, and we fit the coeffi-
cients w and variance A% with maximum likelihood. This model captures heterogeneity
among the response variables. It accommodates outliers and enables more robust estima-
tion of the coefficients. Note these models can be seen as instances of random intercept
generalized linear models (Rabe-Hesketh and Skrondal, 2008; McCulloch and Neuhaus,
2001). Here we put them in a larger framework of robustifying general Bayesian models.

Unlike Section 3.1, however, this likelihood-prior pair is typically not conjugate—
the conditional distribution of n; will not be a Gaussian and the integrated likelihood
is not available in closed form. We will handle this nonconjugacy with the algorithms
in Section 4.

In our examples we will always use Gaussian priors. However, we can replace them
with other distributions of the reals. We can interpret the choice of prior as a regularizer
on a per-data point “shift parameter.” This is the idea behind She and Owen (2011)
(for linear regression) and Tibshirani and Manning (2013) (for logistic regression). These
papers set up a shift parameter with L, regularization, which corresponds to a Laplace
prior in the models described here.

We give two examples of robust generalized linear models: robust logistic regres-
sion and robust Poisson regression. We discuss robust linear regression below, when we
develop robust overdispersed GLMs.

Example: Robust logistic regression. In logistic regression y; is a binary re-
sponse,

yi ~ Bernoulli(o(w " z;)),

where o(t) = (1 + exp(—t))~! is the logistic function; it maps the reals to the unit
interval. We apply localization to form robust logistic regression. The model is

ni ~ N(w "z, \?),
y; ~ Bernoulli(o(n;)),

where we estimate w and A2 by maximum likelihood. This model is robust to outliers in
the sense that the per-data distribution on 7; allows individual data to be “misclassified”
by the model. As we mentioned for the general case, the Gaussian prior is not conjugate
to the logistic likelihood; we can use the approximation algorithm in Section 4 for this
model.

We note that there are several existing variants of robust logistic regression. Preg-
ibon (1982) and Stefanski et al. (1986) use M-estimators (Huber, 1964) to form more
robust loss functions, which are designed to reduce the contribution from possible out-
liers. Our approach can be viewed as a likelihood-based robust loss function, where
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we integrate the likelihood over the individual parameter ;. This induces uncertainty
around individual observations, but without explicitly defining the form of a robust loss.

Closer to our method is the shift model of Tibshirani and Manning (2013), who
use L, regularization, as well as the more recent theoretical work of Feng et al. (2014).
However, none of this work estimates hyperparameters A. Using empirical Bayes to
estimate such hyperparameters is at the core of our procedure, and we found in practice
that it is an important component.

Example: Robust Poisson regression. The Poisson distribution is an exponen-
tial family on positive integers. Its parameter is a single positive value, the rate. Poisson
regression is a conditional model of a count-valued response,

y; ~ Poisson (exp {w ' z;}). (9)

Using localization, a robust Poisson regression model is
i~ N(w' i, 2%, (10)
y; ~ Poisson (exp {n;}). (11)

As for all the models above, this allows individual data points to deviate from their
expected value. Notice this is particularly important when the data are Poisson, where
the variance equals the mean in classical Poisson regression—mean and variance are
Ely; | 2:] = Var|y; | ;] = exp(w " x;) as shown in (9). In contrast, we can marginalize out
the per-data point parameter for the robust model in (10) and (11) to reveal a larger
variance,

Elyi |2i] = exp {w " a; + \*/2},
Varly; | ;] = exp {w @; + A?/2} + (exp {A\*} — 1) exp { 2w z; + A*} .
These marginal moments comes from the fact that exp{w';} follows a log normal.

Intuitively, as the prior variance A? goes to zero they approach the moments for classical
Poisson regression.

Robust Poisson regression relates to negative binomial regression (Cameron and
Trivedi, 2013), which also introduces per-data flexibility. Negative binomial regression is

€; ~ Gamma(a, b),
ni=w'x; 4+ loge;,
y; ~ Poisson(exp {n;}).

In this notation, this model assumes that ¢; drawn from a Gamma distribution and
further estimates its parameters with empirical Bayes.

3.3 Overdispersed generalized linear models

An overdispersed exponential family extends the exponential family with a dispersion
parameter, a positive scalar that controls the variance. An overdispersed exponential
family is



1174 A General Method for Robust Bayesian Modeling

plu.7) = hly.7)exp { LD =0 (12)

where 7 is the dispersion. We denote this y ~ OVEXPFAM(n,t(y), 7). One example of
an overdispersed exponential family is the Gaussian—the parameter 7 is the mean and

T is the variance. We can also form a Gaussian in a standard exponential family form,
where the natural parameter combines the mean and the variance.

An overdispersed GLM draws the response from an overdispersed exponential fam-
ily (Jorgensen, 1987). Following Section 3.1, we localize the dispersion parameter 7 to
create a robust overdispersed GLM. In this case we draw 7 from a Gamma,

7; ~ Gamma(a, b),

Yi ~ OVEXPFAM(wai,yi,Ti)-

Localizing the dispersion connects closely with our intuitions around robustness. An
outlier is one that is overdispersed relative to what the model expects; thus a per-data
point dispersion parameter can easily accommodate outliers.

For example consider the GLM that uses a unit-variance Gaussian with unknown
mean (an exponential family). This is classical linear regression. Now form the overdis-
persed GLM—this is linear regression with unknown variance—and localize the disper-
sion parameter under the Gamma prior. Marginalizing out the per-data dispersion, this
model draws the response from a student’s t,

yi ~ toa (- w2, 1/(ab)),

where the student’s t notation t,(y | i, @) is

r(4h) 1y - w2\ "
T(5)V7ve (” 5 )

This is a robust linear model, an alternative parameterization of the model of Lange
et al. (1989) and Ferndndez and Steel (1999).

tu(ylp, @) =

Intuitively, localized overdispersed models lead to heavy-tailed distributions because
it is the dispersion that varies from data point to data point. When working with the
usual exponential family (as in Section 3.1 and Section 3.2), the heavy-tailed distribution
arises only when the dispersion is contained in the natural parameter; note this is the
case for our previous examples, logistic regression and Poisson regression. Here, the
dispersion is localized by design.

3.4 Generative models with local and global variables

We have described how to build robust versions of simple models—conjugate prior-
exponential families, generalized linear models, and overdispersed generalized linear
models. Modern machine learning and Bayesian statistics, however, has developed much
more complex models, using exponential families and GLMs as components in structured
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Figure 2: Robust modeling with local latent variable (3;, z; and observation xz;, i =
1,...,n.

joint distributions (Bishop, 2006; Murphy, 2013). Examples include models of time
series, hierarchies, and mixed-membership. We now describe how to use the method of
Section 3.1 build robust versions of such models.

Each complex Bayesian model is a joint distribution of hidden and observed vari-
ables. Hoffman et al. (2013) divide the variables into two types: local variables z and
global variables 8. Each local variable z; helps govern its associated data point x; and is
conditionally independent of the other local variables. In contrast, the global variables
B help govern the distribution of all the data. This is expressed in the following joint,

p(ﬁv z, X) = p(ﬁ) Hp(zz, Z; | B)

i=1

This joint describes a wide class of models, including Bayesian mixture models (Ghahra-
mani and Beal, 2000; Attias, 2000), hierarchical mixed membership models (Blei et al.,
2003; Erosheva et al., 2007; Airoldi et al., 2007), and Bayesian nonparametric mod-
els (Antoniak, 1974; Teh et al., 2006).!

To make a robust Bayesian model, we localize some of its global variables—we bring
them inside the likelihood of each data point, endowing each with a prior, and then fit
that prior with empirical Bayes. Localizing global variables accommodates outliers by
allowing how each data point expresses the global patterns to deviate from the norm.
Figure 2 shows the graphical model where 3; is the localized global variable and z; is
the original local variable.

As an example, consider latent Dirichlet allocation (LDA) (Blei et al., 2003). LDA is
a mixed-membership model of a collection of documents; each document is a collection of
words. LDA draws each document from a mixture model, where the mixture proportions
are document-specific and the mixture components (or “topics”) are shared across the
collection.

Formally, define each topic 8 to be a distribution over a fixed vocabulary and fix
the number of topics K. LDA assumes that a collection of documents comes from the
following process:

1. Draw topic S ~ Dir(n) for k=1,2,--- | K.
2. For each document d,

L Again we restrict ourselves again to exchangeable models. Non-exchangeable models only contain
global variables, such as time series models (Rabiner, 1989; Fine et al., 1998; Fox et al., 2011; Paisley
and Carin, 2009) and models for network analysis (Airoldi, 2007; Airoldi et al., 2009).
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(a) Draw topic proportions 64 ~ Dir(«a).

(b) For each word n,
i. Draw topic assignment zg, ~ Mult(6,).
ii. Draw word wg, ~ Mult(8.,, ).

The local variables are the topic assignments and topic proportions; they are local to
each document. The global variables are the topics; they are involved in the distribution
of every document.

For simplicity, denote steps (a) and (b) above as wq ~ LDA(B,«), where 8 =
{B1,...,BK}. To make LDA robust, we localize the topics. Robust LDA still draws
each document from a mixture of K topics, but the topics are themselves drawn anew
for each document.

Each per-document topic 4 is drawn from its own distribution with a “master”
topic parameter 7, which parameterizes the Dirichlet of the k-th topic. Localized LDA
draws each document from the following process:

1. Draw per-document topic Bgx ~ Dir(ny), for k=1,2,--- | K.
2. Draw w, ~ LDA(B,, «).

We fit the hyperparameters ny, the corpus-wide topics. In the generative process they
are perturbed to form the per-document topics.

This robust LDA model is equivalent to the topic model proposed in Doyle and Elkan
(2009), which accounts for “burstiness” in the distribution of words of each documents.
Burstiness, also called contagion, is the idea that when we see one word in a document
we are more likely to see that word again. It is a property of the marginal distribution
of words when integrating out a Dirichlet distributed multinomial parameter. This is
called a Dirichlet-multinomial compound distribution (Madsen et al., 2005).

Burstiness is a good property in topic models. In a traditional topic model, repeated
terms provide increased evidence for the importance of that term in its topic. In contrast,
the bursty topic model can partly explain repeated terms by burstiness. Consequently,
the model does not overestimate that term’s importance in its topic.

LDA is just one example. With this method we can build robust versions for mix-
tures, time-series models, Bayesian nonparametric models, and many others. As for
GLMs, we have a choice of what to localize. In topic models we localized the topics,
resulting in a bursty topic model. In other cases we localize dispersion parameters, such
as in robust Gaussian mixtures (Svensén and Bishop, 2005).

4 Fitting robust Bayesian models

We have shown how to robustify a wide class of Bayesian models. The remaining question
is how to analyze data with them. We now show how to adapt existing approximate
inference algorithms for robust Bayesian models. We provide a general strategy that can
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be used with simple models (e.g., conjugate exponential families), nonconjugate models
(e.g., generalized linear models), and complex models with local and global variables
(e.g., LDA).

The key algorithmic problem is to fit the hyperparameter in (5). We use an expecta-
tion-maximization (EM) algorithm to fit the model (Dempster et al., 1977). In many
cases, some of the necessary quantities are intractable to compute. We approximate
them with variational methods (Jordan et al., 1999; Wainwright and Jordan, 2008).
The contribution here is to show that a generic variational method can be applied to a
range of robust Bayesian models. For a detailed review of modern variational inference,
see Blei et al. (2017).

Consider a generic robust Bayesian model. The data come from an exponential family
and the parameter from a general prior,

ﬂi ~ p( | O[),

T; ~ EXPFAM(J%,BZ').

Note this is not necessarily the conjugate prior. Following Section 2.2, we fit the hyper-
parameters « according to (5) to maximize the marginal likelihood of the data.

We use a generalization of the EM algorithm, derived via variational methods. Con-
sider an arbitrary distribution of the localized variables ¢(81.,). With Jensen’s inequal-
ity, we use this distribution to bound the marginal likelihood. Accounting for the generic
exponential family, the bound is

L(a) > By [logp(i | Bi)p(Bi | )] — Eq log q(5:)]
i=1

E, [Bi]" @ — Eq [a(B)] + Eq logp(Bi | )] — Eq [logq(8)] . (13)

I

Il
-

K2

This is a variational bound on the marginal likelihood (Jordan et al., 1999), also called
the ELBO (“the Evidence Lower BOund”). Variational EM optimizes the ELBO by
coordinate ascent—it iterates between optimizing with respect to ¢(81.,) and to the
hyperparameters «.

Optimizing (13) with respect to ¢(51.,) minimizes the Kullback—Leibler divergence
between ¢(1.,) and the exact posterior p(51., | x) (Jordan et al., 1999; Blei et al., 2017).

In a localized model, the posterior factorizes,

n

p(ﬁlrn |X’ Oé) = Hp(ﬁi |$i7a)'

i=1

Each factor is a posterior distribution of the per-data point parameter, conditional on
the data point and the hyperparameters. If each posterior factor is computable then we
can perform an exact E-step, where we set ¢(f5;) equal to the exact posterior. In the
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context of empirical Bayes models, this is the algorithm suggested by Carlin and Louis
(2000a).

In many cases the exact posterior will not be available. In these cases we use vari-
ational inference (Jordan et al., 1999). We set ¢(53;) to be a parameterized family of
distributions over the ith variable ; and then optimize Equation (13) with respect
to ¢(-). This is equivalent to finding the distributions ¢(8;) that are closest in KL di-
vergence to the exact posteriors p(f3; | z;, ). It is called a variational E-step. In some
special cases, where we can calculate ¢(3;) = p(B; | ;, ), this becomes the standard
E-step in the EM algorithm.

The M-step maximizes (13) with respect to the hyperparameter «. It solves the
following optimization problem,

& = argmax ) _Eq [logp(; | )] (14)

=1

At first this objective might look strange—the data do not appear. But the expecta-
tion is taken with respect to the (approximate) posterior p(5; | z;, ) for each localized
parameter f3;; this posterior summarizes the ith data point. We solve this optimization
with gradient methods.

Nonconjugate models. As we described, the E-step amounts to computing
p(Bi | i, a) for each data point. When the prior and likelihood form a conjugate-pair
(Section 3.1) then we can compute an exact E-step.? For many models, however, the
E-step is not computable and we need to approximate p(f; | z;, ).

One type of complexity comes from nonconjugacy, where the prior is not conjugate
to the likelihood. As a running example, robust GLM models (Section 3.2) are generally
nonconjugate. (Robust linear regression is an exception.) In a robust GLM, the goal is
to find optimal coefficients w and variance A2 (The hyperparameter o = {w, A\?}) that
maximizes the robust GLM ELBO,

n

L(w,N) =D "Eqlm]" yi — Eqa(m)] + Eq [log p(n; [ w @i, A?)] — B, [log q(mi)] . (15)

i=1

The latent variables are 7;, the per-data point natural parameters. Their priors are
Gaussians, each with mean w'z; and variance A\%.

In an approximate E-step, we hold the parameters w and A\? fixed and approxi-
mate the per-data point posterior p(n; | yi, z;, w, A?). In theory, the optimal variational
distribution (Bishop, 2006) is

q(n:) o exp (ny; — a(n;) +log p(n; w23, A?)) .

But this does not easily normalize.

2In this setting we can also forgo the EM algorithm and directly optimize the marginal likeli-
hood with gradient methods—the integrated likelihood is computable in conjugate-exponential family
pairs (8).
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Algorithm 1: Variational EM for a robust GLM.

Initialize w and A2.
repeat
for i € {1,2,...,n} do
| Update variational distribution ¢(n;) (16).
end
Update w and A? using gradient ascent (18).
until the ELBO converges.

We address the problem with Laplace variational inference (Wang and Blei, 2013).
Laplace variational inference approximates the optimal variational distribution with

q(m:) = N (73, =h ™" (1)) (16)
The value 7); maximizes the following function,
(i) = niys — a(n:) +log p(ni | w4, A%), (17)

where h(-) is the Hessian of that function. Finding the #; can be done using many
off-the-shelf optimization routines, such as conjugate gradient.

Given these approximations to the variational distribution, the M-step estimates w
and A2,

n

[w, ):2] = arg TE}\}Z(ZE‘I(W) [log p(n; | w'x, )\2)] . (18)
=1

In robust GLMs, the prior is Gaussian and we can compute the expectation in closed
form. In general nonconjugate models, however, we may need to approximate the expec-
tation. Here we use the multivariate delta method to approximate the objective (Bickel
and Doksum, 2007; Wang and Blei, 2013). Algorithm 1 shows the algorithm.

Complex models with local and global variables. We can also use variational
inference when we localize more complex models, such as mixture models or topic mod-
els. Here we outline a strategy that roughly follows Hoffman et al. (2013).

We discussed complex Bayesian models in Section 3.4; see Figure 2. Observations are
z1., and local latent variables are zy., and (1.,. We have localized the global variable
B. The joint distribution is

p(ﬁl:na T1:ny R1lin, | OZ) = H?:l p(ﬂ’t | a)p(zi7 Ty | ﬁz) (]-9)

Assume these distributions are in the exponential family,
p(2zi, i | Bi) = he(zi, i) exp { B; te(zi, ;) — ae(Bi) } (20)
p(Bi| @) = h(B;) exp {at(B;) — a(a)} . (21)

The term t(f;) has the form t(8;) = [Bi, —a¢(B;)]. It is conjugate to p(z;, x; | B;).
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Algorithm 2: Variational EM for robust models with local and global variables.

Initialize a.
repeat
for i € {1,2,...,n} do
Update (8:) (24).
Update q(z;) (25).
end
Plug ¢(B;) and ¢(z;) into (22) and update parameter o with gradient ascent.
until the ELBO converges.

This model satisfies conditional conjugacy. The conditional posterior p(3; | z;, ;) in
the same family as the prior p(8;|«). We emphasize that this differs from classical
Bayesian conjugacy—when we marginalize out z; the posterior of 3; is no longer in the
same family.

The goal is to find the optimal o that maximizes the ELBO,

n

L(a) =Y Eyllogp(xi, zi| Bi)] + Eq [p(B: | a)] — Eq log q(z1:n, rn)], (22)

i=1
where the distribution ¢(z1.,, 51.,) contains both types of latent variables.

We specify ¢(-) to be the mean-field family. It assumes a fully factorized distribution,
Q(zlzna Bl:n) - H?zl q(ﬁl)Q(zz) (23)

In the E-step we optimize the variational distribution. We iterate between optimizing
q(z;) and ¢(B;) for each data point. Because of conditional conjugacy, these updates are
in closed form,

a(Bi) o h(B:) exp (a0 + [Byqz,) [t(zi, )], 1]) TH(B)) (24)
q(2) o h(zi, i) exp (([t(zi, ), 1]) " Eqea,) [L(Bi)]) - (25)

Each ¢(-) will be in the same exponential family as its complete conditional. For fixed
a, the variational distribution converges as we iterate between these updates.

In the M-step, we plug the fitted variational distributions into (22) and optimize «.
Algorithm 2 shows the algorithm. This general method fits robust versions of complex
models, such as bursty topic models or robust mixture models.

5 Empirical study

We study two types of robust Bayesian models—robust generalized linear models and
robust topic models. We present results on both simulated and real-world data. We
use the strategy of Section 4 for all models. We find robust models outperform their
non-robust counterparts.
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5.1 Robust generalized linear models

We first study the robust generalized linear models (GLMs) of Section 3.2 and Sec-
tion 3.3—Ilinear regression, logistic regression, and Poisson regression. Each involves
modeling a response variable y; conditional on a set of covariates x;. The response is
governed (possibly through a localized variable) by a linear combination with coefficients
U)T.'L'i.

We study robust GLMs with simulated data. Our goal is to determine whether our
method for robust modeling gives better models when the training data is corrupted
by noise. The idea is to fit various models to corrupted training data and then evaluate
those models on uncorrupted test data.

Each simulation involves a problem with five covariates. We first generated true co-
efficients w (a vector with five components) from a standard normal; we then generated
500 test data points (y;,x;) from the true model. For each data point, the five covari-
ates are each drawn from Unif[—5, 5] and the form of the response depends on which
model we are studying. Next, we generate corrupted training sets, varying the amount
of corruption. How we corrupt the training set changes from problem to problem; see
below. Finally, we fit robust and non-robust models to each training set and evaluate
their corresponding predictions on the test set. We repeat the simulation 50 times.

We found that robust GLMs form better predictions than traditional GLMs in the
face of corrupted training data.? Further, as expected, the performance gap increases
as the training data is more corrupted.

Linear regression. We first use simulated data to study linear regression. In the
true model
yi | zi ~ N(w'x; +b,02),
where 02 is the variance for the Gaussian noise for data points. In the corrupted training
data, we set a noise level k and generate data from

yi ~ N(w'z; +b,07 + 0),

where 0; ~ Gammal(k,1). As k gets larger, there are more outliers. We simulated
training sets with different levels of outliers; we emphasize the test data does not include
outliers.

We compare robust linear regression (with our general algorithm) to standard re-
gression when we vary both noise level k and of. After fitting coefficients @ under the
robust model, we form predictions on test data as for linear regression fpew = W' Znew-
We evaluate performance using three metrics: predictive L1,

pL1 = 1— (X |y — 91/ (3 Iy,
predictive R2,
pPR2 21— (X(y -9/ ().

and the mean squared error to the true parameter (MSE)

3We compared our methods to the R implementations of traditional generalized linear models. Lin-
ear, logistic, and Poisson regression are implemented in the GLM package; negative binomial regression
is in the MASS package (Venables and Ripley, 2002).
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MSE £ (1/d) S0, (i — wi)?,

where d is the dimension of parameter w. Figure 3 shows the results. The robust model
is better than or as well as the standard linear regression when the training data is
corrupted. This is consistent with the findings of Lange et al. (1989) and Gelman et al.
(2014). However, as noise level o3 increases, the advantage of the robust model decreases.

Logistic regression. We next study logistic regression. In the true model,

yi | z; ~ Bernoulli(o(w ' ;)),

where o(-) is the logistic function. To contaminate the training data, we first sort the
data based on the probability of the true label. A smaller score indicates that data point
is closer to the true decision boundary. We then randomly flip a portion of the labels,
beginning with data with the smallest scores.

We compare robust logistic regression of (10) and (11) to traditional logistic regres-
sion. Figure 4 shows the results. Robust models are better than standard models in
terms of three metrics: classification error, negative predictive log likelihood, and mean
square error (MSE) to the true data generating parameter w.

Poisson regression. Finally we study Poisson regression. In the true model
yi | ©; ~ Poisson (exp {U/T%}) .

We corrupt the training data by sampling a per-data point noise component €; ~
N(0,0?) and then generating data from

i | x; ~ Poisson (exp {wai + ei}) .

The variance o2 controls the amount of noise in the training data.

We compare our robust Poisson regression to traditional Poisson regression and
to negative binomial regression. Figure 5 shows the results. We used three metrics:
predictive L1 (as for linear regression), negative predictive log likelihood, and MSE to
the true coefficients. Robust models are better than both standard Poisson regression
and the negative binomial regression, especially when there is large noise.

Note that negative binomial regression is also a robust model. In a separate study,
we confirmed that it is the empirical Bayes step, where we fit the variance around
the per-data point parameter, that explains our better performance. Using the robust
Poisson model without fitting that variance (but still fitting the coefficients) gave similar
performance to negative binomial regression.

Summary. We summarize these experiments with Figure 6 showing the improve-
ment of robust models over standard models in terms of log likelihood. For linear re-
gression, we use pR2. Robust models give greater improvement when the data is noisier.
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Figure 3: Robust linear regression compared to classical regression on simulated data.
The x-axis is additional noise in the training data, not captured by the model or present
in test data. Robust models perform better or as well as the classic model in the face
of outliers. (a) Negative predictive L1; (b) Negative predictive R2. (¢) MSE to the true
parameter. For all metrics, lower is better. Each row represents a different level of noise,
o2, in the original model. As noise level 03 increases, the advantage of the robust model

decreases.
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Figure 4: Experimental results for (robust) logistic regression on simulated data. Noise
level (X-axis) indicates the proportion of the labels in the training data are flipped.
(a) Classification error; (b) Negative predictive log likelihood. (¢) MSE to the true
parameter. All metrics: the lower the better. Robust model perform better when noise
is presented.
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Figure 5: Experimental results for (robust) Poisson regression on simulated data. (a)
Negative predictive L1; (b) Negative predictive log likelihood. (¢) MSE to the true
parameter. All metrics: the lower the better. Robust models tend to perform better than
both Poisson regression and negative binomial regression (nb) when noise is presented.

5.2 Robust topic modeling

We also study robust LDA, an example of a complex Bayesian model (Section 3.4). We
have discussed that robust LDA is a bursty topic model (Doyle and Elkan, 2009).

We analyze three document corpora: Proceedings of the National Academy of Sci-
ences (PNAS), Science, and a subset of Wikipedia. The PNAS corpus contains 13,000
documents and has a vocabulary of 7,200 terms; the Science corpus contains 16,000
documents and has a vocabulary of 4,400 terms; the Wikipedia corpus contains about
10,000 documents and has a vocabulary of 15,300 terms. We run a similar study to
the one in Doyle and Elkan (2009), comparing robust topic models to traditional topic
models.

Evaluation metric. To evaluate the methods, we hold out 20% documents from
each corpus and calculate their predictive likelihood. We follow the metric used in recent
topic modeling literature (Blei and Lafferty, 2007; Asuncion et al., 2009; Wang et al.,
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Figure 6: Improvement of robust models over standard models. (a) Predictive R2 im-
provement for linear regression; (b) log likelihood improvement for logistic regression
(¢) log likelihood improvement for Poisson regression.
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Figure 7: Predictive negative log likelihood on test data. The lower the better. The
robust model (rlda) also performs better over a range of topics.

2011; Hoffman et al., 2013), where we hold out part of a document and predict its
remainder.

Specifically, for each document in the test set wy, we split it into two parts, wy =
[Wq1, Wae]. We compute the predictive likelihood of wgo given wg; and Dipain. The
per-word predictive log likelihood is

likelihoodpw a ZdeDtcst IOg p(wd2lwd17 Dtrain)
2 deDien [Wa2|

where |wgz| is the number of tokens in wgs. This evaluation measures the quality of the
estimated predictive distribution. This is similar to the strategy used in Hoffman et al.
(2013).

)

For standard LDA (Blei et al., 2003), conditioning on wg; estimates the topic pro-
portions 64 from corpus-wide topics. These topic proportions are then used to compute
the predictive likelihood of wgo. Robust LDA is different because conditioning on wg;
estimates both topic proportions and per-document topics; the predictive likelihood of
wg2 uses both quantities.

Results. Figure 7 shows the results. Note, in the figure we use negative log likeli-
hood so that it is consistent with other plots in this paper. Robust topic models per-
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form better than traditional topic models. This result is consistent with those reported
in Doyle and Elkan (2009).

6 Summary

We developed a general method for robust Bayesian modeling. Investigators can create a
robust model from a standard Bayesian model by localizing the global variables and then
fit the resulting hyperparameters with empirical Bayes. We demonstrated our approach
on generalized linear models and topic models.
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