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Modeling Skewed Spatial Data Using a
Convolution of Gaussian and Log-Gaussian

Processes

Hamid Zareifard∗, Majid Jafari Khaledi†,
Firoozeh Rivaz‡, and Mohammad Q. Vahidi-Asl§

Abstract. In spatial statistics, it is usual to consider a Gaussian process for
spatial latent variables. As the data often exhibit non-normality, we introduce a
novel skew process, named hereafter Gaussian-log Gaussian convolution (GLGC)
to construct latent spatial models which provide great flexibility in capturing
skewness. Some properties including closed-form expressions for the moments and
the skewness of the GLGC process are derived. Particularly, we show that the
mean square continuity and differentiability of the GLGC process are established
by those of the Gaussian and log-Gaussian processes considered in its structure.
Moreover, the usefulness of the proposed approach is demonstrated through the
analysis of spatial data, including mixed ordinal and continuous outcomes that
are jointly modeled through a common latent process. A fully Bayesian analysis
is adopted to make inference. Our methodology is illustrated with simulation
experiments as well as an environmental data set.

Keywords: spatial process, skewness, slice sampling, mixed outcomes,
misalignment.

1 Introduction

A popular approach for analyzing spatial data involves the introduction of latent vari-
ables. Indeed, this approach creates a statistical tool for describing the underlying struc-
ture in the responses. The traditional latent variable models rely on the assumption
that the latent random variables are normally distributed (see, e.g., Higgs and Hoeting
(2010); Chagneau et al. (2010); Schliep and Hoeting (2013), and references therein). Al-
though the use of the latent Gaussian models facilitates spatial analysis, the normality
assumption might be overly restrictive in obtaining an accurate representation of the
data structure. In applications, the distribution of the data is frequently skewed and con-
sequently there is a need for flexible and computationally tractable ways to remove the
Gaussianity assumption and provide robust estimations and predictions. Accordingly,
this work aims to present a skew spatial model using a family of distributions that is
analytically tractable, accommodates practical values of asymmetry, and includes the
normal distribution as a special case.
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Figure 1: Plot of the skewness coefficient versus α for the univariate skew-normal dis-
tribution.

The interest in skew spatial models based on the use of skew-normal distributions
(Azzalini, 1985; Azzalini and Capitanio, 1999) has been prevalent in the literature in re-
cent years (e.g., Kim and Mallick, 2004; Allard and Naveau, 2007). Particularly, Zhang
and El-Shaarawi (2010) used a stochastic representation of skew-normal distribution to
define a stationary skew-Gaussian process with skewed marginal distributions. Zarei-
fard and Jafari Khaledi (2013) recently applied the unified skew-normal distribution
(Arellano-Valle and Azzalini, 2006) which unifies a plethora of recent skew-normal mod-
els. Generally the stochastic representation of skew-normal variables is based on a con-
volution of half normal and normal variables as α|U |+Z, where α denotes the skewness
parameter and the two independent random variables Z and U have normal distributions
with zero means. Notice that the random variable W = |U | has a normal distribution
truncated below at zero. The skew-Gaussian spatial process may suffer from the fact
that the skew-normal distribution is only capable of capturing mild amounts of skew-
ness Azzalini (1985). As seen in Figure 1, the skewness coefficient for the skew-normal
distribution rapidly increases from 0 to 0.9 as the skewness parameter goes from zero to
6.5 and then it tends to 1 asymptotically as the skewness parameter tends to infinity.

To overcome the limitation of the existing approach described above, we propose to
consider another family of asymmetric distributions. An alternative method of generat-
ing skewed distributions is to consider αW +Z, where Z has a symmetric distribution,
but the non-negative variable W has a specified skewed distribution rather than be-
ing truncated. An example of this is the normal-exponential convolution distribution
(Aigner et al., 1977; Silver et al., 2009) in which Z is normal and W has an exponential
distribution. An extension of this is the normal-gamma convolution distribution intro-
duced by Greene (1990) which includes the normal-exponential convolution distribution
as a special case.

Since a convolution of log-normal and normal variables has several desirable proper-
ties such as simplicity, flexibility and being easily incorporated into the spatial model,



H. Zareifard, M. J. Khaledi, F. Rivaz, and M. Q. Vahidi-Asl 533

we develop this approach to construct a random process which is able to efficiently
capture skewness. To be more specific, we propose the so-called Gaussian log-Gaussian
convolution (GLGC) model based on a convolution of the log-Gaussian and Gaussian
processes. As limiting cases, this model includes both well known spatial models (i.e.
log-Gaussian as well as Gaussian). In comparison to the existing skew-Gaussian mod-
els, the proposed model could capture a greater amount of skewness. Interestingly, the
skewness would be a strictly increasing function of α.

Motivated by analyzing a data set with mixed ordinal and continuous outcomes
that are used to evaluate an unobservable process, we develop a GLGC factor model
to account for the inherent skewness in the data. Specifically, our skew spatial model
is built on a hierarchical structure in which latent variables are introduced at two
levels within the hierarchy (see for instance Royle and Berliner (1999); Recta et al.
(2012); Schliep and Hoeting (2013)). Accordingly, we assume that a skew spatial factor
is responsible for the dependencies observed in the data. Since not all variables have
been observed at all locations, the model is extended in a way that accounts for the
spatial misalignment which has been a long standing issue in the literature (see for
instance Gelfand, 2010). Our modeling framework could clearly benefit from a Bayesian
estimation scheme since that framework easily handles unobserved variables. In fact, the
latent variables can naturally be incorporated as additional parameters in the model
using data augmentation (Tanner and Wong, 1987). In order to facilitate Bayesian
inference, a Markov chain Monte Carlo (MCMC) sampling approach is implemented. In
particular, a slice sampling algorithm (Neal, 2003; Agarwal and Gelfand, 2005) coupled
with the Gibbs scheme is developed. Via simulation, we also investigate the impact of
latent variable model misspecification on prediction. We found that prediction accuracy
of the latent process can be influenced by the violation of the Gaussian assumption.

The rest of the paper is organized as follows. Section 2 introduces the new class
of skewed spatial models. In Section 3, the skew spatial factor model which relies on
the GLGC process is presented. Section 4 discusses the Bayesian analysis of the model.
Sections 5 and 6 illustrate the use of the proposed methodology with simulated and real
spatial data sets. Finally, in Section 7 we present some conclusions and final remarks. In
this section, we also provide a brief discussion regarding how to extend the univariate
skew model to the multivariate case.

2 Skew spatial models

Assume that the data are a subset of the spatial process Y (·) = {Y (s), s ∈ D ⊆ �2},
which depends on a latent spatial process H(·) = {H(s), s ∈ D ⊆ �2} such that

Y (s) = H(s) + ρ(s), (1)

where ρ(s) is an iid (white noise) measurement error process that is independent of H(·)
and has variance τ2. We define the n-dimensional vector of data as Y = (Y (s1), · · · ,
Y (sn))

′ at spatial locations s1, · · · , sn. Similarly for the process H(·), we define the
n-dimensional vector H = (H(s1), · · · , H(sn))

′. Customary modeling of spatial data
proceeds from a Gaussian model for latent process H(·) of the form
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H(s) = f ′(s)β + Z(s), (2)

where f ′(s)β describes the spatial trend through a linear model with k covariates f ′(s) =
(f1(s), · · · , fk(s)). Moreover, Z(s) is a second-order stationary Gaussian process with
zero mean, variance σ2

1 , and the isotropic correlation function:

Corr(Z(si), Z(sj)) = Cθ1
(||si − sj ||),

where Cθ1(d) is a valid correlation function, parameterized by a vector θ1. We could
extend the model given in (2) to non-Gaussianity by including a process W (s) which is
non-negative and independent of Z(s) at each location as

H(s) = f ′(s)β + αW (s) + Z(s), (3)

where α ∈ � is the skewness parameter. This general framework involves some of the
skew-Gaussian processes, which have been introduced in the literature. For instance, by
considering W (s) = |U(s)| where U(s) is a second-order stationary Gaussian processes
with zero mean, variance 1, and the correlation function

Corr(U(si), U(sj)) = Cθ2(||si − sj ||),

we arrive at the model proposed by Zhang and El-Shaarawi (2010). Although this
model leads to a wide variety of marginal distributions, which possess rich theoretical
properties, it faces two major drawbacks:

1. Since the absolute function is not monotone, the data usually do not provide
sufficient information to obtain a precise estimate of the parameters of the unob-
servable latent variable U(s).

2. The mean square differentiability of the process H(s) is not guaranteed by that
of processes U(s) and Z(s). In other words, even though it turns out that the
processes U(s) and Z(s) are q times mean square differentiable (q ≥ 1), the
process H(s) does not necessarily satisfy this property.

On the other hand, if we define W (s)
d
= [U(s)|U(s) > 0], the SUN model proposed by

Zareifard and Jafari Khaledi (2013) will be acquired. Since the aforementioned models
are constructed based on the stochastic representation of the skew-normal variables, the
degree of skewness represented by these models are somewhat limited as described in
Section 1 above. In what is to follow, we develop a new class of skew spatial models
relying on the log-normal distribution which is of major importance in probability and
statistics.

2.1 The GLGC model

Our starting point is to consider a log-Gaussian process for W (s) as

W (s) = exp(U(s)). (4)

Consequently, the spatial process H(s) given in (3) and (4) is a convolution of Gaussian
and log-Gaussian processes, so we shall call it the GLGC process. Hereafter, we denote
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Figure 2: The probability density function of H(s) for μ(s) = 0, σ2
2 = 1 and some

different values for α and σ2
1 . The legends indicate the values considered for α and σ2

1 .

the variance and correlation parameters of the Gaussian process U(s) as σ2
1 and θ1,

respectively, as well as those for the Gaussian process Z(s) as σ2
2 and θ2. As we demon-

strate further, considering the variance parameter σ2
1 in the structure of the GLGC

process increases its ability in effectively capturing skewness. We now explore the prop-
erties and the flexibility of the GLGC process. Interestingly, when α −→ 0 and σ2

2 −→ 0
two important spatial models, i.e. the Gaussian model (2) and the log-Gaussian model

H(s) = f ′(s)β + αW (s),

arise as limiting cases of the GLGC model, respectively.

The distribution function of H(s) is a convolution of normal and log-normal distri-
butions as

FH(s)(t) =

∫ +∞

0

Φ(
t− μ(s)− αw

σ2
)fLN (w|0, σ2

1)dw, t ∈ �,

where μ(s) = f ′(s)β, Φ(·) represents the cumulative distribution function of a standard
normal distribution. Also, fLN (·|μ, σ2) denotes the probability density function of log-
normal distribution with location μ and scale σ2. Figure 2 shows the marginal density
function of GLGC model under μ(s) = 0, σ2

2 = 1 and some different pairs for (α, σ2
1)

that are given in the figure legend. It can be seen that the two parameters α and σ2
1

affect the shape of density function in different ways which leads us to a flexible class
of stationary skew processes. In Figure 3, the effect of parameter σ2

2 on the shape of the
density function of GLGC model has been considered. The density functions are plotted
under μ(s) = 0, α = σ2

1 = 1, and four different values for σ2
2 (i.e., σ2

2 = 0.1, 0.3, 1, 2).
This figure clearly shows that the GLGC model is close to the log-Gaussian model for
small values of σ2

2 .
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Figure 3: The probability density function of H(s) for μ(s) = 0, α = 1, σ2
1 = 1 and

some different values for σ2
2 The legends indicate the values considered for σ2

2 .

One of the main advantages of the GLGC process comes from the fact that the
rth moment of the GLGC process can be obtained in closed form as presented in the
following proposition.

Proposition. Let H(·) be the GLGC process given in (3) and (4). Then the rth moment
of H(s) around the mean surface μ(s) is obtained through

E(H(s)− μ(s))
r
=

[r/2]∑
i=0

αr−2i

(
r
2i

)
e

1
2 (r−2i)2σ2

1σ2i
2

max{i,1}∏
j=1

|2i− 2j + 1|, (5)

where r > 0 takes integer values.

Proof. Using the binomial expansion, we can write

E(H(s)− μ(s))
r
=

r∑
i=0

(
r
i

)
αr−iE(e(r−i)U(s))E(Zi(s)).

Now since the odd moments of the standard normal distribution are zero, we have
clearly

E(H(s)− μ(s))
r

=

[r/2]∑
i=0

(
r
2i

)
αr−2iE(e(r−2i)U(s))E(Z2i(s))

=

[r/2]∑
i=0

(
r
2i

)
αr−2ie

1
2 (r−2i)2σ2

1σ2i
2

max{i,1}∏
j=1

|2i− 2j + 1|.
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As a result, the mean and variance of the proposed model are given by

E(H(s)) = μ(s) + αe
1
2σ

2
1 ,

V ar(H(s)) = α2(e2σ
2
1 − eσ

2
1 ) + σ2

2 ,

respectively. Even though H(s) has finite moments, similarly with the log-normal ran-
dom variable, the moment generating function ofH(s) is infinite at any positive number.
Also, the characteristic function (CF) of H(s) is given by

CFs(t) = eitμ(s)−
1
2σ

2
2t

2

E(eitαe
U(s)

) = eitμ(s)−
1
2σ

2
2t

2

∫ ∞

−∞

1√
2πσ2

1

e
itαeu− 1

2πσ2
1
u2

du. (6)

Since no closed form expressions exist for the right hand integral in (6) (Johnson et
al., 1994), the computation of CFs(t) is a challenging problem. In such a situation
it is desirable to approximate the CF function. A wide variety of methods have been
developed to approximate the characteristic function of the log-normal distribution
(see, e.g., Barouch et al., 1986; Asmussen et al., 2016). These approximations can also
be applied for the integral involved in the characteristic function of H(s).

From the marginal moments ofH(s) given in (5), we can immediately find an explicit
expression for the skewness coefficient of the proposed model as

γ = α3 e
3
2σ

2
1 (e3σ

2
1 − 3eσ

2
1 + 2)

(α2(e2σ
2
1 − eσ

2
1 ) + σ2

2)
3
2

. (7)

Consequently, for α = 0, α < 0 and α > 0, the distribution of H(s) is normal, skewed to
the left and skewed to the right, respectively. Moreover, it can be seen that γ is a strictly
increasing function in terms of α. Also, the absolute value of γ is a strictly increasing
function of σ2

1 . Therefore, the value of skewness is controlled by both parameters α and
σ2
1 . This supports the claim that the GLGC model, unlike the skew-Gaussian models,

can certainly generate a greater amount of skewness. To emphasize this, the log-normal
and skew-normal probability plots of n = 1000 simulated data from the proposed model
is drawn in Figures 4 and 5. These figures clearly show that the data do not lie exactly
along a straight line, indicating lack of fit. To be more specific, there is still a lot of
skewness left, and so it can be concluded the log-normal and skew-normal distributions
have serious limitations in taking skewness into account. Notice that under the con-
sidered values for the parameters, the skewness coefficients are γ = 4.6 and γ = 11.6,
respectively, which are medium and relatively large values.

Also, in Figures 6 and 7 the GLGC probability plots of n = 1000 i.i.d data sets from
two below models:

• Skew-normal Model: H = β + α|W |+ Z; W ∼ N(0, 1); Z ∼ N(0, σ2
2)

• Log-normal Model: H = β + αW ; W ∼ LN(0, σ2
1)

under β = 0, σ1 = σ2 = 1 and two different values α = 1 as well as α = 1.5 are
plotted. The results shown in these figures are very interesting and informative. They
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Figure 4: The log-normal and skew-normal probability plots of n = 1000 simulated data
from the proposed model under β = 0, σ2

2 = 1 and α = σ2
1 = 1.

Figure 5: The log-normal and skew-normal probability plots of n = 1000 simulated data
from the proposed model under β = 0, σ2

2 = 1 and α = σ2
1 = 1.5.

obviously indicate that the GLGC model has a good performance even for a data set
generated from the skew-normal model. This is not surprising because with regard to
(7) the GLGC model is able to capture different distribution shapes which are observed
in skewed data. It must be noted that although these results have been reported based
on only one simulation, our experiments with more simulations and different values for
α consistently confirm the great flexibility of this model in accommodating skewness.
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Figure 6: The GLGC probability plots of n = 1000 simulated data from the skew-normal
model under β = 0, σ1 = σ2 = 1 and two different values for α. The left plot is under
α = 1 and the right plot is under α = 1.5.

Figure 7: The GLGC probability plots of n = 1000 simulated data from the log-normal
model under β = 0, σ2

1 = 1 and two different values for α. The left plot is under α = 1
and the right plot is under α = 1.5.

The marginal distribution of the latent vector H can be written as:

pψ(H) =

∫
�+

n

fn
N (H|Xβ + αw, σ2

2Cθ2)f
n
LN (w|0, σ2

1Cθ1)dw, (8)
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where ψ = (β, α, σ2
1 , σ

2
2 ,θ1,θ2), X = (f(s1), · · · , f(sn))′, W = (W (s1), · · · ,W (sn))

′

and Cθl
, l = 1, 2, is the n × n correlation matrix with Cθl

(||si − sj ||) as its (i, j)th
element. Also, fn

N (·|μ1,Ω1) and fn
LN (·|μ2,Ω2) denote the probability density functions

of n-variate normal and log-normal distributions with means μ1 and μ2 and covariance
matrices Ω1 and Ω2, respectively. We can easily verify that Kolmogorov consistency
conditions hold for this sampling model. We denote the distribution of the n-dimensional
random vector H by GLGCn(Xβ, σ2

1Cθ1 , σ
2
2Cθ2 , α) as well as its density function by

fn
GLGC(h|Xβ, σ2

1Cθ1 , σ
2
2Cθ2 , α).

The mean square continuity of the GLGC process is established by the fact that its
correlation function is continuous at 0. To show this, we first note that the correlation
between H(si) and H(sj) is

Corr(H(si), H(sj)) =
α2(eσ

2
1(1+Cθ1

(d)) − eσ
2
1 ) + σ2

2Cθ2(d)

α2(e2σ
2
1 − eσ

2
1 ) + σ2

2

,

where d = ||si − sj ||. Thus, in the case of continuity Cθ1
(·) and Cθ2

(·) at the origin, we
can see when d tends to zero, then the correlation between H(si) and H(sj) tends to 1
which shows the mean square continuity of the process H(s) in the absence of a nugget
effect. To determine the degree of smoothness of the process, the degree of mean square
differentiability can be considered. Stein (1999) showed that a process is q times mean
square differentiable if and only if the 2qth derivative of the covariance function at 0
exists and is finite. Since the covariance function of the GLGC process is of the form

C(d) = α2(eσ
2
1(1+Cθ1

(d)) − eσ
2
1 ) + σ2

2Cθ2
(d), (9)

it can easily be seen that the degree of mean square differentiability of the process is
equal to the degree of mean square differentiability of the underlying processes U(s) and
Z(s). To be more specific, if the processes U(s) and Z(s) are q times mean square differ-
entiable, then the process H(s) also satisfies this property. Therefore, the smoothness
properties of U(s) and Z(s) carry over to the process H(s).

As our working family of isotropic correlation functions for the underlying processes
U(s) and Z(s), we use the Whittle correlation function (Whittle, 1954)

Cθ(d) =
d

θ
K1

(
d

θ

)
, θ > 0, (10)

where θ is the range parameter that controls how fast the correlation decays with
distance and K1(·) is the modified Bessel function of the second kind of the first order.
This model is, in fact, Whittle’s generalization of the exponential correlation function.
We may further concentrate on some other families of correlation functions and then
easily choose an appropriate model via a model selection process. However, in order to
reduce the complexity of the current discussion, we have not addressed this task in our
simulations or applied example.
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Parameter True values α = 1, σ2
1 = 1 α = 2, σ2

1 = 2
α 1.35(0.81,1.76) 1.89(0.67,2.96)
σ2
1 0.78(0.23,1.73) 2.28(1.79,3.38)

θ1 1 1.07(0.52,1.69) 1.14(0.74,1.72)
σ2
2 2 1.62(0.37,2.48) 2.80(0.92,4.85)

θ2 1 0.83(0.38,1.41) 0.66(0.47,0.90)
τ2 1 0.63(0.46,1.14) 0.61(0.31,1.56)
β0 5 4.34(4.25,4.64) 5.45(4.86,5.93)
β1 -1 −0.71(−1.28,−0.15) −0.83(−1.32,−0.25)

β2 1 0.78(0.18,1.39) 0.60(0.16,1.15)

Table 1: Posterior mean (95% credible interval) for the model parameters.

2.2 Model assessment

To examine the performance of the proposed model, we conducted a simple simulation
study. Throughout, we use a sample size of n = 100 points which were selected from
a [0, 5] × [0, 5] regular grid. We generated data from the GLGC model with σ2

2 = 2,
θ1 = θ2 = 1 and τ2 = 1. In addition, assuming that s = (s1, s2), we consider the
mean function μ(s) = β0 + β1s1 + β2s2 with β = (5,−1, 1). To assess the identifiability
of skewness parameters (i.e. α and σ2

1), two data sets were generated by assuming
α = σ2

1 = 1 and α = σ2
1 = 2. We fit the GLGC model to the simulated data using

Bayesian inference. Details have been omitted, though based on the techniques provided
subsequently in Section 4, one can easily arrive at them. Table 1 displays some posterior
results for the parameters. It is clear that these parameters are all identifiable from the
data and hence they do not suffer from the non-identifiability problem. In addition,
the results show that the GLGC model is able to recover the true parameters used in
simulating the data. Now, in order to investigate how much better our model fits relative
to the two models below:

• Log-Gaussian Model: H = Xβ + αW; W ∼ LNn(0, σ
2
1Cθ1)

• SUN Model: H = Xβ + αW + Z; W ∼ TNn(0; 0,Cθ1); Z ∼ Nn(0, σ
2
2Cθ2)

where TNn(c;μ,Σ) denotes the Nn(μ,Σ) distribution truncated below at a point c, the
marginal likelihoods of data for GLGC, log-Gaussian and SUNmodels are first computed
using the modified harmonic mean estimator p̂4 of Newton and Raftery (1994). Then
we compute Bayes factors between models (see Kass and Raftery, 1995). As seen from
Table 2, the GLGC model noticeably outperforms the two other models.

3 A GLGC factor model

In some applied problems, several types of measurements to evaluate an unobservable
process are collected from sampling locations (see e.g., Schliep and Hoeting, 2013; Hogan
and Tchernis, 2004). In such a situation, one way to jointly model the different types of
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The Bayes factor in favor of the GLGC versus the log-Gaussian 1.3× 109

α = σ2
1 = 1

The Bayes factor in favor of the GLGC versus the SUN 7.9× 106

The Bayes factor in favor of the GLGC versus the log-Gaussian 2.6× 104

α = σ2
1 = 2

The Bayes factor in favor of the GLGC versus the SUN 7.9× 1013

Table 2: The Bayes factor in favor of the GLGC model.

data is to consider a low-dimensional spatial model using latent factors. Classical spatial
factor models rely on the assumption that factors are normally distributed which may
be a restrictive assumption. Generally, in some applications, considering a skewed dis-
tribution for underlying latent variables can significantly improve the model fit (see for
instance Chen et al. (1999) and Chen (2004)). In this section, we use the GLGC process
as an underlying process to develop a skew spatial factor model. Hence, the resulting
model inherits the advantages of the GLGC model. More specifically, let Jo(≥ 1) and
Jc(≥ 1) denote the number of ordinal and continuous response variables, respectively.
Therefore J = Jo + Jc is the number of all considered responses on the spatial domain
of interest D. We assume that the ordinal random process Yj(s), j ∈ {1, · · · , Jo}, is
created by clipping a latent process, say Tj(s), meaning

Yj(s) =

L∑
l=1

lI{κj,l−1<Tj(s)≤κj,l}, (11)

where I denotes the indicator function, and κj,0, · · · , κj,L are the ordered cut-points
defined by

−∞ = κj,0 < κj,1 < · · · < κj,L = +∞. (12)

Note that the model can easily be generalized to include ordinal variables with a varying
number of categories, e.g. Yj(s) ∈ {1, · · · , Lj}. Further details of this discussion can be
found in Schliep and Hoeting (2013). Also for all continuous variables j in Jo+1, · · · , J ,
we assume that Yj(s)

d
= Tj(s). We now consider a linear relationship between each of the

latent continuous processes (introduced in the first level of latency) and a spatial factor
process H(s) in which covariates are involved in its mean structure. More specifically,
we assume that

Tj(s) = νj + ωjH(s) + ρj(s), j = 1, · · · , J, (13)

where the mean of Tj(s) is a metric-specific linear combination of the latent process
H(s), and ρj(s) is an uncorrelated Gaussian process that is independent of H(·) and
has zero mean and variance τ2j , representing the nugget effect. The fixed effect νj is the
intercept and the fixed effect ωj is the factor loading of the spatial process H(s) which
allows us to quantify the relationship between each of the response variables and H(s).
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Here since not all the variables have been observed over all locations, we sup-
pose that a single realization of the j’th considered random process at nj locations
sj1 , · · · , sjnj

is observed as Yj = (Yj(sj1), · · · , Yj(sjnj
))′ for j in 1, · · · , J . Now we

denote s = (s1, · · · , sn) as all sampling locations that the variables are observed.
These locations can then be shared across the variables observed at the same loca-
tion. If we define H = (H(s1), · · · , H(sn))

′ that is being shared across the variables and
Tj = (Tj(sj1), · · · , Tj(sjnj

))′, then

Tj |H ∼ Nnj (νj1nj + ωjKjH, τ2j Inj ), j = 1, · · · , J, (14)

where Kj is an nj × n indicator matrix that maps the n locations to the nj locations
where the variable j was observed. Also Inj is the nj × nj identity matrix and 1nj is a
nj ×1 vector of ones. Consequently, Tj ’s are conditionally independent given the latent
vector H.

A classical spatial factor model is constructed based on considering a Gaussian
process for H(s). However, in order to enhance the model fit for skewed spatial data,
we propose to use a GLGC process for the spatial latent process. In this setting, we
assume that

H ∼ GLGCn(Xβ, σ2
1Cθ1 , σ

2
2Cθ2 , α), (15)

where X contains k location-specific observable covariates, β is a k × 1 vector of co-
efficients and Cθl , l = 1, 2, is an n × n correlation matrix with Cθl(||si − sj ||) as its
(i, j)th element. The latent vector H can be displayed under the following hierarchical
representation

H|U ∼ Nn(Xβ + αW, σ2
2Cθ2),

U ∼ Nn(0, σ
2
1Cθ1), (16)

where here W = exp(U). As the resulting spatial factor model has been built on the
GLGC process, we call it the GLGC factor (GLGCF) model.

3.1 Identification constraints

Before providing details of the Bayesian analysis, in what follows, we have placed some
constraints that will be taken into account to ensure that the model parameters are
identifiable.

1. To avoid the lack of identifiability with the intercept parameters ν1, · · · , νJ , it is
necessary to place a restriction on the cut-points and the matrix X. Without loss
of generality, we assume that the matrix X does not include the column of ones
and κj,1 = 0 for j = 1, · · · , Jo. Therefore, we are left with the estimation of the
cut-points vectors κ1, · · · ,κJo where κj = (κj,2, · · · , κj,L−1).

2. The information contained in the ordinal responses pertains to probability of being
in a particular category and thus we can not estimate the nugget effect parameters
τ21 , · · · , τ2Jo

together with the cut-points. Accordingly, we set τ21 = · · · τ2Jo
= 1.

3. One value of J factor loadings must be fixed. Here, we set ωJ = 1.
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Under these assumptions, the parameters of the GLGCF model are κ = (κ1, · · · ,κJo),
ν = (ν1, · · · , νJ ), ω = (ω1, · · · , ωJ−1), τ = (τJo+1, · · · , τJ), β, α, σ1, σ2, θ1 and θ2 all of
which are now identifiable. The unaugmented likelihood function of the observed data
is given by

p(y1, · · · ,yJ |ζ) =
∫
�n

J∏
j=1

p(yj |h, ζ)fn
GLGC(h|Xβ, σ2

1Cθ1 , σ
2
2Cθ2 , α)dh, (17)

where ζ = (β, ν, ω, τ , σ1, σ2, α, θ1, θ2,κ) is the vector of parameters. Moreover,
if we define A(yji) = (κj,l−1, κj,l] when yji = l for i = 1, · · · , nj , j = 1, · · · , Jo and
l = 1, · · · , L then

p(yj |h, ζ) =

∫
A(yj1 )

· · ·
∫
A(yjnj

)

f
nj

N (tj |νj1nj + ωjKjh, Inj )dtj , j = 1, · · · , Jo,

p(yj |h, ζ) = f
nj

N (yj |νj1nj + ωjKjh, τ
2
j Inj ), j = Jo + 1, · · · , J.

4 Bayesian analysis

In this section, we will discuss the Bayesian inference for the GLGCF model. To avoid
the calculation of high dimensional integrals in the likelihood function (17), we employ
data augmentation to incorporate the latent variables to = (t1, · · · , tJo), h and u. The
distribution of the unknown parameters and latent variables, given the observed data,
can be written as

p(to,h,u, ζ|y1, · · · ,yJ) ∝
Jo∏
j=1

p(yj |tj , ζ)p(tj |h, ζ)
J∏

j=Jo+1

p(yj |h, ζ)p(h|u, ζ)p(u|ζ)π(ζ)

=

Jo∏
j=1

nj∏
i=1

I{tji∈A(yji
)}fN (tji |νj + ωjhji , 1)

×
J∏

j=Jo+1

f
nj

N (yj |νj1nj + ωjKjh, τ
2
j Inj )

× fn
N (h|Xβ + α exp(u), σ2

2Cθ2)f
n
N (u|0, σ2

1Cθ1)π(ζ).

We now define the prior distribution of the vector of the model parameters, i.e. π(ζ)
to complete the Bayesian model specification. We first assume the components of the
parameter vector ζ to be independent a priori. Then, we assign proper (but diffuse) prior
distributions for the unknown parameters. Additionally, a family of conjugate priors is
assigned for most of the parameters. To be more specific, the conjugate multivariate
normal and inverse gamma prior distributions will be taken for components of ζ1 =
(β,ν,ω, α) and ζ2 = (σ2

1 , σ
2
2 , τ

2), respectively. More specifically,

π(ζ1) = fk
N (β|0, cβIk)fJ

N (ν|0, cνIJ )fJ−1
N (ω|0, cωIJ−1)fN (α|0, cα),

π(ζ2) = fIG(σ
2
1 |sσ1 , rσ1)fIG(σ

2
2 |sσ2 , rσ2)

J∏
j=Jo+1

fIG(τ
2
j |sτj , rτj ), (18)
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where fIG(·|s, r) denotes the probability density function of the inverse gamma distri-
bution with the shape parameter s and the rate parameter r. The hyperparameters cβ ,
cν , cω and cα are chosen to be large in order to ensure that the corresponding prior
distributions are vague. Additionally, by choosing very small values for the hyperpa-
rameters sσ1 , rσ1 , sσ2 , rσ2 , sτ and rτ , we use vague prior distributions for the scale
parameters involved in the vector ζ2.

For θ1 and θ2, we assign independent gamma prior distributions

π(θ1, θ2) = fG(θ1|sθ1 , rθ1)fG(θ2|sθ2 , rθ2), (19)

where fG(·|s, r) denotes the probability density function of gamma distribution with
the shape parameter s and the rate parameter r. We consider sθ1 = sθ2 = sθ and
rθ1 = rθ2 = rθ. In the Supplementary Appendix A (Zareifard et al., 2017), we discuss
how to choose appropriate values for the hyperparameters of these priors.

For j = 1, · · · , Jo, the L − 2 unknown cut-points κj,l; l = 2, · · · , L − 1 are ordered
values, so the uniform prior distribution can be considered for the vector κj such that

π(κj,l|κj,l−1, κj,l+1) ∝ I(κj,l−1<κj,l<κj,l+1), l = 2, · · · , L− 1, j = 1, · · · , Jo.
However, this prior can lead to a poor mixing in the Markov chain. To overcome this
obstacle, following Albert and Chib (1997), an unconstrained and real-valued vector
δj = (δj,2, · · · , δj,L−1) is used in which δj,2 = log(κj,2) and δj,l = log(κj,l − κj,l−1) for

l = 3, · · · , L− 1. The inverse transformation is then given by κj,l =
∑l

i=2 exp(δj,i). We
then impose an unrestricted multivariate normal prior distribution with mean 0 and
covariance matrix cδIL−2 for the (L− 2)-dimensional vector δj , j = 1, · · · , Jo.

4.1 Markov chain Monte Carlo-based inference

We shall now turn to a discussion of how to generate samples from the joint distribution
of model parameters and latent variables via the Gibbs sampling algorithm. The full
conditionals of the latent variables are as follows:

p(to|rest) ∝
Jo∏
j=1

nj∏
i=1

I{tji∈A(yji
)}fN (tji |νj + ωjhji , 1),

p(h|rest) = fn
N (h|Σh(

1

σ2
2

Qθ2(Xβ + α exp(u)) +

J∑
j=1

ωj

τ2j
K′

j(Tj − νj1nj )),Σh),

p(u|rest) ∝ exp{− α2

2σ2
2

(exp(u)− μu)
′Qθ2(exp(u)− μu)}fn

N (u|0, σ2
1Cθ1),

where t = (t′1, · · · , t′J)′, Qθj = C−1
θj

, j = 1, 2, μu = 1
α (h − Xβ) and Σh = ( 1

σ2
2
Qθ2 +∑J

j=1

ω2
j

τ2
j
K′

jKj)
−1. Now the algorithm will proceed in the following steps:

1. For j = 1, · · · , Jo and i = 1, · · · , nj , update the latent variable tji from its full
conditional distribution which is in fact a truncated normal distribution.

2. Update the latent vector H from its full conditional distribution.
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3. Update the parameters (ν,ω) in block form from their joint full conditional dis-
tribution.

4. For j = Jo + 1, · · · , J , update the nugget effect parameter τ2j from its full condi-
tional distribution.

5. Update the cut-points κ by first drawing δ from its full conditional distribution
via the random-walk Metropolis-Hastings algorithm and then inverse mapping to
get κ. See Higgs and Hoeting (2010) for explicit details on the reparameterization
and updating scheme for κ.

6. Update the parameters (β, α, σ2
2 , θ2) in block form from their joint full conditional

distribution.

7. Update the latent vector U from its full conditional distribution. The necessary
details in this step are explained in the remainder of this section.

8. Update the parameters (σ2
1 , θ1) in block form from their joint full conditional

distribution.

As observed, because the elements of U are not conditionally independent given other
variables, a direct simulation from the full conditional of U, that is

p(u|rest) ∝ p(h|u, rest)fn
N (u|0, σ2

1Cθ1),

is not a trivial task. To deal with this issue, the slice sampling method has recently been
found to provide an attractive strategy and therefore has received the utmost attention
by those who use MCMC procedures to simulate from complex non-normalized multi-
variate densities (Neal, 2003; Agarwal and Gelfand, 2005). In this framework, we sample
from p(u|rest) by sampling uniformly from the (n+1)-dimensional region that lies un-
der the plot of p(h|u, rest)fn

N (u|0, σ2
1Cθ1). This idea can be formalized by sampling

from an augmented distribution p(u, v|rest), where V is an auxiliary variable. Then, it
is possible to obtain the marginal samples u(t) by drawing (u(t), v(t)) from p(u, v|rest)
and, subsequently, ignoring the samples v(t). More precisely, we introduce an auxil-
iary variable V such that [V |u, σ2,μu, θ2] has the uniform distribution on the interval

[0, exp{− α2

2σ2
2
(exp(u)−μu)

′Qθ2(exp(u)−μu)}]. Now, if e represents the exponential dis-

tribution with mean 1, say exp(1), then log V = − α2

2σ2
2
(exp(u)−μu)

′Qθ2(exp(u)−μu)−e

and so it will be routine to sample. Accordingly,

p(u|v, rest) ∝ I{v<exp{− α2

2σ2
2
(exp(u)−μu)

′Qθ2
(exp(u)−μu)}}

fn
N (u|0, σ2

1Cθ1).

In order to sample from the above distribution, we would draw u from fn
N (u|0, σ2

1Cθ1)

and retain it only if u is such that v < exp{− α2

2σ2
2
(exp(u)− μu)

′Qθ2(exp(u)− μu)}.

Finally, given σ
(t)
2 , θ

(t)
2 , α(t) and μ

(t)
u , we summarize the main steps in the iteration

(t+ 1) of the slice sampling algorithm as follows:
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1. Draw e(t+1) of exp(1), and let at = ε
(t)′

u Q
θ
(t)
2
ε
(t)
u +2

σ2(t)

2

α2(t)
e(t+1) where εu = exp(u)−

μ
(t)
u ,

2. Draw u(t+1) from a truncated normal distribution on {ε′uQθ
(t)
2
εu < at}.

For details see Supplementary Appendix B (Zareifard et al., 2017).

4.2 Bayesian spatial prediction

Prediction of the responses at unobserved locations is often a major objective of the
study. In the spatial factor models, obtaining a prediction map of the underlying spatial
process H(·) which explains all the systematic variability of responses, is also usually of
great importance. This map can be used to relate the observed variables to the unob-
servable actual process and hence to better understand the multivariate phenomenon
under study. In what follows, we only concentrate on the prediction of the latent factor.
Accordingly, prediction of the responses is, of course, straightforward.

We should predict the latent variable at each observed location or at some new loca-
tions. Before addressing this, we first denoteH0 = (H01 , · · · , H0p) as the latent vector at
arbitrary locations s01 , · · · , s0p . Also similarly with H0, we define U0 = (U01 , · · · , U0p).
Now to make Bayesian spatial prediction, we need to obtain the posterior predictive
distribution

p(h0|y1, · · · ,yJ) =

∫
p(h0|h,u,u0,η)p(u0|u,η)p(η,u,h|y1, · · · ,yJ), (20)

where

p(u0|u,η) = Np(C
po
θ1
C−1

θ1
u, σ2

1(C
pp
θ1

−Cpo
θ1
C−1

θ1
Cop

θ1
)),

p(h0|h,u,u0,η) = Np(Xpβ + α exp(u0) +Cpo
θ2
C−1

θ2
(h−Xβ − α exp(u)),

σ2
2(C

pp
θ2

−Cpo
θ2
C−1

θ2
Cop

θ2
)), (21)

where Xp is p× k matrix of k location-specific observable covariates and

Cpp
θi

= [Cθi(||s0i − s0j ||)]p×p, Cpo
θi

= [Cθi(||s0i − sj ||)]p×n, i = 1, 2.

The posterior predictive distribution (20) can not be evaluated in a closed form but sam-
pling from it is straightforward. Then the Bayesian spatial predictor is determined by

Ê(H0|y1, · · · ,yJ) =
1

G

G∑
g=1

h
(g)
0 ,

where {h(g)
0 ; g = 1, · · · , G} denotes a sample from (20), and G is its sample size.

5 Simulation study

In this section, we perform a simulation study to evaluate the performance of the
GLGCF model. We also compare the results with those obtained from a Gaussian
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Parameter True Value α = 1, σ2
1 = 1 α = 2, σ2

1 = 1 α = 1, σ2
1 = 2 α = 2, σ2

1 = 2
α 0.51(−0.53,1.65) 2.04(0.95,2.94) 0.59(−0.12,2.37) 1.64(0.65,3.37)
σ2
1 1.24(0.39,2.34) 0.85(0.21,2.52) 1.82(0.67,4.51) 2.28(0.92,4.02)

θ1 3 2.61(1.53,3.89) 2.73(2.18,3.61) 3.19(2.31,4.36) 3.58(2.05,4.79)
σ2
2 2 1.88(0.21,3.62) 2.50(0.63,4.52) 2.65(0.73,5.21) 1.87(0.73,6.31)

θ2 3 2.21(1.65,3.38) 3.38(2.57,4.51) 3.60(2.07,5.12) 2.25(1.03,5.18)
ν1 0 0.15(−0.87,1.08) −0.23(−1.27,0.97) −0.56(−1.38,0.41) 1.03(−0.14,1.95)

ν2 0 0.16(−0.61,0.77) −0.32(−1.53,0.67) 0.81(0.07,1.19) 0.70(−0.31,1.43)

ω 1 1.18(0.83,1.55) 0.85(0.40,1.18) 1.38(0.36,2.53) 0.83(0.36,1.60)
κ2 2 2.68(1.31,4.17) 2.26(0.82,4.03) 2.59(0.95,4.71) 3.07(1.63,4.81)
τ2 1 0.82(0.21,1.76) 1.40(0.17,2.91) 1.16(0.15,5.13) 1.74(0.27,7.51)

Table 3: Posterior mean (95% credible interval) for the parameters of the GLGCF model.

factor model (denoted by GF) as well as a factor model in which we use a log-Gaussian
process for H(s) (denoted by LGF). The GF and LGF models can be seen as limiting
cases of the GLGCF model. For each model, we ran two parallel chains starting from
distant initial points with a total of 100,000 iterations for each chain. Convergence of the
MCMC was verified through the Gelman and Rubin convergence diagnostics (Gelman
and Rubin, 1992) implemented in the CODA package of R language. We have used the
last 25,000 iterations of each chain for the purposes of inference.

Example 1. To address the identifiability of the parameters, we generate the data
from the GLGCF model without any covariates. Spatial sampling points are randomly
taken on a [0, 10] × [0, 10] square. We focus on two parameters which have effects on
the skewness of the model (i.e. α and σ2

1), because we would expect inference to be
most challenging for these parameters. We then consider a data set consisting of an
ordinal variable Y1 with three categories and a continuous variable Y2. Next, we shall
assume that the locations of the two variables are misaligned. Throughout, we use a
sample size of n1 = n2 = 100 with ν1 = ν2 = 0, ω = 1, τ2 = 1, κ2 = 2, σ2

2 = 2,
θ1 = θ2 = 3. To assess the identifiability of skewness parameters, four data sets were
generated assuming α, σ2

1 ∈ {1, 2}. The vectors T1 and T2 were simulated from the
GLGCF model and finally, we consider Y1i as

Y1i =

⎧⎨
⎩

1, if T1i ≤ 0;
2, if 0 < T1i ≤ 2; i = 1, · · · , 100
3, otherwise.

The Bayesian analysis is implemented under the proper priors (18) with cβ = cα = cν1 =
cν2 = cω = 104 and sσ1 = rσ1 = sσ2 = rσ2 = sτ = rτ = 10−6. We also choose a diffuse
prior for δ with considering cδ = 100. Table 3 displays some posterior results for the
parameters under the GLGCF model. This table clearly indicates that the data allow
for meaningful inference on the skewness parameters, even with this quite moderate
sample size. As a result, the GLGCF model provides satisfactory and reliable results.

Example 2. We want to investigate whether the choosing of an appropriate factor
model is important in predicting the spatial factor H(s). To address this issue, we con-
duct a simulation study to compare the predictive performance of the GLGCF model
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True model⇒ GF LGF GLGCF(α = σ2
1 = 1) GLGCF(α = σ2

1 = 2)

⇓ Fitted model
GLGCF 0.114 0.164 0.098 0.121

GF 0.076 3.416 2.153 7.937
LGF 1.057 0.086 1.160 3.084

Table 4: The average of MSPE over 20 simulated data sets under the considered models.

against the GF and LGF models. To be more specific, we consider the situation where
the factor processH(s) in (13) is either Gaussian, log-Gaussian or GLGC and investigate
the effect of model misspecification on the prediction. Data sets consist of an ordinal vari-
able with three categories as well as a continuous variable. Altogether, 80 data sets (i.e.,
20 data sets from the GF model, 20 data sets from the LGF model under α = σ2

1 = 1,
20 data sets from the GLGCF model under α = σ2

1 = 1 as well as 20 data sets from the
GLGCF model under α = σ2

1 = 2) were simulated by choosing the values of other pa-
rameters as given in Example 1. We generated the data on sampling locations assigned
in the applied example (notice that in the real example, n1 = 45 and n2 = 163 introduc-
ing misalignment, see Figure 8). In addition, a regular 15×15 grid located in the region
is left out as a hold-out sample to assess the predictive performance of the fitted models.

After fitting three models to simulated data sets, we predicted the values of latent
process H(s) in locations of the considered grid. Using these predictions and the true

values, the mean squared prediction error (i.e., MSPE =
∑225

i=1(hi−ĥi)
2

225 where hi is the

ith latent factor located in the grid and ĥi is the posterior mean) were computed. Table 4
provides an average of MSPE over 20 simulated data sets. It is evident from this table
that when the true models are GF or LGF, there is rather a small difference between
the GLGCF model and them. However, when the distribution of the spatial factor is
inadequate in fitting the data from the GLGCF model, both models (GF and LGF) yield
rather big MSPE values particularly for the large value of skewness parameters. Still, as
expected, the LGF model fits slightly better than GF. We can therefore conclude that
a misspecification of the latent variable model can lead to poor prediction.

Finally, for some simulated data sets from the GLGCF model, we also assessed the
accuracy of the considered models in predicting the bivariate response at unobservable
locations. Consistent with the prediction results of the latent process, our experiments
(not presented here) demonstrated the success of the GLGCF model for prediction of
the continuous variable. Of course, the predictive performance of GLGCF and LGF
models for the ordinal variable was approximately similar.

6 Illustrative example

We now turn from the simulation studies to a real example to demonstrate the appli-
cability of the GLGCF model. The data used in this study consist of esophageal cancer
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Figure 8: Sampling locations of n1 = 45 sampled villages (blue triangles) and n2 = 163
Cesium data (red circles).

mortality rates (per 100,000) for 45 sampled villages recorded between March 2006 and
March 2007 provided by the cancer registration department in Golestan province. Ac-
cording to recent cancer registry data in Iran, esophageal cancer has great prevalence in
this province which spans 20437 km2 and receives very high annual rainfall (Roshandel
et al., 2012). The rate has reported as an ordinal variable scaled with low, medium and
high. Figure 8 shows longitude and latitude coordinates of the centroid of the sampled
villages. Another part of the data includes the amount of Cs137 which is a continuous
response and it was measured by a university research group at 163 points during 2006
(see Figure 8). Due to the fact that northern Iran has been affected by the Chernobyl
disaster, through precipitation, Cesium-137 (Cs137), which is a heavy metal, has found
its way into this area and is now regarded as one of the most rampantly dangerous
elements that contribute to soil pollution in this region. So, we consider the esophageal
cancer rates and the Cs137 values as two responses that might explain soil pollution. In
fact, soil pollution is considered as the latent process of interest and two data sources
together will help infer on the spatial process of soil pollution. We aim to understand
how the soil pollution level affects the esophageal cancer mortality level and to evaluate
the spatial distribution of pollution in the soil.

Since the latent factor of the soil pollution which is of our interest, is inherently a
point-referenced outcome, we treat areas (villages) as point-referenced data. There are
several possible ways to jointly model point-location and areal bivariate data (see for
instance Berrocal et al., 2010). In a simple way, one may assign the same health value to
all points in a given areal unit and treat as 163 bivariate response vectors. However, our
strategy seems to be more reasonable here since the area of each village relative to the
total area of the province is negligible. Particularly in all cases, the sampling locations of
Cs137 data are far away from the villages. Indeed, two variables are observed at different
points. Moreover, in the application considered here, we actually have two different types
of outcome instead of bivariate responses that are closely tied to one another.
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Figure 9: Histogram (left column) and robust empirical semivariograms (right column)
for the continuous response.

Since there are no explanatory variables that might be used for the modeling pur-
poses, we assume the mean to be constant. For an exploratory data analysis, the his-
togram and the robust empirical semivariograms of continuous data are plotted in Fig-
ure 9. The histogram suggests that the data have a right-skewed distribution. Further-
more, it is clear from the robust empirical semivariograms that there exists a strong spa-
tial correlation in the data. To deal with departures from normality, a common method
in spatial statistics is to use a single transformation (e.g., square-root or log) for the
continuous response variable, and then assume a Gaussian latent process. However, in
addition to the problem of choosing appropriate transformation, the transformed vari-
ables are difficult to interpret. Moreover, it is hard to offer a joint transformation of the
entire process into a Gaussian process. Consequently we focus on a more suitable strat-
egy based on assuming that the data arise from a spatial latent process being skewed.
Thus we employ the GLGCF model to fit to the data. We also fitted three models
GF, LGF and a skew factor model with spatially independent components (non-spatial
GLGCF). In order to compare four models, we computed the Bayes factors between
models. The Bayes factor in favor of the GLGCF versus the GF, LGF and non-spatial
GLGCF models was evaluated as 7.4× 104, 8.2× 103 and 9.6× 104 respectively, which
indicates an overwhelming support for the GLGCF model. In particular, the non-spatial
model performs poorly. The estimation results of model fitting are displayed in Table 5.
The estimate of the factor loading is positive, indicating that the linear relationship be-
tween soil pollution condition and the esophageal cancer mortality rate is positive. Hence
soil pollution influences human health which might be explained by the fact that the
different elements in the soil can easily be absorbed by plants. In addition, the water
quality for daily use may be influenced by present elements. The estimates of skewness
parameters also indicate that two less flexible models, i.e. GF and LGF, fall short of a
sound when fitting to the data.

Figure 10 also displays the prediction map of the spatial latent process in the study
region. This figure is important for a better understanding of spatial distribution of
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Parameters ν1 ν2 ω τ2 κ α σ2
1 σ2

2 θ1 θ2

1st Qu -0.72 29.84 0.58 6.58 3.19 0.91 1.81 5.27 2.46 1.81
Median -0.13 30.91 0.62 7.91 3.79 1.79 2.15 6.74 2.94 2.20
Mean -0.15 30.83 0.65 7.87 3.86 1.88 2.26 7.93 2.86 2.15
3rd Qu 0.48 31.68 0.71 8.61 4.47 2.37 2.58 9.62 3.41 2.32
S.D 0.93 1.17 0.21 1.27 0.98 1.83 0.67 3.70 0.55 0.37

Table 5: Posterior results under fitting the GLGCF model.

Figure 10: The prediction map of actual soil pollution.

actual soil pollution in the province. From the map, we see that Ĥ(s) is a spatially
continuous process. Further, the subregions with high concentration are clearly specified.
For example, the condition in the eastern region of the province may be of concern.

7 Discussion and further directions

In most spatial latent variable models, it is assumed that the underlying latent process is
Gaussian, which may not be a valid assumption. Although the skew-normal distributions
family has some desirable properties, the skew-Gaussian spatial process demonstrates
certain limitations since the family is capable of capturing only mild amounts of skew-
ness. Having this in mind along with some other difficulties concerning the utilization
of the skew-normal family in a spatial context, this paper has aimed to tackle skewness
by introducing a Gaussian-log Gaussian convolution process. Our model in which the
log-normal distribution is used, can evidently capture a greater amount of skewness.
Next, a spatial factor model relying on the skew process was introduced for the analysis
of spatial data with mixed ordinal and continuous outcomes which share a spatial latent
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process. The Gaussian factor model is a special case of the general construction. We
presented a Bayesian approach for the inference. Then, to obtain simulations from the
posterior distribution, a Gibbs framework was developed. Through simulation studies
we demonstrated that the GLGCF model is favored by the generated data and leads to
a more precise prediction. This is a direct consequence of the fact that this model has
great flexibility in analyzing skewed spatial data. Beside this, the applied example con-
cerning soil pollution illustrates our methodology and its utility in practice. According
to our findings, the Bayes factor noticeably favors the GLGCF model.

Sampling from the full conditional distributions of some latent variables involves
taking consecutive inverses of n × n covariance matrices. This problem will be more
critical when n is large. Because of the conditional independence property in Gaussian
Markov random fields (GMRFs), the mentioned problem is less critical for GMRFs since
they involve sparse precision matrices. Hence, we can use numerical methods for them,
which are much quicker than general dense matrix calculations (Rue and Held, 2005).
Based on this idea, Lindgren et al. (2011) addressed the big n problem in Gaussian
random fields (GRFs) by constructing an explicit link between GRFs with the Matérn
covariance function and GMRFs. Using their approach, the GMRF representation can
be constructed explicitly for the latent components H and U of the GLGCF model,
and then it is possible to use numerical methods for sparse matrices. This formulation
can greatly simplify the implementation of the proposed approach because it allows us
to use any of the computational tools available for the latent Gaussian processes.

The proposed factor model is appealing for analyzing the mixed continuous and or-
dinal response variables, but a point is inherently raised for discussion when at least
one of the continuous response variables is symmetric. In such a case, we can employ
the idea proposed here in a different way. Specifically, the problem suggests that the
responses may measure something different from the considered Gaussian latent vari-
ables, therefore another latent variable would be necessary to regulate skewness. This
leads to a spatial skew factor model for T(s) = (T1(s), · · · , TJ (s))

′ as

T(s) = μ(s) +Λw(s) + ρ(s), (22)

whereΛ = (λ1, · · · ,λr,α) is a J×(r+1) matrix with the last column α = (α1, · · · , αJ)
′,

w(s) = (Z1(s), · · · , Zr(s), exp(U(s)))′ and ρ(s) is an J×1 vector of measurement errors
distributed as N(0,Ψ). The Gaussian processes Z1(s), · · · , Zr(s), U(s) are independent,
each with a parametric covariance function as described in Section 2. The model given
in (22) as an extension of the spatial Gaussian factor model (see e.g., Wang and Wall,
2003; Ren and Banerjee, 2013) seems flexible in effectively capturing skewness in spatial
data. However, exploring this issue is beyond the current scope of this paper and will
be pursued elsewhere.

Furthermore, in order to extend the proposed method here for a general multivariate
setting, consider a case where we aim to model only two skew processes H1(s) and H2(s)
(without loss of generality, the means of two processes are taken to be zero). Routinely,
we may assume two correlated GLGC processes for them as

H1(s) = α1 exp (U1(s)) + Z1(s),
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H2(s) = α2 exp (U2(s)) + Z2(s),

where U(s) = (U1(s), U2(s))
′ and Z(s) = (Z1(s), Z2(s))

′ are two independent bivariate
Gaussian processes so that each follows a linear model of coregionalization (LMC).
Specifically, U(s) = A1W1(s) and Z(s) = A2W2(s) where for k = 1, 2, Ak is the
coregionalization matrix, and Wk(s) = (Wk1(s),Wk2(s))

′ where Wk1(s) and Wk2(s)
are independent Gaussian processes with zero means, unit variances, and correlation
functions ρk1(h) and ρk2(h) respectively. As an alternative way to extend the univariate
skew model, we may first consider an LMC model for H(s) = (H1(s), H2(s))

′, i.e.,
H(s) = AW(s) where W(s) = (W1(s),W2(s))

′. We then assume that W1(s) and W2(s)
are two independent GLGC processes. In such a situation the LMC covariance structure
which is of the form AΣs,s′A

′ where Σs,s′ = Cov(W(s),W(s′)), is preserved. As we
have pointed out, we can extend the univariate skew model to a multivariate case in at
least two different ways. It would be interesting if the properties and the flexibility of
these models were to be explored and compared in a further work.

Supplementary Material

Supplementary Material of “Modeling Skewed Spatial Data Using a Convolution of
Gaussian and Log-Gaussian Processes” (DOI: 10.1214/17-BA1064SUPP; .pdf).
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