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Intrinsic Bayesian Analysis for Occupancy
Models

Daniel Taylor-Rodŕıguez∗, Andrew J. Womack†, Claudio Fuentes‡,
and Nikolay Bliznyuk§

Abstract. Occupancy models are typically used to determine the probability of a
species being present at a given site while accounting for imperfect detection. The
survey data underlying these models often include information on several predic-
tors that could potentially characterize habitat suitability and species detectabil-
ity. Because these variables might not all be relevant, model selection techniques
are necessary in this context. In practice, model selection is performed using the
Akaike Information Criterion (AIC), as few other alternatives are available. This
paper builds an objective Bayesian variable selection framework for occupancy
models through the intrinsic prior methodology. The procedure incorporates pri-
ors on the model space that account for test multiplicity and respect the poly-
nomial hierarchy of the predictors when higher-order terms are considered. The
methodology is implemented using a stochastic search algorithm that is able to
thoroughly explore large spaces of occupancy models. The proposed strategy is
entirely automatic and provides control of false positives without sacrificing the
discovery of truly meaningful covariates. The performance of the method is evalu-
ated and compared to AIC through a simulation study. The method is illustrated
on two datasets previously studied in the literature.

Keywords: imperfect detection, intrinsic priors, model priors, strong heredity,
Bayesian variable selection, AIC.

1 Introduction

It is often the case that measurements recorded for a given response are, at best, a
noisy version of the variable of interest. A particular case of this issue is known as
imperfect detection, and constitutes a pervasive problem. For instance, in biological
surveys subject to imperfect detection, “presence/absence” data for a given species
actually become “detection/non-detection” data because a species may be present at
a given site yet be undetected in a survey. Ignoring imperfect detection may lead to
inaccurate measurement of the presences (Guillera-Arroita et al., 2014), which generally
results in biased parameter estimates (MacKenzie et al., 2002).
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As defined in the ecological literature, occupancy is the proportion of sites where a
target species is present, constituting a state variable instrumental to assess the distribu-
tion of species (MacKenzie et al., 2002). Over the past decade, site occupancy models
have been the main tool used by ecologists to estimate occupancy while accounting
for imperfect detection. Occupancy models describe the observed data by linking two
processes: presence and detection. Occupancy models adapt the conventional binary
regression model to produce separate estimates for presence and detection probabilities
(Dorazio and Taylor-Rodŕıguez, 2012). This separation is possible by surveying repeat-
edly the sampling locations, which provides additional information to better assess if
non-detection of the species truly corresponds to its absence. Conveniently, these models
can be fitted even if the number of surveys is unbalanced across sites. The core of the
occupancy model is characterized by the hierarchy

yij |zi ∼ Bern(zipij)

zi ∼ Bern(ψi), (1)

where yij is the binary detection indicator at the ith site (i = 1, . . . , N) during the jth
survey (j = 1, . . . , Ji). The detection probability for event {yij = 1} is pij whenever
the species is present; and zi is the presence indicator at the ith site with success
probability ψi. Note that the zi are imperfectly observed. At site i, whenever the vector
of detections yi �= 0, then we know that zi = 1, but yi = 0 does not imply that zi = 0. To
produce estimates of ψi and pij , site occupancy surveys collect information on several
predictors with the potential to influence habitat suitability (characterizing ψi) and
species detectability (characterizing pij). Given that some of the collected predictors
may be uninformative or redundant, variable selection techniques are instrumental in
identifying good models.

In this paper, we propose an objective Bayesian variable selection procedure for
occupancy models. Our approach is based on intrinsic, objective priors for the model
parameters. Additionally, we build priors over the model space that simultaneously
account for test multiplicity, and, if interactions and/or polynomial terms are considered,
respect the polynomial hierarchical structure among predictors.

Currently, variable selection procedures for occupancy models implemented in sta-
tistical software are mainly based on the Akaike Information Criterion (AIC) (Akaike,
1983). As a consequence, these procedures do not allow for valid post-selection inference
and uncertainty quantification, and typically require enumerating and fitting every pos-
sible model in the space of models under consideration (e.g., Mazerolle and Mazerolle,
2013; Fiske and Chandler, 2011). In practice, this enumeration is feasible only if the
model space is small enough, either because substantial knowledge about the underly-
ing ecological processes is available to constrain the model space, or because only a few
variables are considered to begin with. Nevertheless, many site occupancy surveys col-
lect large amounts of covariate information about the sampled sites, and since the total
number of candidate models grows exponentially in the number of predictors, choosing
a reduced set of models based on ecological intuition becomes increasingly difficult.

The AIC is designed to find the model that is the closest to the true (unknown) model
with respect to Kullback–Leibler divergence, identifying as good models those with
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smaller AIC values. It has been shown, however, that the AIC has certain limitations as
a model selection criterion. For instance, if nested models are being considered, the AIC
will not necessarily select the true model (Wasserman, 2000). In fact, the AIC generally
shows a weak signal-to-noise ratio and tends to prefer more complex models, even if
the true model is available (Rao and Wu, 2001). Other versions of the AIC address
this issue by including a bias correction factor that enhances the signal-to-noise ratio
(see Hurvich and Tsai, 1989; McQuarrie et al., 1997); however, these modified versions
cannot be used with occupancy models, as they depend on the effective sample size,
which is unknown for these models.

In this context, Bayesian methods are more appealing. Under regularity conditions,
when the true model is contained in a fixed model space, its posterior probability con-
verges to one as the number of sites and surveys per site both increase. In addition,
if the true model is not contained in the model space, the posterior probability of the
most parsimonious model closest to the true data generating process tends asymptoti-
cally to one. In the finite sample context, Bayesian methods allow for full and faithful
error propagation. Furthermore, the Bayesian machinery provides the means to conduct
valid inference accounting for model uncertainty.

A Bayesian selection procedure for occupancy models was described in Hooten and
Hobbs (2015). However, their implementation uses informative prior distributions on the
model parameters, tailored specifically to the example discussed in the paper, which
prevents the approach from being applicable to occupancy problems in general. It is
often the case that subjective elicitation of parameter and model prior distributions is
not possible, since neither the relationship between the response and the predictors, nor
the advantages of one model over another, are clearly understood. In addition, the use of
seemingly innocuous subjective priors may drastically affect outcomes. This has been a
recurring argument in favor of objective Bayesian procedures, which appeal to the use of
formal rules to build parameter priors that incorporate the structural information inside
the likelihood while utilizing some objective criterion (Kass and Wasserman, 1996).

To the best of our knowledge, the method proposed in this article is the first general
Bayesian selection procedure for occupancy models, that

1. bypasses the need for hyper-parameter tuning,

2. uses priors specifically designed for testing,

3. controls for test multiplicity, and

4. accounts for the hierarchical polynomial structure in the predictors.

In building our approach, we first derive intrinsic priors (Berger and Pericchi, 1996;
Moreno et al., 1998) for the model parameters in both the presence and detection com-
ponents of the single-season occupancy model. For the model priors, we consider the
ones proposed in Taylor-Rodriguez et al. (2016). These priors, in addition to controlling
for test multiplicity, allow restricting the model space to the set of models that respect
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(weakly or strongly) the polynomial hierarchy among the predictors whenever interac-
tions and higher-order terms are considered. As discussed in Peixoto (1987, 1990) when
covariate interactions and polynomial terms are present, failure to restrict the class of
models to those respecting strong heredity may result in incoherent variable selection.
This is because the model design matrices are not invariant to linear transformations of
order-one predictors (e.g., recentering of the main effect variables). Using the derived
intrinsic priors on the parameter space and the multiplicity correction priors on the
model space, we build a fast stochastic search algorithm that allows us to thoroughly
explore large spaces for the single-season occupancy model framework. This strategy is
completely automatic, avoiding the need for both tuning parameters in the sampling
algorithm and subjective elicitation of parameter prior distributions. Furthermore, as
any other Bayesian approach, it naturally enables parameter and model uncertainty
quantification.

The outline of the paper is as follows: in Section 2, we provide background on
occupancy models and set notation. In Section 3, we introduce our objective Bayesian
model selection method and develop the Gibbs sampler. In Section 4, we present results
from a simulation study and a comparison with selection using AIC. In Section 5, we
illustrate our methodology on two datasets, which have been previously examined in the
ecological literature (Kéry et al., 2005; Kery et al., 2010; Dorazio and Taylor-Rodŕıguez,
2012). We conclude the paper with a brief discussion. Code for all the tools proposed is
available in the R package OccOBayes. A description of the stochastic search algorithm
is included in the Supplementary Appendix (Taylor-Rodŕıguez et al., 2016).

2 Inference for a single model

This section briefly describes the estimation procedure for a single model. Assuming the
probit link, the occupancy model can be characterized in terms of latent variables, which
in turn allows one to relate the detection and occupancy probabilities to predictors. We
build an objective prior distribution for the regression coefficients using the expected
posterior prior framework (Pérez and Berger, 2002) where we condition on both the
observed data as well as the unobserved latent variables (Leon-Novelo et al., 2012).

2.1 The occupancy model with Probit link

The occupancy model in (1) is completed in two ways. First, the probabilities for detec-
tion pij and for presence ψi are linked to vectors of predictors qij and xi, respectively,
through appropriate link functions, gp(pij) = q′

ijλ and gψ(ψi) = x′
iα. We assume that

the link function is the inverse standard normal cdf, leading to probit models. Other bi-
nary regression models can be fit and lead to slightly more complicated computational
algorithms. Second, the parameters of the underlying space, here (α,λ), are given a
prior distribution π(α,λ). This paper proposes a prior distribution building on the
expected posterior prior method of Leon-Novelo et al. (2012).

Letting X and Q be the matrices whose rows are, respectively, vectors x′
i and q′

ij

for i = 1, . . . , N and j = 1, . . . , Ji, the Bayesian probit occupancy model is specified as
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yij |zi,α,λ,Q,X ∼ Bern(zipij) with pij = Φ
(
q′
ijλ

)
zi|α,λ,Q,X ∼ Bern(ψi) with ψi = Φ(x′

iα)

α,λ|Q,X ∼ π, (2)

where Φ is the standard normal cdf. As it will be made evident subsequently, we explic-
itly condition on X and Q since the priors devised for the model parameters depend
on these design matrices. Again, note that the zi are not perfectly observed. The sites
with yi = 0 provide no detections but this does not necessarily imply a lack of presence.
Thus, the model is a zero-inflated binary regression model where both lack of presence
and individual instances of detection are predicted with covariates. The observed data
vectors for the sites, y1, . . . ,yn, are independent given (α,λ) and

p(yi|α,λ,Q,X) =

⎛
⎝Φ (x′

iα)
∏
j

Φ
(
q′
ijλ

)yij
(
1− Φ

(
q′
ijλ

))1−yij

⎞
⎠

I{yi �=0}

×

⎛
⎝Φ (x′

iα)
∏
j

(
1− Φ

(
q′
ijλ

))
+ (1− Φ (x′

iα))

⎞
⎠

I{yi=0}

.

The model can be expanded in the spirit of Albert and Chib (1993) by introducing
latent variables at each level. Let vi be the underlying continuous latent variable for
presence at site i and wij be the underlying continuous latent variable for detection
during survey j from site i. The hierarchical model in (2) becomes

yij |zi, vi, wij ,α,λ,Q,X = ziI{wij>0}

wij |zi, vi,α,λ,Q,X ∼ N
(
q′
ijλ, 1

)
zi|vi,α,λ,Q,X = I{vi>0}

vi|α,λ,Q,X ∼ N (x′
iα, 1)

α,λ|Q,X ∼ π. (3)

When one uses a multivariate normal prior for (α,λ), the model in (3) can be fit
using a Gibbs sampler. As described in Dorazio and Taylor-Rodŕıguez (2012), the only
complication in using a Gibbs sampler is the fact that the sign of vi determines the
value of zi and so the Gibbs sampler has to proceed in two blocks. The first block,
which corresponds to a multivariate normal draw, is (α,λ|z,v,w,y,Q,X). The second
block is (v,w, z|α,λ,y,Q,X). Each zi is drawn from the distribution [zi|α,λ,y,Q,X],
which is a Bernoulli distribution with probability of success

ξi = I{yi �=0} +
Φ(x′

iα)
∏

j

(
1− Φ

(
q′
ijλ

))
Φ (x′

iα)
∏

j

(
1− Φ

(
q′
ijλ

))
+ 1− Φ (x′

iα)
I{yi=0},

and the vi and wij are sampled independently from their full conditionals. Each vi has a
truncated normal distribution with mean x′

iα and variance 1, restricted to the positive
real line when zi = 1 and to the negative real line when zi = 0. Each wij has a truncated
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normal distribution with mean q′
ijλ and variance 1 that is supported on the positive

real line when ziyij = 1, the negative real line when zi(1− yij) = 1, and the whole real
line when zi = 0.

The marginal p(y|X,Q) for the observed data can be estimated using the output
from the Gibbs sampler (Chib, 1995). In this sampling scheme, one can also perform pa-
rameter expansions for both v and w (Liu and Wu, 1999). These dramatically decrease
the autocorrelation between successive samples and reduce the asymptotic variance of
estimators (Roy and Hobert, 2007).

Alternatively, one can perform inference for the model specified in (2) directly us-
ing a Metropolis-Hastings algorithm (e.g., an independence chain, a random walk, or
Hamiltonian Monte Carlo). The output of the Metropolis Hastings algorithm can be
used to estimate the marginal of the observed data using the method outlined in Chib
and Jeliazkov (2001). When the sample size is large, an independence chain, using the
Laplace approximation to the posterior as a proposal density, provides accurate numer-
ical estimates of the posterior evaluated at its mode in a relatively small number of
samples.

2.2 An objective prior for (α, λ)

Intrinsic priors, as defined by Moreno et al. (1998), are an example of expected posterior
priors (Pérez and Berger, 2002). Concisely, an expected posterior prior for parameter θ
with prior πM under a model M is given by

πE
M (θ|πM ,m0) =

∫
pM (θ|D,πM )m0(D)dD,

where D is some imaginary data that is integrated out, pM (θ|D,πM ) is the posterior
of θ given data D under the model M with parameter prior πM , and m0 is a fixed
distribution for generating the data D. The properties of the data D are determined by
the investigator. For regression problems, this amounts to determining the number of
samples in the response and the associated design matrix. The generating model m0 for
the data D is usually taken to be a simple model, for instance an intercept-only model.
Thus, the expected posterior prior under model M is calibrated to the distribution m0.

Consider the context of multiple models, M0,M1, . . . , ,MK , where M0 is nested in
Mk for all k and model Mk has parameter θk with non-informative (often improper)
prior πN

k . In this context, M0 is referred to as the base model. The intrinsic prior for
each model is computed as

πIP
Mk

(θk|πN
k ,mN

0 ) =

∫
pNMk

(θk|Dk, π
N
k )mN

0 (Dk)dDk,

where Dk is a training sample for model Mk and mN
0 is the marginal density for Dk

under the base model. For the intrinsic prior, Dk is taken to be a minimal training
sample for model Mk under the prior πN

Mk
, which is a dataset of the smallest possible

size that provides a proper posterior for pNMk
(θk|Dk, π

N
k ). Of course, the intrinsic prior
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for the base model is just its original non-informative prior. When the prior for model
Mk is improper and only defined up to a multiplicative constant ck, the intrinsic prior
framework removes the ambiguity of these constants and each intrinsic prior is defined
up to a common multiplicative constant c0.

An extension of the intrinsic prior framework is to have the datasets Dk include
both observable and unobservable latent variables. Leon-Novelo et al. (2012) used this
approach in computing an objective prior for standard probit regression. There, the
authors conditioned on both the observed binary data as well as the unobserved con-
tinuous latent variables. Following their development, we form an objective prior for
the occupancy model by conditioning on the unobserved latent presence variables (z)
as well as the unobserved continuous latent variables for both presence and detection
(v,w). We refer to this objective prior as an intrinsic prior though its derivation differs
from that in Moreno et al. (1998) and Berger and Pericchi (1996).

Specifically, let X0 and Q0 be design matrices for presence and detection in the
model M0 and let X and Q be design matrices for a model M that nests M0. Let (α,λ)
and (α0,λ0) be the parameters of M and M0, respectively. Further, assume that the
prior distributions for the parameters under each model are constant, πN

M = cM and
πN
0 = c0. The intrinsic prior for (α,λ) is given by

πIP
M (α,λ|Q̃, X̃) =

∑
z̃,ỹ

∫∫
pNM (α,λ|z̃, ṽ, w̃, ỹ, Q̃, X̃)mN

0 (z̃, ṽ, w̃, ỹ|Q̃0, X̃0)dṽ dw̃, (4)

where the “∼” over variables indicates that these correspond to the training sample
that is to be integrated out. The formula in (4) is greatly simplified by the fact that,
under the non-informative prior, (α,λ) are conditionally independent of (z̃, ỹ) given
the continuous latents (ṽ, w̃). Moreover, the α and λ are conditionally independent of
each other given the continuous latents. Thus, (4) simplifies to

πIP
M (α,λ|Q̃, X̃) =

∫∫
pNM (α|ṽ, w̃, Q̃, X̃)pNM (λ|ṽ, w̃, Q̃, X̃)mN

0 (ṽ, w̃|Q̃0, X̃0)dṽ dw̃

=

∫
pNM (α|ṽ, X̃)mN

0 (ṽ|X̃0)dṽ ×
∫

pNM (λ|w̃, Q̃)mN
0 (w̃|Q̃0)dw̃, (5)

where the last equality follows from the assumptions of (3) and the prior independence
of α and λ under πN

M . Both of the integrals in (5) are of the form of the integrals in
Leon-Novelo et al. (2012). Thus, the intrinsic prior is given by a product of singular
normal distributions.

The explication of these priors is greatly aided by the introduction of additional
notation. Because M0 is nested in M , we can write X = (X0 XA) and Q = (Q0 QA)
and can do the same for the design matrices for the minimal training sample. Similarly,
we can write α = (α′

0,α
′
A)

′ and λ = (λ′
0,λ

′
A)

′. The intrinsic prior is given by

αA|α0, X̃ ∼ N
(
0, 2

(
X̃′

A

(
I− H̃0z

)
X̃A

)−1
)

(6)

λA|λ0, Q̃ ∼ N
(
0, 2

(
Q̃′

A

(
I− H̃0y

)
Q̃A

)−1
)

(7)
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λ0,α0|X̃, Q̃ ∼ c0 × d0 (8)

where H̃0z and H̃0y are the hat matrices associated to X̃0 and Q̃0, respectively. Here
we include two undefined constants c0 and d0 for the reference prior of the base model,
corresponding to the flat priors for α0 and λ0, respectively.

The only remaining task for this intrinsic prior is to define the design matrices for
the minimal training samples. Letting pα = dim(α) and pλ = dim(λ), the minimal
training samples for v and w contain pα and pλ samples, respectively. Following Leon-
Novelo et al. (2012) and Casella and Moreno (2006), we define X̃ and Q̃ to be any
design matrices of dimensions pα × pα and pλ × pλ satisfying

X̃′X̃ =
pα
N

X′X and Q̃′Q̃ =
pλ
J•

Q′Q, (9)

where N is the number of sites and J• =
∑N

i=1 Ji is the total number of surveys. Note
that the covariance matrices in (6) and (7) are thus completely determined by X′X and
Q′Q.

3 The variable selection problem

The hierarchy in Equation (3) is given for a specific model with a fixed set of predictors.
This section develops the model selection problem for occupancy models. Each model
contains two components, one for presence and one for detection. Thus, model M is
decomposed as M = (My,Mz), where My is a component model for detection and
Mz is a component model for presence. The base model is M0 =

(
M0y ,M0z

)
, where

the component base model design matrices contain at least a column of ones for the
intercept. Each modelM is assumed to nestM0 and the prior for modelM is taken to be
the intrinsic prior defined in (6)–(8). The largest model is denoted byMF =

(
MFy ,MFz

)
and contains the largest possible component models for detection and presence. The
design matrices for these full components are XF and QF .

Let K = (Ky,Kz), where Ky and Kz denote the sets of column indices for QF and
XF that are not in Q0 and X0, respectively. The model space can then be represented
by the Cartesian product P (Ky)×P (Kz), where P (B) is the powerset of B. A specific
model is represented by A = (Ay, Az) with Ay ⊆ Ky and Az ⊆ Kz. Thus, the entire
model space M is populated by models of the form MA =

(
MAy ,MAz

)
, where MAy and

MAz are the corresponding component models for detection and presence determined
by the base covariates as well as covariates with indices in Ay and Az, respectively. It
follows that for the presence process z, the design matrix for the model MA is of the
form XMA

= (X0 XA), where X0 is the design matrix of the base model M0z and
XA is the matrix containing the covariates indexed by Az (and similarly for QMA

=
(Q0 QA)). Denote the regression coefficients of the model MA by αMA

= (α′
0,α

′
A)

′

and λMA
= (λ′

0,λ
′
A)

′ for presence and detection, respectively.

It is important to note that this construction using the Cartesian product provides
the largest possible model space for the occupancy model given the structures of the base
and full models. Investigators may wish to impose additional model space restrictions
based upon their (subjective) judgment. One means of achieving this restriction is to
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form two sets of models, My for detection and Mz for presence. The model space can
then be defined by the Cartesian product, M = My × Mz. One particular example
of such a restriction arises when higher-order terms are included in the detection or
presence models. Heredity conditions (Chipman, 1996) can be imposed on either model
space and appropriate priors defined (see Section 3.1).

3.1 Priors over the space of models

Here we outline the construction of prior distributions over the model space. To allow
for flexible modeling, it is assumed that the sets of covariates can potentially include
interaction effects, higher-order polynomial terms, and factor variables. The priors for
either the presence or the detection component have the same structure, and the joint
prior is the product of marginal priors of the two model components.

The priors placed on the model space for the presence and detection models respect
the hierarchy of the terms that could be included in a given model. Aspects of the
prior construction are described here and full details on such priors can be found in
Taylor-Rodriguez et al. (2016). The full model for either the presence or the detection
component is represented as a directed acyclic graph (DAG) with nodes representing
polynomial terms (powers or interactions; e.g., x1 or x2

1 or x1x
2
2) and with edges spec-

ifying inheritance relationships. For example, x1x
2
2 has edges (inherits) from its parent

nodes x1x2 and x2
2, also x2

1 inherits from its parent x1 but not from x2. Feasible models,
also known as models obeying weak heredity, correspond to a special kind of connected
subgraph of the full model DAG. First, they must include the base model DAG. Sec-
ond, a node η can only be included in a model’s subgraph only if there is a directed
path from a node in the base model to η. The priors considered here focus on models
satisfying strong heredity (also known as well-formulated models), which amounts to
requiring that for each node η in a model’s subgraph, all parents of η included in the
model’s subgraph.

Model prior probabilities are specified recursively via conditional node inclusion
probabilities (given the parent DAG) using a type of Markov condition reflected in
the principles of conditional independence and immediate inheritance (Chipman, 1996).
Conditional node inclusion is identified with a latent Bernoulli random variable and a
beta prior is placed on the inclusion probabilities (Taylor-Rodriguez et al., 2016). The
model space prior is obtained by integrating out these probabilities. In the simplest case,
all of conditional inclusion probabilities are assumed to be equal and the prior is called
the hierarchical uniform prior (HUP). The amount of penalization of complex models
can be adjusted (typically, increased relative to the purely combinatorial penalization of
the HUP) using node-specific inclusion probabilities and stronger shrinkage via the beta
hyper-priors on the inclusion probabilities; this results in the hierarchical independence
(HIP) and order priors (HOP) that group nodes of similar complexity together.

3.2 Model posterior probabilities

In order to compute the posterior probabilities of interest, we take advantage of the
model representation making use of the latent variables introduced for the presence and
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detection processes. Specifically, a conditional independence argument provides

p(MA|y, z,w,v) =
m(y, z,w,v|MA)π(MA)

m(y, z,w,v)

=
fy,z(y, z|w,v)m(w,v|MA)π(MA)

fy,z(y, z|w,v)
∑

M∗∈M m(w,v|M∗)π(M∗)

=
m(w,v|MA)π(MA)

m(w,v)
, (10)

because z is independent of MA once v is known and y is independent of MA once z
and w are known. In (10),

fy,z(y, z|w,v) =

N∏
i=1

Izi
{vi>0}I

(1−zi)
{vi≤0}

J∏
j=1

(ziI{wij>0})
yij (1− ziI{wij>0})

1−yij ,

m(w,v|MA) = m(v|MAz )m(w|MAy )

=

∫ ∫ (
N∏
i=1

φ(vi|x′
iα, 1;MAz )

)⎛
⎝ N∏

i=1

Ji∏
j=1

φ(wij |q′
ijλ, 1;MAy )

⎞
⎠×

πIP
MA

(α,λ|Q̃, X̃)dαdλ, (11)

with φ(·|μ, σ2;M) denoting the normal pdf with mean μ, variance σ2 conditional on
model M , and πIP

MA
(α,λ|Q̃, X̃) as defined in (5).

Under the intrinsic priors above, the closed-form expression for the marginal
m(v|MAz ) is

m(v|MA) = c0 (2π)
−(n−p0z )/2

(
pAz

2N + pAz

) (pAz
−p0z )

2

|X′
0X0|−

1
2 ×

exp

[
−1

2
v′

(
I−H0z −

(
2N

2N + pAz

)
H⊥

Az

)
v

]
, (12)

where H⊥
Az

is the hat matrix associated with (I−H0z )XA. Similarly, the marginal dis-
tribution for w under model MA is

m(w|MA) = d0 (2π)
−(J•−p0y )/2

(
pAy

2J• + pAy

) (pAy
−p0y )

2

|Q′
0Q0|−

1
2 ×

exp

[
−1

2
w′

(
I−H0y −

(
2J•

2J• + pAy

)
H⊥

Ay

)
w

]
, (13)

where H⊥
Ay

is the hat matrix associated with (I − H0y )QA and J• =
∑N

i=1 Ji is the

total number of surveys. Finally, the marginals for the base model M0 =
(
M0y ,M0z

)
are

m(v|M0) =

∫
c0 N (v|X0α0, I) dα0
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= c0(2π)
− (n−p0z )

2 |X′
0X0|−

1
2 exp

[
−1

2
(v′ (I−H0z )v)

]
(14)

and

m(w|M0) = d0(2π)
−

(J•−p0y )

2 |Q′
0Q0|−

1
2 exp

[
−1

2

(
w′ (I−H0y

)
w
)]

. (15)

The specification of the model posteriors in Equation (10) is completed using the con-
struction of the priors π(MA) over the model space; see Section 3.1.

The advantage of (10) is that the posterior of model MA can be represented as

p(MA|y) =
∫∫∫

p(MA|y, z,w,v)f(z,w,v|y)dzdwdv, (16)

which provides for straightforward ergodic estimation of p(MA|y) if samples can be
drawn from f(z,w,v|y). If S such samples are obtained, then (16) can be approximated
by

S−1
∑
�

p(MA|y, z(�),w(�),v(�)). (17)

Such draws can be obtained using reversible jump Markov Chain Monte Carlo (RJM-
CMC) (Green, 1995), as described in the Supplementary Appendix. One subtle point of
difficulty is the calculation of m(w,v) =

∑
MA

m(w,v|MA)π(MA) in the denominator
of (10) when the space of models is too large to be enumerated (or if the necessary
calculations for each model and each draw of (w,v) are too arduous). In such a case,
the sum may be approximated by T−1

∑
t m(w,v|M (t))π(M (t)), where t indexes a set

of T models. For instance, t could index the set of models visited during the RJMCMC
sampler or a larger set of models could be used (the posterior of a model MA not in
this set can be estimated using (17)).

4 Simulation experiments

This section considers nine different scenarios where we explore a range of detectabil-
ity and prevalence regimes to assess the behavior of the proposed algorithm. For each
model component, the base model is taken to be the intercept-only model, and the full
models considered for the presence and the detection have, respectively, five and three
predictors. Therefore, the model space contains 25 × 23 = 256 candidate models. The
assumed true models are MTz = {1, x1, x2, x5} for the presence and MTy = {1, q2, q3}
for the detection, where 1 represents the intercept. This small model space is consid-
ered so that comparisons with selection using AIC (which generally requires complete
enumeration of the model space) can be made.

The simulation scenarios we consider vary depending on where the distributions
for the detection and presence probabilities are centered. That is, we set the aver-
age probability for detection and presence to predefined values p̄ and ψ̄, respectively.
If the detection probabilities are centered near one, a non-detection commonly im-
plies a non-presence since the detection is almost perfect. On the contrary, if the
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detection probabilities are centered close to zero (as with cryptic species), then the
uncertainty surrounding an observed zero is greater, making it more difficult to de-
termine if this also corresponds to a true zero in the presence. Now, combining the
different values for p̄ with different values for the center of the distribution for the
presence probabilities ψ̄, we can account for a variety of possibilities observed in real
data, ranging from cryptic but highly prevalent species, to easy to detect but very rare
species.

The mean probability values for detection and presence that determine our scenarios
correspond to the pairs (p̄, ψ̄) ∈ {0.2, 0.5, 0.8}×2. To match the target values (p̄, ψ̄),
15 independent sets of {XF ,QF } were drawn from the standard normal distribution,
and for each of them the true model parameters were chosen to solve for α and λ the
equations ψ̂(α) = ψ̄ and p̂(λ) = p̄, where

ψ̂(α) =
1

N

N∑
i=1

Φ(x′
iα) and

p̂(λ) =
1∑N

i=1 Ji

N∑
i=1

Ji∑
j=1

Φ(q′
ijλ).

For each scenario and dataset combination, we used the best solution from ten runs of
a gradient-based (quasi-Newton) algorithm initialized from independent standard nor-
mal draws. Finally, having determined the regression parameters corresponding to the
different scenarios and conditioning on MTz and MTy, the true presence and detection
indicators were drawn from the probit model described by (2) for each dataset.

The results are shown in Figure 1, which depicts the average proportion of true
positive (TP) and false positive (FP) predictors included in the selected models under
each scenario. The TP predictors are those in the true model that are also in the
selected model, and the FP predictors correspond to those absent from the true model
but included in the chosen model. The selected models are the lowest AIC model and the
median probability model (MPM) under the objective Bayes methodology. The MPM
is the model that includes all predictors whose marginal posterior inclusion probability
(MPIP) is greater than or equal to 0.5, where the MPIP for a given predictor is defined
as

p(predictor is included|y) =
∑

M∈M
p(M |y,M)I{predictor∈M}. (18)

The TP and FP rates for both detection and presence components lead to the same con-
clusions. In terms of the TPs, the AIC selects a slightly higher number of true positive
terms, especially for the component of the model associated to the presence indicators.
Nonetheless, these differences are modest at most. Conversely, the resulting proportions
of false positive terms (FP) tend to be strinkingly lower using our method, especially for
the presence component in those scenarios where there is poor detection (i.e., p̄ = 0.2).
Remarkably, whenever the species is highly prevalent (ψ̄ = 0.8) and detection ranges
between moderate and high (p̄ = 0.5, 0.8), the number of false positive terms under our
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Figure 1: Proportion of true positives (TP) and false positives (FP) using the proposed
approach and AIC for the detection and the presence components of the model.

approach is very close to zero in both model components. Also, with (p̄, ψ̄) = (0.2, 0.8)
our method substantially outperforms AIC in filtering out the false positive terms both
in the presence and detection components.

These results are very encouraging: the proposed method not only reduces the inclu-
sion of false positive terms in comparison to AIC but also has comparable performance
finding true predictors.
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5 Case studies

In this section, we analyze two datasets. First, we consider presence–absence data for
mallard wild ducks (Anas platyrhynchos), collected as part of the 2002 Swiss breeding
bird monitoring program. For our second example, we consider the blue hawker dragon-
fly data, which had been previously studied using AIC as the variable selection strategy
in Kery et al. (2010). The mallard data is extremely clean, with sufficient sites being
surveyed, which for the most part are visited the same number of times. On the other
hand, the blue hawker dataset was collected through a large scale citizen science effort.
As such, although the number of sites visited is large for this type of data, it displays
large asymmetries in the surveying effort, posing a more challenging problem for this
type of analysis.

Both data sets contain a sufficiently small number of predictors so that enumeration
of the entire model space is feasible. Therefore, for these data analyses, we present
estimators of posterior probabilities from enumeration (EPE), renormalization (RPE),
and visit frequency (FPE). While all estimates exhibit Monte Carlo error, we treat the
enumeration estimators as a gold standard estimator because the Monte Carlo error
can be easily controlled. We implement the method of Chib and Jeliazkov (2001) for
estimation of the marginal and use a relative magnitude stopping rule to determine
the length of sampling (Flegal and Gong, 2013). In particular, we require that the 95%
confidence interval for the estimator for the log posterior evaluated at its mode be less
than 1% of the size of the estimate.

To obtain the EPE for each model, we run the MCMC algorithm defined by (3) using
the priors given in (6)–(8). These yield draws of the regression coefficients conditional on
each model, which are then used to calculate the marginal density of the response. We
calculate the EPEs using the marginals obtained under each model. Once the EPEs are
in place, we then compare them to their corresponding MCMC estimates using either
FPE or RPE. Expression (17) enables direct calculation of the RPEs for a specified
set MA of models, which may even include models that were not sampled. Given the
moderate size of the model space for these examples, in both cases we set MA to be the
entire model space. In contrast, as a general rule the FPEs are only available for the set
of the visited models in the RJMCMC. Finally, to compare our results to the traditional
approach using AIC, we use the “Akaike weights” (see Burnham and Anderson, 2003;
Burnham, 2004, for a definition and further information). These are obtained using
functions occu and dredge from the R packages unmarked and MuMin, respectively.
The AIC weights allow us to make direct comparison of the results provided by either
method, as they can be seen as posterior probabilities obtained from a specific prior
on the model parameters. However, as AIC is minimax-rate optimal for estimating the
regression function, it cannot be a consistent model selector, as demonstrated in Yang
(2005), making these priors ill-suited for variable selection.

5.1 The mallard data

As Switzerland is a small and mountainous country, it provides for large variation in
its topography and physio-geography. As such, elevation is a good candidate to predict
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species occurrence at a large spatial scale. It can serve as a proxy for habitat type,
intensity of land use, temperature, as well as some other biotic factors (Kery et al.,
2010). The data used in the illustration was collected by the Swiss breeding bird survey,
and had been previously used to derive abundance estimates in Kéry et al. (2005).

The monitoring program for common breeding bird species comprises more than
250 1-km2 quadrats distributed in a grid sample across Switzerland. Throughout the
breeding season, each quadrat is surveyed two or three times annually by an experienced
surveyor along a route, recording the date and whether visual or acoustic contact was
made. Elevation (elev) and forest cover (forest) were matched for the studied locations
from the Swiss Federal Statistical Office (Kéry and Schmid, 2004). Given that the route
length (length) across quadrats was not homogeneous, route length (within a quadrat)
was considered to account for variation in effective sample area. To model the detection
probabilities, survey duration divided by route length (ivel) was used as a measure
of effort. Also the date (date) was considered for the detection component since the
surveys were collected over a three month period, and behavioral changes that might
affect detection could be expected. Using the built-in feature of our algorithm to account
for the polynomial structure in the predictors, we considered a full quadratic surface for
the predictors, both in the presence as well as in the detection component. The dataset
contains 235 quadrats, of which two were surveyed once, 42 twice, and 191 were visited
three times.

Results

As mentioned above, given that this dataset contains only a few covariates, even when
considering the full quadratic surfaces, it is possible to perform complete enumeration of
the model space (which has 1,235 models). The results from our analyses are summarized
in terms of the MPIPs (calculated using (18)), the top ranked models (in terms of their
posterior probabilities), and the Median Probability Model (MPM), which is the model
containing only terms whose MPIPs are greater than 0.5. These measures were all
obtained for each method using the posterior probabilities from the joint model for
presence and detection.

Table 1 displays the MPIPs calculated with EPEs, RPEs, FPEs and AICw. Although
the MPIPs obtained from EPE are lower than those from the two other estimates (RPE
and FPE), for the most part all three share the same ordering, with the exception of the
length2 term in the presence component. It is worth noting that, although the MPIPs are
comparable for the three alternatives, for the detection component those from RPE are
considerably closer to the ones from EPE than those from FPE. The MPIPs from AICw

are considerably higher for most predictors than any of their Bayesian counterparts,
implying that good models resulting from AIC selection are more complex, as expected.

Using each of the first three columns displayed in Table 1 one can extract the me-
dian probability models (MPM). Following the same approach, with the last column in
Table 1, we obtain the 50% threshold model using the AIC weights. These models are
displayed in Table 2. The MPM matches for RPE and FPE, and this model in turn is
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EPE RPE FPE AICw

elev 0.9966 1.0000 1.0000 1.0000
forest 0.9446 0.9525 0.9489 0.9987
length 0.4305 0.5998 0.5983 0.9625
length*forest 0.2153 0.3803 0.4090 0.8737
elev*length 0.2069 0.3336 0.3491 0.7561
elev*forest 0.1297 0.1448 0.1732 0.3577
elev2 0.1110 0.1293 0.1620 0.3347
forest2 0.1067 0.1229 0.1504 0.3077
length2 0.0734 0.1440 0.1639 0.5333

EPE RPE FPE AICw

date 0.1315 0.1982 0.3846 0.5573
ivel 0.0538 0.1476 0.3568 0.3086
date2 0.0258 0.0560 0.1119 0.3645
ivel2 0.0133 0.0540 0.0980 0.3220
ivel*date 0.0012 0.0250 0.0645 0.0527

Table 1: MPIPs from joint model for the presence (top) and the detection (bottom)
components for the mallard dataset.

similar to that from EPE, but the latter excludes the forest term in the presence com-
ponent. In spite of this discrepancy, it is noteworthy that the MPIP using EPE for this
term is 0.4305, being relatively close to the 0.5 threshold for the MPM. The comparable
model obtained using AIC weights is considerably larger than all the MPMs resulting
with EPE, RPE and FPE, all of which are nested within it.

Detection Presence
EPE {1} {1, elev, forest}
RPE {1} {1, elev, forest, length}
FPE {1} {1, elev, forest, length}
AICw {1, date} {1, elev, forest, length, length*forest, elev*length}

Table 2: MPMs obtained from MPIPs using EPE, RPE and FPE and pseudo-MPM
with AIC weights for the mallard dataset.

Finally, Table 3 displays the five highest probability models (HPMs) under the three
calculation alternatives, as well as those resulting from AIC based ranking. Remarkably,
the highest probability model is the same under the true posterior probabilities and
the two estimation methods considered. Among the set of top models resulting from
EPE, four are among the top five from RPE, and three are among those from FPE.
Additionally, the model ranked fifth using EPE, which does not match with any of
the top five HPMs from RPE or FPE, is ranked eighth and ninth with RPE and FPE,
respectively. Also, models ranked fifth under RPE (which coincides with model four with
FPE) and fifth under FPE, which are not among the top five with EPE, are respectively
ranked eighth and seventh with EPE. Again, more complex top models result from AIC
selection in the presence component, and notably the model posterior probabilities are
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highly diluted across the model space, with the five top models concentrating only about
8% of the posterior mass. This contrasts markedly with the mass harnessed by the top
five models with the other three methods, which are approximately 26% with FPE, 43%
for RPE and 55% with EPE.

EPE
Detection Presence p(My,Mz|y)

1 {1} {1,elev,forest} 0.3101
2 {1} {1,elev,length,forest} 0.0954
3 {1} {1,elev,length,forest,elev*length,length*forest} 0.0634
4 {1} {1,elev,length,forest,elev*length} 0.0420
5 {1} {1,elev,forest,elev*forest} 0.0373

RPE
Detection Presence p(My,Mz|y)

1 {1} {1,elev,forest} 0.1821
2 {1} {1,elev,length,forest,elev*length,length*forest} 0.0933
3 {1} {1,elev,length,forest,elev*length} 0.0576
4 {1} {1,elev,length,forest} 0.0572
5 {1} {1,elev,length,forest,length*forest} 0.0431

FPE
Detection Presence p(My,Mz|y)

1 {1} {1,elev,forest} 0.1063
2 {1} {1,elev,length,forest,elev*length,length*forest} 0.0600
3 {1} {1,elev,length,forest,elev*length} 0.0354
4 {1} {1,elev,length,forest,length*forest} 0.0300
5 {1,date} {1,elev,forest} 0.0284

AICw

Detection Presence AICw(My,Mz|y)
1 {1,date} {1,elev,forest,length,elev*length,forest*length} 0.0192
2 {1,date} {1,elev,forest,length,length2,elev*length,forest*length} 0.0190
3 {1} {1,elev,forest,length,length2,elev*length,forest*length} 0.0136
4 {1} {1,elev,forest,length,elev*length,forest*length} 0.0136
5 {1,date2} {1,elev,forest,length,elev*length,forest*length} 0.0121

Table 3: Top five models with EPE, RPE, FPE and AIC for the mallard dataset.

The results in Tables 1–3 indicate that estimating the model posterior probabili-
ties using either RPE or FPE yield reasonable approximations to the actual posterior
probabilities. In particular, all methods rank models similarly, and if model averag-
ing was to be performed, these would all produce comparable results, as the derived
MPIPs resemble each other under the three alternatives. Nonetheless, following the re-
sults from Table 1 we prefer RPEs, as these appear to be converging faster towards
the benchmark posterior values (EPEs). These results are consistent with the findings
from exhaustive simulation experiments conducted in Taylor-Rodriguez et al. (2016),
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where overwhelming evidence was found in favor of renormalized model posterior es-
timates when compared to the frequency-based ones in the multiple linear regression
problem. For occupancy models, this behavior is more conspicuous in the detection
component than in the presence one, possibly due to the additional uncertainty arising
from only partially observing the presence indicators. In addition to the observation
that the renormalized posteriors are closer to those from enumeration, in larger model
spaces where not all models are visited by the stochastic search, it is possible to cal-
culate renormalized posteriors for a larger set of models than those visited, while with
frequency-based estimates this is not possible.

5.2 Blue hawker data

During 1999 and 2000, an intensive volunteer surveying effort coordinated by the Centre
Suisse de Cartographie de la Faune (CSCF) was conducted to analyze the distribution of
the blue hawker, Ashna cyanea (Odonata, Aeshnidae), a common dragonfly in Switzer-
land. Repeated visits to 1-ha pixels took place to obtain the corresponding detection
history. In addition to the survey outcome, the x- and y-coordinates, thermal level,
the date of the survey, and the elevation were recorded. Surveys were restricted to the
known flight period of the blue hawker, which occurs between May 1 and October 10. In
total, 2,572 sites were surveyed at least once during the surveying period. The number
of surveys per site ranges from 1 to 22 times within each survey year, with as many as
67% of the sites being surveyed only once, and only 5% of the sites being surveyed more
than 3 times. As such, the analysis of this data set is an illustration of a considerably
more challenging problem.

Kery et al. (2010) summarize the results of this effort using AIC-based model com-
parisons. To select the predictors in the detection component, the authors follow a
backwards elimination approach while keeping the presence component fixed at the
most complex model. To select the presence model, they choose among a group of three
models while using the chosen detection model. The full models considered in this study
are

Φ−1(p) = λ0 + λ1year+ λ2elev+ λ3elev
2 + λ4elev

3 + λ5date+ λ6date
2

Φ−1(ψ) = α0 + α1 year+ α2 elev+ α3 elev
2 + α4 elev

3,

where the term year denotes I{year=2000}.

Assuming these full models and intercept only base models (and disregarding the
polynomial hierarchy among predictors), the model space for this problem contains
26+4 = 1, 024 models in the joint model space. However, if the polynomial structure is
respected, without considering interactions (for compatibility with the analysis in Kery
et al. (2010)), the size of the model space for the detection component reduces to 24
models, and to eight models for the presence. This corresponds to a total of 192 models
in the combined space. In the exercise below, when using the proposed approach we
enforce the strong heredity condition through the priors over the model space.

As in the analysis of the Mallard dataset, we obtain the EPEs, the RPEs, and the
FPEs. The model ranks obtained with the posterior probabilities (or their estimates)
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are compared to those resulting from AIC selection. The functions used to conduct
selection with AIC did not constrain the model space to respect strong heredity, hence
for the AIC selection all 1024 models were considered. All results are compared to the
models ultimately recommended by Kery et al. (2010), given by

Detection:
{
1, elev, elev2, date, date2

}
Presence:

{
1, elev, elev2, elev3

}
.

Results

Table 4 shows the MPMs from either of the approaches considered obtained with the
MPIPs found in Table B.1 of Supplementary Appendix B. The MPMs obtained with
RPE and FPE coincide, and are similar to that from EPE, with the latter addition-
ally including the elev2 term. The pseudo-MPM that results when using AIC weights
contains all the term included in the MPMs from RPE and FPE, but adds the elev3

and year terms in the detection component. Note that this model does not respect the
polynomial hierarchy, including elev3 but not elev2.

Detection Presence
EPE {1,date,date2,elev,elev2} {1,elev,elev2}
RPE {1,date,date2,elev} {1,elev,elev2}
FPE {1,date,date2,elev} {1,elev,elev2}
AICw {1,date,date2,elev,elev3,year} {1,elev,elev3}

Table 4: MPMs obtained from MPIPs using EPE, RPE and FPE and pseudo-MPM
with AIC weights for the blue hawker dataset.

The top ranked models in terms of the true (EPE) and estimated posterior proba-
bilities (RPE and FPE), and from AIC-based selection are displayed in Table 5. The
top model obtained with EPE, RPE and FPE are the same for both the presence and
detection components, with the top AIC model not respecting the polynomial hierarchy
in the detection component (including the elev3 but not elev2) and having only the year
term in the presence component. Interestingly, four out of the top five models found by
EPE coincide with those from RPE, whereas only two from EPE are among the top 5
discovered with FPE, indicating again faster convergence of the renormalized estimates
when compared to the frequency based ones. Again, it is worth emphasizing that the
probability mass with AIC weights is much more diluted across the model space than
with any of its Bayesian counterparts.

Detection Presence p(My,Mz|y)
EPE {1,date,date2,elev} {1,elev,elev2} 0.2090
RPE {1,date,date2,elev} {1,elev,elev2} 0.3725
FPE {1,,date,date2,elev} {1,elev,elev2} 0.1974
AICw {1,date,date2,elev,elev3,year} {1,year} 0.0422

Table 5: Top ranked models using EPE, RPE, FPE and AIC weights for the blue hawker
dataset.
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6 Discussion

This paper developed the first objective Bayes methodology for variable selection us-
ing single-season site occupancy models, based on intrinsic priors derived from non-
informative priors. This solution uses latent variables to data-augment the analysis,
helping to seamlessly calculate the model posterior probabilities. Working on the latent
scale additionally facilitates the construction of a straightforward MCMC sampler and
posterior estimation using sample averages.

Because the intrinsic priors are built from non-informative priors, the need for hyper-
parameter specification is avoided, making the method entirely automatic and widely
applicable. Additionally, the types of prior distributions assumed on the model space
(HIP, HOP and HUP) enforce the heredity constraints required when performing selec-
tion with interactions and higher-order polynomial predictors. These classes also allow
for stronger penalization than the usual equal probability prior, further helping control
the false positive rate. These have been shown to be particularly useful in problems with
small and moderate sample sizes (for more details see Taylor-Rodriguez et al., 2016).
An important advantage of our method, relative to the AIC-based selection, is that the
resulting model posterior probabilities provide a measure of uncertainty associated with
choosing a particular model.

The stochastic search algorithm can be used to thoroughly explore large model
spaces by means of the renormalized posterior estimates (instead of the frequency-based
ones). This tool will allow practitioners to explore the model space without having to
enumerate it or preselect a subset of models, enabling its use with larger model spaces.

The simulation experiments confirmed the ability of the method to identify the
predictors present in the true model when considering both the highest and median
probability models. The objective Bayes method proved to be competitive with AIC
in detecting true predictors, and greatly outperformed AIC in reducing the number of
false positive predictors included in the models with high posterior probabilities.

The software used throughout the article was built into the R package OccOBayes
available at request. This package includes functions to run the variable selection pro-
cedure, as well as some auxiliary functions to validate a set of “best” models using a
held-out data set.

Supplementary Material

Supplementary Appendices of “Intrinsic Bayesian Analysis for Occupancy Models”
(DOI: 10.1214/16-BA1014SUPP; .pdf).
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