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Approximation of Bayesian Predictive p-Values
with Regression ABC

David J. Nott∗¶, Christopher C. Drovandi†, Kerrie Mengersen‡, and Michael Evans§

Abstract. In the Bayesian framework a standard approach to model criticism is
to compare some function of the observed data to a reference predictive distribu-
tion. The result of the comparison can be summarized in the form of a p-value,
and computation of some kinds of Bayesian predictive p-values can be challeng-
ing. The use of regression adjustment approximate Bayesian computation (ABC)
methods is explored for this task. Two problems are considered. The first is ap-
proximation of distributions of prior predictive p-values for the purpose of choos-
ing weakly informative priors in the case where the model checking statistic is
expensive to compute. Here the computation is difficult because of the need to re-
peatedly sample from a prior predictive distribution for different values of a prior
hyperparameter. The second problem considered is the calibration of posterior
predictive p-values so that they are uniformly distributed under some reference
distribution for the data. Computation is difficult because the calibration process
requires repeated approximation of the posterior for different data sets under the
reference distribution. In both these problems we argue that high accuracy in the
computations is not required, which makes fast approximations such as regression
adjustment ABC very useful. We illustrate our methods with several examples.

Keywords: ABC, Bayesian inference, Bayesian p-values, posterior predictive
check, prior predictive check, weakly informative prior.

1 Introduction

We consider Bayesian inference for a parameter θ with prior p(θ), and a parametric
model p(y|θ) for data y with observed value yobs. An established approach to model
criticism in the Bayesian setting involves comparing some function of the observed data
to a reference distribution, such as the prior predictive (Box, 1980) or posterior predic-
tive distribution (Guttman, 1967; Rubin, 1984; Gelman et al., 1996). The result of the
comparison is usually summarized by a p-value, describing how far out in the tails of
the reference predictive distribution the observed data lies. A small p-value indicates
surprise and a possible need to reformulate the model. Computation of Bayesian pre-
dictive p-values can be challenging, and in this work we consider some approximate
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methods for that task in some settings where high accuracy is not needed and approx-
imate methods are very attractive. Our methods are based on regression adjustment
approximate Bayesian computation (ABC) approaches (Beaumont et al., 2002; Blum,
2010; Blum and François, 2010). In the applications we consider here, unlike the usual
ones for ABC methods, it is useful to consider both situations in which the likelihood is
tractable as well as when it is not. While the computations are approximate, it is to be
noted that all models are in fact wrong and it is primarily gross violations that worry
us. The ABC approach seems well-suited to this.

Two problems are considered. The first problem concerns weakly informative prior
choice. The notion of a prior weakly informative with respect to a given proper “base”
prior was formalized by Evans and Jang (2011), inspired by Gelman (2006), using distri-
butions of p-values for measuring prior-data conflict. The randomness in the distribution
of p-values comes from repeated sampling of data from the prior predictive distribution
under the base prior. A prior is weakly informative compared to the base prior if prior-
data conflicts happen less often when an analysis is done under the alternative prior
rather than the base prior, for data simulated under the base prior. We explain the idea
in more detail in Section 4. Suppose S is some summary statistic for the data and that
a class of priors p(θ|λ) indexed by a hyperparameter λ is considered. We want to make
a weakly informative choice of λ compared to some baseline value λ0. Approximation of
distributions of conflict p-values for appropriate test statistics for characterizing weak
informativity involves repeated sampling from the prior predictive distributions p(S|λ)
for a large number of different values λ and this is computationally expensive when
simulation of S is expensive. We suggest the use of regression adjustment ABC meth-
ods to approximate the simulation step to ease the computational burden. The choice
of a good value for λ in order to define a weakly informative prior is simply a screen-
ing computation. After an appropriate λ value is chosen, a more accurate calculation
for the finally chosen prior can be performed to see if our approximate computations
characterized weak informativity well enough.

The second main contribution of the paper concerns calibration of posterior pre-
dictive p-values in model checking so that they are uniformly distributed under some
reference distribution for the data, such as the prior predictive distribution. For some
choices of the statistic used for model checking the corresponding posterior predictive
p-values can have a distribution that is far from uniform, clustering around a value
of 0.5. This makes it difficult to decide when a certain posterior predictive check has
produced a surprising result. Because of this many authors have discussed the need
for calibration of posterior predictive p-values to set an interpretable scale for them
(Robins et al., 2000; Hjort et al., 2006; Steinbakk and Storvik, 2009). The difficulty is
that the calibration process usually involves repeated approximation of the posterior
distribution for different data sets under the reference distribution, and this is compu-
tationally expensive. A further contribution of this paper is to suggest performing this
repeated posterior approximation using regression adjustment ABC methods, which is
computationally thrifty since it involves only fitting regression models. We show that
the corresponding approximate model check has an interesting interpretation and role
regardless of whether the regression approach approximates the calibrated posterior
predictive p-value well or not. The interpretation is based on using a regression model
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to capture relationships between the parameter, data and a data replicate under the
prior, and then seeing whether a certain pseudo-observation for this regression model
based on the observed data is an outlier in the regression.

The paper is organized as follows. In the next section we review basic ideas of prior
and posterior predictive checks. Section 3 introduces basic ideas of regression ABC and
Section 4 considers the problem of weakly informative prior choice. Section 5 applies
regression adjustment ABC to calibration of posterior predictive p-values and Section
6 concludes.

2 Prior and posterior predictive checks

A common approach to Bayesian model criticism uses Bayesian predictive model check-
ing. Denoting the observed value of the data y by yobs, we consider some model checking
statistic or discrepancy measure D(y), and then for some reference predictive distribu-
tion for the data r(y) we consider the distribution of D(y) for y ∼ r(y) and determine
how far out in the tails of this distribution D(yobs) lies. We can summarize the compar-
ison by a p-value,

p = P (D(y) ≥ D(yobs)),

where D(y) is defined in such a way that a large value indicates a possibly interesting
departure from the model. One choice for the reference predictive distribution r(y) is
the prior predictive distribution

p(y) =

∫
p(θ)p(y|θ)dθ.

The use of prior predictive p-values in model checking was advocated by Box (1980).
Box (1980) suggested use of the statistic D(y) = 1/p(y), and some refinements of Box’s
approach are suggested by Evans and Moshonov (2006). Prior predictive p-values cannot
be used when the prior is improper. However, when the prior is proper, prior predictive
p-values based on a minimal sufficient statistic provide one natural way to characterize
the informativeness of a prior, a point that has been made in Evans and Moshonov
(2006) and Evans and Jang (2011). We use the methods developed in Section 4 in order
to approximate computation of the prior predictive p-value distributions they suggest
for characterizing weak informativity of one prior with respect to another. Although
many authors have developed approaches to detecting prior-data conflict (O’Hagan,
2003; Marshall and Spiegelhalter, 2007; Dahl et al., 2007; G̊asemyr and Natvig, 2009;
Scheel et al., 2011; Presanis et al., 2013) they have not been concerned with using
conflict to characterize weak informativity of priors.

An alternative choice for the reference distribution r(y) in model checking is the
posterior predictive distribution,

p(y∗|yobs) =
∫

p(y∗|θ)p(θ|yobs)dθ,

where y∗ is a predictive replicate of the observed data sharing the same value of the
parameter θ. This approach can be useful when the prior is improper and it is also
quite easy to implement once a sample from the posterior distribution has already been
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generated. If the posterior predictive distribution for the replicate is conflicting with the
observed data yobs, then the fitted model is inconsistent with the observed data in some
way, and this suggests changing the model. The distribution of the posterior predictive
p-value is not necessarily uniform under sampling from the marginal distribution of y,
and it can sometimes be helpful to calibrate such p-values to set an interpretable scale
for them. This is the problem we take up in Section 4 where the computational difficul-
ties involved in this calibration process are described. Extending the above discussion
somewhat, in posterior predictive model checking it makes sense to consider a discrep-
ancy measure which is a function of both the data and parameters, D(y, θ) say (Gelman
et al., 1996). We compare the values of D(yobs, θ) to the values of D(y∗, θ) under the
joint posterior distribution p(θ, y∗|yobs) for (θ, y∗) where

p(θ, y∗|yobs) ∝ p(θ)p(yobs|θ)p(y∗|θ).

The comparison ofD(y∗, θ) withD(yobs, θ) is formalized through the posterior predictive
p-value

Q(yobs) = P (D(y∗, θ) ≥ D(yobs, θ)|yobs).
Various kinds of replication can be considered within this posterior predictive checking
framework, particularly in relation to hierarchical models, and this can be appropriate
in different contexts. See Gelman et al. (1996) for further discussion of this.

Crucial to any approach to predictive model checking is the choice of an appropriate
discrepancy. For the applications of prior predictive checks to detection of prior-data
conflict, it is argued in Evans and Moshonov (2006) that making the discrepancy a func-
tion of a minimal sufficient statistic is the right thing to do. This is because dependence
of the discrepancy on aspects of the data that don’t affect the likelihood can have noth-
ing to do with whether a prior-data conflict occurs. For checking the data model using
posterior predictive p-values the choice of discrepancy measure will depend on what we
wish to use the model for and it is difficult to give general guidelines. In a later example
considered by Hjort et al. (2006) we use the discrepancy considered in their analysis
of the same data, namely a kind of generalized Pearson statistic. Global goodness of
fit measures such as this are one interesting choice for discrepancy functions, but other
choices that might probe more local departures from the model for specific observations
or groups of observations as well as discrepancies that reflect the intended use of the
model will also be appropriate.

3 Regression adjustment ABC

Computation of Bayesian predictive p-values can sometimes involve expensive and re-
peated approximations of various conditional distributions; in the problems we consider
in this paper, these are either posterior distributions for different data sets or prior
predictive distributions for different values of a prior hyperparameter. Since regression
analysis is a standard tool for estimation of conditional distributions, it is sensible to ask
whether regression can be useful here for the needed computations. Suitable methods
already exist in the approximate Bayesian computation (ABC) literature (Marin et al.,
2011) and we now explain these.
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ABC methods are used for approximate Bayesian inference in situations where sim-
ulation from the model is easy but where the likelihood is difficult or impossible to
calculate. The most basic ABC methods are based on rejection sampling ideas, but
there are more sophisticated variants of the basic approach. We describe only the re-
gression adjustment method of Blum and François (2010), which is an extension of the
local linear method of Beaumont et al. (2002); see Marin et al. (2011) for a broader cov-
erage of ABC methods. Suppose as before we have a likelihood p(yobs|θ) and prior p(θ).
We want to approximate the posterior distribution p(θ|yobs). In the method of Blum
and François (2010), as in most ABC methods, we first assume that we can reduce the
data yobs to a low-dimensional summary statistic sobs = S(yobs) which is informative
for θ. A sufficient statistic would be an ideal choice, but practically unattainable in most
contexts where ABC is used. Next, suppose we simulate parameters and data sets as
(θi, yi) ∼ p(θ)p(y|θ), and we write si = S(yi) for the summary statistics corresponding
to the yi, i = 1, . . . , n. Given these simulations we may consider using regression to
estimate p(θ|sobs) from the data (θi, si), i = 1, . . . , n with θ as response and the sum-
maries s as predictors. For simplicity suppose θ is univariate. Blum and François (2010)
consider the model

θi = μ(si) + σ(si)εi,

where εi, i = 1, . . . , n are zero mean, variance one, independent and identically dis-
tributed errors, and μ(s) and σ(s) are flexible mean and standard deviation functions.
Blum and François (2010) parameterize μ(s) and σ(s) using neural networks and then
after fitting to the data obtain estimates μ̂(s) and σ̂(s). Let ε̂i denote the empirical
residual ε̂i = σ̂(si)

−1(θi − μ̂(si)). Approximating the posterior distribution p(θ|sobs)
using the fitted regression model at sobs and the empirical residuals gives that

θai = μ̂(sobs) + σ̂(sobs)ε̂i

= μ̂(sobs) + σ̂(sobs)σ̂(si)
−1(θi − μ̂(si)),

i = 1, . . . , n comprise an approximate sample from p(θ|sobs) if the regression model is
correct. A multivariate extension is possible, as well as localization of the fit with a
kernel, usually with support chosen to include a certain number of nearest neighbours
of sobs. The number of neighbours receiving positive weight is often chosen as a fraction
of n. The regression adjusted sample is constructed only using the points given positive
weight by the kernel. In the regression adjustment approach approximating the posterior
distribution for any value of sobs is easy once the regression model has been fitted, as
it involves only moving particles around by mean and scale adjustments. This gives us
a fast approximate method for approximating posterior distributions for different data
sets based on the same samples from the prior. We will use this approach in Section 4 for
calibration of posterior predictive p-values, where we need to approximate a posterior
distribution for many different data sets.

Conventional ABC computational algorithms are used to perform Bayesian inference
without evaluating the likelihood, using only simulations from the data model. In appli-
cations where simulation from the data model is expensive, several authors have noted
that conventional ABC computations may be very difficult or impractical and the use
of regression methods to replace the data simulation step has been considered (see, for
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example, Moores et al. (2015)). The method of Moores et al. (2015) is also related to the
synthetic likelihood ABC method of Wood (2010), which uses a working normal model
for summary statistics where the mean and covariance are estimated at each parameter
value by simulation. In our description of regression ABC above we regressed θ on the
summary statistics S in order to approximate the posterior distribution for θ for many
different values for S. Now we regress S on θ instead to approximate the distribution of
S for many different values of θ. Again suppose we have samples (θi, Si) from p(θ)p(S|θ)
for θ and some summary statistics S. Fit a regression of S on θ similar to before, using
the method of Blum and François (2010) but with the roles of parameters and summary
statistics inverted:

Si = μ(θi) + σ(θi)εi.

Next, approximate the distribution of S given θ using the fitted regression model and
the empirical residuals: an approximate sample from S|θ is

Sa
i (θ) = μ̂(θ) + σ̂(θ)σ̂(θi)

−1(Si − μ̂(θi)),

i = 1, . . . , n. After the regression model is fitted, generation from the data model for a
given θ can be approximated by choosing at random an i uniformly in {1, . . . , n} and
returning Sa

i (θ). This regression approximated data generation step can be used within
a conventional ABC algorithm. Some localization of the regression model could be per-
formed within this procedure – i.e. if fitting the regression model is cheap compared to
a data generation step, then it could still be attractive to fit a different regression model
locally around each θ to generate pseudo-data for every θ value where this is required. In
the next section we will focus on using the above idea to undertake repeated generation
from a marginalized model p(S|λ) where p(S|λ) is a prior predictive distribution corre-
sponding to a prior p(θ|λ) and λ is a hyperparameter. That is, p(S|λ) =

∫
p(S|θ)p(θ|λ)dθ

and we need to generate samples from p(S|λ) for many different values of λ. The appli-
cation we consider is the use of conflict p-values in the spirit of Evans and Moshonov
(2006) and Evans and Jang (2011) for characterizing weak informativity of one prior
with respect to another. Evans and Jang (2011) consider the situation in which there
is a certain base prior which represents our current best information, but where that
choice is tentative and we would like to assess sensitivity by finding an alternative prior
that is less informative relative to the base prior or to replace the base prior when it
is in conflict with the data. Their notion of weak informativity is an attempt to make
precise a similar idea suggested in Gelman (2006).

4 Weakly informative prior selection

Evans and Moshonov (2006) and Evans and Jang (2011) consider a decomposition of the
data distribution into different components that have different roles in model checking,
and suggest that one should check separately for lack of model fit (which means that
there is no parameter value for which the observed data is not surprising) and prior-
data conflict (which means that there are parameter values providing a good fit to the
data but the prior does not give any weight to them). These considerations lead them
to suggest using the distribution of a certain conflict prior predictive p-value based on
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a minimal sufficient statistic for quantifying weak informativity of a prior distribution.
In particular, if a minimal sufficient statistic is denoted by T = T (Y ), they suggest
that an appropriate p-value for measuring prior-data conflict is the prior predictive p-
value with the discrepancy measure D(t) = 1/p(t), where p(t) is the prior predictive
distribution of T . They also recommend conditioning on a maximal ancillary statistic
when available to remove variation unrelated to the prior, with different choices for the
maximal ancillary corresponding to different ways of checking for conflict. Although the
use of sufficient statistics might make it seem like the approach is of limited applicability,
we note that later we use the maximum likelihood estimator, or an approximation to
it, as a general asymptotically sufficient statistic T .

With this way of measuring prior-data conflict, Evans and Jang (2011) consider the
distribution of the conflict p-values when the data are distributed according to the prior
predictive distribution for the base prior as a tool for evaluating the informativeness of
different priors compared to the base prior. Suppose that the class of prior distributions
under consideration is p(θ|λ) where λ is a parameter to be chosen, and that the base
prior is pB(θ). We want to choose λ such that p(θ|λ) is weakly informative with respect
to pB(θ). The conflict prior predictive p-value is a function of the data. If the data are
random, then so is the prior predictive p-value. Evans and Jang (2011) suggest that
considering the data as distributed according to the prior predictive distribution under
the base prior is natural if the base prior is the best, though perhaps tentative, current
representation of prior knowledge. Their prior predictive checking statistic depends on
the prior distribution used for the analysis in their approach, and the prior predictive p-
value distribution for a given λ is computed using p(θ|λ) in the model checking statistic
(i.e. D(t) = 1/p(t|λ)). Prior-data conflict is characterized by a certain cutoff, γ say, for
the conflict p-value. Weak informativity is defined by less prior-data conflict for p(θ|λ)
than for pB(θ). More precisely, weak informativity at level γ means that the γ quantile
of the p-value distribution for p(θ|λ) is greater than the corresponding γ quantile for
the p-value distribution for pB(θ). As well as characterizing weak informativity for a
certain cutoff level γ, one can define uniform weak informativity in various senses as
described by Evans and Jang (2011).

4.1 Regression adjustment for exploring weak informativity

Regression adjustment ABC methods are useful in this problem of characterizing weak
informativity because we need to repeatedly simulate from the prior predictive distri-
bution of a minimal sufficient statistic T for a grid of values for the hyperparameter λ.
That is, we need to repeatedly simulate from the marginalized model p(T |λ) for many
different values of λ and this can be computationally expensive. Regression adjustment
ABC methods can represent a computationally thrifty approximation to the data gen-
eration step based on fitting a single regression model. The choice of a good parameter
λ to use for a weakly informative prior is simply a screening computation; after an ap-
propriate λ value is chosen we can do a more accurate calculation for the finally chosen
prior to see if our approximate regression screening computations characterized weak
informativity well enough. High accuracy is not needed in the initial computation and
this makes fast approximate approaches very attractive.
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Suppose we have some pseudo-prior for λ, p(λ), to generate design points for λ in
fitting this regression approximation. This pseudo-prior is not used for inference about λ
in any way and a deterministic design could be used instead. Let (λi, θi, Ti), i = 1, . . . , n
be a sample from p(λ)p(θ|λ)p(T |θ). Suppose that a regression model has been fitted,

Ti = μ(λi) + σ(λi)εi.

Then for any value of λ an approximate sample from p(T |λ) can be obtained as

T a
i (λ) = μ̂(λ) + σ̂(λ)σ̂(λi)

−1(Ti − μ̂(λi)),

i = 1, . . . , n. A kernel estimate based on the samples T a
i (λ) is needed to approximate

p(T |λ). Write this kernel estimate as p̂(T |λ). Then for a sample T 0
1 , . . . , T

0
n generated

from the prior predictive distribution under the base measure (this is done exactly,
not using the regression approximation), we approximate the distribution of conflict
p-values for p(θ|λ) by the empirical distribution of P̂ (T 0

1 , λ), . . . , P̂ (T 0
n , λ) where

P̂ (T 0
j , λ) = n−1

n∑
i=1

I(p̂(T a
i (λ)|λ) ≤ p̂(T 0

j |λ)).

This is easily computed for any λ once a training sample (λi, θi, Ti) has been generated
and the regression fitted. It is also possible to fit the regression locally around each
value λ in obtaining the values T a

i (λ) but whether this is worthwhile depends on the
cost of regression model fitting relative to data generation.

Although the methods we suggest based on regression provide an order of magnitude
improvement in terms of computation time compared to the corresponding methods
which do not use regression adjustment, the methods are still very computationally in-
tensive. However, the ABC computations are embarrassingly parallelizable so that these
methods may become more attractive with improvements in the ease of implementation
of parallel computation methods. Implementing these methods on just a few examples
can also often provide insights into weakly informative prior choices that may be useful
for whole classes of models, so that the value of the methods may extend beyond their
application to just a particular example.

4.2 Normal location model

We illustrate the approach first for a simple location normal model where the distri-
bution of the prior predictive p-values can be computed analytically. This is useful as
a way of obtaining understanding of the definition of weak informativity, and to show
that regression approximations are able to give the correct answer when it is known.

Suppose that y ∼ N(μ, 1) and the base prior for the unknown mean μ is N(0, 1).
We consider weak informativity of the priors N(0, λ2) with respect to this base prior for
λ ∈ [0.5, 3]. In this example a larger variance in the prior is a reasonable characterization
of weak informativity; however this isn’t always the case as illustrated in the next
subsection. A minimal sufficient statistic here is y, and p(y|λ) is N(0, 1 + λ2). For



D. J. Nott, C. C. Drovandi, K. Mengersen, and M. Evans 67

an observed value yobs, the conflict p-value is P (log p(y|λ) ≤ log p(yobs|λ)) for y ∼
N(0, 1 + λ2). This probability is P (y2 ≥ y2obs) = 2Φ(−|yobs|√

1+λ2
) where Φ(·) denotes the

standard normal distribution function. The distribution function of this p-value, for
yobs distributed according to the N(0, 2) prior predictive distribution under the base
measure, is

P

(
2Φ

(
−|yobs|√
1 + λ2

)
≤ p

)
= P

(
−|yobs|√

2
≤

√
1 + λ2

2
Φ−1

(p
2

))

= 2Φ

(√
1 + λ2

2
Φ−1

(p
2

))
.

We can compare this with our approximation of this distribution following the numerical
procedure of the last section. Our pseudo-prior for λ is uniform on [0.5, 3]. We simulated
100,000 samples of (λ, μ, y) from the prior and then for λ = 0.5, 1, 2 and 3 we used the
1,000 nearest neighbours for each of these λ to fit a local linear regression model to
approximate a sample of size 1,000 from the prior predictive at these λ values. Although
we estimate the distribution of p-values only at 4 values of λ from the prior samples we
have generated, it is easy, using these same samples, to estimate this distribution for any
λ value in [0.5, 3]. We used the default implementation of the procedure of Beaumont
et al. (2002) in the abc package in R for the regression adjustment (Csilléry et al., 2012).
In using the software for the purpose we describe, the role of the summary statistics
and the parameters needs to be reversed compared to the usual ABC applications. We
used a kernel estimate (the density function in R with the default bandwidth selection)
to approximate the conflict p-values for a sample of 1000 points sampled from the prior
predictive for the base prior.

Figure 1 shows the empirical distribution function (quantile-quantile plots of the
p-values versus approximate expected order statistics for the uniform distribution) for
these 1000 approximate conflict p-values versus the analytically derived p-value distri-
bution for λ = 0.5, 1, 2 and 3. The agreement is very good and shows that, for the larger
variances λ = 2 and 3, these priors are weakly informative compared to the λ = 1
base prior (because the distribution function lying below the diagonal line means that,
for every γ, the γ quantile of the p-value distribution is larger than the corresponding
quantile for the p-value distribution under the base prior, which is uniform). Here λ = 1
gives the base prior and the p-value distribution is uniform, whereas for λ = 0.5 we have
a more informative prior with prior-data conflicts being produced more often (quantiles
of the p-value distribution under this prior being smaller than quantiles for the uniform
distribution).

4.3 Logistic regression example

The following example is considered in Evans and Jang (2011) and is concerned with
analysis of a bioassay experiment using a logistic regression model. The issue of sensible
default proper priors for logistic regression has received a lot of recent attention in the
literature (see Gelman et al. (2008) and the references therein) and so examining weak
informative priors for this model is of interest. The bioassay experiment considered here
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Figure 1: Estimated distribution of conflict p-value for λ = 0.5, 1, 2 and 3 for the normal
location model. In each plot black is the regression estimated distribution and grey is
the exact answer.

is described more fully in Racine et al. (1986) and Gelman et al. (2008). Five animals at
each of four dose levels were exposed to a toxin and the number of deaths were recorded.
Let xi be the dose level (suitably transformed to log scale and then centred and scaled
as in Gelman et al. (2008)) and let yi be the number of deaths out of 5 at dose xi.
A logistic regression model for the data is yi ∼ Bin(5, pi) with logit(pi) = β0 + β1xi

where we order the xi so that x1 < x2 < x3 < x4. We consider a prior where β0 and β1

are independent, β0 ∼ N(0, σ2
0), β1 ∼ N(0, σ2

1). Our base prior puts σ0 = 10, σ1 = 2.5
which is similar to Gelman et al. (2008), except that they use Cauchy priors instead of
normal with these scale parameters. We will investigate weak informativity with respect
to the base prior as σ0 and σ1 vary for the alternative prior. In Figure 4 of Evans and
Jang (2011), four cases are considered for exploring weak informativity in this example.
There is a normal or Cauchy choice for the base prior, and normal or Cauchy choices for
the alternative priors. We have chosen to consider the first of these (a normal base prior
and normal alternative priors) to illustrate our regression approximation methodology.

We use an approximation to the maximum likelihood estimator (MLE) as the basis
for an approximate sufficient statistic since the MLE is asymptotically sufficient. Since
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the MLE suffers from non-existence for some potential datasets, and these occur in
simulations from the prior predictive distribution, we consider the posterior mode for
the prior with σ0 = σ1 = 10. This posterior mode will be similar to the MLE in
non-degenerate cases but the regularization provided by the prior ensures existence and
stabilizes the optimization even in degenerate settings. The choice of σ0 = σ1 = 10 gives
a fairly flat prior over the part of the parameter space corresponding to reasonable sized
effects with standardized covariates and is a reasonable prior for the purpose of getting a
posterior mode estimate that always exists but is similar to the MLE in non-degenerate
settings. Evans and Jang (2011) consider the exact sufficient statistic (y1, y2, y3, y4) but

we use the posterior mode (β̂0, β̂1) for the dimension reduction that this brings and to
explore point estimators similar to the MLE as generic choices for statistics for defining
conflict in models where there might be no non-trivial minimal sufficient statistic. We
also treat the distribution of the mode as continuous even though strictly speaking it
is discrete since the data are discrete. In application of our procedure we don’t use the
values (β̂0, β̂1) directly, but rather transform to the fitted probabilities at the covariate
values x2, x3. That is, we use for our approximate sufficient statistics (p̂2, p̂3) where

p̂i = 1/(1 + exp(−β̂0 − β̂1xi)), i = 2, 3. Making the approximate sufficient statistic
a nearly linear function of the data has the advantage of making the conflict p-value
considered here similar to a certain invariantized version of it considered in Evans and
Jang (2010). In this example, focusing on p̂2, p̂3 makes sense since these values are
plausibly linearly related to the actual deaths at dose levels x2 and x3.

The pseudo-prior we use for (σ0, σ1) in our procedure is uniform on [0.1, 10]×[0.1, 20].
The choice of the ranges for σ0 and σ1 was guided by the analysis in Evans and Jang
(2011) which showed that this region was interesting from the point of view of covering
the range of hyperparameter values indicating weak informativity with respect to the
base prior. We generated 400,000 values for (σ0, σ1) and the corresponding p̂2, p̂3 values
from the corresponding prior predictive distribution. For each λ on a 100× 100 regular
grid covering the support of the hyperprior we used the local linear regression adjustment
method of Beaumont et al. (2002) based on applying the default implementation in
the abc package in R (Csilléry et al., 2012) and using the 1000 nearest neighbours at
each grid point to get a pseudo-sample from the prior predictive of size 1000. We then
considered a kernel density estimate based on these samples and 1,000 samples of (p̂2, p̂3)
simulated under the prior predictive for the base measure to get an approximation to
the distribution of the conflict p-value at each grid point. The generation of summary
statistics took 67 hours of CPU time on a quad processor Windows PC 3.10 GHz
workstation. Note that if we were to generate 1,000 samples at each of the 10,000 grid
points directly we would require 10,000, 000 samples which would increase the required
computational effort by an order of magnitude. The two-dimensional kernel estimation
was implemented using the sm.density function in the sm package in R (Bowman and
Azzalini, 2014) with the default bandwidth choice. We do not make any adjustment for
boundary bias due to the compact support for (p̂2, p̂3).

Evans and Jang (2011) suggest that one way to measure the degree of informativity
of a prior with respect to the base prior is the following. Choose γ to be a cutoff
value for the conflict p-value that defines the degree of conflict of interest (we use
γ = 0.05 here). Let pγ be the γ quantile of the conflict p-value distribution for the
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Figure 2: (a) Estimated degree of weak informativity at level 0.05 for logistic regres-
sion example. (b) Estimated distribution of conflict p-value without using regression
adjustment (black) and using regression adjustment (grey).

base prior. Let qγ be the probability of a conflict p-value less than or equal to pγ under
the alternative prior. Then measure the degree of weak informativity of the alternative
prior by 1 − qγ/pγ when qγ ≤ pγ . We define the degree of weak informativity to be 0
if qγ > pγ . Figure 2(a) plots the degree of weak informativity with respect to the base
prior over the grid of points for (σ0, σ1) for γ = 0.05. This plot is similar to Figure
5 of Evans and Jang (2011) and the result is qualitatively similar, but note that they
should not be expected to be exactly the same since we are basing our definition of
weak informativity on a posterior mode estimator here which summarizes the likelihood
information in a similar way to the MLE while being nondegenerate. Based on the
plot, (σ0, σ1) = (2, 5) would seem to be a good choice for a weakly informative prior.
Simulating 10,000 values from the prior predictive directly for this alternative prior (that
is, not using regression adjustment) and approximating the distribution of conflict p-
values gives the black points in Figure 2(b); the grey points in the same figure show
the distribution obtained using regression adjustment. The comparison shows that the
approximation error induced by the use of the regression approach here is small, in the
sense that the two distributions match closely in the lower tail corresponding to small
p-values, which are those indicative of conflict. The large lumps of discrete mass in the
p-value distributions occur since the base prior here is very diffuse which has the effect
of putting a large amount of prior predictive mass on simulated data of (0, 0, 0, 0) and
(5, 5, 5, 5). This corresponds to summary statistics (p̂2, p̂3) that are very close to either
(0, 0) or (1, 1) and so we have large discrete masses on these two summary statistic
values. Since the same conflict p-value is returned for the same value of the summary
statistic, we get corresponding discrete masses in the distribution of the p-values. These
values really have no effect on the assessment of weak informativity of alternative priors
with respect to the base prior. This is because these aren’t values that produce conflicts
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under the base prior and the continuity approximation still works well for the purpose
considered here as can be seen by the similarity of Figure 2(a) to Figure 5 of Evans and
Jang (2011). Of course there is some disagreement in the Monte Carlo approximations
about exactly how much discrete mass is assigned to these points and this is the reason
for the disagreement between the curves corresponding to p-values close to 0.5.

5 Calibration of posterior predictive p-values

As discussed in Section 2, the distribution of posterior predictive p-values tends not to
be uniform under repeated sampling from the prior predictive distribution. The issue of
calibration of such p-values has been discussed in the literature to set an interpretable
scale for them. Posterior predictive p-values which are not calibrated tend to have a
distribution which is concentrated towards 0.5, which might be thought of as a kind
of conservatism if we were to incorrectly interpret the p-value as being drawn from a
uniform distribution under ideal model conditions. This section discusses how regression
ABC methods can be used for calibration, a task which is computationally difficult due
to the need to repeatedly sample from posterior distributions for different data.

5.1 The need for calibration

As in Section 2 we write Q(y) for a posterior predictive p-value based on data y. We
suppress dependence on the discrepancy measure chosen in the notation. The idea of
calibration of posterior predictive p-values is to compare Q(yobs) to Q(y′) for y′ ∼ m(y)
where m(y) is some distribution for y such as the prior predictive distribution. An
adjusted or calibrated posterior predictive p-value is then given by

Q′(yobs) = P (Q(y′) ≤ Q(yobs)).

It may be easier to interpret a calibrated posterior predictive p-value, since we know
what is expected for it under repeated sampling from the reference predictive distribu-
tion.

Computation of this calibrated posterior predictive p-value is difficult. The usual
approach (see, for example, Hjort et al. (2006)) is to generate a large number M of data
sets from m(y), y1, . . . , ym say, to calculate for each of these corresponding unadjusted
posterior predictive p-values Q(y1), . . . , Q(ym), and then to approximate Q′(yobs) by
the fraction of Q(yj) less than Q(yobs). The difficulty is that computation of each Q(yj)
involves a calculation for a different posterior distribution, so that we must somehow
approximate the posterior distribution for M different datasets. Regression adjustment
ABC methods can be used to quickly approximate all the required posterior distribu-
tions at once with regression calculations. An alternative approach is to use importance
sampling, but this does not work well when the data sets are very different. McVinish
et al. (2013) consider a modified version of importance sampling that performs better
in this respect. Clearly using ABC methods for model criticism is related to the use of
ABC methods for model choice, and there is a very active recent literature on this very
interesting problem (see the recent review by Marin et al. (2015)).
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The issue of calibration of posterior predictive checks is somewhat controversial; some
authors (for example, Bayarri and Berger (2000) or Bayarri and Castellanos (2007)) have
suggested that the conservatism of posterior predictive p-values is due to their using
the data twice, since the posterior distribution based on yobs is being used to predict
some function of yobs. Others have argued that posterior predictive p-values have a
valid interpretation as a posterior probability with the data conditioned on only once
(Gelman, 2013). The conservatism of a particular check can vary according to the choice
of the discrepancy. For a general choice of model checking statistic, various methods have
been suggested to adjust the reference predictive distribution so that the resulting p-
value is approximately uniform, usually by conditioning on some functions of the data
in the likelihood to remove some of the information about θ (Bayarri and Berger, 2000;
Robins et al., 2000; Bayarri and Castellanos, 2007). Evans and Moshonov (2006) give
a decomposition of the joint distribution of (θ, y) into components which corresponds
to different sources of information available for model checking, checking the prior and
inference for θ, and suggest that this decomposition might be used to understand a bit
more precisely when a posterior predictive check could be uninformative. In any case, we
believe that the idea of calibration of posterior predictive p-values certainly can perform
a useful role in some problems.

5.2 The basic idea

We now describe our ABC approach to approximate calibration of posterior predictive p-
values. Suppose we simulate data (θi, yi, y

∗
i ) ∼ p(θ)p(y|θ)p(y∗|θ) from the prior distribu-

tion for θ, y and a predictive replicate y∗ and that we have a near sufficient statistic S(y)
and a discrepancy measure D(y, θ). Then from the simulations (θi, yi, y

∗
i ) we can con-

struct the values (D(y∗i , θi)−D(yobs, θi), S(yi)) = (Di, si), i = 1, . . . , n. We will approx-
imate the posterior distribution for the difference of discrepancies D(y∗, θ)−D(yobs, θ)
directly in computing the p-value since this makes the problem into a univariate one.
We consider a regression model

Di = μ(si) + σ(si)εi,

and to approximate the distribution of D(y∗, θ) − D(yobs, θ) given yobs we use the set
of samples

Da
i (sobs) = μ̂(sobs) + σ̂(sobs)σ̂(si)

−1(Di − μ̂(si)),

i = 1, . . . , n where as before sobs = S(yobs). Then the unadjusted posterior predictive
p-value Q(yobs) = P (D(y∗, θ) ≥ D(yobs, θ)|yobs) = P (D(y∗, θ)−D(yobs, θ) ≥ 0|yobs) can
be approximated by, in cases where Q(yobs) cannot be computed analytically,

Q̂(yobs) = n−1
n∑

i=1

I(Da
i (sobs) ≥ 0),

where I(·) denotes the indicator function. This is easily calculated for any value of sobs
and, if we have datasets y(1), . . . y(M) simulated from a reference distribution m(y), we
can easily compute Q̂(y(1)), . . . Q̂(y(M)) using the same single fitted regression model.
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This idea can also be implemented with the regression models fitted locally, and if the
regression calculations are inexpensive this will still be a simple computation. Hence we
can approximate the adjusted posterior predictive p-value in a computationally thrifty
way. Our estimated adjusted posterior predictive p-value is

Q̂′(yobs) = M−1
M∑
i=1

I(Q̂(yobs) ≤ Q̂(y(j))).

An anonymous reviewer has asked whether it is also possible to perform checks of a data
model based on the conditional distribution of the data given the value of an informative
(ideally sufficient) statistic, with ABC methods used to perform the conditioning. Evans
and Moshonov (2006) suggest that this is an appropriate way to check this part of the
model. The use of ABC methods in this context is an intriguing suggestion, but goes
beyond our purpose here of calibrating posterior predictive p-values.

The regression calibration method just suggested seems to rely on the accuracy of
the regression model for approximating the posterior distribution ofD(y∗, θ)−D(yobs, θ)
and we might be reluctant to place much faith in this in complicated high-dimensional
settings. We now give an alternative motivation for the calculation of Q̂′(yobs) as a useful
quantity for model criticism and argue that these p-values are interesting regardless of
whether we are able to approximate the posterior distribution of D(y∗, θ) − D(y, θ)
accurately by regression.

5.3 An alternative motivation and some limitations

Q̂(yobs) counts the proportion of observations i in the regression training sample for
which

μ̂(sobs) + σ̂(sobs)
Di − μ̂(si)

σ̂(si)
≥ 0.

This inequality can be written

Di − μ̂(si)

σ̂(si)
≥ −μ̂(sobs)

σ̂(sobs)
.

The expression on the left is the standardized residual for the ith observation in the
regression training sample. To interpret the expression on the right, note that if the
data yobs were observed again as the replicate, then this would make the discrepancy
measure D(y∗, θ)−D(yobs, θ) equal to zero. Hence

−μ̂(sobs)

σ̂(sobs)
=

0− μ̂(sobs)

σ̂(sobs)

is the standardized residual in our fitted model for the situation where (y, y∗, θ) =
(yobs, yobs, θ). Since for the observed data an actual replicate is not observed, assuming
the replicate is the same as the observed data minimizes the degree of conflict between
the observed data and the replicate. Hence if a value of (y, y∗, θ) = (yobs, yobs, θ) is con-
sidered surprising, that suggests that yobs is a surprising value under the assumed model.
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Our calibration procedure can be seen as adjusting for the conservative assumption that
yobs is observed again for the replicate.

In effect, through an outlier analysis of residuals in a regression model fitted to sim-
ulations from the prior, an uncalibrated p-value is calculated by comparing residuals
for (yobs, yobs, θ) with (yi, y

∗
i , θ), i = 1, . . . , n to decide whether yobs is unusual. Further-

more, the calibration procedure does a similar calculation, but to develop a reference
distribution for the unusualness of (yobs, yobs, θ) it considers instead the residuals from
observations (yi, yi, θ) in order to appropriately account for the fact that we assumed
yobs was observed again for the replicate. The main idea, then, is that we can perform
model criticism through regression diagnostics for a regression model fitted to simula-
tions from the prior. This is a sensible thing to do regardless of whether the calibrated
p-value approximates the calibrated posterior predictive p-value well.

An anonymous reviewer expressed some very natural concerns about the calibration
procedure suggested here using regression ABC. One concern relates to whether the
regression approximation involves extrapolation, and whether that may occur especially
in the situations where there is a model failure and where we most need the method to
work well. We argue that this is not the case for appropriate choices of the summary
statistics in the ABC procedure and when the posterior predictive check is focused on
exploring the appropriateness of the data model. In ABC we try to choose summary
statistics that are informative about the parameter and in the present setting a very
natural choice is the maximum likelihood estimator (MLE) or some other point estimate
of the parameters. The MLE is, after all, asymptotically sufficient, and we use it as the
summary statistic in the example of the next subsection. The MLE would not usually
be available as a summary statistic in ABC analyses because it requires being able
to evaluate the likelihood, but in the model checking applications considered here we
are not assuming that the likelihood is unavailable. If the data are highly informative
about the parameter, and the MLE is a consistent estimator of the parameter, the
prior predictive distribution of this statistic will be similar to the prior distribution on
the parameter itself. The value sobs is very different from s1, . . . , sn in the regression
adjustment if the MLE for the observed data is very different to values of the MLE
simulated from the prior predictive. If the data are very informative about the MLE
this occurs when the MLE for the observed data lies out in the tails of the prior on
the parameter. This is a question of prior-data conflict and has nothing to do with the
correctness of the data model. A check for prior-data conflict can be done separately.
Hence if there is no prior-data conflict, and if we are using a posterior predictive p-value
to examine failures of the data model, such failures should not result in the need for
extrapolation in the regression model and hence our methodology should not fail for
that reason, at least for suitable choices of the ABC summary statistics. In the above we
discussed the use of the MLE as the summary statistic, but the same reasoning applies
with any summary statistic that gives an informative estimate of the model parameters.

Another natural question to ask is: when does the regression approximated calibrated
p-value accurately approximate the true calibrated p-value? Short of actually computing
both we do not believe we can give any general guarantees about accuracy for the
regression approximation. However, one can say that if the uncalibrated p-value (easily
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computed from a Markov chain Monte Carlo (MCMC) analysis say for the observed
data) agrees with the uncalibrated p-value from the ABC approach, then that would
give some degree of confidence in the ABC calibrated p-value. Of course it’s also possible
that the calibrated p-values may be close even when the uncalibrated p-values are not.
We have argued that for model checking computations high accuracy is not needed; if the
uncalibrated p-value does not indicate surprise but the regression calibration indicates a
possible need to reformulate the model, then we can simply fit an alternative model and
consider more formal methods of model choice for comparing the new model with the
old. The computational expense involved in doing this is almost certainly much less than
performing the calibration procedure for the original model using MCMC. So calibration
with ABC followed by fitting an alternative model is something that might be feasible
and useful when the full calibration with MCMC is not possible. Furthermore, if the
discrepancy for the check has been constructed to examine the adequacy of a certain
aspect of the model specification the failure of the check may suggest a direction in
which the current model should be expanded. Clearly the exact calibrated posterior
predictive p-value would be preferable if it could be obtained, but if not the regression
approximated version would be useful under some circumstances and might lead to the
fitting of an improved alternative model.

5.4 Capture–recapture example

We consider a capture–recapture dataset on the European Dipper (Cinclus cinclus)
collected by Marzolin (1988). The data is collected over six years and is shown in Table 1.
Lebreton et al. (1992) apply various Cormack–Jolly–Seber (CJS) survivor models to
this data. The most general model can be described as follows. Let i and j be two
indices related to a particular year relative to the year the experiment was initiated.
For example, since the experiment began in 1981, here i = 1 denotes 1981 and j = 2
denotes 1982 etc. Let φi be the probability that an animal survives from year i to i+1
for i = 1, . . . , 6, pj be the probability that an animal is captured in the jth year for
j = 2, . . . , 7 and p̃j = 1− pj . A data point yij consists of the number of animals caught
in year j out of the number of animals released in year i, Ri. The number of animals
that are never caught during the experimental study that are released in year i is thus
given by ri = Ri −

∑7
j=i+1 yij .

Each row in Table 1 can be assumed to be an independent draw from a multinomial
distribution with the number of trials given by Ri and probabilities as shown in Table
1 together with the probability χi of never being captured if released in year i. Thus χi

is simply one minus the sum of the probabilities in the row (and is therefore a function
of the model parameters). Hence the likelihood of the data is given by

p(y|θ) ∝
6∏

i=1

χri
i

7∏
j=i+1

(
φipj

j−1∏
k=i+1

φkp̃k

)yij

,

where θ is the vector of model parameters and y = {yi,j |i = 1, . . . , 6, j = 2, . . . , 7}. We
consider two models. The first is the previously described model with 12 parameters
(referred to as the so-called T/T model, θ = (φ1, . . . , φ6, p2, . . . , p7)) while the second



76 Approximation of Bayesian Predictive p-Values with Regression ABC

i Ri 1982 1983 1984 1985 1986 1987

1 22
11 2 0 0 0 0

φ1p2 φ1p3
2∏

j=2

φj p̃j φ1p4
3∏

j=2

φj p̃j φ1p5
4∏

j=2

φj p̃j φ1p6
5∏

j=2

φj p̃j φ1p7
6∏

j=2

φj p̃j

2 60
24 1 0 0 0

φ2p3 φ2p4
3∏

j=3

φj p̃j φ2p5
4∏

j=3

φj p̃j φ2p6
5∏

j=3

φj p̃j φ2p7
6∏

j=3

φj p̃j

3 78
34 2 0 0

φ3p4 φ3p5
4∏

j=4

φj p̃j φ3p6
5∏

j=4

φj p̃j φ3p7
6∏

j=4

φj p̃j

4 80
45 1 2

φ4p5 φ4p6
5∏

j=5

φj p̃j φ4p7
6∏

j=5

φj p̃j

5 88
51 0

φ5p6 φ5p7
6∏

j=6

φj p̃j

6 98
52
φ6p7

Table 1: Capture–recapture data. Also shown are the probabilities (under the general
CJS model) that an animal contributes to each cell in the table if released in a certain
year and caught in a subsequent year.

model is constrained, with φi = φ and pj = p (the so-called C/C model, θ = (φ, p)).
Both of these models are considered by Hjort et al. (2006), who estimate both the
posterior predictive p-value (ppp) and calibrated posterior predictive p-value (cppp)
based on the discrepancy

D(y, θ) =
∑
i,j

(y
1/2
ij − e

1/2
ij )2.

Here eij is the expected number of captured animals for the i, jth cell, which involves
the model parameters θ and the release numbers Ri. Here we repeat the analysis of
Hjort et al. (2006) but consider ABC to speed up the calculations. All the full posterior
computations we use here for comparison with the ABC results are based on a sequential
Monte Carlo (SMC) algorithm, which is built upon the base algorithm of Chopin (2002)
(see also Del Moral et al. (2006) for a reference on SMC for static models). Details of the
SMC algorithm are given in the supplementary materials (Nott et al., 2016). We chose
SMC here as the algorithm that we use does not require any tuning, and is thus suitable
for analysing datasets simulated from a prior predictive distribution, which might lead
to very different posteriors.

For the C/C model, independent and uniform priors over the unit interval are placed
over φ and p. SMC is run using N = 10,000 particles, which produces a ppp of roughly
0.061 (consistent with Hjort et al. (2006)). The cppp is estimated using the double sim-
ulation approach with 10,000 simulated datasets from the prior predictive distribution.
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Figure 3: Prior predictive ppp distributions for the C/C model based on (a) SMC,
(b) ABC and (c), (d) QQ-plot and scatterplot of SMC versus ABC.

Using the SMC approach with N = 1,000 particles on each of these datasets results in
a prior predictive distribution of ppps as shown in Figure 3(a). Following this process
we obtain a cppp of 0.043. Hjort et al. (2006) obtain a value of 0.022 using 500 prior
predictive datasets in their calculations. Overall about 32 hours of computation was
required.

The ABC approach is based on 100,000 draws from the prior. For each dataset, 1,000
nearest neighbours are kept in implementing the ABC regression algorithm. Note that
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this is the same number of particles used in the SMC sampler. Neural network regres-
sion is then applied in order to refine the distribution of the discrepancy values. The
default implementation of the abc R package (Csilléry et al., 2012) is used. The summary
statistics chosen in the ABC approach are the maximum likelihood estimates, which are
asymptotically sufficient and low dimensional and seem to yield a good ABC approx-
imation, in the sense that the ABC posterior distribution is similar to that obtained
using non-ABC methods without summary statistics. Using this process we obtain an
unadjusted ppp of 0.057 (0.061 for the likelihood-based SMC approach). For the double
simulation, we use exactly the same 10,000 prior predictive datasets as used in the SMC
approach. With the same ABC settings used to obtain the ppp, the estimated cppp was
0.047 (compared to 0.043 obtained using SMC). Figure 3(b) shows the distribution of
prior predictive ppps obtained and Figure 3(d) shows a good correspondence between
the ppp values obtained under SMC and ABC for the 10,000 datasets. We do notice,
however, that there is some piling up of p-values near zero and one for the ABC ap-
proach. The ABC approach is roughly 4–5 times faster than the SMC method, requiring
7 hours of computation. The ABC approach is much faster still if a simpler regression
adjustment approach is used (say linear rather than the neural network method) but
the neural network adjustment is most effective in this case: a similar plot to Figure 3(b)
using local linear regression adjustment showed a much poorer agreement between the
ABC and SMC answers for this problem.

For the T/T model, using the SMC approach with N = 10,000, we obtain an unad-
justed ppp of 0.070 (compared to 0.075 obtained in Hjort et al. (2006)). We simulate
10,000 datasets from the prior predictive distribution for calibration purposes. Due to
the high dimensionality of the parameter, the SMC approach is rather expensive, and
we stop the process after 6859 prior predictive datasets (the distribution of prior pre-
dictive ppps is shown in Figure 4(a)). The SMC approach is roughly 10 times slower
than the ABC approach. Using N = 1,000, we obtain a cppp of 0.008 (compared to the
value 0.002 obtained by Hjort et al. (2006)).

For this model the sufficient statistics are given by the row and column sums of
Table 1. Thus we use these as the summary statistics in our ABC approach. This time
we use 1,000,000 parameters from the prior for ABC rejection and keep 1,000 samples
in the localization step of the ABC algorithm. Again we refine using a neural network
with the default implementation in the abc R package. The estimate of the unadjusted
ppp from the ABC approach is 0.021, which is quite different to the estimated 0.070
obtained from SMC. This is not surprising given that ABC approximations typically
deteriorate in higher dimensional problems, due to the difficulty in generating simulated
data very close to the observed. The distribution of prior predictive ppps is also markedly
different to that generated from SMC (see Figure 4(b)). Under this distribution of ppps,
the cppp was estimated at 0.115. The lack of agreement between the cppp and ABC
based approximation to it is not necessarily a problem for the reasons discussed in
Section 5.3: the ABC approach represents a different kind of check with a sensible
interpretation.

Finally we discuss the Monte Carlo (MC) variability of the results. For both the
C/C and T/T examples, we replicated the entire ABC calibration process 10 times,
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Figure 4: Prior predictive ppp distributions for the T/T model based on (a) SMC and
(b) ABC.

which includes generating a new set of prior predictive simulations each time. We find

that there is a reasonable amount of MC variability in estimating individual ppps. Our

experience suggests that this variability is due to the neural network regression, which

is a stochastic procedure because of the random initialization used in the optimization

of the model parameters and the existence of multiple modes in the relevant objective

function. Interestingly, though, despite the variability in individual ppps, we find that

the prior distribution of ppps, the distribution of values that we use for calibration,

is very similar across the 10 runs. That is, variability inherent in the neural network,

while it does affect the variability of individual ppp values, does not really affect the

overall distribution of prior predictive ppp values. For the C/C model, if we naively

repeat the whole calibration process 10 times we obtain a mean estimated cppp of

0.047 with a standard deviation of 0.016. However, if we fix the unadjusted ppp for

the observed data and compare it with the 10 distributions of prior predictive ppps we

obtain a mean estimated cppp with a standard error of roughly 0.002 so that the MC

variability is dominated by the between-run variability of the unadjusted ppp estimates

for the observed data. Therefore, our suggestion is to replicate the neural network

process several times and take the average in order to obtain an unadjusted ppp for

the observed data with a low Monte Carlo error, but not to do this in the estimation

of the prior distribution of the ppps used for calibration. The unadjusted ppp for the

C/C and the T/T models presented above is obtained by averaging the results of 10

and 20 neural network regression fits, respectively; since such averaging is not done for

the distribution of prior predictive ppps, this only results in a small amount of extra

computation.
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6 Discussion

We have explored the potential for using regression ABC methods in calculation of
Bayesian predictive p-values in some cases where high accuracy of the computations is
not required. This is a new application of ABC methods as far as we are aware. The
methods of weakly informative prior choice that we have suggested are also easily applied
to models which themselves require an ABC treatment for inference – for these models
it is difficult to derive the usual weakly informative prior choices as those may require
a knowledge of the likelihood, such as the ability to compute the Fisher information. In
this work we have used the non-invariant conflict p-value of Evans and Moshonov (2006)
rather than its invariant counterpart proposed in Evans and Jang (2010). It would be
interesting to see if computation of the invariant p-value could be routinely attempted
using similar methods to the ones we have developed.

Supplementary Material

Supplementary material for “Approximation of Bayesian predictive p-values with re-
gression ABC” (DOI: 10.1214/16-BA1033SUPP; .pdf).

References
Bayarri, M. J. and Berger, J. O. (2000). “P values for composite null models (with discus-
sion).” Journal of the American Statistical Association, 95: 1127–1142. MR1804239.
doi: https://doi.org/10.2307/2669749. 72

Bayarri, M. J. and Castellanos, M. E. (2007). “Bayesian checking of the sec-
ond levels of hierarchical models.” Statistical Science, 22: 322–343. MR2416808.
doi: https://doi.org/10.1214/07-STS235. 72

Beaumont, M. A., Zhang, W., and Balding, D. J. (2002). “Approximate Bayesian com-
putation in population genetics.” Genetics, 162: 2025–2035. 60, 63, 67, 69

Blum, M. G. B. (2010). “Approximate Bayesian computation: a nonparametric per-
spective.” Journal of the American Statistical Association, 105(491): 1178–1187.
MR2752613. doi: https://doi.org/10.1198/jasa.2010.tm09448. 60

Blum, M. G. B. and François, O. (2010). “Non-linear regression models for approx-
imate Bayesian computation.” Statistics and Computing , 20: 63–75. MR2578077.
doi: https://doi.org/10.1007/s11222-009-9116-0. 60, 63, 64

Bowman, A. W. and Azzalini, A. (2014). “R package sm: nonparametric smoothing
methods (version 2.2–5.4).” http://azzalini.stat.unipd.it/Book_sm 69

Box, G. E. P. (1980). “Sampling and Bayes’ inference in scientific modelling and ro-
bustness (with discussion).” Journal of the Royal Statistical Society, Series A, 143:
383–430. MR0603745. doi: https://doi.org/10.2307/2982063. 59, 61

Chopin, N. (2002). “A sequential particle filter method for static models.” Biometrika,

https://doi.org/10.1214/16-BA1033SUPP
http://www.ams.org/mathscinet-getitem?mr=1804239
https://doi.org/10.2307/2669749
http://www.ams.org/mathscinet-getitem?mr=2416808
https://doi.org/10.1214/07-STS235
http://www.ams.org/mathscinet-getitem?mr=2752613
https://doi.org/10.1198/jasa.2010.tm09448
http://www.ams.org/mathscinet-getitem?mr=2578077
https://doi.org/10.1007/s11222-009-9116-0
http://azzalini.stat.unipd.it/Book_sm
http://www.ams.org/mathscinet-getitem?mr=0603745
https://doi.org/10.2307/2982063


D. J. Nott, C. C. Drovandi, K. Mengersen, and M. Evans 81

89(3): 539–551. MR1929161. doi: https://doi.org/10.1093/biomet/89.3.539.
76
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