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Abstract. Weak empirical evidence near and at the boundary of the parameter
region is a predominant feature in econometric models. Examples are macroe-
conometric models with weak information on the number of stable relations, mi-
croeconometric models measuring connectivity between variables with weak in-
struments, financial econometric models like the random walk with weak evidence
on the efficient market hypothesis and factor models for investment policies with
weak information on the number of unobserved factors. A Bayesian analysis is
presented of the common issue in these models, which refers to the topic of a
reduced rank. Reduced rank is a boundary issue and its effect on the shape of
the posteriors of the equation system parameters with a reduced rank is explored
systematically. These shapes refer to ridges due to weak identification, fat tails
and multimodality. Discussing several alternative routes to construct regulariza-
tion priors, we show that flat posterior surfaces are integrable even though the
marginal posterior tends to infinity if the parameters tend to the values corre-
sponding to local non-identification. We introduce a lasso type shrinkage prior
combined with orthogonal normalization which restricts the range of the param-
eters in a plausible way. This can be combined with other shrinkage, smoothness
and data based priors using training samples or dummy observations. Using such
classes of priors, it is shown how conditional probabilities of evidence near and at
the boundary can be evaluated effectively. These results allow for Bayesian infer-
ence using mixtures of posteriors under the boundary state and the near-boundary
state. The approach is applied to the estimation of education-income effect in all
states of the US economy. The empirical results indicate that there exist substan-
tial differences of this effect between almost all states. This may affect important
national and state-wise policies on required length of education. The use of the
proposed approach may, in general, lead to more accurate forecasting and decision
analysis in other problems in economics, finance and marketing.

∗This paper should not be reported as representing the views of Norges Bank. The views expressed
are those of the authors and do not necessarily reflect those of Norges Bank. The authors are indebted
to Lukasz Gatarek and Richard Kleijn for expert research assistance. We also thank the editor, two
anonymous referees and Mattias Villani for their comments on an earlier version of this paper.

†Maastricht University, n.basturk@maastrichtuniversity.nl
‡VU University Amsterdam, l.f.hoogerheide@vu.nl
§Econometric Institute, Erasmus University Rotterdam and Norges Bank, hkvandijk@ese.eur.nl
¶Corresponding author: hkvandijk@ese.eur.nl.

c© 2017 International Society for Bayesian Analysis DOI: 10.1214/17-BA1061

http://bayesian.org
mailto:n.basturk@maastrichtuniversity.nl
mailto:l.f.hoogerheide@vu.nl
mailto:hkvandijk@ese.eur.nl
mailto:hkvandijk@ese.eur.nl
http://dx.doi.org/10.1214/17-BA1061


880 Bayesian Analysis of Boundary and Near-Boundary Evidence

1 Introduction

Inference near and at the boundary of the parameter space of a probability model is
occurring frequently in the field of econometrics. We list three economic and finan-
cial topics where (near-)boundary evidence became empirically relevant in the second
halve of the twentieth century and it led to important econometric research. In micro-
econometrics the estimation of the effect of length of education on earned income en-
countered the (near-)boundary of weak or no endogeneity and/or weak or no identifi-
cation. In macro-econometrics investigating which and how many stable relations exist
between macroeconomic time series has been extensively explored in order to estimate
forecast and policy uncertainty. Here moving to the boundary refers to going from near-
nonstationarity to unit roots. In financial econometrics efficient data reduction using
large cross sectional data on stocks was investigated using a certain number of unob-
served factors which affect, for instance, equity momentum strategies. Weak information
on the number of factors is a near-boundary issue. To motivate our analysis, we provide
in Section 2 several illustrative examples also for more general model structures.

The literature dealing with these issues is substantial and an extensive overview is
outside the scope of this paper. In the frequentist econometric literature the focus has
been largely on testing whether one’s view is at the boundary and on assessing what is
the sensitivity of the test when one is near the boundary. We restrict ourselves to listing
three classic tests: the Anderson–Rubin test for (over-)identification which is regularly
used in the literature on the education-income analysis (Anderson and Rubin, 1950); the
Johansen test used for determining the number of stable relations in macro-economic
time series (Johansen, 1991); and the Anderson–Rubin test for determining the number
of factors (Anderson and Rubin, 1956)

The major message of the present paper is that many modeling, forecasting and pol-
icy problems in non-experimental empirical econometrics are not about asymptotically
valid parameter estimation and testing near or at a boundary. Given several different
sources of information on features of economic processes, the relevant issue is to use
this information and average over the available evidence on the different states of the
economy, near and at the boundary, where the evidence on these states is measured
using posterior probability weights. The Bayesian approach is eminently suitable for
this. We take the viewpoint that the scientific evidence should be reported in such a
way that the information specified in the likelihood dominates with respect to other
sources of information, see Baştürk et al. (2014a) for a historical background. Thus our
approach to specifying prior information is one where relatively weak information is
used compared to that of the likelihood.

In order to back-up the general message, this paper makes four points. The first is
to show that there exists a common structure in the three issues mentioned and that
the effect of the boundary issue on the shape of the posterior densities of the model
parameters can be studied within the context of a standard reduced rank regression
model under different restrictions on the parametric structure and alternative choices
of weak priors. It is well-known that the shape of the likelihood, and therefore the
shape of the posterior with a flat prior, in the standard multivariate regression model
is bell-shaped or elliptical. As a consequence, credibility regions of parameters can be
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simply determined using second order moments. However, the posterior density of the
matrix of equation system parameters in a reduced rank model is non-elliptical. We
provide in Section 2 several motivating examples. This nonstandard shape refers to
several typical features. We focus on two features that have an effect on the existence
of posterior moments: a ridge or, more generally, flat parts in the surface and heavy
tails. A ridge refers to weak or non-identification of parameters and it makes a marginal
posterior density unbounded, while very heavy tails make the use of first and higher
order moments unsuitable for all inference. We will show in Section 3 that the posterior
in a standard or workhorse reduced rank model, which in our case is a cointegration
model, is locally integrable even in the case of a flat prior with flat parts in the posterior
surface and the tails are heavy but also integrable. Therefore, the search for plausible
restrictions on the parameter space has become an important topic of research. Apart
from this research line, we also show that using triangular restrictions on the parameters
modify the workhorse model into an instrumental variable regression model and that a
normal prior on some equation parameters together with a diagonal covariance matrix
on the disturbances modify the workhorse model into a static factor model. We will
show that these typical restrictions help in making a posterior with a flat prior more
regular with existence of first and higher order moments.

We note that, given the structure of our three types of reduced rank models, multi-
modality and skewness (of multiple parameters) are more computational problems about
numerical evaluation of the posterior but not about the existence. More complex mixture
models may give existence problems due to weak empirical identification of a component
of the mixture, see for instance Frühwirth-Schnatter (2006).

A second purpose of the paper is to discuss alternative ways that appeared in the
literature of specifying prior regularization information. This is helpful for determining
model weights. One way is to use a more technical econometric approach. That is, con-
struct priors that are based on information or reference theory concepts connected to
the identification issue. However, we shall argue that these priors are in many cases not
sufficient for making posteriors proper. We add in Section 4 a new result on the exis-
tence of the posterior distribution of model parameters with a reduced rank where the
regularizing prior information is based on weak and plausible restrictions on the range
of the parameters of interest. We introduce a lasso type shrinkage prior combined with
orthogonal normalization. We also, briefly, explore several other routes that deal with
regularizing prior information. The focus is then more on prior information that makes
economic models behave more reasonably, see Sims (2008). That is, one may be more
interested in regular behavior of a nonlinear function of the equation system parame-
ters like the impulse response function of a model after a shock. Here the implications
of prior information for posterior and predictive analysis are important. Other exam-
ples are the effect of prior information on multipliers of an econometric model, which
is prior-predictive analysis and such an effect on posterior estimates of stability of a
model, which refers to posterior-predictive analysis.

A third purpose of this paper is to show how the evaluation of conditional probabili-
ties on the evidence of different states of an econometric model can be made operational
when the prior information is weak. That is, although the issue of weak identification
is not an impediment for obtaining a proper probability, weak prior information and a
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nearly flat posterior do play a major role in the evaluation of posterior and predictive
probabilities of evidence near and at a boundary of non-identification and irrelevant
instruments. Given the bounded regions of integration, the Bartlett/Jeffreys/Lindley
paradox, see Jeffreys (1939), Lindley (1957) and Bartlett (1957) does not show up as a
mathematical statistical result, but it appears as a serious practical problem for model
evaluation when prior probabilities are assumed over regions where there is weak or no
data information. Here the use of a training sample and weak economic information is
recommended. Second, a sensitivity analysis is recommended in order to obtain more
robustness in the results. We explore several routes that are described in Section 5.
Once a model weight is obtained, Bayesian inference can proceed with model averaging
in order to estimate mixtures of models suitable for forecasting and policy analysis.

As a final contribution, in Section 6 we explore the regional differences between all
states of the US with respect to the effect of length of education on earned income using
an instrumental variables model and a mixture of endogenous and weakly exogenous
states of the model. We obtain strong empirical evidence that the financial income
returns of education vary substantially between almost all states in the USA. This may
affect important state and national policies on the requires length of education.

We emphasize that there is much more done on the topic of model averaging in
Bayesian econometrics, a recent example in the field of macroeconomics is given in
Strachan and Van Dijk (2013). We refer to the Handbook of Bayesian Econometrics,
Geweke et al. (2011), and to the Supplementary Material (Baştürk et al., 2017) in the
Online Appendix for more examples in the fields of economics, finance and marketing.
In Section 7 several perspectives for further research are presented.

Remark 1. Given the length of this paper which is due to a combination of its survey
character as well as presentation of new results, the material is divided into a main text
and Supplementary Material which is in the Online Appendix.

Remark 2. The development of efficient computational procedures using simulation-
based methods has been essential and an active area of research in Bayesian economet-
rics but it is a topic beyond the scope of this paper. For a historical analysis of the
development of this topic since the early nineteen-seventies we refer to Baştürk et al.
(2014a). Modern hardware and software including parallel computation allow detailed
analysis of many of the issues listed in this paper.

Remark 3. Bayesian inference of mixture processes is extensively studied in the sta-
tistical literature, see e.g. Frühwirth-Schnatter (2006) and Mengersen et al. (2011). In
this paper we focus on the issues that refer to the evidence near and at the boundary
of econometric models and how to average over these states.

2 Motivating examples

In this section we provide several motivating examples of the boundary and near-
boundary issues and the irregular likelihoods resulting in these examples. One economet-
ric model, the cointegration model, serves as workhorse model for reduced rank analysis
in this paper. Two other models, the instrumental variable and the factor model, are
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Figure 1: 95% HPD credible set for π1, π2, β for simulated data from the IV model.

special cases of the workhorse model. We illustrate the boundary and near-boundary
issue for the cointegration and instrumental variable models using simulated and real
data. In addition to these motivating examples, we provide three other empirical appli-
cations where the boundary issue is evident in the Supplementary Material.

Posteriors of an instrumental variables (IV) model The restricted reduced form of
an IV model for data yi with one explanatory variable xi and two instruments (z1i, z2i)
can be written as follows:(

yi
xi

)
=

(
β
1

)(
π1 π2

) (
z1i
z2i

)
+

(
ui

vi

)
, (1)

where β, π1 and π2 are scalar model parameters, and disturbances (ui vi)
′ have e.g. an

iid normal distribution. This restricted reduced formulation of the model clearly shows
the reduced rank structure within this class of models.

Under flat priors, the posterior distribution of the model parameters for the above IV
model has a ridge at the region implying ‘a move from weak to irrelevant instruments’,
where π1 = π2 = 0. We illustrate this issue in Figure 1. More details are given in the
Supplementary material, in Hoogerheide et al. (2007) and Zellner et al. (2014).

Posteriors of a cointegration model The second model we consider is a cointegration
model, specifically a Vector Error Correction Model (VECM), with data y1,t, y2,t:(

Δy1,t
Δy2,t

)
=

(
α1

α2

) (
1 −β

) (
y1,t−1

y2,t−1

)
+

(
ε1,t
ε2,t

)
, (2)

where (α1, α2, β) are the model parameters, the disturbances (ε1,t ε2,t)
′ have iid normal

distributions. Similar to the earlier IV model formulation, the reduced rank issue is
evident in the matrix multiplication on the right hand side of this model.

The boundary issue for the posterior distributions for the cointegration model under
diffuse priors is illustrated in Figure 2. In this case, the ‘boundary’ corresponds to the
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Figure 2: 95% HPD credible set for α1, α2, β for simulated data from the VECM.

case where there is no dynamic adjustment in the model towards an equilibrium, i.e.
α1 = α2 = 0.

In the Supplementary material the set-up of the experiments for Figures 1 and 2 is
given.

Education-income analysis using the IV model As a first empirical motivating ex-
ample, we present the posterior density of the parameters of an instrumental variables
model for education and income data from individuals living in the US, which are an-
alyzed in Angrist and Krueger (1991) and Hoogerheide and Van Dijk (2008) among
others. The fundamental issue is that years of education in these data are instrumented
with a dummy variable for individuals born in quarters 2–4 of a year. Quarter of birth
had an effect on the years of compulsory schooling, due to the compulsory schooling
laws. These data represent a typical ‘weak instrument’ case since the explanatory power
of quarter of birth on education is expected to be present only for individuals whose
years of education were affected by the compulsory schooling requirement. We refer to
the Supplementary Material in Appendix A.1 for an introduction and more explanations
of the instrumental variable model.

Figure 3 illustrates the boundary issue which refers to local non-identification of the
posteriors under flat priors for the income-education data of the state of New York and
the whole US. The two figures of the joint posterior kernels in the model with the effect
of education on income (β) and the effect of quarter of birth differences on education
(Π) show a substantial ‘ridge’ in the posterior. For New York data, this ridge is visible
at Π = 0, which dominates the marginal posterior of Π. On the other hand, for the US
data, the shapes are nearly elliptical, which reflects that in this case the quarter-of-birth
instrument is less weak. The peak around the posterior mode is high compared with
the ridge around π = 0, so that the latter is not visible in the joint posterior density
kernel (even though the marginal posterior of π tends to ∞ for π → 0). We will show
in Section 3 and the Supplementary material A.3.2 that the ridge is integrable but
the bimodality is a serious issue for simple inference using only a second moment to
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Figure 3: Posterior density kernels for simple instrumental variables models for the
effects of education on income (β) using the difference in mean education between men
born in quarters 2–4 and quarter 1 (π). The model is applied to Angrist and Krueger
(1991) data on income and education.

measure estimation uncertainty. We refer here also to the Supplementary Material for
more empirical examples.

We end this section by summarizing the issue: our motivation for more method-
ological analysis is that non-elliptical shapes appear in much of the non-experimental
empirical econometric analysis. Possible causes of typical shapes need to be studied.

As an important note we emphasize that is it not easy and probably not a good strat-
egy to perform a conjugate analysis when the likelihood is not regular. Since conjugacy
would involve some prior irregularity in this context.

3 Basic model structures, nonstandard likelihood
shapes and posterior existence

3.1 Common structure of three reduced rank regression models
and summary of posterior existence results

In this section we start to investigate the effect of a reduced rank on the likelihood shape
and existence of a posterior within the context of a cointegration model. This model
serves as our workhorse model since it can be interpreted as a multivariate regression
model where the matrix of equation parameters has reduced rank, see the middle of
Figure 4. Using an improper flat prior and linear normalization, it is clear from the
cointegrated equation system that a value of α = 0 results in a ridge in the parameter
space. We will show that this feature leads to an unbounded marginal posterior that is
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Figure 4: Common structure of three reduced rank econometric models: General struc-
ture of reduced rank regression models with linear normalization/identification.

however integrable on a finite region around α = 0. We further show that the posterior
of α has heavy tails but the density is proper. We note that all conditional distributions
are proper with first and higher order moments. We emphasize that the posterior of this
cointegration model has the same features as the posterior of a full system Simultaneous
Equations Model, an Error in Variables model, and a Static Factor model with no prior
information on the factors.

We investigate in the Supplementary Material A.3.3 the effect of imposing a lower
triangular structure on the equation system parameters. It is interesting to observe that
we can then move from the workhorse model to the so-called Instrumental Variable (IV)
regression model, see the left side of Figure 4. Given this triangular structure, we show
that the posterior with a flat prior, which leads to a ridge in the posterior surface when
the matrix Π = 0, is a proper density for the case of enough instrumental variables.
A large number of instruments makes the tail behavior of the posterior more regular
with existence of first and higher order moments. Thus an improper prior yields in this
situation a much more regular posterior. The case of many instruments and that of weak
endogeneity versus strong endogeneity together with weak and strong identification are
all analyzed. We note that there exists an analogy with a triangular cointegraton system,
see Martin and Martin (2000).

Thirdly, we explore, also in the Supplementary Material A.3.4, the case where the
covariance matrix of the disturbances is diagonal together with the assumption of a
standard normal prior on the matrix β. Now, we can move from the workhorse model
to a static factor model, see the model on the right of Figure 4. Here the matrix of
the unobserved factors F plays the same role as the matrix β in the cointegration
model. Similarly the matrix Λ in the factor model has the same role as the matrix α
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in the cointegration model. When one adds the normal assumption and the one of a
diagonal covariance of the disturbances then the posterior with a flat prior is proper.
We emphasize that the effect of a diagonal covariance matrix within an IV model yields
well behaved student t posterior densities.1

There exist several lines of criticisms on our use of flat priors and linear normaliza-
tion. It is well-known that the posterior results using a linear normalization may, in an
empirical analysis, be sensitive for the ordering of the variables. In the case of IV this
ordering is natural since one is mainly interested in the effect that a possibly endoge-
nous explanatory variable may have on the left hand side endogenous variable (years
of education on earned income). But in cointegration and factor models one is often
symmetric between variables or factors. Then orthogonal or orthonormal normalization
is interesting to explore. We investigate that in Section 4. Second, a uniform prior on
parameters is not invariant to a transformation. It is very important that one specifies
the prior information on the parameter that reflects the issue of interest. We will also
explore this issue more in Section 4 and in the Supplementary material.

3.2 Likelihood shape and existence of posterior in a workhorse
reduced rank model: the case of cointegration

A cointegration model constitutes a general class of a reduced rank regression model.
Special cases with different restrictions on the parametric structure are covered in the
Supplementary Material for the instrumental variable regression model and the static
factor model.

3.3 Posterior of a standard cointegration model under linear
normalization and a diffuse prior

A Vector AutoRegressive (VAR) model of lag order 1 is usually specified as

yt = Φyt−1 + εt, εt ∼ NID(0,Σ), for t = 1, . . . , T, (3)

where yt is k × 1 dimensional vector of observations on economic variables (in devia-
tion from their mean) at time t; Φ is a k × k matrix of parameters belonging to the
observations on the lagged endogenous variables; the disturbances εt for t = 1, . . . , T
have independent Gaussian distributions with Σ a positive definite symmetric (PDS)
parameter matrix. Observations on y0 are given as initial values. A basic paper on this
VAR model is Sims (1980). For a general introduction to the class of models we refer
also to Johansen (1995).

The VAR model (3) can be cast into the Vector Error Correction Model (VECM)
as follows:

Δyt = Π′yt−1 + εt, εt ∼ NID(0,Σ), for t = 1, . . . , T, (4)

1We note that due to the similarity of three model structures, one can prove the equivalence of
the Anderson–Rubin test for overidentification and the Johansen test for cointegration. For details, see
Hoogerheide and Van Dijk (2001).
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where Π′ = Φ− Ik. In matrix notation, this error correction model can be specified as:

ΔY = Y−1Π+ E, (5)

where ΔY is a T × k matrix of observations Δy1 to ΔyT in its rows and similarly, Y−1

is a T × k matrix of observations containing y0 to yT−1 in its rows. The T × k random
matrix E has a matrix-variate distribution, E ∼ MN (0, IT ,Σ).

Stationarity of the process corresponds to Π having full rank. Then all series converge
to a finite long run mean and have a bounded variance in the long run. When Π has rank
0, a k-dimensional random walk occurs. The long run mean is equal to the next period
mean and long run variance tends to infinity. The more interesting case is where the
process {yt} has a so-called cointegrating rank r, that is, when Π has rank r < k. In this
case one has r cointegrating or otherwise stated r stable relations between k economic
variables and the matrix Π can be specified as the product of two k× r matrices α and
β with full column rank and Π = βα′.

The resulting model is called a cointegrating VECM, which in matrix notation takes
the following form:

ΔY = Y−1βα
′ + E. (6)

The number of parameters in α and β together may be larger than the number of
free parameters in Π under a rank restriction. For the case of k variables and r ≤ k
cointegrating relations, it holds for any (r × r) non-singular matrix R that:

Π = βα′ = (βR)(αR−1)′,

with rank(β) = rank(βR) and rank(α) = rank(αR−1). That is, the parameters β and
α are non-identified. A straightforward way of identifying the parameters is by using a
linear normalization on β as restriction:

β =

(
Ir
β2

)
, (7)

where β2 is a (k − r) × r matrix, see Kleibergen and Van Dijk (1994); Kleibergen and
Paap (2002) among others. We will consider as an alternative in Section 4.2 the case of
orthogonal normalization.

Consider a diffuse class of priors defined on the space of (α, β2) and on the space
of positive definite matrices Σ given as p(α, β2,Σ) ∝ |Σ|−h/2, h > 1. We make use of
the prior value h = k+1, which gives an equivalence between the marginal posterior of
(α, β2) and their, so-called, concentrated likelihood function. We discuss the effect of a
more general choice of h later.

The posterior density (apart from the integrating constant) under the normalization
is obtained by multiplying the likelihood and the diffuse prior which yields:

p (α, β2,Σ | Y ) ∝ |Σ|−(T+k+1)/2 exp

[
−1

2
tr

{
Σ−1 (ΔY − Y−1βα

′)
′
(ΔY − Y−1βα

′)
}]

.

(8)
We note that for notational convenience, we make use of only the symbol Y to denote
the data (ΔY, Y−1).
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In the previous section it is shown empirically that the shape of such a posterior
(more precisely the marginal one after integrating out Σ) is such that there exists a
ridge in the surface when α = 0. We will show analytically that this feature leads to
an unbounded marginal posterior that is however integrable and, further, that the tails
are heavy but the posterior remains integrable. It is noteworthy that all conditionals
are proper density function with first and higher order moments.

Marginal and conditional posterior densities We consider marginal and conditional
posterior density functions of the parameters under a diffuse prior and discuss existence
conditions for the posterior distributions and their first and higher order moments.
A summary of the derivations and results is presented in Figure 5. For details on the
derivation we refer to the online Appendix A.3.2. We note that our results are quite
general and several are, to best of our knowledge, novel.

Marginal densities of α and β2 after integrating out Σ Application of the inverse-
Wishart integration step yields the joint posterior distribution of (α, β2) with density:

p (α, β2 | Y ) ∝
∣∣∣(ΔY − Y−1βα

′)
′
(ΔY − Y−1βα

′)
∣∣∣−T/2

. (9)

Exact expressions of the conditional densities which are of the matrix-t class are pre-
sented in Appendix A.3.2.

Marginal posterior of β2 and existence of moments From (9), using a matrix-t den-
sity step on α and applying a matrix decomposition and properties of the projection
matrix, as presented in Appendix A.3.1 and A.3.2, one can obtain the following result:

Proposition. Given the standard form of a cointegration model under linear normal-
ization and using a diffuse class of priors, the marginal posterior of the cointegration
parameters β2 is proportional to a matrix-t density times a polynomial in β2. This
density is proper, independent of the cointegrating rank r, but no first or higher order
moments exist.

It is noteworthy that this result is also independent of the difference k− r. We come
back in the case of the IV model, presented in the Online Appendix. This result extends
the analysis and results of Kleibergen and Van Dijk (1994). We further note that the
choice of the prior parameter h does not play a role in the existence condition for the
distribution function.

Marginal posterior of α and existence of moments It is shown in Appendix A.3.1
and A.3.2 that using a matrix-t density step on β2 and applying a matrix decomposition
and properties of the projection matrix presented in that appendix, one can obtain the
marginal posterior density of α.

Proposition. Given the standard form of a cointegration model under linear normaliza-
tion and using a diffuse class of priors, the marginal posterior density of the adjustment
parameters α is a rational function in α and this density is not proportional to a known
form of densities.



890 Bayesian Analysis of Boundary and Near-Boundary Evidence

M
o
d
el

a
n
d
p
o
st
er
io
r

ΔY = Y−1βα
′ + E, E ∼ N(0,Σ⊗ IT )

Identification restriction is linear normalization on β

ΔY = Y−1

(
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β2

)
α′ + E, β2 is (k − r)× r, α is k × r

posterior has ridge at α = 0, but joint density is proper
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p (α, β2,Σ | Y ), data = {ΔY, Y−1} is summarized as Y
↓ ↓ ↓

complete sum of squares
in α

complete sum of squares
in β2

use Inverse-Wishart dist.

↓ ↓ ↓
p(α|β2,Σ, Y ) ∝ matrix

Normal density
p(β2|α,Σ, Y ) ∝ matrix

Normal density
p(Σ|β2, α, Y ) ∝

inverse-Wishart density
↓ ↓ ↓

Conditional moments of p (β2|α,Σ, data), p (α|β2,Σ, Y ) and p (Σ|β2, α, Y ) exist for
all values of the conditioning parameters in their domains and for all finite k and r.
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f
α
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d
β
2

p (α, β2,Σ | Y )
↓

Inverse-Wishart step on Σ
↓

p (α, β2 | Y ) ∝
∣∣(ΔY − Y−1βα

′)′ (ΔY − Y−1βα
′)

∣∣−T/2

↓ ↓
complete sum of squares on α complete sum of squares on β2

in three steps
↓ ↓

p(α | β2, Y ) ∝ a matrix t density p(β2 | α, Y ) ∝ a matrix t density
conditional moment exist for all

values of β2 in its domain
conditional moments exist for all

values of α in its domain
↓ ↓

matrix t-density step on α matrix t-density step on β2

↓ ↓
use matrix decomposition and

properties of the projection matrix:
use matrix decomposition and

properties of the projection matrix:
↓ ↓

p (β2 | Y ) is proportional to a matrix
t density times a polynomial in β2. It
is a proper density independent of the
cointegrating rank r, but no first or
higher order moments exist.

p (α | Y ) is a rational polynomial
function in α and not a member of a
known class of densities. It is integrable
despite having an asymptote at α = 0.
The tails are heavy but integrable.

Figure 5: Derivation Scheme for Posterior Densities of a Cointegration model with k
variables and r < k cointegrating relations under a diffuse prior.
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Existence of the marginal posterior of α|Y It is shown in Appendix A.3.2 that a
sufficient condition for the existence of the posterior of α at α = 0(k×r) is:

∫ ∣∣α′D−1α
∣∣−(k−r)/2

dα < ∞, (10)

where D is a matrix which only depends on data.

We next analyze two shape features: the asymptote in the interior when α = 0(k×r)

and the tail behavior when α tends to infinity. We show that the determinant in (10)
is integrable around α = 0 despite the asymptote at α = 0(k×r) and we show that the
tails are heavy but integrable.

2-dimensional vector case r = 1, k = 2 For simplicity, consider the integral on a
ball Ak with radius R for the special case, k = 2, r = 1 where for ease of exposition we
assume that the data matrices have been scaled and rotated such that Y ′

−1Y−1 = Ik:

∫
Ak

|α′α|−(k−r)/2
dα. =

∫∫
α2

1+α2
2≤R2

(α2
1 + α2

2)
−1/2dα1dα2. (11)

We perform a polar coordinate transformation of α1, α2 to show that the above integral
is finite but depends on the value of R. Consider the change of variables:

α1 = λ cos θ, α2 = λ sin θ

λ2 = α2
1 + α2

2, θ = tan−1(α2/α1),

where θ ∈ (0, 2π], λ > 0 and the determinant of the Jacobian for this change of variables
is

|J | =
∣∣∣∣cos θ −λ sin θ
sin θ λ cos θ

∣∣∣∣ = λ(cos2 θ + sin2 θ) = λ. (12)

With the change of variables, the integral in (11) becomes:

∫ 2π

θ=0

∫ R

λ=0

(λ2)−1/2λdλdθ =

∫ 2π

θ=0

∫ R

λ=0

1dλdθ = 2πR. (13)

The integral corresponds to the volume under the graph of f(α) = (α′α)−1/2. The
volume over the region {α|α′α ≤ 1} can be computed by integrating the surfaces of
circles with radius f(α) for 1 ≤ f(α) < ∞ and the surfaces α of circles with radius 1 for
0 ≤ f(α) < 1. Figure 6 illustrates this: for each function value f(α) = (α′α)−1/2 with
f(α) as the horizontal ‘slice’ through the graph is a circle with radius 1/f(α). For any
finite R the integral is bounded from which we conclude that the asymptote poses no
problems. A proof that the asymptote poses no problem for the general vector and the
matrix case is presented in the online Appendix A.3.2.

If however R tends to ∞ the integral in (13) also goes to ∞ at a rate R, so that
the sufficient condition is not satisfied then. However, the tails are integrable and the
marginal posterior of α is proper. The easiest way to see this is as follows. We show in
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Figure 6: f(α) = (α′α)−1/2 for α′α ≤ 1, where α = (α1, α2)
′.

Appendix 3.2 that the marginal posterior of β2 is proper but it has no first or higher
order moments, see equation (A.66). Further, the conditional posterior of α given β2

is proper for each value of β2, see (A.39) and (A.58). Therefore, the joint posterior of
(α, β2) is proper. We could simulate α from its (marginal) posterior by simulating β2

from its marginal posterior and simulating α given the draw of β2. We emphasize that
the line of reasoning to show that the tails are integrable is a general one. That is, it
holds for the bivariate case, the general vector case and the matrix case.

All this leads to the following proposition:

Proposition. Given the standard form of a cointegration model under linear normal-
ization and using a diffuse class of priors, the marginal posterior density of α, given in
Appendix A.3.2, equation (A.72), is integrable despite the fact that it has an asymptote
at α = 0. The tails are heavy but integrable, so that the marginal posterior density of α
is proper.

This result also holds for the Simultaneous Equations Model when there exist only
a few restrictions on the structure, the Errors-in-Variable model and the Static Factor
Model with no information on the factors.

General conclusion of Section 3 In this section we have shown that, using a flat
prior, Bayesian analysis of a general reduced rank model yields non-elliptical shapes of
posteriors that can be classified as: flatness and unboundedness due to weak or non-
identification and weak or irrelevant instruments. We further showed that unbounded
posteriors are locally integrable under weak conditions and posterior tails are heavy
but integrable. These results are to the best of our knowledge new. We will show in
the Supplementary Material that by making use of extra restrictions such as a lower
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triangular matrix of β one can obtain proper posteriors with more desired properties
(existence of higher order posterior moments). This is shown in the Supplementary
Material for the Instrumental Variable Model. Alternatively, one may use a weakly
informative prior such as a normal prior N(0, cI) with c a large constant on α which
makes the tails of the posterior of α more regular. This can be seen in the class of factor
models, see for instance Geweke (1996).

We note that, given the structure of our three types of models, multi-modality and
skewness (of multiple parameters) are more a computational problem about numerical
evaluation. More complex mixture models may give an existence problem due to weak
empirical identification of a component of the mixture but this is a topic beyond the
scope of this paper. In the next section we investigate how regularization priors deal
with the two issues of flat regions (unbounded marginals) and heavy tails.

4 Regularization priors

Since the early nineteen-seventies there has been a strong tradition in Bayesian econo-
metrics of studying the shape and integrability of posteriors of parameters of models
with a reduced rank under flat priors. The first class of models studied was the Simulta-
neous Equations Model (SEM) where the issue of endogeneity of explanatory variables
was analyzed. One of the early important papers is Drèze (1976) where a posterior den-
sity is presented of the parameters of a single SEM equation, marginalized with respect
to all parameters in the remaining part of the SEM where no restrictions were imposed.
For a detailed explanation of the shape of the likelihood of the full model and of one
single equation we refer to Bauwens and Van Dijk (1990). Next, the so-called Incomplete
Simultaneous Equations (INSEM) model, see Zellner et al. (1988), was studied from a
Bayesian point of view. This model was shown to be a triangular SEM model and to
be identical to an IV model. Bauwens and Van Dijk (1990) present a derivation of the
marginal posterior of the single equation parameters but do not discuss in detail under
what conditions this is a proper density.

In the present section we present a set of priors that are potentially suitable for mak-
ing posterior densities proper. First, in Section 4.1 we follow an econometric method-
ological or statistical approach to specifying weak prior information that is intended
to make an unbounded posterior more regular by using the information matrix and
an other reference approach. In Section 4.2 we present a new result on a lasso type
shrinkage prior combined with orthogonal normalization that serves this purpose well.
Furthermore, in Section 4.3 we specify prior information that is meant to make eco-
nomic models behave ‘reasonably’. A motivation for the latter property was given by
Sims (2008) for the case of macroeconomic models. This can be applied more generally
to all economic models.

A final point of this section is that in order to obtain robust results for posterior and
predictive analysis with weak prior information, it is recommended to use a sequence of
priors with increasing amounts of information starting from very weak prior information.
Therefore the contents of this section are organized with listing regularization priors in
increasing amount of information.
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4.1 Information matrix, subspace and reference priors

Information Matrix and Embedding priors An alternative to using a flat prior on the
parameters of a cointegration model (as workhorse model for a reduced rank) is provided
by the Information Matrix prior, also known as Jeffreys prior. It is proportional to the
square root of the determinant of the information matrix and it can be specified as:

p(Σ) ∝ |Σ|−(k+1)/2
(14)

p(α, β2|Σ) ∝|I(α, β2|Σ)|
1
2

=

∣∣∣∣∣
(

∂ vec(Π)

∂(vec(α)′ vec(β2)′)

)′
I(Π|Σ)

(
∂ vec(Π)

∂(vec(α)′ vec(β2)′)

)∣∣∣∣∣
1
2

=

∣∣∣∣∣
(
In ⊗ β α′ ⊗

(
0

−In−r

))′
(Σ−1 ⊗ Y ′

−1Y−1)

×
(
In ⊗ β α′ ⊗

(
0

−In−r

))∣∣∣∣
1
2

∝|β′Y−1Y−1β|
1
2 (k−r)|αΣ−1α′| 12 (k−r)|Σ|− 1

2 (k+1),

(15)

where k is the dimensionality. For a derivation and more details on Jeffreys prior see,
Kleibergen and Van Dijk (1994), Uhlig (1994), Kleibergen and Van Dijk (1998), Martin
and Martin (2000) and Martin (2001). Both I(α, β2|Σ) and I(Π|Σ) denote the condi-
tional information matrices. The distinctive feature of this prior is its ability to annihi-
late probability mass at points where the identification problem occurs. This result also
holds for the instrumental variable model, see the example in Figure 3 in Section 2. To
visualize the effects of applying the Information Matrix prior to the likelihood of the
cointegration model we present the shape of this prior and the shape of credible sets and
the posterior distribution in Figure 7. In the Figures of the prior and posterior density
of (α1, α2) the activity of Information matrix prior is evident around point (0, 0).

It is clear from the equations and from the figure that Jeffreys prior relates to
strength of information on β (long term equilibrium) and α (speed of adjustment). This
prior gives no weight to the state where the model is not identified (where the likelihood
exhibits a ridge) and it gives more weight to values of the parameters α and β when
the likelihood also has some weight. More formally, the Information Matrix or Jeffreys
prior is a polynomial in these parameters and the prior density kernel tends to infinity
when the parameters tend to infinity. Therefore this class of priors is not suitable as
regularization prior in the general case of a reduced rank model where the problem is
with the tail behavior. However, this class of priors can be used for the case of the
Instrumental Variable regression model where the tail behavior of the likelihood is very
regular for a large number of instrumental variables, see the analysis in the Online
Appendix A.2.3.

We emphasize that there exists an equivalence between the Jeffreys prior and the
prior that stems from the embedding approach, see, for instance, Kleibergen and
Zivot (2003). In the embedding approach one specifies a flat prior on the unrestricted
reduced form and makes use of a transformation of random variables to the parameter
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Figure 7: Shape of the Information Matrix or Jeffreys prior, credible sets and posterior
distributions under this prior. Data generated from one unit root cointegration model
(eigenvalues λ = (0.6074, 1.0)) with α = (0.5,−0.0561)′, β = (−0.6640, 1.0799)′; Π1 =
Π+ I = (0.6680, 0.5399; 0.0373, 0.9394).

of the structural form. This approach has been used to specify priors for a simultaneous
equations model and a co-integration model, see Kleibergen and Van Dijk (1998) and
Kleibergen and Paap (2002). For the embedding approach the same conclusion holds
as for Jeffreys prior approach. We present an empirical analysis in the Supplementary
Material, Appendix A.1.3. Another interesting analysis is presented for this IV model
comparing Bayes and GMM by Sims (2007). We refer to that paper for details.

Subspace/Reference based priors Villani (1998), see also Villani (2000), proposed a
prior on the subspace spanned by the columns of the matrix with reduced rank using
the concept of a Grassmann manifold. This prior was then transformed to a prior on
the parameters α and β in the linear normalization case, treated in Section 3, in order
to perform Gibbs sampling. Villani (2005) continued this line of work, now labeled as a
reference approach but still based on the subspace approach. It gave proper posteriors
that are invariant to the ordering of variables.



896 Bayesian Analysis of Boundary and Near-Boundary Evidence

Strachan and Inder (2004) and Strachan and Van Dijk (2004) applied the subspace
approach to the case of orthonormal normalization. This led to a prior of the parameters
β defined on a bounded region. These authors developed a sampling algorithm that
allowed to sample from the orthonormal normalization. We refer to the survey by Koop
et al. (2006) for a more detailed analysis of the subspace/reference approach.

Conclusion Although the technical approaches listed so far are elegant and ‘repair’
some or all anomalies of the likelihood function of a reduced rank regression model,
we take a different direction in the present paper. The reason being that we intend
to work with several states of the econometric model, that is, near the boundary of a
reduced rank as well as at the boundary. We want to specify a convenient class of priors
that yield proper posteriors which can be used to effectively evaluate posterior and/or
predictive probabilities at and near a boundary. Further, we discuss priors that explore
implications for posterior and predictive probabilities that may be used for prediction
and decision analysis, that is, prior- and posterior-predictive and -decision analysis.

4.2 Orthogonal normalization and lasso type shrinkage prior

Given a diffuse prior and under linear normalization we have shown that the marginal
posteriors of the parameters of interest of a workhorse reduced rank regression model
are not regular in the sense that they do not belong to a known class of densities like the
matrix-t densities. We took the cointegration model as an example. We note that in the
case of such a model, when the parameter matrix has everywhere full rank the posterior
is regular. That occurs when the data in the cointegration model are all stationary.
Also in the case when the rank is zero, that is, when all data series are random walks
one encounters regular posteriors. We now explore an approach where weak regularizing
prior information is introduced that makes use of restrictions, in particular, plausible
restrictions on the range of the parameters. For expository purposes we continue with
the cointegration model but emphasize that our results hold also for the instrumental
variable and factor model with sometimes slight modifications.

Identification and orthogonal normalization In general an n × k matrix of rank r
has (n + k)r − r2 free elements, that is (n − r)(k − r) restrictions. In our case, the
k × k matrix Π has rank r and therefore it has 2kr − r2 independent free elements
and (k − r)2 restrictions. The matrices α and β in the parametrization Π = βα′ with
rank(Π) = r together have 2kr elements, which are r2 too many to identify α and β.
The normalization β1 = Ir that we used in the previous sections exactly accounts for
the additional r2 required restrictions. The parametrization Π = βα′ can be linked to
the singular value decomposition Π = USV ′, where the rectangular k × r matrix U
is an element of the Stiefel manifold U ′U = Ir and the square r × r matrix V is an
element of the manifold of orthogonal matrices V ′V = Ir. S is a diagonal r × r matrix
with positive diagonal entries equal to the singular values of Π. We denote the vector of
these diagonal elements as λ = (λ1, . . . , λr)

′. Note that the manifolds on which U and
V are defined have finite volume. The manifold on which λ is defined is not bounded
and we shall come back to that later.
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E.g. Kleibergen and Van Dijk (1998) and Kleibergen and Paap (2002) explicitly link
their parametrization to the singular value decomposition and they combine it with the
linear restriction β1 = Ir. This linear normalization subsequently implies a mapping
from these manifolds to Cartesian coordinates in Euclidean space, that is α ∈ R

k×r

and β2 ∈ R
(k−r)×r. This mapping thus transforms from manifolds with finite volume

(except λ) to unbounded spaces.

Another common normalization of β used in the literature is β′β = Ir. A major
motivation for the choice of this orthogonal normalization of the matrix β is that in
this case no preferred ordering of the variables is imposed and the region of integration
for β is bounded. In the case of a VAR these may be reasonable assumptions in several
situations, in particular, when one considers a set of similar price indices or quantity
series.

We emphasize that this normalization alone is not sufficient to identify both α and β.
This normalization imposes only r(r+1)/2 unique restrictions, because of the symmetry
of β′β, so an additional r(r− 1)/2 restrictions are required. One could impose these on
β but this should be done with caution in order to avoid the issue of imposing too much
structure through the combination of ordering, restricting and assigning a flat prior.
For a more information on normalization and identification, we refer to Hamilton et al.
(2007).

Lasso type shrinkage prior under orthogonal normalization We propose an approach
that more directly uses the structure of the singular value decomposition and also makes
use of the concept of lasso type shrinkage priors, see Tibshirani (1996).

As specified above, the singular value decomposition is not uniquely defined. Any
simultaneous permutation of the columns of U , S and V also constitutes a singular value
decomposition. A common way to avoid this ambiguity is by ordering the singular values
that occur on the diagonal of S as λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0. We shall use this ordering.
Ordering the singular values is also more straightforward than devising an ordering of
the columns of U and V directly (or the columns of α and β for that matter).

Because of this ordering each element λi+1 for i = 1, . . . , r−1 is bounded by λi. Only
λ1 remains unbounded towards +∞. Integrability is thus determined by the behaviour
of λ1.

Having fixed the ordering of the singular values the uniqueness of the singular value
decomposition when all λi’s are different is up to simultaneous sign changes of corre-
sponding columns of U and V which could be mitigated for instance by imposing a
positive sign for the first non-zero entry in each column of U . Finally, if a singular value
occurs more than once, then the columns of U and V corresponding to these singular
values are not uniquely defined. Any other orthonormal basis that spans the same space
will also do. Although in this particular case the transformation between the matrix Π
and its singular value decomposition (U, S, V ) is still not invertible everywhere, this is
however an event with zero measure and we observe that the Jacobian of this trans-
formation equals 0 whenever a repeated singular value occurs because then the factor
λ2
i − λ2

j will be 0 for some i < j.
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We analyse the specification in which we combine β′β = Ir with α′α = Ir in the
parametrization Π = βΛα′ with Λ diagonal. This corresponds directly to the singular
value decomposition Π = USV ′ with β = U , α = V and Λ = S = diag(λ). The
restriction α′α = Ir imposes r(r+1)/2 restrictions which amount to r restrictions more
than required, but λ subsequently provides these extra r degrees of freedom.

Λ and α in this parametrization combine into α in the usual parametrization Π = βα′

as in the previous bullet.

The advantage of this specification is that now both α and β have finite support.
If the issue of non-integrability arises it will be in the parameter λ, and if so it is also
clear they will also have to be repaired in λ.

Regarding the econometric interpretation of the parametrization Π = βΛα′ we may
think of β′yt as the deviation from the r cointegrating relations β′yt = 0 between the k
variables yt, which is similar to the role of β in the more usual parametrization Π = βα′.
The interpretation of λ is that of the rate of adjustment of the system towards each of the
r cointegrating relations. α in the parametrization Π = βΛα′ describes the contribution
of each of the k variables yt to the adjustment towards each of these r cointegrating
relations. This has advantages over the more usual parametrization Π = βα′ in which
the speed of adjustment towards the cointegrating relations is amalgamated with the
distribution of these adjustments over the variables into one single parameter matrix
(also denoted α).

Each data vector yt defines a vector in k-dimensional space. The geometric interpre-
tation is that β defines r directions in the space of the data. Λ scales in these directions
and α rotates the result to a r dimensional subspace of the data.

To distinguish the parameter matrix α in Π = βΛα′ from the parameter matrix α
in the usual parametrization we shall denote the latter by α∗ such that Π = βα∗′ in the
remainder of this section. In order to translate results on α and Π = βΛα′ back and forth
to α∗ and Π = βα∗′ we now briefly describe how they are related. Both parametrizations
are linked by the relation α∗ = αΛ. This can be seen when we combine β′β = Ir with
α∗′α∗ = S in the parametrization Π = βα∗′ where S is a r× r diagonal matrix with λi,
i = 1, . . . , r, as diagonal elements. The relation with the singular value decomposition
Π = USV ′ is β = U , α∗ = V S = αΛ. This also gives exactly the number of required
restrictions: all off-diagonal elements of α∗′α∗ are constrained to 0 and because of the
symmetry of α∗′α∗ each off-diagonal element occurs twice which results in r(r − 1)/2
unique restrictions. In terms of the columns α∗

i of α∗: α∗
i
′α∗

i = λ2
i for i = 1, . . . , r and

α∗
i
′α∗

j = 0 for i �= j.

Prior choice and existence of posterior moments In Appendix A.3.2 we present a
derivation where given that diffuse priors are specified for α and β on their respective
Stiefel manifolds and a usual diffuse prior on Σ one can derive proper posteriors and
existence of first and higher order moments.

For convenience we present here the reasoning, which proceeds as follows. Using
the parametrization Π = βΛα′ and the normalizing restrictions α′α = Ir, β

′β = Ir
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and λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0 all parameters except λ1 are defined on bounded sets
(conditionally upon the (finite) value of λ1). A natural choice for an uninformative prior
is the uniform prior over these sets. Only λ1 is defined on an infinite interval. A natural
choice for λ1 that is consistent with the uniform prior on the simplex for λ2, . . . , λr|λ1 is
the exponential distribution. Another way to look at this, is that although λ ∈ [0,∞) has
infinite support, it can also be transformed to the unit interval on which a uniform prior
can be specified. By doing so, all model parameters (except the covariance matrix Σ) are
bounded to finite areas. Specifically, when either the transformation λ� = exp(−λ) ∈
(0, 1] or λ� = 1− exp(−λ) ∈ [0, 1) is used and a standard uniform density is specified on
λ� or λ� then λ also has a standard exponential distribution. Using a similar argument
the rate parameter θ could be included by specifying a uniform prior on e.g. exp(−θλ).
A note refers to the rate θ of the exponential distribution. By choosing θ to a value close
to 0, the exponential distribution tends towards a flat distribution over the positive real
numbers.

We can summarize the results from this section as follows.

Proposition. Given the standard form of a cointegration model and using a lasso type
shrinkage prior under orthogonal normalization on the parameters of the matrix with
reduced rank, the marginal posteriors of these parameters are proper with finite first and
higher order moments.

We emphasize that the cointegration model serves as an example of a general reduced
rank model but our result holds generally for this class of models. That is, one may
also apply it to the instrumental variable model and the factor model when in these
latter models one does not want to impose specific restrictions like triangularity and/or
diagonality.

4.3 Short survey of other regularization priors

Inequality conditions where data and economic information matters As explained
in the previous subsection area restrictions play a useful role in formulating prior infor-
mation. Baumeister and Hamilton (2015) have carried this issue further. These authors
explore the effect of sign restrictions, coming from broad economic considerations, on
vector autoregressive models under different identification conditions. They also explore
the effect of weak prior information on implied impulse response functions. Apart from
restrictions based on economic relationships and characteristics, there exist data based
inequality conditions that can also be relevant as prior information. A simple example
of this is the restriction that autoregressive parameters in a dynamic model should not
be taken outside the unit interval since explosive time series are highly unlikely for the
long run because the occurrence of a regime change is then very likely. An analogous
point can be made for values of the autoregressive parameters close to zero. From styl-
ized facts of macroeconomic and financial time series it is well-known that the relevant
range of the autoregressive parameters is a subinterval of the unit interval close to the
unit root. For more details of the locally uniform prior where the data play a role, we
refer to the next section and to Schotman and Van Dijk (1991b).
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Dummy observations and training sample priors One popular way to make use of
weak data-based prior information is to split the data into two parts: a training set and
a ‘hold-out’ set of data. In the first part the weak prior is transformed to an informative
posterior which serves as a prior for the second part of the data and this leads to model
validation and forecasting. For an illustrative example we refer to the next section and
for background to, e.g. Berger et al. (2004). Another approach is to construct a so-called
imaginary sample by introducing a set of dummy observations. It yields a pragmatic
class of priors, proposed by Sims (2004, 2005). This approach can be combined with a
more informative prior approach, see below.

Dynamic patterns for parameters Given the dynamic nature of many models in eco-
nomics, it is very natural to allow not only the variables but also the parameters of
such models to move through time. However, simply adding a subscript of time to an
equation system parameter yields an intractable likelihood since a T -dimensional inte-
gral is added to the Bayesian inferential problem. The well-known Normal or Kalman
Filter imposes in such a case a structure on the dynamic parameters and it forms a
pattern which yields a tractable likelihood and posterior. The literature on this topic
is abundant and we refer only to two basic textbooks for more background: Pole et al.
(1994) and Harvey (1990). A related approach is the Minnesota prior, see Doan et al.
(1992), which may be characterized as a smoothness priors. This class of priors is meant
to improve forecasting properties by making use of stylized facts of macroeconomic time
series.

One may also explore the predictive implications of a prior. For instance, does a
weak prior on the equation system parameters give plausible prior values of multipliers,
impulse response function and/or periods of oscillations from an implied business cycle.
For an early reference we refer to Van Dijk and Kloek (1980). The literature on this
prior-predictive approach is substantial and a more detailed analysis is outside the scope
of the present paper.

We also mention an approach where the priors are anchored to some long run plau-
sible values. A basic approach was taken by Schotman and Van Dijk (1991a,b) for the
unit root case. It was extended by Villani (2009) to refer to long run plausible values
and recently again extended to be combined with a dummy variable prior by Giannone
et al. (2015). A similar idea is to connect the prior to a plausible posterior-predictive
analysis, see Gelman et al. (1996) and Baştürk et al. (2014b).

Economic structural information We end this brief survey by mentioning the approach
to add economic structural information like so-called Dynamic Stochastic General Equi-
librium (DSGE) priors due to Del Negro and Schorfheide (2004), while Strachan and
Van Dijk (2013) combine economic information and technical econometric information.

We conclude that there are many useful approaches to explore the sensitivity of the
posterior and predictive results with respect to a sequence of weak priors where the
amount of prior information is gradually increasing. This will be illustrated in the next
section. Finally, we note that the issue of sensitivity of weak priors and also prior choice
is very much studied in the Bayesian literature, see for instance Tuyl et al. (2008).
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5 Model probabilities under regularization priors and
possibly irregular likelihoods

This section forms a bridge between the more theoretical analysis of the shape of poste-
rior densities for the reduced rank regression model with possibly irregular likelihoods
and the empirical analysis of a micro-econometric problem on the education-income
effect where we make use of mixtures of models. An important concern is how to give
probabilistic weights to evidence that is near and at the boundary of the parameter re-
gion of reduced rank models using Bayesian methods. We show that, although the issue
of weak identification is not an impediment for showing posterior existence of distribu-
tions, very weak prior information does play a major role for the evaluation of posterior
and predictive probabilities of evidence near and at a boundary of identification and
relevance of instruments. We illustrate that the Bartlett/Jeffreys/Lindley paradox is
not only a mathematical or statistical result but it shows up as a problem when flat
prior density kernels are assumed over regions where there is little empirical evidence
like near a boundary with weak instruments. This issue was pointed out by Hoogerheide
and Van Dijk (2013). Here a training sample and weak economic information on area
restrictions is recommended together with a sensitivity analysis in order to obtain more
robustness in the results. We present two examples. One refers to a basic time series
model where the likelihood is regular but the prior interval contains many irrelevant
parameter values. In order to save space, the issue of model evaluation without and with
regularization priors is discussed for this class of models in the Supplementary material
in Online Appendix, Section A.4. The second example studies the effect that an irreg-
ular likelihood due to a lack of identification and the presence of weak instruments has
on model probability evaluation within the context of an IV model. These results are
reported in Section 5.1. Armed with these results, we continue in the next section with
an empirical analysis using a mixture of models with mixing probabilities coming from
evidence near and at a boundary.

5.1 IV model probabilities under alternative identification and
endogeneity structures using training sample priors

In this subsection we apply the predictive likelihood approach, see Gelfand and Dey
(1994) and Eklund and Karlsson (2007), to simulated data from the IV model. Our
purpose is show that, although the posterior densities in an IV model with diffuse
type priors and weak instruments/identification are very non-regular and require spe-
cial simulation based procedures to evaluate their shape, it is relatively easy to evaluate
posterior/predictive probabilities near and at the boundary using reasonable area re-
strictions and training sample priors. In the next section a mixture of posteriors under
endogeneity and exogeneity for the IV model is estimated using US data.

In the present subsection we investigate the robustness of the results on estimating
predictive probabilities for the case of no endogeneity for different levels of endogene-
ity, different levels of empirical identification and different lengths of training samples,
where the total number of observations is 1000 for each simulated dataset. We will use
the basic structural IV model from Section 3, see also Appendix A.3.3. For simplicity



902 Bayesian Analysis of Boundary and Near-Boundary Evidence

and for computational convenience we take the case of one endogenous variable and one
instrument, where β = 0 and Σ = ( 1 ρ

ρ 1 ) and the parameter ρ indicates the degree of en-
dogeneity with ρ = σ12/

√
σ11σ22. We restrict the parameters to a plausible finite region.

Left panel of Table 1 For the cases of strong and medium instruments/identification
and strong and medium level of endogeneity the posterior probability Pr(ρ = 0 | data)
is correctly chosen as zero, given the 50% training sample. That is, let y	 be the training
sample and ỹ be the validation sample, then Pr(ρ = 0 | y	, ỹ) is much smaller than
Pr(ρ = 0 | y	), since the data ỹ contain much evidence about ρ being not equal to zero.
For the bottom row, it holds that π = 0 implies that β,Σ, ρ are not identified. That is,
the data contain no information on ρ and thus the posterior probability Pr(ρ = 0 | data)
is equal to the prior probability Pr(ρ = 0) = 50%.

For the right hand column one would expect that Pr(ρ = 0 | data) = 1. However,
the situation is as follows. Given y	 and ỹ, Pr(ρ = 0 | y	) using 50% of data is already
rather precisely located around ρ = 0, with a standard deviation only about

√
2× larger

than for Pr(ρ = 0 | y	, ỹ). This implies Pr(ρ = 0 | y	, ỹ) =
√
2Pr(ρ = 0 | y	) which

leads to Pr(ρ = 0 | data) =
√
2/(1 +

√
2) ≈ 0.586.2

Middle panel of Table 1 The results in the upper left corner are as expected: ≈ 0%.
Similarly, the results in the bottom row are: ≈ 50%. The results in the right column
follow from Pr(ρ = 0 | data) ≈

√
1/m/(1 +

√
1/m) =

√
1/10/(1 +

√
1/10) ≈ 0.760.

Right panel of Table 1 Again the results in the upper left corner are as expected: ≈
0%. Next, the advantage of very small training sample m is shown at the top of the
right column: Pr(ρ = 0 | data) is close to 1, which is the true value given that ρ = 0.
The disadvantage of a very small m is recognized as a case of Bartlett/Jeffreys/Lindley
paradox. That is, the false null hypothesis ρ = 0 is wrongly favored in the bottom row
and in the third column of results. The reason is that Pr(ρ = 0 | y	) after only 5 of
1000 observations is still very diffuse. That is, more diffuse than Pr(ρ = 0 | y	, ỹ) after
1000 observations.

The conclusions of Table 1 may be summarized as follows.

In the interior of the parameter region For the cases of strong and medium instru-
ments and strong and medium level of endogeneity the posterior probability Pr(ρ = 0 |
data) is correctly chosen as zero for several values of the length of the training sample.

At the boundaries of the parameter region For the bottom row, which refers to
the case of no identification/irrelevant instruments, the estimated posterior probability
Pr(ρ = 0 | data) is sensitive for the length of the training sample. A training sample
of less than 10 percent should not be selected. For the right hand columns in all three
panels, which refers to the case of no endogeneity, the estimated posterior probability

2Given a training sample fraction equal to m and given a normal distribution with mean ρ = 0,
stdev = const /

√
#data, one has Pr(ρ = 0 | y�, ỹ) =

√
1/m× Pr(ρ = 0 | y�) and Pr(ρ = 0 | data) =√

1/m/(1 +
√

1/m) = 1/(1 +
√

1/m).
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Table 1: Simulation experiments for the IV model: Pr(ρ = 0 | data) for different levels of endogeneity (ρ), different instrument
strength (π) and different prior data percentages (m). Standard deviations and numerical standard errors of Pr(ρ = 0 | data)
based on 10 sets of simulated data are reported in parentheses and square brackets, respectively.

percentage m of observations that are used as training sample
m = 50% m = 10% m = 0.5%

level of endogeneity level of endogeneity level of endogeneity
identification level / strong medium weak no strong medium weak no strong medium weak no
instrument strength ρ = 0.9 ρ = 0.5 ρ = 0.1 ρ = 0 ρ = 0.9 ρ = 0.5 ρ = 0.1 ρ = 0 ρ = 0.9 ρ = 0.5 ρ = 0.1 ρ = 0

0.00 0.00 0.27 0.57 0.00 0.00 0.32 0.75 0.00 0.00 0.66 0.97
strong π =1 (0.00) (0.00) (0.18) (0.04) (0.00) (0.00) (0.26) (0.03) (0.00) (0.00) (0.31) (0.00)

[0.00] [0.00] [0.06] [0.01] [0.00] [0.00] [0.08] [0.01] [0.00] [0.00] [0.10] [0.00]
0.00 0.00 0.44 0.57 0.00 0.00 0.53 0.73 0.00 0.00 0.89 0.97

medium π =0.5 (0.00) (0.00) (0.14) (0.04) (0.00) (0.00) (0.23) (0.04) (0.00) (0.00) (0.09) (0.01)
[0.00] [0.00] [0.04] [0.01] [0.00] [0.00] [0.07] [0.01] [0.00] [0.00] [0.03] [0.00]
0.00 0.41 0.53 0.54 0.00 0.39 0.71 0.73 0.00 0.58 0.88 0.88

weak π =0.1 (0.00) (0.18) (0.05) (0.04) (0.00) (0.20) (0.16) (0.11) (0.00) (0.27) (0.05) (0.05)
[0.00] [0.06] [0.02] [0.01] [0.00] [0.06] [0.05] [0.03] [0.00] [0.09] [0.01] [0.02]
0.50 0.48 0.49 0.48 0.49 0.49 0.52 0.53 0.72 0.70 0.70 0.70

irrelevant π =0 (0.05) (0.05) (0.06) (0.05) (0.09) (0.14) (0.15) (0.13) (0.09) (0.11) (0.14) (0.14)
[0.02] [0.02] [0.02] [0.02] [0.03] [0.04] -0.14 [0.04] [0.03] [0.03] [0.04] [0.04]
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Pr(ρ = 0 | data) is also very sensitive to the length of the training sample. A small
training sample and a large validation sample are to be recommended in this case.

Near the boundaries of the parameter region This refers to the third column and
third row in each of the three panels. Here there also exists a trade-off between the
case of weak instruments/identification and the case of weak and no endogeneity. In the
case of weak instruments/identification one would prefer a large training sample to get
informative priors while for the case of no endogeneity a small training sample so that
most of the data can be used for validation.

It is clear evidence from the results of the Table that the choice of a ‘prior data’ per-
centage m is important. The advantage of the predictive likelihood approach is that m is
a scalar. This may be easier to choose than specifying an entire not ‘too non-informative
or not too informative’ prior density. The problem of predictive likelihood remains: How
to choose this scalar m? A practical sensitivity analysis is: simply show results for mul-
tiple values of m and find the interval of m values where results are ‘similar’.

General conclusion of Section 5 The evaluation of predictive model probabilities
under weak prior information and near a boundary of the parameter region gives correct
results which are relatively robust under the condition of choosing the right training
sample. A sensitivity analysis is recommended for the length of the training sample. In
extreme cases very near and at the boundary with weak identification one should be very
careful with strong conclusions. More informative priors are then to be recommended.

6 Bayesian mixtures to analyze the effect of
length-of-education on earned income in US states

In this section, we present and apply a predictive likelihood approach for model com-
parison or model combination to the Angrist and Krueger (1991) data on income and
education, which are also analyzed in Hoogerheide and Van Dijk (2008). Angrist and
Krueger (1991) data consist of men born in the US during the periods 1920–1929, 1930–
1939 and 1940–1949, where the data for the first group are collected in 1970, and the
data for the last two groups are collected in 1980.3 We use a subset of their data, con-
sisting of men born during the period 1930–1939, including the data on weekly wages,
number of completed years of education and instruments consisting of quarter of birth
dummies. The data include 51 states and 329.509 observations.4 The IV model applied
to data from each state is5:

3For an introduction to a Bayesian analysis of an IV model using real and simulated data, we refer
to the Supplementary Material in the Online Appendix A.1.

4The source of the data is the 1980 Census, 5 percent public sample, also available from
econ-www.mit.edu/faculty/angrist/data1/data/angkru1991. We refer to the Online Appendix for
a summary of these data.

5In order to keep the notation simple, we do not define an index for each state, but note that the
described IV model is applied to each US state separately.

econ-www.mit.edu/faculty/angrist/data1/data/angkru1991
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ỹi = α1 + x̃iβ +

9∑
t=1

Dt,iδt + ε̃i, (16)

x̃i = α2 +

4∑
q=2

Dq,iΠq +

9∑
t=1

Dt,iδt + ν̃i, (17)

where ỹi and x̃i are the natural logarithm of the weekly wage and the number of com-
pleted years of education for the person i in 1979, respectively.

In (16) and (17), Dt,i for t = {1, . . . , 9} are the dummy variables for year of birth
which take the value 1 if individual i was born in year 1929 + t, and 0 otherwise. Dq,i

for q = {2, 3, 4} are the quarter of birth dummy variables which take the value 1 if
individual i was born in quarter q, and 0 otherwise. α1 and α2 are constants, and ε̃i
and ν̃i are disturbances assumed to be normally distributed, and independent across
individuals.

The model in (16) and (17) is similar to the model of Hoogerheide and Van Dijk
(2006). For simplicity, we do not consider interactions of year dummies and quarter of
birth dummies as instruments. Furthermore, the model employed here does not include
state dummies, as each state is analyzed separately. We simplify the IV model in (16)
and (17) correcting for the constant terms and exogenous year of birth dummies. Using
this simplification, the IV model becomes:

yi = xiβ + εi, (18)

xi = ZiΠ+ νi, (19)

where yi, xi are the residuals from regressing the log weekly wage and years of education
on a constant and year of birth dummies, respectively. Zi is the 3× 1 vector of instru-
ments, obtained from regressing quarter of birth dummies on a constant and the year
of birth dummies. εi and νi are the error terms that have a joint normal distribution,
and are independent across individuals.

6.1 Bayesian model mixtures using predictive model probabilities

In order to calculate the predictive model probabilities, we define two models M0 and
M1, where M0 is a nested model compared to M1. In the IV model example, M1

corresponds to the IV model while the nested model M0 corresponds to M1 with a
parameter restriction: ρ = 0. The posterior odds ratio K01 for comparing M0 with
model M1 is the product of the Bayes factor and the prior odds ratio:

K01 =
p (Y | M0)

p (Y | M1)
× p (M0)

p (M1)
, (20)

where Y is the observed data, and the prior model probabilities (p(M1), p(M0)) ∈
(0, 1)× (0, 1) and p(M1) + p(M0) = 1.

It is often difficult to compute K01 since the marginal likelihoods are given by the
following integrals: p(Y | M0) =

∫
θ−ρ

�(ρ = 0, θ−ρ)p0(θ−ρ)d(θ−ρ) and p(Y | M1) =∫
θ−ρ,ρ

�(ρ, θ−ρ)p(ρ, θ−ρ)d(ρ)d(θ−ρ), where θ−ρ are the model parameters apart from ρ.
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We therefore calculate model probabilities using the Savage-Dickey Density Ratio
(SDDR). Dickey (1971) shows that the Bayes factor can be calculated using a single
model if the alternative models are nested and the prior densities satisfy the condition
that the prior for θ−ρ in the restricted model M0 equals the conditional prior for θ−ρ

given ρ = 0 in the model M1, i.e. p1(θ−ρ | ρ = 0) = p0(θ−ρ)
6. In this case, (20) becomes:

K01 =
p(ρ = 0 | Y,M1)

p(ρ = 0 | M1)
× p (M0)

p (M1)
, (21)

where p(ρ | Y ) =
∫
p(ρ, θ−ρ | Y )dθ−ρ and p(ρ) =

∫
p(ρ, θ−ρ)dθ−ρ

7. We perform the
model averaging scheme using the model probabilities in Section 5. Specifically, given
the posterior odds ratio, it is possible to weight the evidence of alternative models using
Bayesian Model Averaging (BMA). We consider the effect of model uncertainty on the
estimation of the parameter β, as this parameter is the main focus in most cases. The
information about β is summarized by the following posterior:

p (β | Y ) = p (β | Y,M0) p (M0 | Y ) + p (β | Y,M1) p (M1 | Y ) . (22)

Furthermore, functions of parameters, i.e. g(β) in the IV model are estimated by:

E[g (β | Y )] = E[g (β | Y,M0)]p (M0 | Y ) + E[g (β | Y,M1)]p (M1 | Y ) . (23)

Hence both models under consideration should be estimated, and the inference on pa-
rameters is simply the weighted average of the results in both models. The weights in
averaging the results are the posterior model probabilities.

6.2 Empirical results

The degree of instrument strength (indicated by posterior densities of Π2, Π3 and Π4)
differs substantially across states, as reported in Hoogerheide and Van Dijk (2006).
A second source of heterogeneity across states is the degree of endogeneity (indicated
by posterior ρ). For some states, such as Maine, Minnesota and Texas, 95% intervals
for posterior ρ densities do not include point 0, while for the rest of the states 95%
posterior intervals of ρ include the value 0. Besides the finding of heterogeneity across
states, we conclude that the use of instruments may not be necessary for most states.
For further details of these estimation results we refer to the Online Appendix.

Posterior means for the degree of endogeneity of ρ in the IV model, and the predictive
model probabilities for model M0, corresponding to the model with ρ = 0 in which the
instruments are not used for the estimation of β, are given in Figure 8. For the predictive
model probabilities, the training sample consists of a randomly chosen subset of 10% of
the observations, prior model probabilities in (21) are chosen to be equal. Furthermore,

6Notice that the condition for SDDR holds if we define the prior for θ−ρ in the restricted model
equal to the conditional prior of θ−ρ given ρ = 0 in the unrestricted model.

7As a generalization, Verdinelli and Wasserman (1995) show that K01 is equal to the Savage-Dickey
density ratio in (21) times a correction factor when the prior condition fails.
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Figure 8: Degree of endogeneity in the US states and predictive model probabilities for
model M0. M0 denotes the model with ρ = 0 in which no instruments are used for the
estimation of β.

the effect of the training sample choice is partially eliminated by averaging predictive
model probabilities from 20 different random training samples.8

Model probabilities are quite close to 0.5 and do not show a clear preference for
either model, except for a few states such as Texas and Tennessee. For Texas, model
probabilities indicate that the IV model is necessary. For Tennessee on the other hand,
we find strong evidence against the need for the IV model. We conclude that choosing
one of the alternative models according to these probabilities can be quite inaccurate,
and employ model averaging to infer the state-specific effects of income on education.

We next present how average effects of education on income can be inferred using the
model probabilities. The average estimated effects of education on income for the US
states, i.e. the posterior distributions resulting from BMA, are summarized in Table 2.
Model probabilities are achieved by using training sample with 10% of the observations,
averaged over 20 repetitions. The main advantage of model averaging is the improved
efficiency of the estimates. Standard deviations of posterior β draws are less than half
of those achieved by the IV model only.

Regional patterns in income-education relationship – analysis of US divisions: We
further analyze the income-education relationship in US divisions. We apply the IV
model in (18) and (19) to 9 divisions for the Angrist and Krueger (1991) data according
to the Census Bureau designated areas. The purpose of this analysis is to compare the
results in terms of instrument strength with those of Hoogerheide and Van Dijk (2006),

8The results with 5% and 25% training sample sizes and a single training sample were similar,
except for some states with very small number of observations, such as South Dakota.
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who show that quarter of birth dummies are strong instruments mainly in southern
states. Furthermore, we document the effect of averaging the data within divisions or
regions.

Table 2 reports posterior results of the IV model for US divisions. Similar to the
state-specific results, census regions show heterogeneity both in terms of instrument
strength and the degree of endogeneity. Posterior results for education effects on income
are quite different across divisions. Especially for the West North Central division, the
posterior standard deviation is quite high, indicating the relatively weak instruments
in this division. Figure 9 presents posterior mean ρ and model probabilities for M0, the
model with ρ = 0 in which no instruments are used for the estimation of β. The training
sample consists of 25% of the observations9. Predictive model probability for the nested
model without instruments is far from 0.5 only for two regions: East North Central
Division, and West South Central Division. In East North Central division, the model
without instruments is favored by model probabilities. Notice that the states within
this region are quite heterogeneous in terms of predictive model probabilities reported
in Figure 8. The IV model is clearly necessary only for two states in this region, namely
Arkansas (AR) and Texas (TX). Hence ‘average’ income-education relationship within
this region is determined mainly by these two states. This problem is also seen in East
North Central division. According to posterior model probabilities in Figure 8, this
region consists of states where an IV model is clearly preferred, such as Minnesota
(MN) and South Dakota (SD), and also states where the IV model is not necessary,
such as Iowa (IA). Hence the ‘average’ model probability for this region reported in
Figure 9 is misleading.

For the US data on the income-education relationship, we conclude that there is
substantial heterogeneity in the effect of the length of years of education on earned
income. We document that differences between states are characterized by different
instrument strengths, as reported by Hoogerheide and Van Dijk (2006). Our results
also show that the degree of endogeneity is different across states and regions.

Using this data set we have shown different, and mostly weak power of quarter
of birth in explaining education. This finding, in combination with the not so severe
problem of endogeneity makes it hard to assess whether the IV model should be preferred
over a simpler and more parsimonious linear regression model without instruments.
Hence we conclude that averaging over these alternative models is a reasonable way to
deal with model uncertainty.

General conclusion of Section 6 We have shown that the effect of length of educa-
tion on earned income differs considerably among almost all US states. This may have
important policy implication of determining the length of required schooling. This issue
should be investigated in more detail.

9We experimented with the model using smaller training samples, and the results are quite insen-
sitive to the training sample size.
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Average effects of education on income
State Mean Std. Dev. State Mean Std. Dev. State Mean Std. Dev.
AL 0.11 0.03 LA 0.09 0.04 OH 0.08 0.04
AZ 0.11 0.03 ME 0.09 0.03 OK 0.04 0.03
AR 0.07 0.02 MD 0.05 0.03 OR 0.05 0.10
CA 0.05 0.01 MA 0.21 0.09 PA 0.11 0.03
CO 0.07 0.02 MI 0.08 0.03 RI 0.07 0.03
CT 0.06 0.04 MN -0.06 0.08 SC 0.12 0.03
DE 0.02 0.05 MO 0.07 0.03 SD 0.16 0.07
DC 0.10 0.04 MS 0.09 0.04 TN 0.07 0.01
FL 0.13 0.05 MT 0.04 0.04 TX 0.16 0.06
GA 0.12 0.02 NC 0.08 0.02 UT 0.09 0.07
HI 0.08 0.04 NC 0.09 0.04 VT 0.06 0.03
ID 0.05 0.06 NE 0.03 0.09 VA 0.08 0.04
IL 0.05 0.08 NH 0.09 0.04 WA 0.10 0.09
IN 0.04 0.03 NJ 0.09 0.03 WV 0.06 0.03
IA 0.15 0.12 NM 0.05 0.05 WI 0.05 0.03
KS 0.08 0.03 NV 0.03 0.06 WY 0.04 0.06
KY 0.07 0.01 NY 0.08 0.03

Parameter estimates
β Π2 Π3 Π4 ρ

New England Division 0.11 0.09 0.17 0.21 -0.16
(0.05) (0.04) (0.04) (0.04) (0.23)

Middle Atlantic Division 0.07 0.07 0.03 0.03 0.03
(0.07) (0.02) (0.02) (0.03) (0.31)

East North Central Division -0.03 0.07 0.02 0.08 0.36
(0.08) (0.02) (0.02) (0.02) (0.25)

West North Central Division 0.02 -0.06 0.01 0.02 0.15
(0.13) (0.04) (0.04) (0.04) (0.40)

South Atlantic Division 0.11 -0.01 0.14 0.22 -0.18
(0.03) (0.03) (0.03) (0.03) (0.16)

East South Central Division 0.09 0.03 0.27 0.41 -0.13
(0.02) (0.04) (0.04) (0.04) (0.12)

West South Central Division 0.12 -0.04 0.20 0.30 -0.29
(0.02) (0.04) (0.04) (0.03) (0.11)

Mountain Division 0.01 0.20 0.14 0.18 0.21
(0.08) (0.05) (0.06) (0.06) (0.30)

Pacific Division 0.04 0.23 0.21 0.11 0.08
(0.05) (0.04) (0.04) (0.04) (0.23)

Note: The top panel reports means and standard deviations of effect of education on income,
resulting from BMA, for the US states. The bottom panel reports posterior means for 9 US divisions.
All results are based on 30000 draws (3000 burn-in). Estimated posterior standard deviations are
reported in parentheses.

Table 2: Income-education effects in US states.
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Figure 9: Degree of endogeneity in the US divisions and predictive model probabilities
for model M0. M0 denotes the model with ρ = 0 in which no instruments are used for
the estimation of β.

7 Conclusions and perspectives

We have sketched in this paper an approach using Bayesian mixtures to average over
those states of an econometric model which are known as near a boundary and at a
boundary with the purpose to obtain more precise structural inference, accurate fore-
casting and effective policy analysis. In order to do this several results have been estab-
lished. There exists a common structure in three well-known econometric models where
the matrix of equation system parameters has reduced rank. The case of a reduced rank
can be interpreted as a boundary in the parameter space. The econometric models are
the cointegration, instrumental variables and factor model. Using a flat prior, the effect
that the reduced rank has on the shape of the likelihood/posterior has been studied for
a general workhorse model, that is equal to a cointegration model. Marginal posterior
densities of equation parameters are of the student-t type times a polynomial or rational
function. Their shapes may contain ridges due to weak identification, be bimodal and
have very fat tails. These posteriors can get nicer properties (such as finite higher order
moments) when extra restrictions are imposed like triangular ones for the instrumental
variable model and a diagonal covariance matrix for the factor model. But their shapes
may still be strongly non-elliptical.

In order to obtain meaningful posterior and predictive probabilities of states near
and at the boundary of a reduced rank, weak regularization priors are discussed and
compared. These are dealing with area restrictions, smoothness properties and training
samples. As a novel class we introduce a lasso type shrinkage prior combined with
orthogonal normalization which restricts the range of the parameters in a plausible
way. A sensitivity analysis with respect to a sequence of weak priors is recommended.

The conditional posterior and predictive probabilities of different states of the econo-



N. Baştürk, L. Hoogerheide, and H. K. Van Dijk 911

metric model near and at the boundary can then be used to estimate Bayesian mixture
processes of several relevant economic and econometric issues.

We end this paper with listing some perspectives. The Bayesian approach to econo-
metrics is now dominant in the field of macroeconomics. This is due to the pioneering
work by Sims and his co-workers on Bayesian analysis of vector autoregressive models.
The basic paper is Sims (1980) and an incomplete list of a few recent references are
Sims and Zha (1998), Primiceri (2005) and Del Negro and Schorfheide (2011). An ex-
tension is to use more complex economic model structures like Dynamic Stochastic
Equilibrium models, see Herbst and Schorfheide (2015). Complex cointegration models
and inferential issues of these models have been studied extensively as well. Within this
literature, we refer to Strachan (2003) for parameter instability, Jochmann et al. (2013)
and Sugita et al. (2016) for regime-switching models, Jochmann and Koop (2015) for
structural breaks, Koop et al. (2011) for time-varying parameter models and Chan et al.
(2017) for cointegrating rank variations. Also in the fields of finance and marketing the
Bayesian approach is becoming the dominant one. More details are presented in the
Handbook of Bayesian Econometrics, Geweke et al. (2011).

We emphasize another perspective. There exists already much research to extend the
analysis of this paper to models with time varying mixtures and to connections with
expert systems and machine learning. See, among others, Frühwirth-Schnatter (2006),
Chan et al. (2012), Billio et al. (2013), Casarin et al. (2015) and Baştürk et al. (2016).

All these extensions require a much more algorithmic approach to evaluating pos-
terior probabilities of parameters and unknown unobserved states. Simulation based
Bayesian Econometrics (SBBE) should be developed even more than already done so
using modern software like parallel algorithms, filtering methods and modern hardware
like clusters of machines of Graphical Processing Unit (GPU) processing. Developing
operational methods useful for Bayesian empirical econometrics will lead to more insight
in structural analysis, more accurate forecasting and more effective policy analysis with
implied probabilistic components.

Supplementary Material

Supplementary Material for “Bayesian Analysis of Boundary and Near-Boundary Ev-
idence in Econometric Models with Reduced Rank” (DOI: 10.1214/17-BA1061SUPP;
.pdf).
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Baştürk, N., Hoogerheide, L. F., and Van Dijk, H. K. (2017). “Supplementary Ma-
terial for “Bayesian Analysis of Boundary and Near-Boundary Evidence in Econo-
metric Models with Reduced Rank”.” Bayesian Analysis. doi: http://dx.doi.org/
10.1214/17-BA1061SUPP. 882

Baumeister, C. and Hamilton, J. D. (2015). “Sign restrictions, structural vector
autoregressions, and useful prior information.” Econometrica, 83(5): 1963–1999.
MR3414197. doi: http://dx.doi.org/10.3982/ECTA12356. 899

Bauwens, L. and Van Dijk, H. K. (1990). “Bayesian limited information analysis re-
visited.” In Gabszewicz, J., Richard, J., and Wolsey, L. (eds.), Economic Decision-
Making: Games, Econometrics and Optimisation: Contributions in Honour of Jacques
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