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Posterior Predictive p-Values with Fisher
Randomization Tests in Noncompliance
Settings: Test Statistics vs Discrepancy

Measures

Laura Forastiere∗, Fabrizia Mealli†, and Luke Miratrix‡

Abstract. In randomized experiments with noncompliance, one might wish to
focus on compliers rather than on the overall sample. In this vein, Rubin (1998) ar-
gued that testing for the complier average causal effect and averaging permutation-
based p-values over the posterior distribution of the compliance types could in-
crease power as compared to general intent-to-treat tests. The general scheme is
a repeated two-step process: impute missing compliance types and conduct a per-
mutation test with the completed data. In this paper, we explore this idea further,
comparing the use of discrepancy measures—which depend on unknown but im-
puted parameters—to classical test statistics and contrasting different approaches
for imputing the unknown compliance types. We also examine consequences of
model misspecification in the imputation step, and discuss to what extent this
additional modeling undercuts the advantage of permutation tests being model
independent. We find that, especially for discrepancy measures, modeling choices
can impact both power and validity. In particular, imputing missing compliance
types under the null can radically reduce power, but not doing so can jeopar-
dize validity. Fortunately, using covariates predictive of compliance type in the
imputation can mitigate these results. We also compare this overall approach to
Bayesian model-based tests, that is, tests that are directly derived from posterior
credible intervals, under both correct and incorrect model specification.

Keywords: posterior predictive p-values (PPPV), permutation testing,
noncompliance, principal stratification, complier average causal effects (CACE).

1 Introduction

In randomized experiments, noncompliance arises when the actual treatment received
does not correspond to the assigned treatment. With noncompliance, a simple intent-to-
treat (ITT) analysis estimates the effect of the assignment and not necessarily the effect
of the treatment itself. An alternative to ITT analyses is to focus on the effect of the
treatment on compliers, i.e., those who would take the treatment if offered and would
not if not (Imbens & Angrist, 1994; Angrist et al., 1996). In this context, researchers
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typically estimate the average treatment effect for this subgroup, a quantity commonly
called the complier average causal effect (CACE). Identification of the CACE relies
on some assumptions (monotonicity and the exclusion restriction) under which a zero
average ITT effect is a necessary and sufficient condition for the CACE to be zero.
Therefore, under these assumptions, a valid test for the average ITT effect would also
be a valid test for the CACE.

Typically, ITT tests ignore observed information on compliance behavior, which
suggests we could find more powerful alternatives. Rubin (1998), in this vein, proposed
to gain power by incorporating the (incompletely observed) compliance types of the
units into the testing procedure. Rubin did this by imputing compliance type for those
units where compliance type was unknown and then conducting a Fisher randomization
test (Fisher, 1925, 1926, 1935) on the complete data. He then incorporated uncertainty
in this process by averaging p-values calculated conditionally on the completed vector
of compliance type over the posterior predictive distribution of this vector.

This Bayesian approach to obtaining p-values for testing has its roots in posterior
predictive model-checking (Guttman, 1967; Rubin, 1981, 1984), a popular tool where
one compares summary or test statistics calculated for observed data to those for syn-
thetic data drawn from the posterior predictive distribution of a hypothesized model.
Large differences between these statistics and these distributions is then taken as ev-
idence of model misspecification. Here, if we have generated synthetic data under the
null, model misspecification is evidence against the null. This approach is particularly
appealing because it can naturally incorporate unknown nuisance parameters by inte-
grating over them to obtain marginal posteriors. Posterior predictive checks can also be
extended by replacing classical test statistics with discrepancy measures, that is, sum-
mary measures that can depend on the nuisance parameters themselves (Meng, 1994a;
Gelman et al., 1996).

In this paper, we explore the general idea of posterior predictive Fisher random-
ization tests (FRT-PPs) more in depth, and conduct extensive simulation studies to
show how these tests play out in practice in randomized experiments with noncompli-
ance. Combining Fisher randomization tests with posterior predictive p-values leads to a
sequence of imputation and permutation steps. At each iteration, a test statistic is com-
puted from the data under a permuted assignment vector and an imputed compliance
type vector. Rubin (1998) proposed the use of any estimator of the CACE as a classical
test statistic. We investigate replacing such test statistics with discrepancy measures.
These measures seem promising because they can directly estimate the CACE from the
complete data.

We also closely examine the imputation step. Different methods are possible here. In
particular, one might impute either under the null or under the alternative. Imposing
the null seems to be a natural choice from a testing approach and should protect test
validity. Unfortunately, this approach can cost in terms of power. We explore this tension
and discuss how to mitigate this cost.

The imputation step, without the permutation step, is nothing more than what
would typically be used for the direct estimation of the posterior distribution of the
CACE. Credible intervals of this posterior distribution could themselves lead to nomi-
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nal p-values. These model-based p-values are less computationally demanding than the
posterior predictive p-values obtained by a Fisher randomization test within the impu-
tation step. But perhaps they would also be more sensitive to model misspecification,
in particular misspecification of the outcome model. We compare this approach to the
permutation approaches under both correct and incorrect model specification.

Finally, we evaluate the benefits of incorporating predictors of compliance type. Pre-
dictive covariates help alleviate the impact of model misspecification in the imputation
step, especially for the discrepancy-based approach, and thus help address many of the
concerns found in our investigations.

The paper is organized as follows. In Section 2 we briefly review randomized exper-
iments with noncompliance and set up our notation. In Section 3, which presents the
core testing strategies that we examine in this work, we first introduce Fisher random-
ization tests using the potential outcomes framework, briefly review posterior predictive
checks, and then show how to combine these ideas to calculate posterior predictive p-
values in noncompliance settings using either test statistics or discrepancy measures. We
describe our simulation studies in Section 4; these are targeted to compare the different
choices one might make in the implementation of Section 3’s ideas. Simulation results
are shown and discussed in Section 5. In Section 6 we compare FRT-PPs to Bayesian
model-based tests with an additional simulation. We finally discuss common patterns
across our findings, and what they suggest for practice, in Section 7.

2 Randomized Experiments with Noncompliance

We examine two-arm randomized experiments where N units are assigned to treat-
ment (Zobs

i = 1) or control (Zobs
i = 0), i = 1, . . . , N . We use the potential outcomes

framework, originally proposed by Neyman in the context of randomized experiments
(Neyman, 1923) and then formalized and extended to observational studies by Rubin
(1974; 1978). Let Yi(z) be the potential outcome we would observe for unit i when it is
assigned to treatment level z, and let Y obs

i = Yi(Z
obs
i ) be the actual observed outcome.

The potential outcomes are fixed, pre-treatment quantities. This representation is en-
sured by the stable-unit-treatment-value assumption (SUTVA, Rubin (1980)), which
states that the outcomes of any one unit are unaffected by the treatment assignments
of other units and that the treatment is well-defined. The causal effect of the treatment
assignment for any unit, referred to as the intent-to-treat (ITT) effect, can then be
defined as a comparison between Yi(1) and Yi(0). We focus on the average ITT effect
across the units, defined as

ITT := E[Yi(1)− Yi(0)]. (1)

Finally, let Y , a n× 2 matrix, be the potential outcome schedule, represent all potential
outcomes Yi(0), Yi(1) for i = 1, . . . , n.

In experiments with noncompliance, the effect of the treatment assignment, namely
the ITT, differs from the effect of the treatment itself, which is often the effect of
interest. Let Di(z) be an indicator of the treatment that unit i would actually receive
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if assigned to z, and let Dobs
i = Di(Z

obs
i ) be the actual treatment received. These Di(z)

are potential behaviors, analogous to the potential outcomes Yi(z). The compliance type
for each unit is then defined by the joint values Di(0) and Di(1) (Angrist et al., 1996).
This partition of units into compliance types is a special case of principal stratification
(Frangakis & Rubin, 2002). Here, D, representing Di(0), Di(1) for i = 1, . . . , n, is, just
as Y above, a fixed, pre-treatment quantity. Even though compliance type is a pre-
treatment characteristic it is not generally known for all units, because we can never
observe both Di(0) and Di(1).

Following Rubin (1998), we focus on the case of one-sided noncompliance, where
Di(0) = 0 for all units. With one-sided noncompliance we have two compliance types:
“compliers,” for whom Di(1) = 1, and “never-takers,” for whom Di(1) = 0. In this case,
compliance type is unknown only for those units in the control arm, and the typical
monotonicity assumption (Di(1) ≥ Di(0)) holds by design. Define a compliance type
indicator Ci with Ci = 0 for never-takers and Ci = 1 for compliers. The complier
average causal effect (CACE) is then

τ ≡ CACE := E[Yi(1)− Yi(0)|Ci = 1]. (2)

In this work, this is our estimand of interest; other estimands such as risk ratios or
percent change are also possible.

Assuming the exclusion restriction for never-takers, i.e. assuming Yi(0) = Yi(1) ∀i:
Ci = 0, the sharp null hypothesis we wish to test is a zero treatment effect for compliers,
i.e., H0 : Yi(0) = Yi(1) ∀i: Ci = 1.

In one-sided noncompliance settings under the exclusion restriction, the CACE can
be expressed as the ratio between the ITT effect and the probability of being a complier,
ITT/πc, with πc := Pr(Ci = 1), assuming πc > 0. Consequentially, a non-zero ITT
implies a non-zero CACE and a rejection of a zero ITT would necessarily mean a
rejection of a zero CACE.

3 Fisher Randomization Tests and Posterior Predictive
p-Values

Fisher (1925, 1926, 1935) proposed a model-free technique to test a sharp null hypothesis
of zero treatment effect at the unit level for randomized experiments. Although Fisher
never used the potential outcomes framework, FRTs can be phrased in terms of potential
outcomes. First, under this framework Fisher’s sharp null hypothesisH0 of no treatment
effect can be formalized as Yi(0) = Yi(1) ∀i. Fisher’s hypothesis is said to be sharp
because it allows one to perfectly impute the missing potential outcomes: given the null
and an observed outcome Yi(Z

obs
i ) = Y obs

i , we can exactly impute the missing potential
outcome Yi(1−Zobs

i ) as Y obs
i . In other words, Fisher’s null hypothesis coupled with the

observed data gives us complete information on all the potential outcomes, Y .

This allows us to compute Fisher p-values by directly generating the randomization
distribution of the test statistic T (Y (Z),Z) given our known assignment mechanism
and our fully specified (due to the null) Y . This distribution, called a reference distri-
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bution, is the distribution of values of T (Y (Z),Z) we could potentially have seen if the
null were true. Rubin (1984) gave a Bayesian justification of these Fisher randomiza-
tion tests (FRTs), based on connecting them to the posterior predictive distribution of
the test statistic induced by the random assignment Z. Under this formulation, Fisher
p-values can be defined as

p := Pr
{
T (Y (Z),Z) ≥ T (Y obs,Zobs) | Zobs,Y obs, H0

}
,

where Z is a possible treatment vector sampled from the assignment mechanism p(Z)
and Y (Z) is the vector of observed outcomes one would see given Z and Y .

Unfortunately, if the null depends on unknown nuisance parameters we cannot di-
rectly obtain our reference distribution, because we cannot obtain Y (Z) for an arbitrary
Z. In our context of non-compliance, for example, if our test statistic depends on the
compliance types of all units we cannot directly implement an FRT as we have uncer-
tainty as to which units are compliers; the compliance types are our nuisance parame-
ters. However, we can generate posterior predictive p-values by integrating FRT p-values
based on full compliance information over a posterior of possible compliance statues for
our units. This idea is rooted in the literature of posterior predictive checks, which we
review in the following section. We subsequently show how to extend these ideas to
obtain posterior predictive p-values using FRTs in the context of non-compliance.

3.1 An Overview of Posterior Predictive Checks

Classical p-values were extended to the Bayesian framework by Guttman (1967) and
Rubin (1981, 1984). Under this view, the p-value is a measure of model misfit: low
p-values indicate the data are incompatible with the model. The Bayesian view of p-
values is particularly appealing when the model has unknown nuisance parameters.
While classical methods would typically plug-in a point estimate of the parameter and
rely on known reference distributions of pivotal quantities or on asymptotic results,
Bayesian tests average over the posterior distribution of the unknown parameters and
use the posterior predictive distribution to simulate the reference distribution for any
test statistic. We next make this general idea more precise.

Suppose we have a realization Y obs of a random variable Y and we posit a parametric
null model, H0 : Y ∼ f(Y | θ),θ ∈ Θ0. The essence of model assessment then lies in
comparing the observed data with hypothetical replicates that could be observed under
the assumed model. In particular, given a test statistic T (Y obs) where larger values
contraindicate the null, the posterior predictive p-value pT based on this test statistic is

pT = Pr
{
T (Y ) ≥ T (Y obs) | Y obs, H0

}
=

∫
Pr

{
T (Y ) ≥ T (Y obs) | Y obs, H0,θ

}
× π(θ | Y obs, H0)dθ.

(3)

The inner term, Pr{T (Y ) ≥ T (Y obs) | Y obs, H0,θ}, is the p-value testing T (Y obs)
under the sharp null indexed by θ. The integral averages these p-values over the poste-



686 Posterior Predictive p-Values with Fisher Randomization Tests

rior of the nuisance parameters, given the overall null hypothesis and data, to give our
posterior predictive p-value.

Given a prior distribution π(θ), a Monte Carlo simulation-based approach to cal-
culate pT would draw K values of the parameters, {θk; k = 1, . . . ,K}, from their
posterior distribution π(θ|Y obs, H0), simulate replications of the data under the condi-
tional distributions f(Y | θk), and compare the new values of the test statistic T (Y )
with the observed value T (Y obs).

Extending this framework, Meng (1994a), and later (Gelman et al., 1996), proposed
replacing classical test statistics, T (Y ), with parameter-dependent statistics, D(Y ,θ),
referred to as discrepancy measures. The posterior predictive p-value based on a dis-
crepancy measure, pD, is

pD =

∫
Pr

{
D(Y ,θ) ≥ D(Y obs,θ) | Y obs, H0,θ

}
× π(θ | Y obs, H0)dθ. (4)

Before T (Y obs) was fixed. Now D(Y obs, θ) varies along with D(Y , θ).

This approach has two advantages. First, although not the case in this paper, a dis-
crepancy measure often requires smaller computational effort than a test statistic when
the test statistic is something like a posterior mode or an maximum likelihood estimate
that has to be computed at each resampling step. Discrepancy measures, by contrast,
can often be easily calculated because posterior draws of the nuisance parameters them-
selves are typical byproducts of Bayesian imputation procedures. Second, because of the
additional integration over the nuisance parameters, the use of a parameter-dependent
statistic directly checks the discrepancy between the data and the reference distribu-
tion of a measure under the null hypothesis, and not just between the data and the null
hypothesis under the best fit of the model (Gelman et al., 1996; Gelman, 2013).

Meng (1994a) and Robins et al. (2000) derived several results on the frequency
evaluation of discrepancy p-values under the null. If D(Y ,θ) is a pivotal quantity with
known distribution D0 under the null, then the distribution of the p-value pD under
the null would be uniform. In the more common situation where the discrepancy is
not pivotal, the distribution of p-values is no longer uniform. Meng investigated the
behavior of such p-values under the prior predictive distribution conditional on the null
(p(Y |H0) =

∫
p(Y |θ, H0)π(θ)dθ), and found that, under this distribution, discrepancy

p-values are centered around 1/2, i.e., E{pD | H0} = 1/2, and that Pr{pD ≤ α | H0} ≤
2α. This means that there are cases in which p-values are conservative and other cases
in which they are anti-conservative, but there is a bound for the Type I error of twice
the nominal level. Meng’s further discussion suggests, however, that in practice the error
rates should rarely be this high: because the posterior p-values are stochastically less
variable than U [0, 1], we expect the tails to be lighter, leading to conservative tests for
low values of α.

Extending this work, Robins et al. (2000) showed that discrepancy-based p-values
can be seriously conservative even when the discrepancy measure has asymptotic mean
0 for all values of the nuisance parameters, whereas posterior predictive p-values based
on test statistics are conservative whenever the asymptotic mean of the test statistic
depends on the parameters. Arguably, a conservative test is not a bad thing per se.
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Indeed, such tests are considered valid (Neyman, 1934), as the Type I error would be
less than or equal to α. According to Rubin (1996a), the typical conservativeness when
using discrepancies, noted by Meng (1994a) and Gelman et al. (1996), arises from the
‘extra’ information carried by the imputations of θ. This information can be traced
to both modeling and structural assumptions used to define the posterior distributions
used for the imputation; a fundamental role is played by the fact that the imputations
are performed under the null model. This argument can be connected to the one for the
potential conservatism of multiple imputation in Rubin (1996b), where these informative
imputations are called ‘superefficient’.

3.2 Posterior Predictive FRTs (FRT-PPs) with Test Statistics

Rubin (1998) first connected Fisher randomization-based tests and posterior predictive
p-values in the context of noncompliance. Let O(Z) = [Y (Z),D(Z)], the observed
data, be a function of the assignment vector Z, the potential outcomes Y , and the
potential treatment take-ups D. Let T (Y ,D,Z), our test statistic, be a function of the
observed data and treatment assignment. In this context, we might use any estimator
of the complier average causal effect (CACE). For example, we might use the posterior
mean, median, or mode from a Bayesian model, a maximum likelihood estimate, or an
instrumental variables estimate. We could also use a test statistic based on ranks or any
other quantity that would tend to be larger when the CACE was non-zero. Even though
T (Y ,D,Z) depends only on the data we would observe under Z, we cannot directly
generate a permutation-based reference distribution for T (Y ,D,Z) because the null
does not fully specify D and so we do not know what D(Z) would be for Z other than
our observed Zobs; the unknown parts of D are nuisance parameters. If the compliance
type of all the units were known, however, then we could calculate D(Z) for all values
of Z and therefore we could calculate a Fisher p-value, conditional on the compliance
types C. This gives a conditional p-value of

pT (C) = Pr
{
T (Y (Z),D(Z),Z) ≥ T (Y obs,Dobs,Zobs) | Y obs,Dobs,Zobs,C, H0

}
= Pr

{
T (Y obs,CZ,Z) ≥ T (Y obs,Dobs,Zobs) | Y obs,Dobs,Zobs,C, H0

}
,

where CZ is the element-wise product of C and Z. The last expression follows from two
observations: (1) under the sharp null hypothesis and the exclusion restriction, Yi(Zi)
is always equal to the observed outcome; and (2) Di(Zi) = CiZi due to the constraints
of our one-sided noncompliance setting.

However, in general we do not know the compliance types of all units. As in posterior
predictive checks where p-values are averaged over the posterior distribution of nuisance
parameters, Rubin (1998) proposed to average the reference distribution of the test
statistic over the posterior predictive distribution of the unknown compliance types,
which in turn is an average over the posterior distribution of other unknown parameters
θ of the model used to impute these compliance types. Formally, we define the posterior
predictive FRT p-value of a test statistic T (·) as
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pT =

∫ ∫
pT (C)× p(C | Y obs,Dobs,Zobs, H0,θ)× π(θ | Y obs,Dobs,Zobs, H0)dCdθ.

(5)

To estimate pT we use a markov chain monte carlo (MCMC) approach. For this
approach we, for iteration k, first draw the parameters θk from their posterior dis-
tribution and then impute the missing compliance types for units in the control arm
using the posterior predictive distribution conditional on this draw, i.e., using p(C |
Y obs,Dobs,Zobs, H0,θ

k). The parameter vector θ would typically include both θC , pa-
rameters for a compliance model, and θY , parameters for an outcome model. We will
see this separation more explicitly when discussing implementation in Section 4.3. Re-
gardless, for the permutation step we permute the assignment vector Z and compute
the test statistic based on the outcomes and treatment take-ups that would be observed
under this new assignment vector, i.e., we calculate T k = T (Y obs,CZ,Z). Our estimate
of pT is then the proportion of iterations where the test statistic T k is greater than or
equal to the observed statistic T obs.

3.3 FRT-PP with Discrepancy Measures

Following Meng (1994a) and Gelman et al. (1996), we can replace parameter-independent
test statistics with parameter-dependent discrepancy measures. Rubin (1998) mentioned
the possibility of using discrepancies, e.g., the difference-in-means estimate of the effect
among compliers, Y c1 − Y c0, but he only used test statistics dependent on O(Z) in his
examples. We extend his work by examining the behavior of discrepancy measures that
directly depend on the compliance type, i.e., D(Y (Z),C,Z).

The posterior predictive discrepancy-based p-value is

pD =

∫ ∫
pD(C)× p(C | Y obs,Dobs,Zobs, H0,θ)× π(θ | Y obs,Dobs,Zobs, H0)dCdθ,

(6)
with pD(C) being the compliance-dependent discrepancy-based p-value of

pD(C) = Pr
{
D(Y (Z),C,Z) ≥ D(Y obs,C,Zobs) | Y obs,Dobs,Zobs,C, H0

}
= Pr

{
D(Y obs,C,Z) ≥ D(Y obs,C,Zobs) | Y obs,Dobs,Zobs,C

}
.

The imputed compliance types for a particular MCMC iteration will affect both
the discrepancy measure for the permuted assignment vector under the null hypothesis,
Dk = D(Y obs,C,Z), and the discrepancy measure for the observed values, Dk,obs =
D(Y obs,C,Zobs), in each iteration. Our estimate of pD is then the proportion of itera-
tions where Dk ≥ Dk,obs.

3.4 The Performance of Posterior Predictive Testing in
Noncompliance Settings

The above formulation prompts several questions about how different testing approaches
could perform in practice. We investigate these questions with simulations.



L. Forastiere, F. Mealli, and L. Miratrix 689

The first question relates to choice of imputation model. The literature on posterior
predictive p-values suggests imputing the of the models allowing for such imputation)
under the null hypothesis in order to ensure test validity. This would mean that, un-
der a true alternative, the imputation of compliance types would be conducted under
the wrong model, which could result in a loss of power to detect a non-zero CACE.
The intuition is that if the outcome distribution for compliers and never-takers under
treatment are similar, the model could erroneously impute never-taker units in the con-
trol group with outcomes close to the treatment group as compliers, resulting in small
and insignificant estimates of the complier average causal effect. We investigate this
phenomenon in Section 4.

This potential problem motivated us to also investigate imputing the compliance
types without imposing the null. This is akin to a “plug-in” style approach in classical
testing. However, this relaxation could lead to an increase in Type I error, possibly giving
an invalid test. This unconstrained imputation procedure is also not fully Bayesian in
that the conditioning set {Y obs,Dobs} in the imputation step now differs from the one in
the testing step {Y obs,Dobs, H0}. This is analogous to multiple imputation for missing
data: the Bayesian imputation model is typically different (uncongenial) from the model
used for analyzing the data, but multiple imputation inferences are valid from both a
Bayesian and a frequentist point of view (Meng, 1994b).

The second question is how test statistics and discrepancy measures compare. Past
literature mostly focuses on test validity, comparing p-values based on discrepancy mea-
sures to those based on classical statistics under the null hypothesis. There appears to
be less work concerning power. We explore the trade-off between Type I error and
power in noncompliance settings in our simulation study below. In general, we expect
discrepancy measures to be relatively more powerful than test statistics when imputing
compliance types under a correct imputation model, but we do not know if discrepancy
measures are more sensitive to model misspecification.

The third question is how the use of observed covariates that are predictive of com-
pliance type, when available, can improve the imputation step and thus the performance
of the overall testing procedure under these different possible approaches.

4 Simulation Study

Our simulation study assesses the rejection rates of different testing procedures under a
variety of scenarios in order to answer the questions outlined in the preceding section.

4.1 The Data Generating Process

We generate a population of N=500 units characterized by a single covariate Xi ∼
N (0, 1). The compliance type of each unit follows a probit model conditional on Xi:

Ci = 1{α0 + αxXi + εi > 0} εi ∼ N (0, 1), (7)

where the coefficient vector α = [α0, αx] is varied to result in three different levels of
predictiveness: none (α = [−0.8, 0]), medium (α = [−1.4, 2]), and high (α = [−2.8, 5]).
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The probability of being a complier is then Φ(α0 + αxXi), where Φ(·) is the standard
normal cumulative distribution function. The values of α were chosen to make the
proportion of compliers πc always 30%.

A unit’s outcome follows a normal distribution with unit variance and a mean that
depends on its compliance type and the simulation scenario:

Yi(0) ∼
{
N (ηn, 1) if Ci = 0

N (ηc0, 1) if Ci = 1
Yi(1) =

{
Yi(0) if Ci = 0

Yi(0) + τ if Ci = 1,
(8)

with τ = 0 under H0 and τ = 0.5 under H1. We fix ηn = 0 and vary ηc0 across
{−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3}. The observed outcome is then Y obs

i = Yi(1)Z
obs
i +

Yi(0)(1−Zobs
i ). In order to have a better control on the overlap between the distributions

of the two potential outcomes for never-takers and compliers, we model the outcome as
conditionally independent from the covariate.

Once we generate our units, we randomize NT = 250 units to the treatment with
Zobs
i = 1 and NC = 250 units to control with Zobs

i = 0. The resulting Y obs,X,Dobs,
and Zobs form our simulated observed data.

4.2 Simulation Procedure

We compare test statistic-based p-values in (5) to discrepancy-based p-values in (6).
For our test statistic, we use the typical instrumental variables estimator of the CACE
(Imbens & Angrist, 1994; Angrist et al., 1996):

T (Y (Z),D(Z),Z) =
ÎTT Y

π̂c
=

Y 1 − Y 0

D1 −D0

, (9)

with Y z and Dz being the average outcome and proportion of treatment take-up of
units with Zi = z (note D0 = 0 in the case of one-sided noncompliance). For our
discrepancy measure, we use the method of moments estimator of the complier average
causal effect:

D(Y (Z),C,Z) = Y c1 − Y c0, (10)

where Y cz is the average outcome of the compliers with Zi = z.

We examine four different methods for imputing compliance type:

1. Impute imposing the null hypothesis without including covariates; that is, use the
posterior distribution p(C | Y obs,Dobs,Zobs, H0).

2. Impute without imposing the null hypothesis and without including covariates;
that is, use the posterior distribution p(C | Y obs,Dobs,Zobs).

3. Impute imposing the null hypothesis and including covariates; that is, use the
posterior distribution p(C | Y obs,Dobs,Zobs, H0,X).
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4. Impute without imposing the null hypothesis and including covariates; that is, use
the posterior distribution p(C | Y obs,Dobs,Zobs,X).

The four imputation methods combined with the use of a test statistic or a discrepancy
measure give eight testing methods. These methods were assessed under 3× 7× 2 = 42
scenarios defined by three levels of predictiveness of covariates on compliance type,
seven levels of difference between the outcome mean under control for compliers and
never-takers, and whether we do or do not have a complier average causal effect. We
calculated the rejection rate at significance level α = 0.05 for each method for each
scenario.

In particular, for each of the 42 scenarios, we repeated the following 2000 times:

1. Given the specific values of α and ηc0 and assuming the null (τ = 0) or the
alternative hypothesis (τ = 0.5), generate and randomly assign a sample of N
units to treatment and control, resulting in (Y obs,X,Dobs, Zobs).

2. For each of the four imputation methods, calculate posterior predictive p-values
using the test statistic and the discrepancy measure via repeating the following
steps K = 2000 times and averaging the outputs of the last 1000 iterations (1000
discarded as burn-in):

(a) Impute the compliance type C̃i for units in the control group using the spec-
ified imputation method.

(b) Compute the observed test statistic T (Y obs,Dobs,Zobs) and the “observed”
discrepancy measure D(Y obs, C̃,Zobs).

(c) Take a random sample from the set of all possible assignment vectors Z.

(d) Compute reference T (Y obs, C̃Z,Z) and D(Y obs, C̃,Z), based on the im-
puted compliance types and the sampled assignment vector.

(e) Compare the reference test statistic and discrepancy measure to their ob-
served values and output 1 if the new value is larger than the observed and
0 otherwise.

Multiple permutations in the inner loop is not required because averaging step (e) over
the multiple trials gives the desired overall expectation.

4.3 Implementing the Imputation of Compliance Types

We compute posterior predictive p-values using an MCMC approach. Each iteration
is comprised of an imputation and a permutation step. During the imputation step
unknown compliance types are drawn from the predictive posterior distribution p(C |
Y obs,Dobs,Zobs), with additional conditioning on H0 and covariates X depending on
the method used. Because the parameters of this distribution are unknown, the pre-
dictive posterior distribution of interest has to be averaged over the posterior distribu-
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tion of the parameters. We do this with data augmentation (Tanner & Wong, 1987),
a two-stage Gibbs-sampler that samples the model parameters from their full conditional
distribution p(θ | Y obs,Dobs,Zobs,C) and then samples the vector of compliance types
from p(C | Y obs,Dobs,Zobs,θ).

For imputation we use a joint model formed by combining the model for the com-
pliance type from (7) and the following model for the potential outcomes:

Yi(0)|Ci = 1 ∼ N (ηc0, σc) Yi(1)|Ci = 1 ∼ N (ηc1, σc)

Yi(0)|Ci = 0 ∼ N (ηn, σn) Yi(1)|Ci = 0 ∼ N (ηn, σn).
(11)

These means and variances follow from the exclusion restriction. By definition, the
difference ηc1 − ηc0 corresponds to the causal estimand τ .

At each iteration, after the parameters are drawn from their posterior, the unknown
compliance types for units in the control group are imputed as Bernoulli draws with
probabilities

Pr(Ci = 1|Y obs
i , Zi = 0, Xi,θ) =

φ(Y obs
i ; ηc0, σc)pi

φ(Y obs
i ; ηc0, σc)pi + φ(Y obs

i ; ηn, σn)(1− pi)
, (12)

where pi = Φ(α0+αxXi), the prior probability of unit i being a complier, and φ(·) is the
standard normal probability density function. We used conjugate prior distributions on
our parameters, that is, we use normal distributions for the means and inverse gamma
distributions for the variances:

α0, αx ∼ N (0, 5) ηc0, ηc1, ηn ∼ N (0, 10) σc, σn ∼ IG(0.1, 0.1).

For this overall model our parameters are θC =(α0, αx) and θY =(ηn, ηc0, ηc1, σc, σn).
For imputation methods 1 and 3, we impose the null hypothesis when imputing the
compliance type by assuming ηc0 = ηc1 = ηc. Similarly, we set αx = 0 for imputation
methods 1 and 2, where we do not take covariates into account.

5 Results

To compare validity and power of the 8 Bayesian FRT methods, we computed their
rejection rates with level α = 0.05 for simulations conducted under the null hypothesis
and under the alternative hypothesis, respectively.

5.1 No Predictive Covariate Case

Figure 1 shows results of the simulated scenarios when compliance type does not depend
on covariates. For each imputation method and for both the test statistic and the
discrepancy measure, we plot the rejection rates against ηc0−ηn, the difference between
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Figure 1: Type I error (top) and power (bottom) at α = 0.05 vs. ηc0 − ηn, for both test
statistics (left) and discrepancy variables (right) with zero predictiveness of the covari-
ates. Dashed lines correspond to imputation under the null, solid lines to unconstrained
imputation. Black indicates imputing with covariates, grey without.

complier and never-taker means. Generally, as shown by the grey and black lines being
essentially the same, imputation with covariates has negligible impact compared to
without. This is as expected as the covariate is useless in this setting.

Posterior predictive p-values based on the test statistic are largely unaffected by the
choice of imputation method. The test statistic depends on the imputed compliance
types through the corresponding proportion of compliers π̂c. Because this estimate is
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robust to model misspecification,1 Bayesian tests based on this test statistic appear to
have a size around the nominal level for any imputation method and for any distance
between compliers and never-takers in the control group. The power of these tests,
however, decreases as |ηc0 − ηn| gets larger. This occurs because the variance of ÎTTY

depends on the difference in outcomes between compliers and never-takers.

Unlike test statistic p-values, discrepancy-based p-values are very sensitive to the
compliance imputation method, given that within the permutation test the discrepancy
measure assumes the imputed compliance types for every unit are correct.

As expected, when imputing conditional on the null hypothesis, the test is con-
servative with a Type I error around 0.01. The conservativeness seen in this case is
presumably due to the fact that the complete data carries information on the null hy-
pothesis, given that this method imputes compliance types under the correct imputation
model (consisting of a correct model specification, the exclusion restriction assumption,
and the null hypothesis) (Rubin, 1996a).

When outcomes for compliers and never-takers in the control group are close there is
a massive loss of power if we assume the null when imputing. The difficulty in disentan-
gling the mixture between never-takers and compliers when these have similar outcomes,
in combination with the exclusion restriction assumption (implying E{Yi(0)|Ci = 0} =
E{Yi(1)|Ci = 0}) and the null hypothesis (implying E{Yi(0)|Ci = 1} = E{Yi(1)|Ci =
1}), leads to an overestimation of the mean ηc0 for control compliers and, as a conse-
quence, units in the control group imputed as compliers tend to have outcomes close to
those for treated compliers.

Imputing without assuming the null partially corrects this phenomenon. Under this
alternate imputation strategy, the discrepancy-based FRT-PP yields greater power, out-
performing the test-statistic-based approach with an average gain in power of 30%. Un-
fortunately, this gain in power comes with a substantial price. There is a range of values
for ηc0 − ηn where the test is invalid.

5.2 Predictive Covariate Cases

We next examine whether improved prediction of compliance type changes these pat-
terns. Figure 2 shows results for the scenario where covariates affect compliance type
with a medium (left) and high (right) level of predictiveness. Since our test statistic
does not depend on imputed compliance type, performance of statistic-based tests was
similar to the previous case (Figure 1) and is therefore not shown. For discrepancy-
based tests, incorporating predictive covariates substantially reduces invalidity and in-
creases power. Across the three power subplots (bottom row of Figures 1 and 2) we
see the covariate-based approaches’ lines steadily moving up as predictiveness increases,
while the no-covariate approaches’ lines remain essentially the same. In particular, with
strongly predictive covariates we can impute under the null, maintaining validity, with-
out substantial sacrifice of power.

1Because of randomization, Pr(Ci = 1) = Pr(Di = 1|Zi = 1).
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Figure 2: Type I error and power vs ηc0 − ηn for medium (left) and high (right) predic-
tiveness scenario. See caption of Figure 1 for explanation of legend.

6 Comparison with Model-Based Tests

The FRT-PP methods based on discrepancies rely heavily on the imputation model.
The advantage of Fisher randomization tests as model-free tests is then somewhat lost.
Given this, one might think to just rely on the posterior distribution of the parameters.
In particular, for the model in (11), an estimate of the parameter difference ηc1−ηc0 is an
estimate of the complier average causal effect τ . Therefore, the posterior distribution of
ηc1−ηc0 could be used directly to test the null hypothesis with a one-sided, model-based
p-value of Pr{ηc1 − ηc0 ≥ 0|Y obs,Dobs,Zobs,X}.
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Figure 3: Type I error and power for level of significance α = 0.05 against ηc0 − ηn
with highly predictive covariates, for the Bayesian model-based approach (black), the
FRT-PP based on test statistics (red), and the FRT-PP based on discrepancies (blue),
all imputing with covariates.

Using these Bayesian model-based p-values to test the null hypothesis is model-

dependent, but so is the FRT-PP based on discrepancies. The direct Bayesian approach

thus seems superior as it does not require a permutation step, making it less computa-

tionally demanding as well as more transparent.

On the other hand, the fully model-based test could be relying more heavily on model

assumptions than the FRT-PP approach, given that it depends on good estimation of

both ηc1 and ηc0. By contrast, our FRT-PP does not directly depend on the estimation

of ηc1, and it only uses ηc0 and ηn indirectly to impute compliance types in the control

group. Consequently, we might expect model misspecification to affect model-based p-

values more severely. We explore this by conducting several simulation studies under

varying degrees of misspecification.

6.1 Correct Model Specification

As an initial investigation, we assessed the performance of the Bayesian model-based

approach when the model is correctly specified. We replicated the simulation study

in Section 4.1 with high predictiveness of covariates, comparing the direct Bayesian

model-based approach to test statistic and discrepancy-based FRT-PP, with covariates

included in the imputation model (Methods 3 and 4). Figure 3 shows the rejection rates

and power of these different approaches. The characteristics of the Bayesian modeling

approach closely track those of the unconstrained discrepancy-based FRT-PP.



L. Forastiere, F. Mealli, and L. Miratrix 697

Figure 4: Type I error and power for level of significance α = 0.05 against ηc0 − ηn for
a misspecified model with a skewed outcome distribution. See caption of Figure 3 for
explanation of legend.

6.2 Model Misspecification

We next keep the same compliance and outcome models as before, but generate outcome

data from non-normal distributions. We then analyze using methods 1 through 4 and the

full Bayesian model. In all cases we include our covariate in our estimation procedure.

For example, Figure 4 shows Type I error and power in the presence of a skewed outcome

generated as

Yi(0) =
√

Ri with Ri ∼ exp

(
1

η2Ci

)
,

Yi(1) = Yi(0) + Ciτ ,

where ηCi = ηc0 if Ci = 1 and ηn if Ci = 0.

In this skewed outcome case, both the Bayesian model and the unconstrained discrep-

ancy-based FRT-PP approach give large Type I error rates of above 20% when ηc0 is

close to ηn. Imposing the null for the discrepancy-based FRT-PP helps, although the

rejection rates are still elevated. That being said, it also has reasonable power, which

is encouraging. The FRT-PP using test statistics maintain nominal rates but have low

power.

We see similar trends (Figure 5) where, leaving the other aspects of the data generat-

ing process the same, we used a mixture of normals as our baseline outcome distribution:
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Figure 5: Type I error and power for level of significance α = 0.05 against ηc0 − ηn for
a misspecified model with a normal mixture for the outcome distribution. See caption
of Figure 3 for explanation of legend.

Yi(0) ∼
{
QiN (ηn − 1, 1) + (1−Qi)N (ηn + 1, 1) if Ci = 0

QiN (ηc0 − 1, 1) + (1−Qi)N (ηc0 + 1, 1) if Ci = 1
with Qi ∼ Ber(0.5).

(13)

For this distribution, the Type I error rate for the constrained, discrepancy-based
FRT-PP reaches 30%, well above the 5% level. Only the test statistic approach is valid.
By comparing the rejection rates for the null and alternative, we see how rejection is
largely driven by the structure of the mean outcomes on the control side: When the
compliers have a lower mean under control than the never-takers, the rejection rate is
higher regardless of effect.

Similar patterns were repeated across many different data generating processes.
Overall, inference using the Bayesian model closely tracks that of the discrepancy-based
FRT-PP with the null not imposed. The discrepancy-based FRT-PP with the null im-
posed often has some improvement in terms of validity, but it also tends to have lower
power. The test statistic approaches are quite robust, keeping nominal Type I error
under all scenarios, but this comes at a substantial loss in power.

Overall, our results suggest that a joint strategy of model-based imputation followed
by a permutation test on the completed data can provide more robust alternatives to a
full Bayesian approach. While the unconstrained, discrepancy-based FRT-PP generally
performs similarly to the full Bayesian approach, the other FRT-PP methods are gener-
ally more valid. They tend to have substantially lower power under many alternatives,
however, including those with correct model specification. We leave the impact of more
complex outcome models to future work.
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7 Conclusion

Fisher randomization tests (FRTs) compare the reference distribution of a specified
test statistic given a null hypothesis to its observed value. In noncompliance settings,
one can impute the unknown compliance types with a Bayesian approach and then
conduct such randomization tests with the complete data, but we still need to account
for the uncertainty of the imputation. The FRT-PP does this by averaging permutation
p-values over the posterior distribution of the unknown compliance types.

We compared the use of discrepancy measures to classical test statistics within this
framework. We also examined the behavior of these methods when the null is or is not
used in the imputation step. We found that discrepancy-based FRT-PPs that use an
imputation method under the null are generally valid testing procedures. Unfortunately,
however, this validity can be costly: We found many true alternatives where the sys-
tematic misclassification of compliers and never-takers, due to imposing the null, led to
a severe reduction in power. One might hope to overcome this limitation by using an
unconstrained imputation method that does not impose the null. Unfortunately, this
unconstrained imputation can give quite invalid tests, even in scenarios where the model
is correctly specified.

By contrast, FRT-PPs with test statistics, while low power, were generally valid: the
size of the test stayed close to the nominal levels under the null for all scenarios. Overall,
FRT-PPs with test statistics were less affected by the choice of the imputation method
when compared to FRT-PPs with discrepancy measures. This is likely because the
test statistic only depends on the imputation model through the estimated proportion
of compliers, and so model misspecification is irrelevant as long as the proportion of
imputed compliers is not significantly compromised.

We also compared the FRT-PP methods to full Bayesian model-based testing. We
found that model-based tests had very similar characteristics, both under correct spec-
ification and misspecification, to the discrepancy-based tests that did not impose the
null hypothesis. However, for FRT-PP one can, by imposing the null in the imputation
step or by using test statistics, protect against model misspecification. This, however,
results in a substantial loss of power under a wide variety of alternatives.

Overall, as a recommendation for practitioners, if the model is potentially misspeci-
fied (e.g., important covariates are missing) one should avoid a full Bayesian model and
use FRT-PP based on test statistics, not discrepancy measures, to maintain validity.
If, however, we are confident in our posited model, the use of discrepancy-based tests
could in principle improve power, especially if the imputation is not performed under
the null. Under this case, however, the gains of this more complex approach over a
full Bayesian approach are unclear. Regardless, incorporating predictive covariates, if
present, can substantially reduce the risk of invalidity as well as give increased power
for all the imputation methods. Therefore, if one has at least moderately predictive
covariates, and a reasonably well-fitting model on the outcomes, we recommend leaving
the imputation method unconstrained.

The paper has focused on the analysis of randomized experiments with noncompli-
ance, a special case of principal stratification. In principle, all the testing approaches
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that we have investigated could be modified and extended to other causal settings with
intermediate variables as well as to more general settings with partially observed mix-
tures. All these extensions are feasible but not straightforward, given that the underlying
assumptions (e.g, exclusion restriction in noncompliance) are context-specific.

References
Angrist, J. D., Imbens,G. W., & Rubin, D. B. (1996). Identification of causal effects
using instrumental variables (with discussion). Journal of the American Statistical
Association, 91, 444–472. 681, 684, 690

Fisher, R. A. (1925). Statistical Methods for Research Workers. 1st ed. Oliver and Boyd,
Edinburgh. 682, 684

Fisher, R. A. (1925). The arrangement of field experiments. Journal of the Ministry of
Agriculture of Great Britain, 33, 503–513. 682, 684

Fisher, R. A. (1925). The design of experiments. Edinburgh: Oliver and Boyd. 682, 684

Frangakis, C. E. & Rubin, D. B. (2002). Principal stratification in causal infer-
ence. Biometrics, 58, 21–29. MR1891039. doi: https://doi.org/10.1111/j.0006-
341X.2002.00021.x. 684

Gelman, A., Meng, X. L., and Stern, H. S. (1996). Posterior predictive assessment of
model fitness via realized discrepancies (with discussion). Statistica Sinica, 6, 733–807.
MR1422404. 682, 686, 687, 688

Gelman, A. (2013). Two simple examples for understanding posterior p-values whose
distributions are far from uniform. Electronic Journal of Statistics, 7, 2595–2602.
MR3121624. doi: https://doi.org/10.1214/13-EJS854. 686

Guttman, I. (1967). The use of the concept of a future observation in goodness-of-fit
problems. Journal of the Royal Statistical Society B, 29(1) 83–100. MR0216699. 682,
685

Imbens, G. W. & Angrist, J. D. (1994). Identification and estimation of local average
treatment effects. Econometrica, 62, 467–476. 681, 690

Meng, X. L. (1994a). Posterior predictive p-values. Annals of Statistics, 22, 1142–1160.
682, 686, 687, 688

Meng, X. L. (1994b). Multiple-imputation inferences under uncongeniality. Statistical
Science, 4, 538–573. 689

Neyman, J. (1923). On the application of probability theory to agricultural experiments.
Essay on principles. Section 9. Roczniki Nauk Rolniczych Tom X [in Polish]; translated
in Statistical Science, 5, 465–480. MR1092986. 683

Neyman, J. (1934). On two different aspects of the representative method: The method
of stratified sampling and the method of purposive selection with discussion. Journal
of the Royal Statistical Society, 97, 558–625. 687

http://www.ams.org/mathscinet-getitem?mr=1891039
https://doi.org/10.1111/j.0006-341X.2002.00021.x
https://doi.org/10.1111/j.0006-341X.2002.00021.x
http://www.ams.org/mathscinet-getitem?mr=1422404
http://www.ams.org/mathscinet-getitem?mr=3121624
https://doi.org/10.1214/13-EJS854
http://www.ams.org/mathscinet-getitem?mr=0216699
http://www.ams.org/mathscinet-getitem?mr=1092986


L. Forastiere, F. Mealli, and L. Miratrix 701

Robins, J. M., Vaart, A., and Ventura, V. (2000). Asymptotic distribution of p values
in composite null models. Journal of the American Statistical Association, 95, 1143–
1156. MR1804240. doi: https://doi.org/10.2307/2669750. 686

Rubin, B. D. (1974). Estimating causal effects of treatments in randomized and non
randomized studies. Journal of Educational Psychology 66, 688–701. 683

Rubin, B. D. (1978). Bayesian inference for causal effects. Annals of Statistics, 6, 34–58.
MR0472152. 683

Rubin, D. B. (1980). Comment on ”Randomization Analysis of Experimental Data
in the Fisher Randomization Tes” by D. Basu. Journal of the American Statistical
Association, 75, 591–593. MR0590687. 683

Rubin, D. B. (1981). Estimation in parallel randomized experiments. Journal of Edu-
cational Statistics, 6(4), 377–401. 682, 685

Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations
for the applied statistician. Annals of Statistics, 12(4), 1151–1172. MR0760681.
doi: https://doi.org/10.1214/aos/1176346785. 682, 685

Rubin, D. B. (1996a). Discussion of “Posterior predictive p-values?” by Gelman,
A., Meng, X. L. and Stern, H.. Statistica Sinica, 6, 787–792. MR1311969.
doi: https://doi.org/10.1214/aos/1176325622. 687, 694

Rubin, D. B. (1996b). Multiple imputation after 18+ years (with discussion).
Journal of the American Statistical Association, 91, 473–520. MR2750144.
doi: https://doi.org/10.1177/0008068320080305. 687

Rubin, D. B. (1998). More powerful randomization-based p-values in double-blind trials
with non-compliance. Statistics in Medicine, 17(3), 371–85. 681, 682, 684, 687, 688

Tanner, M. A. & Wong, W. H. (1987). The calculation of posterior distributions by data
augmentation (with discussions). Journal of the American Statistical Association, 82,
528–550. MR0898357. 692

Acknowledgments

The authors thank Peng Ding, Joseph Lee, and Natesh Pillai for helpful comments, conversa-

tions, and suggestions. This work is partially funded by PRIN 2012 grant.

http://www.ams.org/mathscinet-getitem?mr=1804240
https://doi.org/10.2307/2669750
http://www.ams.org/mathscinet-getitem?mr=0472152
http://www.ams.org/mathscinet-getitem?mr=0590687
http://www.ams.org/mathscinet-getitem?mr=0760681
https://doi.org/10.1214/aos/1176346785
http://www.ams.org/mathscinet-getitem?mr=1311969
https://doi.org/10.1214/aos/1176325622
http://www.ams.org/mathscinet-getitem?mr=2750144
https://doi.org/10.1177/0008068320080305
http://www.ams.org/mathscinet-getitem?mr=0898357

	Introduction
	Randomized Experiments with Noncompliance
	Fisher Randomization Tests and Posterior Predictive p-Values
	An Overview of Posterior Predictive Checks
	Posterior Predictive FRTs (FRT-PPs) with Test Statistics
	FRT-PP with Discrepancy Measures
	The Performance of Posterior Predictive Testing in Noncompliance Settings

	Simulation Study
	The Data Generating Process
	Simulation Procedure
	Implementing the Imputation of Compliance Types

	Results
	No Predictive Covariate Case
	Predictive Covariate Cases

	Comparison with Model-Based Tests
	Correct Model Specification
	Model Misspecification

	Conclusion
	References

