
Bayesian Analysis (2018) 13, Number 3, pp. 767–796

Bayesian Community Detection

S. L. van der Pas‡∗ and A. W. van der Vaart§†

Abstract. We introduce a Bayesian estimator of the underlying class structure
in the stochastic block model, when the number of classes is known. The estimator
is the posterior mode corresponding to a Dirichlet prior on the class proportions,
a generalized Bernoulli prior on the class labels, and a beta prior on the edge
probabilities. We show that this estimator is strongly consistent when the expected
degree is at least of order log2 n, where n is the number of nodes in the network.
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1 Introduction

The stochastic block model (SBM) (Holland et al., 1983) is a model for network data
in which individual nodes are considered members of classes or communities, and the
probability of a connection occurring between two individuals depends solely on their
class membership. It has been applied to social, biological and communication networks,
for example in Park and Bader (2012), Bickel and Chen (2009) and Snijders and Now-
icki (1997) amongst many others. There are many extensions of the SBM for various
applications, including the degree-corrected SBM (Karrer and Newman, 2011; Zhao
et al., 2012) which accounts for possible heterogeneity among nodes within the same
class, and the mixed-membership SBM (Airoldi et al., 2008), in which the assumption
that the classes are disjoint is removed. These extensions allow for additional modelling
flexibility.

Two main SBM research directions are the recovery of the class labels (community
detection) and recovery of the remaining model parameters, consisting of the probability
vector generating the class labels, and the class-dependent probabilities of creating an
edge between nodes. In this paper, we focus on community detection, noting that once
strong consistency of a community detection method has been established, consistency
of the natural plug-in estimators for the remaining parameters follows directly by results
in (Channarond et al., 2012).

A large number of methods for recovering the class labels has been proposed. Those
most closely related to this work are the modularities. Newman and Girvan (2004)
introduced the term modularity for ‘a measure of the quality of a particular division
of a network’. They described one such measure for models in which edges are more
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likely to occur within classes than between classes, in which case there is a community
structure in the colloquial sense, although the SBM does not require this assumption.
Bickel and Chen (2009) studied more general modularities, defining them as functions
of the number of connections between all combinations of classes and the proportion
of nodes placed in each class. They introduced the likelihood modularity, and provided
general conditions under which modularities are consistent. Their method and theory
was extended to the degree-corrected SBM by Zhao et al. (2012).

Spectral methods for community detection have gained in popularity, and refined
results on error bounds are now available for the SBM and extensions of the SBM,
as evidenced in Rohe et al. (2011), Jin (2015), Sarkar and Bickel (2015) and Lei and
Rinaldo (2015) for example. Many other algorithms have been introduced, most of them
currently lacking formal proofs of consistency. A notable exception is the Largest Gaps
algorithm (Channarond et al., 2012), which only takes the degree of each node as its
input, and is strongly consistent under a separability condition.

A Bayesian approach towards recovering the class assignments in the SBM was
first suggested by Snijders and Nowicki (1997), motivated by computational advantages
of Gibbs sampling over maximum likelihood estimation. They considered two classes
and proposed uniform priors on the class proportions and the edge probabilities. This
approach was extended in (Nowicki and Snijders, 2001) to allow for more classes, with
a Dirichlet prior on the class proportions and beta priors on the edge probabilities.
Hofman and Wiggins (2008) described a similar Bayesian approach for a special case
of the SBM and suggested a variational approach to overcome the computational issues
associated with maximizing over all possible class assignments.

Bayesian methods for the SBM have barely been studied from a theoretical point of
view, although recent results for parameter recovery by Pati and Bhattacharya (2015),
for detecting the number of communites by Hayashi et al. (2016) and for an empirical
Bayes approach to community detection by Suwan et al. (2016) are encouraging. In
this work, we provide theoretical results on community detection, establishing that the
Bayesian posterior mode is strongly consistent for the class labels if the expected degree
is at least of order log2 n, where n is the number of nodes. This is proven by relating
the posterior mode to the maximizer of the likelihood modularity of Bickel and Chen
(2009). The likelihood modularity has been claimed to be strongly consistent under the
weaker assumption that the expected degree is of larger order than logn (Bickel and
Chen, 2009; Zhao et al., 2012; Bickel et al., 2015). However, their proof assumes that
the likelihood modularity is globally Lipschitz, while it is only locally so. The Bayesian
method is based on a combination of likelihood and prior, and for this reason the proof
of our main theorem, Theorem 1, runs into a similar problem. We were able to resolve
this only under the slightly stronger assumption that the expected degree is of larger
order than (logn)2. The literature on other methods for community detection shows
that the order logn is sufficient for consistent detection. However, these results are
usually obtained under additional assumptions such as a restriction to two classes or
an ordering of the connection probabilities, and their implications for the likelihood
or Bayesian modularities is unclear. We discuss this and the relevant literature further
following the statement of our main result in Section 3.5.
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The main result of the present paper is that the posterior mode is strongly consistent
in the frequentist setup, a property that it shares with the maximizer of the likelihood
modularity. As the number of parameters of the model (“labellings”) increases rapidly
with n, this result is certainly not covered by standard theory for parametric models,
and in fact we shall see that the prior on the labellings plays a special role for consis-
tency. That the posterior mode behaves well in terms of consistency is encouraging, and
makes one hope that other aspects of the posterior distribution will also be useful for
inference. The present paper may be considered a first step and further study of such
aspects is desirable. One possible research direction would be to use the full posterior
distribution on the labels to quantify uncertainty in the estimate of the class labels. A
second issue that may be resolved by the Bayesian approach is the question of estimating
the number of classes, K. This remains an important open question, as noted by Bickel
and Chen (2009), despite recent attempts (e.g. Saldana et al. (2014), Chen and Lei
(2014) and Wang and Bickel (2015)). By introducing a prior on K, such as the Poisson-
prior suggested by McDaid et al. (2013), the number of communities K can be detected
by the posterior. A third open question is whether the Bayesian estimator can be im-
proved by incorporating prior knowledge of the community structure. Recent work on
incorporating prior information in Gaussian graphical models (Kpogbezan et al., 2016)
is encouraging, and has not been translated to the SBM yet.

This paper is organized as follows. We introduce the SBM and the associated nota-
tion in Section 2. Our main results are in Section 3, where we describe the prior and
the link with the likelihood modularity, present the consistency results and discuss the
underlying assumptions, especially those on the expected degree. After an illustration
of the method on a data set in Section 4, we conclude with the proofs, first of weak
consistency in Section 5 and finally of strong consistency of the Bayesian modularity in
Section 6.

1.1 Notation

For a vector v we denote by Diag(v) the diagonal matrix with diagonal v, and for a
matrix M we denote its diagonal by diag (M).

The ‖.‖1-norm of a matrix M is the sum of the absolute values of all entries of M .

We write f(n) = O(g(n)) as n → ∞ if there exist C, n0 > 0 such that |f(n)| ≤
C|g(n)| for all n > n0.

2 The stochastic block model

We introduce the notation and generative model for the SBM with K ∈ {1, 2, . . .}
classes. Consider an undirected random graph with n nodes, numbered 1, 2, . . . , n, and
edges encoded by the n × n symmetric adjacency matrix (Aij), with entries in {0, 1}.
Thus Aij = Aji is equal to 1 or 0 if the nodes i and j are or are not connected by an
edge, respectively. Self-loops are not allowed, so Aii = 0 for i = 1, . . . , n. The generative
model for the random graph is:
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1. The nodes are randomly labeled with i.i.d. variables Z1, . . . , Zn, taking values in
a finite set {1, . . . ,K}, according to probabilities π = (π1, . . . , πK).

2. Given Z = (Z1, . . . , Zn)
T , the edges are independently generated as Bernoulli

variables with P(Aij = 1 | Z) = PZi,Zj , for i < j, for a given K ×K symmetric
matrix P = (Pab).

The probability vector π is considered fixed, but unknown. Although this is not visible in
the notation, the matrix P may change with n, a case of particular interest being that P
tends to zero, which gives a sparse graph. The order of magnitude of ‖P‖∞ = maxa,b Pab

is the same as the order of magnitude of ρn =
∑

a,b πaπbPab, the probability of there
being an edge between two randomly selected nodes. The expected degree of a randomly
selected node is λn = (n − 1)ρn, and twice the expected total number of edges in the
network is μn = n(n− 1)ρn.

The likelihood for the model is given by∏
i<j

P
Aij

ZiZj
(1− PZiZj )

1−Aij

∏
i

πZi =
∏
a≤b

P
Oab(Z)
ab (1− Pab)

nab(Z)−Oab(Z)
∏
a

πna(Z)
a , (1)

where Oab(Z) is the number of edges between nodes labelled a and b by the labelling Z,
nab(Z) is the maximum number of edges that can be created between nodes labelled a
and b, and na(Z) is the number of nodes labelled a, and a and b range over {1, 2, . . . ,K}.

More formally, for a given labelling e = (e1, . . . , en)
T ∈ {1, . . . ,K}n of nodes, and

class labels a, b ∈ {1, . . . ,K}, we define

Oab(e) =

{∑
i,j Aij1{ei=a,ej=b}, a �= b,∑
i<j Aij1{ei=a,ej=b}, a = b,

nab(e) =

{
na(e)nb(e), a �= b,
1
2na(e)(na(e)− 1), a = b,

na(e) =

n∑
i=1

1{ei=a}.

Since the matrix A is symmetric with zero diagonal by assumption, for a �= b the variable
Oab(e) can also be written as

∑
i<j Aij [1{ei=a,ej=b} + 1{ej=a,ei=b}], which explains the

different appearances of the diagonal and off-diagonal entries. The numbers nab(e) are
equal to the numbers Oab(e) when all Aij are equal to 1. We collect the variables Oab(e)
and nab(e) in K ×K matrices O(e) and n(e).

Now consider the K ×K probability matrix R(e, c) and K probability vector f(e)
with entries

Rab(e, c) =
1

n

n∑
i=1

1{ei=a,ci=b}, fa(e) =
na(e)

n
. (2)

The row sums of R(e, c) are equal to R(e, c)1 = f(e), while the column sums are equal to
1TR(e, c) = f(c)T . Thus, the matrix R(e, c) can be seen as a coupling of the marginal
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probability vectors f(e) and f(c). If e = c, then it is diagonal with diagonal f(c) =
f(e). More generally, the matrix can be viewed as measuring the discrepancy between
labellings e and c. This can be precisely measured as half the L1-distance of R(e, c) to
its diagonal, as evidenced by Lemma 1, which is noted in Bickel and Chen (2009).

Recall that by ‖M‖1 we denote the sum of the absolute values of all entries of a
matrix M .

Lemma 1. For every labelling c, e in the K-class stochastic block model:

1

n

n∑
i=1

1{ci �=ei} = 1
2‖Diag(f(c))−R(e, c)‖1.

Proof. The diagonal of R(e, c) gives the fractions of labels on which c and e agree. Hence
the left side of the lemma is 1−

∑
a Raa(e, c) =

∑
a(fa(c)−Raa(e, c)). The elements of

both K × K matrices Diag(f(c)) and R(e, c) can be viewed as probabilities that add
up to 1. Thus the sum of the differences of the diagonal elements is minus the sum of
the differences of the off-diagonal elements. Because fa(c) ≥ Raa(e, c) for every a, we
have

∑
a(fa(c)−Raa(e, c)) =

∑
a |fa(c)−Raa(e, c)|. Similarly the off-diagonal elements

of Diag(f(c)), which are zero, are smaller than the off-diagonal elements of R(e, c) and
hence we can add absolute values. Thus the sum over the diagonal is half the sum of
the absolute values of all terms in Diag(f(c))−R(e, c).

3 Bayesian approach to community detection

Our main results are presented in this section. We first discuss the choice of prior in
Section 3.1, and define the estimator, in Section 3.2. The resulting Bayesian modularity
is closely related to the likelihood modularity of Bickel and Chen (2009). The relation-
ship is clarified in Section 3.3. We briefly consider the issue of identifiability in the SBM
in Section 3.4, and conclude with our main theorem on the strong consistency of the
Bayesian modularity in Section 3.5.

3.1 The prior

We adopt the Bayesian approach of Nowicki and Snijders (2001). We put prior dis-
tributions on the parameters of the stochastic block model with K known, the vector
π and the matrix P , yielding a joint probability distribution of (A,Z, π, P ). Next we
marginalize over π and P as in McDaid et al. (2013), leading to a joint distribution of
(A,Z). Finally we “estimate” the unobserved vector Z by the posterior mode of the
conditional distribution of Z given A. From a frequentist point of view this means that
Z is treated as a parameter of the problem, equipped with a hierarchical prior that
chooses first π and then Z. Accordingly we shall change notation from Z to e, reserving
Z for the frequentist description of the stochastic block model in Section 2.

The prior on π is a Dirichlet, and independently the Pab for a ≤ b receive independent
beta priors:
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π ⊥ (PAb),

π ∼ Dir(α, . . . , α),

Pab
i.i.d.∼ Beta(β1, β2), 1 ≤ a ≤ b ≤ K.

This is essentially the same set-up as in Nowicki and Snijders (2001) and McDaid et al.
(2013), except that we use a more flexible Beta(β1, β2) instead of a uniform prior on
the Pab. We assume α, β1, β2 > 0.

We complete the Bayesian model by specifying class labels e = (e1, . . . , en) and
edges A = (Aij : i < j) through

ei | π, P i.i.d.∼ π, 1 ≤ i ≤ n,

Aij | π, P, e ind.∼ Bernoulli(Pei,ej ), 1 ≤ i < j ≤ n.

Abusing notation we write p(e), p(A | e) and p(e | A) for marginal and conditional
probability density functions.

3.2 The Bayesian modularity

The Bayesian estimator of the class labels will be the posterior mode, that is:

ê = argmax
e

p(e | A).

The posterior mode can be interpreted as a modularity-based estimator in the sense
of Bickel and Chen (2009), in that it maximizes a function that only depends on the
Oab(e) and the na(e). This can be seen from the joint density of (A, e), which is found by
marginalizing the likelihood (1) over π and P . The conjugacy between the multinomial
and Dirichlet distributions gives the marginal density of the class assignment e as:

p(e) =

∫
SK

∏
a

πna(e)
a

∏
a π

α−1
a

D(α)
dπ =

Γ(αK)

Γ(α)KΓ(n+ αK)

∏
a

Γ(na(e) + α). (3)

Here the integral is relative to the Lebesgue measure on the K-dimensional unit simplex
and D(α) = Γ(α)K/Γ(Kα) is the norming constant for the Dirichlet density. Similarly
the conjugacy between the Bernoulli and Beta distributions gives the marginal condi-
tional density of A given e as:

p(A | e) =
∫
[0,1]K(K+1)/2

∏
a≤b

P
Oab(e)
ab (1− Pab)

nab(e)−Oab(e)
∏
a≤b

P β1−1
ab (1− Pab)

β2−1

B(β1, β2)
dP

=
∏
a≤b

1

B(β1, β2)
B(Oab(e) + β1, nab(e)−Oab(e) + β2), (4)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the beta-function. The joint density of A and e
is given by the product of (3) and (4), and n−2 times its logarithm is up to a constant
that is free of e equal to
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QB(e)=
1

n2

∑
1≤a≤b≤K

logB(Oab(e)+β1, nab(e)−Oab(e)+β2)+
1

n2

K∑
a=1

log Γ(na(e)+α).

(5)

This is a modularity in the sense of Bickel and Chen (2009), which we define as the
Bayesian modularity. As p(e | A) is proportional to p(e,A), the posterior mode is
equal to the class assignment that maximizes the Bayesian modularity, so the Bayesian
estimator is equal to:

ê = argmax
e

QB(e). (6)

3.3 Similarity to the likelihood modularity

The Bayesian modularity QB(e) consists of two parts, originating from the likelihood
and the prior on the classification, respectively. The first part is close to the likelihood
modularity given by

QML(e) =
1

n2

∑
1≤a≤b≤K

nab(e) τ
(Oab(e)

nab(e)

)
,

where τ(x) = x log x + (1 − x) log(1 − x). This criterion, obtained in Bickel and Chen
(2009), results from replacing in the log conditional likelihood of A given e (the logarithm
of (1) with Z replaced by e and discarding the term involving the parameters πa) the
parameters Pab by their maximum likelihood estimators P̂ab = Oab(e)/nab(e). In other
words, the parameters are profiled out rather than integrated out as for the Bayesian
modularity. The corresponding estimator

êML = argmax
e

QML(e)

is consistent, and hence one may hope that the Bayesian estimator can be proved con-
sistent by showing that the Bayesian and likelihood modularities are close. This will
indeed be our line of approach, but we shall see that the proximity of the two criteria
is not close enough to explain the strong consistency of the two methods. In particular,
the second, prior part of the Bayesian modularity, resulting from the prior density (3)
over the labels, does play a role in the proof of strong consistency. We discuss this in
more detail at the end of Section 3.5.

The following lemma links the Bayesian and likelihood modularities. The final as-
sertion shows that they are at most of the order logn/n apart, which will be seen to be
enough in the proof of weak consistency. For the proof of strong consistency we shall
need the first assertion of the lemma, which makes the discrepancy between the two
modularities explicit up to order log n/n2.

Lemma 2. There exists a constant C such that, for E = {1, . . . ,K}n the set of all
possible labellings:

max
e∈E

∣∣∣QB(e)−QML(e)−QP (e)
∣∣∣ ≤ C log n

n2
,
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for

QP (e) =
1

n2

∑
a:na+�α�≥2

na(e) log(na(e))−
1

n
.

Consequently maxe∈E |QB(e)−QML(e)| = O(logn/n) as n → ∞.

3.4 Identifiability and consistency

A classification ê is said to be weakly consistent if the fraction of misclassified nodes tends
to zero (partial recovery), and strongly consistent if the probability of misclassifying any
of the nodes tends to zero (exact recovery). In defining consistency in a precise manner,
the complication of the possible unidentifiability of the labels needs to be dealt with.
From the observed data A we can at best recover the partition of the n nodes in the
K classes with equal labels Zi, but not the values Z1, . . . , Zn of the labels, in the set
{1, 2, . . . ,K}, attached to the classes. Thus consistency will be up to a permutation of
labels.

To make this precise define, for a given permutation (1, . . . ,K) → (σ(1), . . . , σ(K)),
the permutation matrix Pσ as the matrix with rows

eTσ(1)

...

eTσ(K),

for e1, . . . , eK the unit vectors in R
K . Then pre-multiplication of a matrix by Pσ per-

mutes the rows, and post-multiplication by PT
σ the columns: PσR is the matrix with

jth row equal to the σ(j)th row of R, and RPT
σ is the matrix with jth column the

σ(j)th column of R. Thus PσR(e, Z) = R(Pσe, Z) is the matrix that would result
if we would permute the labels of the classes of the assignment e, and PσPPT

σ and
PσR(e, Z)PT

σ = R(Pσe, PσZ) are the matrices that would result if we would relabel the
classes throughout. Since we cannot recover the labels, the matrix PσR(e, Z) is just as
good or bad as R(e, Z) for measuring discrepancy between a labelling e and the true
labelling Z; furthermore, nothing should change if we choose different names for the
classes.

Thus, taking into account the unidentifiability of the labels, by Lemma 1, we define
an estimator ê to be weakly consistent if

‖PσR(ê, Z)−Diag(f(Z))‖1 → 0,

for some permutation matrix Pσ. We say the classification ê is strongly consistent if

P(PσR(ê, Z) = Diag(f(Z))) → 1,

for some permutation matrix Pσ.

The following lemma shows that the permutation matrix Pσ is for large n uniquely
defined, unless there are empty classes.
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Lemma 3. If for a given vector π and matrix R, there exist permutation matrices Pσ

and Qσ such that both ‖PσR−Diag(π)‖1 ≤ mina πa and ‖QσR−Diag(π)‖1 ≤ mina πa,
then Pσ = Qσ.

Proof. Because the L1-norm is invariant under permutations, we have
‖R − Pσ

−1Diag(π)‖1 ≤ mina πa, and similarly for Qσ. Therefore ‖P−1
σ Diag(π) −

Q−1
σ Diag(π)‖1 ≤ 2mina πa, by the triangle inequality. Again by invariance, the left

side of this inequality is equal to ‖(QσP
−1
σ )Diag(π) − Diag(π)‖1, which is at least two

times the sum of the two smallest coordinates of π if QσP
−1
σ is not equal to the identity

matrix.

A necessary requirement for consistency is that the classes can be recovered from
the likelihood, i.e. the model parameters must be identifiable. If π has strictly positive
coordinates, so that all labels will appear in the data eventually, then as explained in
Bickel and Chen (2009) an appropriate condition is that P does not have two identical
rows. If πa = 0 for some a, then class a will never be consumed; the identifiability
condition should then be imposed after deleting the ath column from P . Thus, we call
the pair (P, π) identifiable if the rows of P are different after removing the columns
corresponding to zero coordinates of π. Throughout we assume that P is symmetric.

3.5 Consistency results and assumptions

We are now ready to present our results on consistency for the Bayesian maximum a
posteriori (MAP) estimator (6). Recall that ρn =

∑
a,b πaπbPab is the probability of a

new edge, and λn = (n−1)ρn is the expected degree of a node. Theorem 1 shows strong
consistency of the Bayesian estimator if λn � (log n)2. The proof rests on a proof of
weak consistency under similar conditions, stated in Section 5 as Theorem 2.

Theorem 1 (strong consistency). If P = ρnS, where either ρn = 1 is fixed or ρn → 0,
and (S, π) is fixed and identifiable with all entries of P strictly smaller than 1 and
all entries of S being strictly positive, then the MAP classifier ê = argmaxe QB(e) is
strongly consistent if ρn � (logn)2/n.

The theorem is proven in two steps: first for the dense case, where ρn is fixed, and
then for the sparse case, where ρn goes to zero. The second is the most interesting of
the two, as it touches on the question how much information is required to recover the
underlying community structure. Much recent research effort has gone into determining
detection and computational boundaries, in particular for special cases of the SBM with
K = 2 (see e.g. Mossel et al. (2012), Chen and Xu (2014), Abbe et al. (2014) and Zhang
and Zhou (2015)).

Weakly consistent estimation of the class labels for an arbitrary, but known, number
of classes is possible by some method under the assumption λn � log n, as this was
shown to hold for spectral clustering by Lei and Rinaldo (2015). Strong consistency
of maximum likelihood was shown to hold in the special cases of planted bisection
(K = 2 and equal community sizes) and planted clustering (equal community sizes and
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Pab can take two values) by Abbe et al. (2014); Chen and Xu (2014), again under the
assumption λn � logn. Gao et al. (2015) and Gao et al. (2016) achieve optimality
in different senses, under assumptions on the average within-community and between-
community edge probabilities; Gao et al. (2015) introduce a two-stage procedure which
achieves the optimal proportion of misclassified nodes in a special case where Pab can
only take two values, while Gao et al. (2016) obtain minimax rates for the proportion
of misclassified nodes in the degree corrected SBM.

Strong consistency of the likelihood modularity for an arbitrary number of classes K
has been claimed under the same assumption λn � logn (Bickel and Chen, 2009; Bickel
et al., 2015), and those results have been extended to the degree-corrected SBM (Zhao
et al., 2012). However, these results were obtained by application of an abstract theorem
to the special case of the likelihood modularity, which would require the function τ(x) =
x log x+ (1− x) log(1− x), or the function σ(x) = x log x, to be globally Lipschitz. As
τ and σ are only locally Lipschitz, it is still unclear whether λn � log n is a sufficient
condition for either weakly or strongly consistent estimation by maximum likelihood.
From our proof of Theorem 1, which proceeds by comparing the Bayesian modularity
and the likelihood modularity, it follows that λn � (log n)2 is certainly sufficient. Given
weak consistency the problem can be reduced to a neighbourhood of the true parameter
on which the Lipschitz condition is satisfied. However, it is precisely our proof of weak
consistency that needs the additional log n factor.

The Largest Gaps algorithm of Channarond et al. (2012) is strongly consistent pro-

vided that mina �=b |
∑K

k=1 αk(Pak −Pbk)| is at least of order
√
logn/n, implying that at

least one of the Pab is of the same order, and thus λn �
√
n logn. This much stronger

condition is not surprising, as the Largest Gaps algorithm only uses the degree of a
node and does not take into account any finer information on the group structure, such
as the information contained in the Oab.

To the best of our knowledge, for K > 2, it remains to be shown that λn � logn
is sufficient for strong consistency of any community detection method for the general
SBM. For the minimax rate for the proportion of misclustered nodes in community
detection, when only classes of sizes proportional to n are considered, a phase transition
when going from the case K = 2 to K ≥ 3 was observed by Zhang and Zhou (2015).
Their results show that if K = 2, communities of the same size are most difficult to
distinguish, while if K ≥ 3, small communities are harder to discover. This shift in the
nature of the communities that are harder to detect may be what has been preventing
a general strong consistency result under the assumption λn � logn so far.

While the prior on the class assignment plays a negligible role in the proof of
weak consistency, our argument for strong consistency requires that the prior does
not vary too much in a neighborhood of the truth. To be precise, denote by QB,2(e) =

n−2
∑K

a=1 log Γ(na(e) + α) the second part of the Bayesian modularity (5), and let Z
be the true labelling. Then we need that for any e that differs from Z by at most m
nodes, the distance |QB,2(e) − QB,2(Z)| is of smaller order than m/n. We thus find
that a variation on general posterior contraction results (e.g. Ghosal et al. (2000)) holds
for the SBM as well, namely that the prior mass should be spread homogeneously in a
neighborhood of the truth.
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The number K of classes is held fixed in the preceding theorem. Our proofs suggest
that consistency is retained ifK = Kn → ∞ and ρn � K4

n(logKn)n
−1(log(n/ logKn))

2,
provided the model is asymptotically identifiable in a suitable sense. In Theorem 1 iden-
tifiability in the case of fixed K is described as a property of the pair (S, π). If Kn → ∞,
then the dimensions of these objects tend to infinity and identifiability must be defined
in a different way. Our proofs suggest that a crucial quality is

∑
a πaK0(Sab′‖Sa,b),

where K0(s‖s′) is the Kullback–Leibler divergence between two Poisson distributions
with means s and s′. As seen in the proof of Lemma 11, this quantity drives local iden-
tifiability. It seems a reasonable assumption that this number be bounded away from
zero, but any type of behaviour is possible as the matrix S will grow in dimension.
A reasonable global identifiability condition might be that the left side of Lemma 11
is bounded below by this number, and then the preceding bound on ρn is valid. See
Remark 1 for further discussion.

4 Application

Some options for implementing the Bayesian modularity are given in Section 4.1, after
which the results of applying the Bayesian and likelihood modularities to the well-
studied karate club data of Zachary (1977) are discussed in Section 4.2.

4.1 Implementation

The Bayesian modularity, like the likelihood modularity, requires maximization over all
possible labellings. This is computationally feasible even in large networks, as shown
in two recent works on implementing Bayesian methods for the SBM. McDaid et al.
(2013) followed the approach of Nowicki and Snijders (2001) and added a Poisson prior
on K. After marginalizing over π and P , they employ an allocation sampler to sample
from the joint density of K and z given A, and use the posterior mode to estimate K.
Their algorithm gives access to the full posterior distribution on the node labels and can
scale to networks with approximately ten thousand nodes and ten million edges. Côme
and Latouche (2014), claiming that the algorithm of McDaid et al. (2013) suffers from
poor mixing properties, propose a greedy inference algorithm for the same problem.
They demonstrate their algorithm on networks ranging in size from one hundred to ten
thousand nodes, and compare the results to a range of other methods, including spectral
clustering.

For the karate club data in Section 4.2, the network was small enough that a tabu
search (Glover, 1989), run for a number of different initial configurations, yielded good
results. This takes a similar amount of time as a tabu search in combination with the
likelihood modularity, as in Bickel and Chen (2009). Although tabu search has been
implemented on large networks consisting of approximately 1000 nodes for the degree-
corrected version of the likelihood modularity (Zhao et al., 2012), we recommend the
use of the methods designed for the stochastic block model proposed by McDaid et al.
(2013) or Côme and Latouche (2014) for networks of medium and large sizes.
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Figure 1: Communities detected by the Bayesian modularity when K = 2 (left) and
K = 4 (right), with α = β1 = β2 = 1/2. The polygons contain the two groups the
karate club was split into; the left one is Mr. Hi’s club, the right one is the Officers’
club. The shapes of the nodes represent the communities selected by the modularities.
Figure made using the igraph package (Csardi and Nepusz, 2006).

4.2 Karate club

Zachary (1977) described a karate club which split into two clubs after a conflict over
the price of the karate lessons. The new club was led by Mr. Hi, the karate teacher of
the original club, while the remainder of the old club stayed under the former Officers’
rule. The data consists of an adjacency matrix for those 34 individuals who interacted
with other club members outside club meetings and classes. Each of these individuals’
affiliations after the conflict is known.

We used α = 1/2 for the Dirichlet prior, and β1 = β2 = 1/2 for the beta prior. The
communities selected by the Bayesian modularity for K = 2 and K = 4 are given in
Figure 1. In both instances, the tabu search led to nearly the same solution for both
the Bayesian and likelihood modularities, only differing at one node for K = 4, which
is not surprising in light of Lemma 2. For K = 2, the results of Bickel and Chen (2009)
for this data set are recovered. For K = 4, the partition in Figure 1 yields a higher
value of the likelihood modularity than the partition into four classes found by Bickel
and Chen (2009), and an even higher value is obtained by switching club member 20
to the second-largest class. This discrepancy is likely due to the heuristic nature of the
tabu search algorithm, and for the same reason, it may be the case that improvement
over the partitions found by the Bayesian modularity in Figure 1 are possible.

For K = 2, the communities found by the algorithms do not correspond in the
slightest to the two karate clubs, instead grouping the nodes with the highest degrees,
corresponding to Mr. Hi, the president of the original club, and their closest supporters,
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together. Incidentally, this partition is the same as the one returned by the Largest
Gaps algorithm of Channarond et al. (2012), which solely uses the degrees of the nodes
and discards all other information.

These bad results are no reason to shelve the Bayesian and likelihood modularities,
as there is no reason to believe that the two karate clubs form communities in the
sense of the stochastic block model. Mr. Hi and the club’s president are clear outliers
within their groups, and neither of the algorithms were designed to be robust to such
a phenomenon. The communities selected by the modularities are communities in the
sense that they form connections within and between the groups in a similar fashion.
This sense does not correspond to the social notion of a community in this setting.

The results for four classes unify the social and stochastic senses of community.
The prominent members of each of the new clubs are placed into two separate, small,
communities. The other members are classified nearly perfectly, with two exceptions.
However, one of those exceptional individuals is the only person described by Zachary
(1977) as being a supporter of the club’s president before the split, who joined Mr.
Hi’s club, making this person’s affiliation up for debate. The second is described as
only a weak supporter of Mr. Hi. The increased number of communities allows for some
outliers within the social communities, and leads to a more detailed understanding of
the dynamics within both of the groups. We essentially recover the two communities,
each with a core that is more connective than the remainder of the nodes.

5 Weak consistency

The proof of Theorem 1 is built on our proof of weak consistency of the Bayesian
modularity, which we present here. The following quantities will be used in the course
of multiple proofs. The function HP , with domain K ×K probability matrices, is given
by, for τ(u) = u log u+ (1− u) log(1− u),

HP (R) =
1

2

∑
a,b

(R1)a(R1)b τ

(
(RPRT )ab
(R1)a(R1)b

)
. (7)

For τ0(u) = u log(u)− u, define

GP (R) =
1

2

∑
a,b

(R1)a(R1)b τ0

( (RPRT )ab
(R1)a(R1)b

)
.

The sums defining these functions are over all pairs (a, b) with 1 ≤ a, b ≤ K, unlike the
sums defining the modularities QB and QML, which are restricted to a ≤ b.

We write diag (P ) for the diagonal of P if P is a matrix, and Diag(f) for the diagonal
matrix with diagonal f if f is a vector.

Theorem 2 (weak consistency). If P = ρnS where either ρn = 1 is fixed or ρn → 0, and
(S, π) is fixed and identifiable, then the MAP classifier ê = argmaxz QB(e) is weakly
consistent provided nρn � (logn)2.
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Proof. By Lemma 2 the Bayesian modularity QB is equivalent to the likelihood mod-
ularity QML up to order (log n)/n. With the notation Õab(e) = Oab(e) if a �= b, and

Õab(e) = 2Oab(e) if a = b, the likelihood modularity is in turn equivalent up to the
same order to

L(e) =
1

2n2

∑
a,b

na(e)nb(e) τ
( Õab(e)

na(e)nb(e)

)
. (8)

Indeed the terms of QML(e) for a < b are identical to the sums of the terms of L(e)
for a < b and a > b, while for a = b the terms of QML(e) and L(e) differ only subtly:
the first uses naa(e) = 1

2na(e)(na(e) − 1), where the second uses 1
2na(e)

2. Thus the
difference is bounded in absolute value by the sum over a of (where e is suppressed from
the notation)∣∣∣ n2

a

2n2
τ
( Õaa

n2
a

)
−

na

(
na − 1)

2n2
τ
( Õaa

na(na − 1)

)∣∣∣ ≤ 1

2n
‖τ‖∞ +

n2
a

2n2
l
( Õaa

n2
a(na − 1)

)
,

where l(x) = 2x(1 ∨ log(1/x)), in view of Lemma 6. We now use that nal(u/na) �
logna ≤ logn, for 0 ≤ u ≤ 1.

Combining the preceding, we conclude that

ηn,1 := max
e

|L(e)−QB(e)| = O
(
logn

n

)
.

Since QB(ê) ≥ QB(Z), by the definition of ê, it follows that L(ê)−L(Z) ≥ −2ηn,1. The
next step is to replace L in this equality by an asymptotic value.

For x equal to a big multiple of (‖P‖1/2∞ ∨ n−1/2)/n1/2, the right side of Lemma 4

tends to zero and hence maxe ‖Õ(e)−E(Õ(e) | Z)‖∞/n2 is of this order in probability.
We also have, by Lemma 5:

max
e

∥∥∥ 1

n2
E
(
Õ(e) | Z

)
−R(e, Z)PR(e, Z)T

∥∥∥
∞

= max
e

1

n

∥∥Diag(R(e, Z) diag (P ))
∥∥
∞

= O
(ρn
n

)
,

as the row sums of the matrix R(e, Z) are bounded above by one. By Lemma 6,
|vτ(x/v)− vτ(y/v)| ≤ l(|x− y|), uniformly in v ∈ [0, 1], where l(x) = 2x(1 ∨ log(1/x)).
It follows that

ηn,2 := max
e

∣∣L(e)− L(e)
∣∣ = oP

(
l
(‖P‖1/2∞ ∨ n−1/2

n1/2

))
,

for

L(e) =
1

2

∑
a,b

fa(e)fb(e) τ
( (R(e, Z)PR(e, Z)T )ab

fa(e)fb(e)

)
.

Combining this with the preceding paragraph, we conclude that L(ê) ≥ L(Z)−2(ηn,1+
ηn,2). Since L(e) = HP (R(e, Z)) for every e and HP as defined in (7), and R(Z,Z) =
Diag(f(Z)) = Diag(R(ê, Z)T1), this can be translated into

HP (Diag(R(ê, Z)T1))−HP (R(ê, Z)) ≤ 2(ηn,1 + ηn,2). (9)

We complete the proof separately for the cases that ρn is fixed or tends to zero.
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For given δ > 0, let Rδ be the set of all probability matrices R with

min
Pσ

∥∥PσR−Diag(RT1)
∥∥
1
≥ δ, and min

a:πa>0
(RT1)a ≥ δ.

Here the minimum is taken over the (finite) set of all permutation matrices Pσ on K
labels. Furthermore, set

η := inf
R∈Rδ

[
HP

(
Diag(RT1)

)
−HP (R)

]
.

Because Rδ is compact and the maps R �→ HP (R) and R �→ Diag(RT1) are continuous,
the infimum in the display is assumed for some R ∈ Rδ. Because no R ∈ Rδ can
be transformed into a diagonal element by permuting rows and every R ∈ Rδ has
a nonzero element in every column a with πa > 0, Lemma 7 shows that η > 0. If
2(ηn,1+ηn,2) is smaller than η, then it follows from (9) that R(ê, Z) cannot be contained

in Rδ. Since R(ê, Z)T1 = f(Z)
P→ π, by the law of large numbers, for sufficiently

small δ > 0 this must be because R(ê, Z) fails the first requirement defining Rδ. That
is, ‖PσR(ê, Z) − Diag(f(Z))‖1 ≤ δ for some permutation matrix Pσ. As this is true

eventually for any δ > 0, it follows that minPσ ‖PσR(ê, Z)−Diag(π)‖1 P→ 0.

Finally we consider the case where ρn → 0. In view of Lemma 8, the number η = ηn,
which now depends on n, is now bounded below by ρn times a positive number that
depends on (S, π). The preceding argument goes through provided ηn,1+ηn,2 is of smaller

order than ηn. This leads to l(
√

ρn/n)+log(n)/n � ρn, or (ρn/n) log
2(n/(ρn‖S‖∞)) �

ρ2n.

Remark 1. If Kn → ∞, then the numbers ηn,2 in the preceding proof need to be

adapted to ηn,2 � K2
nl(xn + ρn/n), for xn a big multiple of (logKn/n)

1/2(ρ
1/2
n ∨

(logKn/n)
1/2). Equation (9) remains valid. Rather than referring to the identifiability

lemma, Lemma 8, we would now wish to lower bound the left side of (9) by a multiple
of n−1

∑n
i=1 1êi �=Zi . The proof of Lemma 11 combined with Lemma 1 shows that lo-

cally the left side of (9) is bounded below by a multiple of ρn
∑

a πaK0(Sab′‖Sab)n
−1 ×∑n

i=1 1êi �=Zi . If this is also globally true, then we obtain consistency as announced at
the end of Section 3.5.

Lemmas 4–8 are more precise, or, in case of Lemma 7, corrected versions of lemmas
from Bickel and Chen (2009); Zhao et al. (2012); Bickel et al. (2015), supporting the
weak consistency theorem.

Lemma 4. Let Õab(e) = Oab(e) if a �= b, and Õab(e) = 2Oab(e) if a = b. For any
x > 0,

P

(
max

e

∥∥Õ(e)− E
(
Õ(e) | Z

)∥∥
∞ > xn2

)
≤ 2Kn+2e−x2n2/(8‖P‖∞+4x/3).

Proof. This Lemma is adapted from Lemma 1.1 in Bickel and Chen (2009). There are
Kn possible values of e and ‖ · ‖∞ is the maximum of the K2 entries in the matrix.
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We use the union bound to pull these maxima out of the probability, giving the factor
Kn+2 on the right. Next it suffices to bound the tail probability of each variable

Õab(e)− E
(
Õab(e) | Z

)
=

∑
i,j

(
Aij − E(Aij | Z)

)
(1{ei = a, ej = b}+ 1{ei = b, ej = a}).

The nab(e) variables in this sum are conditionally independent given Z, take values in
[−2, 2], and have conditional mean zero given Z and conditional variance bounded by
4 var(Aij | Z) ≤ 4PZiZj (1−PZiZj ) ≤ 4‖P‖∞. Thus we can apply Bernstein’s inequality
to find that

P

(∣∣Õab(e)− E
(
Õab(e) | Z

)∣∣ > xn2
)
≤ 2e−x2n4/(8nab(e)‖P‖∞+4xn2/3).

Finally we use the crude bound nab(e) ≤ n2 and cancel one factor n2.

Lemma 5. Define Õab(e) = Oab(e) if a �= b, and Õab(e) = 2Oab(e) if a = b. Then, for
R(e, Z) as defined in (2),

E(Õab | Z) = n2R(e, Z)PR(e, Z)T − nDiag(R(e, Z) diag (P )).

Proof. A similar expression, not taking into account the absence of self-loops, appears
in Bickel and Chen (2009). The relevant computation for our situation is as follows:

E(Õab(e) | Z = c) =
∑
i �=j

Pcicj1{ei = a, ej = b}

=
∑
a′,b′

Pa′b′
∑
i �=j

1{ci = a′, cj = b′}1{ei = a, ej = b}

=
∑
a′,b′

Pa′b′
∑
i,j

1{ci = a′, cj = b′}1{ei = a, ej = b}

− δab
∑
i

∑
a′

Pa′a′1{ci = a′}1{ei = a}

= n2
∑
a′,b′

Pa′b′Raa′(e, c)Rbb′(e, c)− δabn
∑
a′

Pa′a′Raa′(e, c).

Lemma 6. The function τ : [0, 1] → R satisfies |τ(x) − τ(y)| ≤ l(|x − y|), for l(x) =
2x(1 ∨ log(1/x)).

Proof. Write the difference between x log x and y log y as |
∫ y

x
(1+log s) ds|. The function

s �→ 1 + log s is strictly increasing on [0, 1] from −∞ to 1 and changes sign at s = e−1.
Therefore the absolute integral is bounded above by the maximum of

−
∫ |x−y|∧e−1

0

(1 + log s) ds = −(|x− y| ∧ e−1) log
(
|x− y| ∧ e−1

)
and ∫ 1

1−|x−y|∨e−1

(1 + log s) ds ≤ |x− y|.
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Lemma 7. For any probability matrix R,

HP (R) ≤ HP (Diag(RT1)
)
. (10)

Furthermore, if (P, π) is identifiable and the columns of R corresponding to positive
coordinates of π are not identically zero, then the inequality is strict unless PσR is a
diagonal matrix for some permutation matrix Pσ.

Proof. This Lemma is related to the proof that the likelihood modularity is consistent
given in Bickel and Chen (2009). This proof however rests on their incorrect Lemma
3.1, and thus we provide full details on how the argument can be adapted to avoid the
use of their Lemma 3.1 altogether.

For R a diagonal matrix the numbers (RPRT )ab/(R1)a(R1)b reduce to Pab. Conse-
quently, by the definition of HP ,

HP

(
Diag(f)

)
=

∑
a,b

fafb τ(Pab). (11)

For a general matrix R, by inserting the definition of τ ,

HP (R) =
∑
a,b

(RPRT )ab log
(RPRT )ab
(R1)a(R1)b

+
∑
a,b

(
(R1)a(R1)b − (RPRT )ab

)
log

(
1− (RPRT )ab

(R1)a(R1)b

)
.

Because (R1)a(R1)b − (RPRT )ab = (R(1− P )RT )ab, with 1 the (K ×K)-matrix with
all coordinates equal to 1, we can rewrite this as∑

a,b

∑
a′,b′

Raa′Rbb′

[
Pa′b′ log

(RPRT )ab
(R1)a(R1)b

+ (1− Pa′b′) log
(
1− (RPRT )ab

(R1)a(R1)b

)]
.

By the information inequality for two-point measures, the expressions in square brackets
become bigger when (RPRT )ab/(R1)a(R1)b is replaced by Pa′b′ , with a strict increase
unless these two numbers are equal. After making this substitution the term in square
brackets becomes τ(Pa′b′), and we can exchange the order of the two (double) sums and
perform the sum on (a, b) to write the resulting expression as∑

a′,b′

(RT1)a′(RT1)b′τ(Pa′b′) = HP

(
Diag(RT1)

)
.

This proves the first assertion (10) of the lemma.

If R attains equality, then also for every permutation matrix Pσ, by the equality
HP (PσR) = HP (R) and the fact that (PσR)T1 = RT1, we have

HP (PσR) = HP

(
Diag((PσR)T1)

)
. (12)
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We shall show that if R satisfies this equality and PσR has a positive diagonal, then
PσR is in fact diagonal. Furthermore, we shall show that there exists Pσ such that PσR
has a positive diagonal.

Fix some (Pσ)m that maximizes the number of positive diagonal elements of PσR
over all permutation matrices Pσ, and denote R̄ = (Pσ)mR. Because the information
inequality is strict, the preceding argument shows that (12) can be true for Pσ = (Pσ)m
(giving PσR = R̄) only if

Pa′b′ =
(R̄P R̄T )ab
(R̄1)a(R̄1)b

, whenever R̄aa′R̄bb′ > 0. (13)

Denote the matrix on the right of the equality by Q.

If R̄ has a completely positive diagonal, then we can choose a = a′ and b = b′ and
find from (13), that Pab = Qab, for every a, b. If also R̄aa′ > 0, then we can also choose
b = b′ and find that Pa′b = Qab, for every b. Thus the ath and a′th rows of P are
identical. Since all rows of P are different by assumption, it follows that no a �= a′ with
R̄aa′ > 0 exists.

If R̄ does not have a fully positive diagonal, then the submatrix of R̄ obtained by
deleting the rows and columns corresponding to positive diagonal elements must be
the zero matrix, since otherwise we might permute the remaining rows and create an
additional nonzero diagonal element, contradicting that (Pσ)m already maximized this
number. If I and Ic are the sets of indices of zero and nonzero diagonal elements, then
the preceding observation is that R̄ij is zero for every i, j ∈ I. If π > 0, then we need to
consider only R with nonzero columns. For i ∈ I a nonzero element in the ith column
of R̄ must be located in the rows with label in Ic: for every i ∈ I there exists ki ∈ Ic

with R̄kii > 0. Then, for i, j ∈ I,

(1) for a = ki, b = kj , a
′ = i, b′ = j, (13) implies Qkikj = Pij .

(2) for a = ki, b ∈ Ic, a′ = i, b′ = b, (13) implies Qkib = Pib.

(3) for a = ki, b ∈ Ic, a′ = ki, b
′ = b, (13) implies Qkib = Pkib.

We combine these three assertions to conclude that, for a, i ∈ I and b ∈ Ic,

Pai = Pia
(1)
= Qkika

(2)
= Pika = Pkai,

Pab
(2)
= Qkab

(3)
= Pkab.

Together these imply that the ath and the kath row of P are equal. Since by assumption
they are not (if π > 0), this case can actually not exist (i.e. k = 0).

Finally if πa = 0 for some a, then we follow the same argument, but we match only
every column i ∈ I with πi > 0 to a row ki ∈ Ic. By the assumption on R such ki exist,
and the construction results in two rows of P that are identical in the coordinates with
πa > 0.



S. L. van der Pas and A. W. van der Vaart 785

Lemma 8. For any fixed (K ×K)-matrix P with elements in [0, 1], uniformly in prob-
ability matrices R, as ρn → 0,

1

ρn

(
HρnP (Diag(RT1)

)
−HρnP (R)

)
→ GP (Diag(RT1)

)
−GP (R). (14)

Furthermore, if (P, π) is identifiable and the columns of R corresponding to positive
coordinates of π are not identically zero, then the right side is strictly positive unless
SR is a diagonal matrix for some permutation matrix S.

Proof. From the fact that |(1− u) log(1− u) + u| ≤ u2, for 0 ≤ u ≤ 1, it can be verified
that, |ρ−1

n τ(ρnu)− (u log ρn+ τ0(u))| ≤ ρn → 0, uniformly in 0 ≤ u ≤ 1. It follows that,
uniformly in R,

1

ρn
HρnP (R) = log ρn

∑
a,b

(RPRT )ab +
∑
a,b

(R1)a(R1)bτ0

( (RPRT )ab
(R1)a(R1)b

)
+O(ρn).

The first term on the right is equal to log ρn(R
T1)TP (RT1), and hence is the same for

R and Diag(RT1). Thus this term cancels on taking the difference to form the left side
of (14), and hence (14) follows.

The right side of (14) is nonnegative, because the left side is, by Lemma 7. This fact
can also be proved directly along the lines of the proof of Lemma 7, as follows. Write

GP (R) =
∑
a,b

∑
a′,b′

Raa′Rbb′

[
Pa′b′ log

(RPRT )ab
(R1)a(R1)b

− (RPRT )ab
(R1)a(R1)b

]
.

By the information inequality for two Poisson distributions the term in square brack-
ets becomes bigger if (RPRT )ab/(R1)a(R1)b is replaced by Pa′b′ . It then becomes
τ0(Pa′b′) and the double sum on (a, b) can be executed to see that the resulting bound is
GP (Diag(RT1)). Furthermore, the inequality is strictly unless (13) holds, with R̄ = R.
Since also GP (PσR) = GP (R), for every permutation matrix Pσ, the final assertion of
the lemma is proved by copying the proof of Lemma 7.

Proof of Lemma 2

Proof. The second assertion of the lemma follows from the first and the fact that
maxe QP (e) � (log n)/n. It suffices to prove the first assertion.

Recall that the Bayesian modularity is given by n−2 times

n2QB(e) =
∑
a≤b

logB
(
Oab(e) +

1
2 , nab(e)−Oab(e) +

1
2

)
+
∑
a

log Γ(na(e) + α). (15)

We shall show that the first sum on the right is equivalent to QML(e), and the second
sum is equivalent to QP (e). We show this by comparing the sums defining the vari-
ous modularities term by term. For clarity we shall suppress the argument e. We will
repeatedly use the following bound from (Robbins, 1955): for n ∈ N≥1,

Γ(n+ 1) =
√
2πnn+1/2e−nean , (16)
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with (12n+1)−1 ≤ an ≤ (12n)−1, as well as the fact that Γ(s) is monotone increasing for
s ≥ 3/2. In addition, we will bound remainder terms by using the inequality x log((x+
c)/x) ≤ c for c ≥ 0 and the fact that x log((x− 1)/x) is bounded for x > 1.

First sum of (15)

Upper bound, case 1: Oab �= 0 and nab �= Oab. We apply (16):

logB(Oab + β1, nab −Oab + β2) ≤ log
Γ(Oab + �β1�+ 1)Γ(nab −Oab + �β2�+ 1)

Γ(nab + �β1 + β2�)

= Oab log

(
Oab + �β1�

nab + �β1 + β2� − 1

)
+ (nab −Oab) log

(
nab −Oab + �β2�

nab + �β1 + β2� − 1

)
+ (�β1�+ 1/2) log(Oab + �β1�) + (�β2�+ 1/2) log(nab −Oab + �β2�)
− (�β1 + β2� − 1/2) log(nab + �β1 + β2� − 1) + log

√
2π − �β1� − �β2�

+ �β1 + β2� − 1 + αab + βab − γab,

where αab, βab and γab are bounded by constants. By the inequality x log((x+c)/x) ≤ c
for c ≥ 0, and the fact that x log((x − 1)/x) is bounded for x > 1, we find the upper
bound:

logB(Oab + β1, nab −Oab + β2) ≤ nabτ

(
Oab

nab

)
+O(lognab).

Upper bound, case 2: nab = 1 and Oab = 0 or nab = Oab, or nab = 0. In both cases,
the corresponding term of the likelihood modularity vanishes, whereas the contribution
of the Bayesian modularity is either logB(1 + β1, β2), log(β1, 1 + β2), or logB(β1, β2).

Upper bound, case 3: nab ≥ 2 and Oab = 0 or nab = Oab. Again, the corresponding
term of the likelihood modularity vanishes. We show the computations for the case
nab = Oab; for the case Oab = 0, switch β1 and β2. By (16):

logB(Oab + β1, nab −Oab + β2) = logB(nab + β1, β2) ≤ log
Γ(nab + �β1�+ 1)Γ(β2)

Γ(nab + �β1 + β2�)

= (nab + �β1�) log
(

nab + �β1�
nab + �β1 + β2�

)
+ (1/2) log(nab + �β1�)

− (�β1 + β2�+ 1/2) log(nab + �β1 + β2�) + log Γ(β2) + �β1 + β2� − 1 + δab − εab,

where δab and εab are bounded by constants. Arguing as before, the first term is bounded,
while the remainder is of order log(nab). A lower bound is found analogously.

Lower bound. The computations for the lower bound are completely analogous, ex-
cept that we require Oab + β1 ≥ 2 and nab − Oab + β2 ≥ 2. We study four cases. The
cases (1) Oab ≥ 2 and nab − Oab ≥ 2, (2) nab = 0 and (3) nab > 0 and nab = Oab or
Oab = 0 are similar to cases 1, 2 and 3 respectively of the upper bound. The fourth case
is nab−Oab = 1 and Oab ≥ 2, or Oab = 1 and nab−Oab ≥ 1. In both instances, the like-
lihood modularity is equality to a bounded term minus log nab. By similar calculations
as before, the Bayesian modularity is of the order lognab as well.
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Conclusion. We find:∑
a≤b

logB(Oab + β1, nab −Oab + β2) =
∑
a≤b

nabτ

(
Oab

nab

)
+O(logn).

Second sum of (15)

We consider three cases. If na + �α� = 0, then α > 0, implies na = 0, in which
case log Γ(na + α) = log Γ(α), which is bounded. In case na + �α� = 1, the term
log Γ(na + α) is equal to either log Γ(1 + α) or log Γ(α) and thus bounded as well. For
the case na + �α� ≥ 2, we study the upper bound Γ(na +α) ≤ Γ(na + �α�+1) and the
lower bound Γ(na + α) ≥ Γ(na + �α�). By applying (16) in both cases, we conclude:∑

a

log Γ(na + α) =
∑

a:na+�α�≥2

na logna − n+O(logn).

6 Strong consistency

We build upon the foundations from the previous Section to prove Theorem 1. We need
slightly adapted versions of the function HP , given by, with δab equal to 1 or 0 if a = b
or not,

HP,n(R) =
1

2

∑
a,b

(R1)a
(
(R1)b − δab/n

)
τ
( (RPRT )ab − δab

∑
k PkkRka/n

(R1)a
(
(R1)b − δab/n

) )
. (17)

For given functions tab : [0, 1] → R, let X(e) be the K ×K matrix with entries

Xab(e) = tab

( Õab(e)

n2

)
− tab

(
E(Õab(e) | Z)

n2

)
. (18)

Proof of Theorem 1 [strong consistency]

Proof. We first prove the statement in case ρn is fixed. By Theorem 2, ê is weakly con-
sistent, and hence with probability tending to one it belongs to the set of classifications e
such that the fractions f(e) are close to π, and the matrices R(e, Z) are close to Diag(π)
after the appropriate permutation of the labels (that is, of rows of R(e, Z)). Therefore, it
is no loss of generality to assume that ê is restricted to this set. By Lemmas 4 and 5, the
matrices Õ(e)/n2 are then close to R(e, Z)PR(e, Z)T → Diag(π)PDiag(π), and hence
are bounded away from zero and one if P has this property.

If ê and Z differ atm nodes, then ê belongs to the set of e with ‖R(Z,Z)−R(e, Z)‖1 =
m(2/n), by Lemma 1. In that case QB(e) ≥ QB(Z), for some e in this set, and hence by
Lemma 2 QML(e)−QML(Z)+QP (e)−QP (Z) ≥ −ηn, for some ηn of order (logn)/n2.
It follows that:
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QML(e)−HP,n

(
R(e, Z)

)]
−
[
QML(Z)−HP,n

(
R(Z,Z)

)]
≥ HP,n

(
R(Z,Z)

)
−HP,n

(
R(e, Z)

)
− |QP (e)−QP (Z)| − ηn. (19)

The first term on the right is bounded below by a multiple of m/n, by Lemmas 9
and 1. Because (x + α) log x − (y + α) log y =

∫ y

x
(log s + (s + α)/s) ds is bounded in

absolute value by a multiple of |x − y| log(x ∨ y), if α ≥ 0 and x, y > 0, the second
term −|QP (e) − QP (Z)| is bounded below by a multiple of m(logn)/n2, which is of
smaller order than m/n. We conclude that the left side of (19) is bounded below by
C1m/n. The left side is

∑
a,b(Xab(e)−Xab(Z)), for X defined in (18) and t the function

with coordinates tab(o) = fa(e)(fb(e) − δab/n)τ(o/fa(e)(fb(e) − δab/n)). Because we
restrict e to classifications such that Oab(e)/nab(e) and fa(e)fb(e) are bounded away
from zero and one, only the values of the function τ on an open interval strictly within
(0, 1) matter. On any such interval τ has uniformly bounded derivatives, and hence the
bound of Lemma 12 is valid. Thus we find that

Pr
(
#(i : êi �= Zi) = m

)
≤ Pr

(
sup

e:#(i:ei �=Zi)≤m

∥∥X(e)−X(Z)
∥∥
∞ ≥ C1m

n

)
≤ C2K

m

(
n

m

)
e−cm2/(m‖P‖∞/n+m/n)

≤ C2e
m log(Kne/m)−c1mn.

The sum of the right side over m = 1, . . . , n tends to zero.

In case ρn → 0, we follow the some proof, but in (19) use that HP,n(R(Z,Z)) −
HP,n(R(e, Z)) ≥ ρnC‖R(Z,Z) − R(e, Z)‖1 ≥ ρnC2m/n, by Lemma 11. Since ρn �
(logn)/n by assumption, we have that the contribution m(logn)/n2 of QP (e)−QP (Z)
is still negligible and hence ρnC2m/n is a lower bound for the left side of (19). As a
bound on the left side of the preceding display, we then obtain

n∑
m=1

Km

(
n

m

)
e−c2ρ

2
nm

2/(mρn/n+ρnm/n) ≤
n∑

m=1

em log(Kne/m)−c3ρnmn.

This sum tends to zero provided that nρn � logn.

Lemmas 9–11 are explicit verifications of versions of condition IIIc of Bickel and
Chen (2009).

Lemma 9. If P is fixed and symmetric, (P, π) is identifiable and 0 < P < 1, then, for
sufficiently small δ > 0,

lim inf
n→∞

inf
0<‖R−Diag(π)‖<δ

HP,n

(
Diag(RT1)

)
−HP,n(R)

‖Diag(RT1)−R‖ > 0. (20)

Proof. We can reparametrize the K×K matrices R by the pairs (RT1, R−Diag(RT1)),
consisting of the K vector f = RT1 and the K ×K matrix R−Diag(RT1). The latter
matrix is characterized by having nonnegative off-diagonal elements and zero column
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sums, and can be represented in the basis consisting of all K × K matrices Δbb′ , for
b �= b′, defined by: (Δbb′)b′b′ = −1, (Δbb′)bb′ = 1 and (Δbb′)aa′ = 0, for all other entries
(a, a′), i.e. the b′th column of Δbb′ has a 1 in the bth coordinate and a −1 on the b′th
coordinate and all its other columns are zero. Given any matrix R ≥ 0 the matrix
R−Diag(RT1) can be decomposed as

R−Diag(RT1) =
∑
b �=b′

λbb′Δbb′ ,

for λbb′ = Rbb′ ≥ 0. Since every Δbb′ has exactly one nonzero off-diagonal element,
which is equal to 1, and in a different location for each b �= b, the sum of the off-diagonal
elements of the matrix on the right side is

∑
b,b′ λbb′ . Because the sum of all its elements

is zero, it follows that its sum of absolute elements is given by ‖R − Diag(RT1)‖1 =
2
∑

b �=b′ λbb′ .

Thus we obtain a further reparametrization R ↔ (f, λ), in which R = Diag(f) +∑
b �=b′ λbb′Δbb′ . Here the vector f is a probability vector, and all λbb′ are nonnegative (as

Rbb′ ≥ 0). The nonnegativity of the diagonal elements of R gives the further restrictions
that

∑
b �=a λba ≤ fa, for every a; in particular λba is zero for every b and a such that

fa = 0. Other restrictions on the λbb′ follow from the fact that R ≤ 1, but since we shall
be interested in λbb′ close to zero, these restrictions will not be active.

For given P , f and n, define the function

G(λ) = HP,n

(
Diag(f) +

∑
b �=b′

λbb′Δbb′

)
.

Then we would like to show that there exists C such that

HP,n(Diag(RT1))−HP,n(R)

‖R−Diag(RT1)‖1
=

G(0)−G(λ)

2
∑

b �=b′ λbb′
≥ C > 0,

for every f in a neighbourhood of π, λ in a neighbourhood of 0 intersected with {λ :
λ ≥ 0} and ∩a{λ :

∑
b �a λba ≤ fa}, and every sufficiently large n. The numerator in the

quotient is g(0)−g(1) for the function g(s) = G(sλ). Writing this difference in the form

−g′(0)−
∫ 1

0
(g′(s)− g′(0)) ds gives that the numerator is equal to

−∇G(0)Tλ−
∫ 1

0

(
∇G(sλ)−∇G(0)

)T
ds λ. (21)

Here ∇G is the gradient of G, where we only include partial derivatives with respect
to coordinates λbb′ that vary freely, i.e. not the coordinates λba for which fa = 0. It
suffices to show that the first term is bounded below by a multiple of ‖λ‖1 and that the
second is negligible relative to the first, as n → ∞, uniformly in f in a neighbourhood
of π and λ in a neighbourhood of 0 intersected with {λ : λ ≥ 0}. Thus it is sufficient to
show first that for every coordinate λbb′ of λ minus the partial derivative of G at λ = 0
with respect to λbb′ is bounded away from 0, as n → ∞ uniformly in f , and second that
every partial derivative is equicontinuous at λ = 0 uniformly in f and large n.
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We have

G(λ) =
1

2

∑
a,a′

fa(λ)
(
fa′(λ)− δaa′/n

)
τ
((R(λ)PR(λ)T

)
aa′ − δaa′ea(λ)/n

fa(λ)
(
fa′(λ)− δaa′/n

) )
, (22)

for

f(λ) = f +
∑
b �=b′

λbb′(Δbb′1),

R(λ) = Diag(f) +
∑
b �=b′

λbb′Δbb′ ,

ea(λ) =
∑
k

PkkRak(λ) = Paafa +
∑
b �=b′

Pb′b′λbb′(δab − δab′).

By a lengthy calculation, given in Lemma 10,

∂

∂λbb′
G(λ)|λ=0 = −

∑
a

faK(Pab′‖Pab) +
1

2n
K(Pb′b′‖Pbb), (23)

for K(p‖q) = p log(p/q) + (1 − p) log((1 − p)/(1 − q)) the Kullback–Leibler divergence
between the Bernoulli distributions with success probabilities p and q. For f sufficiently
close to π the numbers fa such that πa > 0 are bounded away from zero, and hence∑

a faK(Pab′‖Pab) > 0, by identifiability of (P, π), since it suffices that just one of
the terms of the sum is nonzero. The whole expression is bounded below by the min-
imum over (b, b′) of these numbers minus (2n)−1 times the maximum of the numbers
K(Pb′b′‖Pbb), and hence is positive and bounded away from zero for sufficiently large n.

To verify the equicontinuity in f of the partial derivatives, we can compute these
explicitly at λ and take their limit as n → ∞. We omit the details of this calculation.
However, we note that every term of G(λ) is a fixed function of the quadratic forms in λ(

fa +
∑
b �=b′

λbb′(Δbb′1)a
)(
fa′ +

∑
b �=b′

λbb′(Δbb′1)a′ − δaa′/n
)
, (24)

((
Diag(f) +

∑
b �=b′

λbb′Δbb′
)
P
(
Diag(f) +

∑
b �=b′

λbb′Δ
T
bb′

))
aa′

− δaa′

n

(
Paafa +

∑
b �=b′

Pb′b′λbb′(δab − δab′)
)
. (25)

These forms are obviously smooth in λ, and their dependence and that of their deriva-
tives on n is seen to vanish as n → ∞. For f and λ restricted to neighbourhoods of π
and 0, the values of the quadratic forms are restricted to a domain in which the trans-
formation that maps them into G(λ) is continuously differentiable. Thus the desired
equicontinuity follows by the chain rule.

Lemma 10. The partial derivatives of the function G at 0 defined by (22) are given by
(23).

Proof. For given differentiable functions u and v the map ε �→ u(ε)τ(v(ε)/u(ε)) has
derivative v′ log(v/(u− v))−u′ log(u/(u− v)). We apply this for every given pair (a, a′)
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to the functions u and v obtained by taking λbb′ in (24) and (25) equal to ε and all
other coordinates of λ equal to zero. Then

u(0) = fa(fa′ − δaa′/n),

v(0) = fa(fa′ − δaa′/n)Paa′ ,

u′(0) = (Δbb′1)a(fa′ − δaa′/n) + fa(Δbb′1)a′ ,

v′(0) = (Δbb′P )aa′fa′ + fa(Δbb′P )a′a − (δaa′/n)Pb′b′(δab − δab′).

It follows that v(0)/(u(0)− v(0)) = Paa′/(1− Paa′), and u(0)/(u(0)− v(0)) =
1/(1− Paa′). Hence in view of (17) the partial derivative in (23) is equal to

1

2

∑
a,a′

[
v′(0) log

Paa′

1− Paa′
− u′(0) log

1

1− Paa′

]
.

We combine this with the equalities

(Δbb′1)a =

⎧⎪⎨⎪⎩
0 if a /∈ {b, b′},
−1 if a = b′,

1 if a = b,

(Δbb′P )aa′ =

⎧⎪⎨⎪⎩
0 if a /∈ {b, b′},
−Pb′a′ if a = b′,

Pb′a′ if a = b.

If fa or fa′ are zero, then the method to obtain the values found for v(0)/(u(0)− v(0))
and u(0)/(u(0)− v(0)) in the preceding (substituting the given values of v(0) and u(0))
breaks down as we obtain a quotient of zeros. However, the values obtained are still
correct when interpreted as the limits from the right at 0. In (21) and (23) the gradient
∇G(0) and derivative at λ = 0 may also be interpreted as limits from the right as λ ↓ 0
of the gradient. With this substitution the arguments go through. If both fa and fa′

are zero, the term involving (a, a′) disappears completely from the analysis.

Lemma 11. If S is fixed and symmetric, (S, π) is identifiable and S > 0 coordinatewise,
then there exists C > 0 such that, for sufficiently small δ > 0 and any ρn ↓ 0,

lim inf
n→∞

inf
0<‖R−Diag(π)‖<δ

HρnS,n

(
Diag(RT1)

)
−HρnS,n(R)

ρn‖Diag(RT1)−R‖ ≥ C.

Proof. In the notation of the proof of Lemma 9 we must now show that G(0)−G(λ) ≥
Cρn‖λ‖1, as n → ∞, uniformly in f in a neighbourhood of π, and λ in a positive
neighbourhood of 0. As in that proof we write G(0) − G(λ) in the form (21) and see
that it suffices that the partial derivatives of G at 0 divided by ρn tend to negative limits,
and that ‖∇G(λ)−∇G(0)‖/ρn becomes uniformly small as λ is close enough to zero.

The partial derivative at 0 with respect to λbb′ is given in (23), where we must replace
P by ρnS. Since the scaled Kullback–Leibler divergence ρ−1

n K(ρns‖ρnt) of two Bernoulli
laws converges to the Kullback–Leibler divergence K0(s‖t) = s log(s/t) + t− s between
two Poisson laws of means s and t, as ρn → 0, it follows that for ρn → 0, uniformly in f ,

1

ρn

∂

∂λbb′
G(λ)|λ=0 → −

∑
a

faK0(Sab′‖Sab).

The right side is strictly negative for f close to π, by the assumption of identifiability
of (S, π).
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If P = ρnS, then the function λ �→ v(λ) given in (25) takes the form v = ρnvS , for
vS defined in the same way but with S replacing P . The function u given in (24) does
not depend on P or S. Using again that the derivative of the map ε �→ u(ε)τ(v(ε)/u(ε))
is given by v′ log(v/(u− v))− u′ log(u/(u− v)), we see that the partial derivative with
respect to λbb′ of the (a, a′) term in the sum defining G takes the form

ρnv
′
S log

ρnvS
u− ρvS

− u′ log
u

u− ρnvS

= ρnv
′
S log ρn − ρnv

′
S log(vS/u)− (ρnv

′
S − u′) log(1− ρnvS/u).

Here u and vS are as in (24) and (25) (with P replaced by S), and depend on (a, a′). From
the fact that the column sums of the matrices R(λ) do not depend on λ, we have that∑
a,a′

[
(R(λ)SR(λ)T )aa′ − δaa′

n

∑
k

PkkR(λ)ak
]
= R(λ)T1SR(λ)T1−

∑
k

Pkk

∑
a

R(λ)ak

is constant in λ. This shows that
∑

a,a′ v′S = 0 and hence the contribution of the term
ρnv

′
S log ρn to the partial derivatives of G vanishes. The term −(ρnv

′
S − u′) log(1 −

ρnvS/u) can be expanded as (ρnv
′
S − u′)ρnvS/u up to O(ρ2n), uniformly in f and λ.

Since these are equicontinuous functions of λ, it follows that ρ−1
n (∇G(λ) − ∇G(0))

becomes arbitrarily small if λ varies in a sufficiently small neighbourhood of 0.

Lemma 12 shows that in a neighborhood of the truth, there is not much variation in
the differences between the observed modularity and the modularity evaluated on the
expected number of connections between classes given the true labelling.

Lemma 12. There exists a constant c > 0 such that for X(e) as in (18), for every twice
differentiable function ta,b : [0, 1] → R with ‖t′a,b‖∞ ∨ ‖t′′a,b‖∞ ≤ 1, and every x > 0,

Pr
(

max
e:#(ei �=Zi)≤m

∥∥X(e)−X(Z)
∥∥
∞ > x

)
≤ 6

(
n

m

)
Km+2e−

cx2n2

m‖P‖∞/n+x .

Proof. Given Z there are at most
(
n
m

)
groups of m candidate nodes that can be assigned

to have ei �= Zi, and the label of each node can be chosen in at most K − 1 ways. Thus
conditioning the probability on Z, we can use the union bound to pull out the maximum
over e, giving a sum of fewer than

(
n
m

)
Km terms. Next we pull out the norm giving

another factor K2. It suffices to combine this with a tail bound for a single variable
Xa,b(e)−Xa,b(Z). Write t for ta,b.

Assume for simplicity of notation that ei = Zi, for i > m, and decompose

1

n2
Oab(e) =

1

n2

[ ∑
i≤m or j≤m

Aij1ei=a,ej=b +
∑

i>m and j>m

Aij1ei=a,ej=b

]
=: S1 + S2.

Let Oab(Z)/n2 =: S′
1 + S2, with the same variable S2, be the corresponding decompo-

sition if e is changed to Z, and then decompose, where the expectation signs E denote
conditional expectations given Z,
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Xab(e)−Xab(Z)

=
(
t(S1 + S2)− t(ES1 + ES2)

)
−

(
t(S′

1 + S2)− t(ES′
1 + ES2)

)
= t(S1 + S2)− t(ES1 + S2)

+
(
t(ES1 + S2)− t(ES1 + ES2)

)
−

(
t(ES′

1 + S2)− t(ES′
1 + ES2)

)
+ t(ES′

1 + S2)− t(S′
1 + S2).

The first and third terms on the far right can be bounded above in absolute value by
‖t′‖∞ times the increment. To estimate the second term we write it as

(S2 − ES2)(ES1 − ES′
1)

∫ 1

0

∫ 1

0

t′′
(
uS2 + (1− u)ES2 + vES1 + (1− v)ES′

1

)
du dv.

Since the first and second derivatives of t are uniformly bounded by 1, it follows that∣∣Xab(e)−Xab(Z)
∣∣ ≤ |S1 − ES1|+ |S2 − ES2| |ES1 − ES′

1|+ |S′
1 − ES′

1|.

The variable S1−ES1 is a sum of fewer than 2mn independent variables, each with con-
ditional mean zero, bounded above by 1/n2 and of variance bounded above by ‖P‖∞/n4.
Therefore Bernstein’s inequality gives that

P
(
|S1 − ES1| > x

)
≤ e−

1
2x

2/(2mn‖P‖∞/n4+x/(3n2)).

This is as the exponential factor in the bound given by the lemma, for appropriate c.
The variable S′

1−ES′
1 can be bounded similarly. Furthermore |ES1−ES′

1| ≤ 4mn/n2 =
4m/n, and S2 − ES2 is the sum of fewer than n2 variables as before, so that

P
(
|S2 − ES2| |ES1 − ES′

1| > x
)
≤ e−

1
2 (xn/(4m))2/(n2‖P‖∞/n4+xn/(12mn2)).

The exponent has a similar form as before, except for an additional factor n/m ≥ 1.
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