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Latent Class Mixture Models of Treatment
Effect Heterogeneity

Zach Shahn∗ and David Madigan†

Abstract. We provide a general Bayesian framework for modeling treatment ef-
fect heterogeneity in experiments with non-categorical outcomes. Our modeling
approach incorporates latent class mixture components to capture discrete het-
erogeneity and regression interaction terms to capture continuous heterogeneity.
Flexible error distributions allow robust posterior inference on parameters of in-
terest. Hierarchical shrinkage priors on relevant parameters address multiple com-
parisons concerns. Leave-one-out cross validation estimates of expected posterior
predictive density obtained through importance sampling, together with posterior
predictive checks, provide a convenient method for model selection and evalua-
tion. We apply our approach to a clinical trial comparing two HIV treatments
and to an instrumental variable analysis of a natural experiment on the effect of
Medicaid enrollment on emergency department utilization.

Keywords: treatment effect heterogeneity, subgroup analysis, causal inference,
latent class mixture model.

1 Introduction

In randomized experiments, it is often of interest to characterize treatment effect het-
erogeneity in terms of baseline covariates. Usually, the aim is to identify subpopulations
likely to have particularly positive or negative (or neutral) responses to treatment.
The process of searching for such subpopulations after the completion of an experi-
ment (without pre-specifying which subpopulations will be considered as candidates) is
called ‘post hoc subgroup analysis’. It is a controversial practice. Concerns about data
dredging and multiple comparisons (Rothwell, 2005) have led many authors to advise
against reporting results from post hoc subgroup analyses at all. However, it is our
view that post hoc analyses can produce informative insights that would be unlikely to
arise from limited pre-registered comparisons. Here, we illustrate an approach in which
identification of special subgroups is one byproduct of fully modeling treatment effect
heterogeneity more generally.

Specifically, we propose to model treatment effect heterogeneity using regularized
Bayesian latent class mixture models with treatment interaction terms and flexible
error distributions. By placing hierarchical shrinkage priors on relevant parameters, we
minimize data dredging concerns (Gelman et al., 2012). Flexible error distributions
allow robust posterior inference on parameters of interest. Cross validation based tools
for model evaluation and comparison (Gelfand, 1996; Vehtari and Lampinen, 2002),
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along with posterior predictive checks (Gelman et al., 1996), provide a mechanism for
gauging confidence in the substantive implications of model results.

These models are well suited to illuminate the shape of heterogeneity. The latent
class components capture ‘discrete heterogeneity’ while the treatment interaction terms
capture ‘continuous heterogeneity’. By continuous heterogeneity we mean variation in
subjects’ individual treatment effects that is well approximated by a smooth function of
underlying covariates. Discrete heterogeneity refers to variation in subjects’ individual
treatment effects that is associated with latent class membership, where latent class
membership may in turn be associated with baseline covariates. Discrete heterogeneity
is likely to be present if a treatment works through unobserved causal pathways that
may be discretely open or closed. For example, suppose a drug works better in people
with a specific phenotype for some protein receptor, but the presence of that phenotype
is not recorded as a baseline covariate in a clinical trial evaluating the drug. But suppose
that a recorded baseline covariate (say, weight) is associated with the presence of the
beneficial phenotype. Then treatment effect variation as a function of weight will be
better approximated by a latent class model with weight as a predictor of latent class
membership than by any smooth function of weight alone. It can sometimes be useful
to understand which type(s) of heterogeneity are present.

Despite our approach being a fairly straightforward application of Bayesian latent
class mixture models and existing model comparison and evaluation techniques, we have
not seen it in the subgroup analysis literature. Further, our approach offers a different
combination of strengths (and weaknesses) from those methods we have seen.

Employing parametric probability models of heterogeneity brings certain automatic
advantages. The parameter estimates have interpretable implications about the shape
of heterogeneity, and models provide estimates of uncertainty about those parameters.
Models also provide estimates of treatment effects for subpopulations and correspond-
ing uncertainty estimates. These are obvious features of parametric probability models
and are only worth mentioning because many methods for subgroup analysis are non-
parametric or not model based and do not share these features.

One general tactic in the literature is to use nonparametric machine learning al-
gorithms (often based on trees) to predict counterfactual outcomes of future subjects
under treatment and control. Examples of works in this vein include Kang et al. (2012);
Foster et al. (2011); Su et al. (2009), and others. These methods will frequently have su-
perior predictive accuracy and flexibility to ours. Some of them also use cross validation
to mitigate multiple comparisons concerns. However, most do not provide estimates of
uncertainty about their predictions and do not characterize the shape of heterogeneity
interpretably. Athey and Imbens (2015) recently proposed a machine learning approach
that produces valid standard errors for causal effect estimates within nodes of a tree fit
to a holdout validation set. Of course, holdout validation sets may not be practical for
smaller experiments.

A closely related line of work directly learns optimal treatment assignment rules
without first estimating counterfactual outcome response surfaces (Qian and Murphy,
2011; Zhang et al., 2012; Zhao et al., 2012). These methods are not interested in learning
about heterogeneity, just assigning the best treatment to each subject. They have similar
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strengths and weaknesses relative to our method as the machine learning approaches
described above.

Imai and Ratkovic (2013) employ a linear Support Vector Machine (SVM) with
interaction terms to model heterogeneity. The output of their model is interpretable,
and they place shrinkage penalties on the parameters to discourage overfitting. They
use a cross validation measure for model selection. One could replace their SVM with
a regression probability model and obtain uncertainty estimates as well. However, they
do not directly model discrete heterogeneity and do not consider uncertainty in their
model selection criterion.

There have been other examples of latent class mixture models in the literature. In
another context, Sobel and Muthen (2012) used a logistic-normal latent class mixture
model to reflect the assumption that there exists a subpopulation in which the treat-
ment has zero effect. Shen and He (2015) recently applied a similar model to identify
subgroups and developed a corresponding likelihood ratio test for the existence of la-
tent treatment effect classes. Neither of these approaches allows for continuous effect
modification, however, and both are very sensitive to the assumption of a normal error
distribution. We use very flexible error distributions so that our estimates are robust
to departures from normality. Working in a model evaluation and comparison frame-
work as opposed to Shen’s and He’s hypothesis testing framework allows us to consider
more complex models leading to better fits and more reliable results at the expense of
theoretical asymptotic guarantees.

The structure of this paper is as follows. In Section 2, we describe our approach
in detail, providing specifications of various models that we consider and explaining
the cross validation approach to model selection. In Section 3, we provide simulations
illustrating the utility of our approach and the importance of some of its features. In
Section 4, we reanalyze a clinical trial for an HIV treatment that was used as an example
in Shen and He (2015) and Zhang et al. (2012). We conclude that this trial exhibits
strong discrete heterogeneity, but not as strong as estimated by Shen and He (2015). In
Section 5, we apply our approach to data from the Oregon Health Insurance Experiment
(OHIE). The OHIE was a natural experiment that arose when Oregon instituted a
lottery to determine who could enroll in a new Medicaid program with limited openings.
This experiment allowed researchers to explore various public health and economic
effects of Medicaid. One prominent finding was that Medicaid increased emergency
department (ED) utilization contrary to many experts’ predictions. The researchers
performed multiple pre-registered and post hoc comparisons between subgroups and
discovered several possible heterogeneities. Because the OHIE study contains lots of
noncompliers (i.e. lottery winners who did not enroll in Medicaid and lottery losers who
managed to enroll through other channels), we follow the researchers in performing an
instrumental variable analysis using the principal stratification framework of Angrist,
Imbens and Rubin (1996). Our method extends naturally to this framework because
principal strata are themselves latent classes. When we include all covariates and employ
hierarchical shrinkage priors to deal with multiple comparisons, we do not see strong
evidence of heterogeneity associated with any of the observed covariates. In Section 6,
we conclude.
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Before proceeding, we prominently note a major limitation. Latent class mixture
models are not identifiable for categorical outcome distributions such as the Bernoulli
(Titterington, 1985). They are identifiable for the Poisson, negative binomial, or almost
any continuous outcome distribution, however (Titterington, 1985).

2 Methods

2.1 Potential Outcomes

We use the potential outcomes framework (Rubin, 1974) which formalizes the notion
that each experimental unit (e.g. patient) has a potential outcome for each possible
treatment assignment that unit might have received. We get to observe only the poten-
tial outcome corresponding to the treatment actually received. We consider the counter-
factual potential outcome that would have been observed had the treatment assignment
been different to be an unobserved random variable. For the ith unit, let Zi ∈ {0, 1}
denote the treatment assignment and Yz,i the potential outcome corresponding to the
possibly counterfactual treatment assignment Zi = z. Then Yz=1,i − Yz=0,i is the effect
of treatment on unit i. Note that this individual level causal effect can never be observed
because we never observe both potential outcomes. Still, if we specify a model for the
observed data it is possible to estimate E[Yz=1,i − Yz=0,i|Xi] – the conditional average
treatment effect (or CATE) – and the parameters that govern its value as a function of
covariate values Xi.

2.2 Model Specification

In Figure 1, we provide a graphical specification that describes all the models we con-
sider in this paper. We elaborate on the interpretation of the graph in the following
subsections. Note that this is not a causal graph in the sense of Pearl (1995), but rather
a distributional graph that contains counterfactual variables at some nodes.

Intent to Treat Analyses

An Intent to Treat (ITT) analysis is concerned with the effect of the random treatment
assignment Z and ignores whether subjects actually complied with their treatment as-
signments. An interpretation of the nodes of the graph in Figure 1 in the context of
a standard ITT analysis is as follows. The potential outcomes for the ith unit under
treatment assignment Z = z for z in {0, 1} are denoted Yz,i. Again, for each patient we
only observe one of these and the other is treated as missing. The expected potential
outcome for a unit with covariates Xi and latent class Gi under treatment assignment
Z = z is denoted by μz,i. That is, the μz,i are the marginal expectations of the potential
outcomes conditional on covariates and latent class. φz are parameters governing the
marginal distributions of the potential outcomes Yz,i apart from their means μz,i. For
example, in a normal model, the φz would be standard deviations. ρ governs the depen-
dence between the two potential outcomes but is completely unidentified because we
never observe both potential outcomes for any one unit. μz=0 is a function of covariates
Xi, latent class Gi, and parameters βC . μz=1,i = μz=0,i + Δi, where Δi denotes the
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Figure 1: Graphical model specification. The dashed lines indicate deterministic rela-
tionships, and the solid lines indicate stochastic relationships.

average treatment effect for units with covariates Xi and latent class Gi. Δi is a function
of Xi, Gi, and parameters βΔ and λΔ. βΔ determines how treatment effect varies con-
tinuously as a function of covariates, and λΔ determines the magnitudes of the discrete
differences in treatment effect between latent classes. The probability distribution that
generates Gi is a function of Xi and parameters βG. βΔ, λΔ, and βG are the parameters
of interest as together they describe how treatment effect heterogeneity is related to
covariates. The parameters σG, σΔ, and σC are variances for shrinkage priors that we
place on relevant parameters to avoid overfitting. We put weakly informative priors on
the shrinkage variances themselves so that the appropriate level of shrinkage is learned
from the data.

We make a few remarks on identifiability. We have included the dependence pa-
rameter ρ in the graphical model even though it is completely unidentified by data.
This is because we do not wish to assert that the potential outcomes are conditionally
independent given X and G, as would be implied if ρ were not in the graph. An im-
portant consequence of the unidentifiability of ρ is that it is impossible to obtain an
informative posterior or posterior predictive distribution for an individual level causal
effect without making unverifiable assumptions about the dependence between poten-
tial outcomes. We are limited to inferences and predictions involving only parameters
governing the marginal distributions of the potential outcomes. These parameters are
identified by the data, and their posterior distributions are not impacted by ρ (Chib,
2007), which we therefore do not include in the fit of our model. Suppose, for example,
we want to predict the causal effect of a drug on a new patient using a heterogeneity
model of the sort sketched above fit to data from the clinical trial for the drug. The
most we can extract from this (or any) model without making assumptions about ρ is
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a posterior predictive distribution of the average treatment effect for patients with the
same covariates and (redundantly, unobserved) latent class as our new patient (i.e. the
posterior predictive distribution of that new patient’s Δ parameter). We can also obtain
marginal posterior predictive distributions for each of that patient’s potential outcomes
but not their difference (i.e. the patient’s treatment effect).

Also, to avoid aliasing issues in parameters of interest, in all models of this form we
require that λGi

Δ increases with the latent class label Gi.

The framework of the graphical model in Figure 1 allows for flexibility in the selection
of functional forms, distributions, and number of latent classes. In this paper, we only
consider linear models for the potential outcomes and logistic regression models for
latent class membership. For potential outcomes, we consider models with two different
error distributions – MNorm with a normal error distribution and MFlex with a more
flexible three component Gaussian mixture error distribution.

MNorm specification:

Yz=0,i ∼ N(μz=0,i, σz=0) Yz=1,i ∼ N(μz=1,i, σz=1),

Gi ∼ Bernoulli(pi),

logit(pi) = αG +XiβG,

μz=0,i = αGi

C +Xiβ
Gi

C , Δi = λGi

Δ +XiβΔ, μz=1,i = μz=0,i +Δi,

αG
C ∼ N(0, 1000), βC ∼ N(0, σC),

αG ∼ N(0, 1000), βG ∼ N(0, σβG
), βΔ ∼ N(0, σΔ),

σC ∼ Uniform(0, 10), σG ∼ Uniform(0, 5),

σΔ ∼ U(0, 10), σ1 ∼ U(0, 10), σ0 ∼ U(0, 10),

λ0
Δ ∼ N(0, 1000), λ1

Δ − λ0
Δ ∼ Truncated Normal(0, 1000; 0+),

(where λ1
Δ − λ0

Δ is restricted to be positive to prevent aliasing).

(1)

MFlex is the same as MNorm except the MFlex error distributions are each a mean
0 mixture of three Gaussian components. In MFlex,

Yz,i ∼ qz1N(μz,i + dz1, σ
z
1) + qz2N(μz,i + dz2, σ

z
2) + qz3N(μz,i + dz3, σ

z
3),∑

qzi = 1,
∑

qzi d
z
i = 0,

d1 ∼ N(0, 1000), d2 ∼ N(0, 1000),

d3 is determined by the constraint that the error distribution has mean 0,

q ∼ Dirichlet(1).

(2)

We demonstrate through simulations in Section 3 that violations of normality in
MNorm can lead to biased estimation of parameters of interest, but using flexible error
distributions as in Mflex solves this problem. MNorm and MFlex are specified above for
the case of two latent classes and include application specific weakly informative priors.
Extension to multinomial logistic regression latent class models is straightforward.
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Aliasing can arise in the estimation of the parameters governing the flexible error
distribution, but that is not a problem because we are not interested in interpreting
those parameters.

Instrumental Variable Analyses

Sometimes a situation arises in which treatment is not randomly assigned, but an en-
couragement to take treatment is randomly assigned. If the random encouragement
only affects the outcome through the treatment and is indeed effective at inducing some
people to take the treatment, then the encouragement is referred to as an ‘instrument’
and an Instrumental Variable (IV) analysis may be performed. IV analyses estimate
the treatment effect in the subpopulation of units that would take the treatment if and
only if encouraged by their value of the instrument. Such units are referred to as ‘com-
pliers’ and the causal estimand in an IV analysis is referred to as the Complier Average
Causal Effect (CACE). The canonical example of an IV setting is a randomized clinical
trial with noncompliance. It is frequently the case in clinical trials that participants
do not comply with their treatment assignments. Patients in the treatment arm may
fail to take the treatment, and those in the control arm may find a way to take the
treatment anyway. Thus, a simple ITT analysis comparing the two arms of the trial
estimates the effect of treatment assignment rather than the effect of the treatment it-
self. However, random assignment to the treatment arm can be viewed as an instrument
that encourages patients to take the treatment. An IV analysis with assignment as the
instrument then estimates the effect of treatment on those patients who would comply
with whatever random treatment assignment they happened to receive.

We follow Sobel and Muthen (2012) in extending latent class heterogeneity to an
instrumental variable (IV) setting. We consider the case of a randomly assigned binary
instrument Z that encourages a binary treatment D. Suppose without loss of generality
that Z = 1 encourages D = 1. The outcome is denoted by Y . We use a potential
outcomes framework modified for the IV setting. As before, each subject is assumed
to have a potential outcome for each possible treatment (i.e. YD=1 and YD=0). Each
subject is also assumed to have a potential treatment for each possible value of the
instrument (i.e. DZ=1 and DZ=0). Further, each subject has a potential outcome for
each possible instrument value (i.e. YZ=1 and YZ=0). We assume that Z only affects the
outcome Y through D, so

YZ=z = YDZ=z
. (3)

Under this assumption, the CACE is equivalent to the average causal effect of the
instrument Z on Y among compliers. That is,

CACE=E[YD=1−YD=0|DZ=1 = 1, DZ=0 = 0]=E[YZ=1−YZ=0|DZ=1 = 1, DZ=0 = 0].
(4)

In other words, estimating the CACE amounts to estimating the causal effect of the
instrument among a subgroup (compliers). We are therefore interested in modeling the
heterogeneity of the effect of the instrument within the (latent) subgroup of compliers.
This places us back in a similar position to the ITT case. Indeed, models of treatment
effect heterogeneity in the instrumental variable setting can be represented by the same
graphical model (Figure 1) as the standard ITT case. However, the interpretation of cer-



838 Latent Class Mixture Models of Treatment Effect Heterogeneity

tain nodes changes, and there are certain added constraints on parameter values. Latent
class (the Gi node in Figure 1) now encodes compliance status as well as treatment effect
class. We follow Angrist, Imbens and Rubin (1996) in defining four types of subjects or
‘principal strata’: always takers, never takers, compliers, and defiers. Their definitions
are as follows: always takers would take the treatment regardless of their instrument
value; never takers would not take the treatment regardless of their instrument value;
compliers would take the treatment if and only if encouraged by their instrument; and
defiers would take the treatment if and only if discouraged by their instrument. We
make the common assumption that there are no defiers. We get to observe the princi-
pal strata of some subjects, but other subjects’ principal strata are latent. Units with
Z = 1 and D = 0 are definitely never takers, and units with Z = 0 and D = 1 are
definitely always takers. But units with Z = 1 and D = 1 could either be compliers
or always takers, and units with Z = 0 and D = 0 could either be compliers or never
takers. Gi takes one value for never takers, one value for always takers, and one value
for each treatment effect class for compliers to allow for discrete heterogeneity in the
CACE. Because we assume that the instrument only affects the outcome through the
treatment, the instrument effect (represented by Δi in Figure 1) must be 0 whenever
latent class Gi indicates a never-taker or always-taker.

In the IV application we consider in this paper, the outcome (number of visits to
the emergency department) is a count variable which we model as negative binomial.
We parameterize the outcome in terms of its mean and allow the log of the mean to
vary discretely with latent class and continuously with covariates. We call the resulting
model MIV , and it is specified below (including application specific weakly informative
priors).

MIV specification:

Yz=0,i ∼ NegBinom(pz=0,i, rz=0), Yz=1,i ∼ NegBinom(pz=1,i, rz=1),

Gi ∼ Multinomial Logistic Regression(Xi;βG),

pz=0,i = rGi/(rGi + μz=0,i), pz=1,i = rGi/(rGi + μz=1,i),

log(μz=0,i) = αGi

C +Xiβ
Gi

C ,

Δi = λGi

Δ +Xiβ
Gi

Δ , where λGi

Δ and βGi

Δ are set to 0

when Gi is Never Taker or Always Taker,

log(μz=1,i) = log(μz=0,i) + Δi,

αG
C ∼ N(0, 100), βC ∼ N(0, σC), βG ∼ N(0, σβG

), βΔ ∼ N(0, σΔ),

σC ∼ Uniform(0, 10), σG ∼ Uniform(0, 5), σΔ ∼ U(0, 10),

r1, . . . , rM ∼ U(0, 10) where M denotes the number of latent classes,

λcomplier,1
Δ ∼ N(0, 5), λcomplier,2

Δ − λcomplier,1
Δ ∼ Unif(0, 5).

(5)

Identifiability Issues

Identifiability issues can arise for any of the models discussed above when in reality there
are no latent classes. In this case, if the error distributions are properly specified, there



Z. Shahn and D. Madigan 839

can be negligible or no difference in the likelihood between different parameter settings.
For instance, the value of αG (which determines probability of class membership) is
irrelevant if there is no difference between classes. The estimates of βG will still converge
to 0 if there are no latent classes, though, so there is no danger of wrongly concluding
that there is discrete heterogeneity associated with observed covariates.

If the error distributions are misspecified, the latent class component of the model
might help to better model them. If there are no latent classes in reality, a Markov
Chain Monte Carlo (MCMC) may still converge to unique parameter values that best
model the misspecified error distributions. Despite convergence, it is still not correct to
interpret latent class component parameters in terms of heterogeneity in this scenario.
But, again, if there are no latent classes in reality then the estimates of βG should be
near 0 and there is no danger of wrongly concluding that heterogeneity is associated
with observed covariates.

Even if there are latent classes in reality, improvements in likelihood from better
modeling misspecified error distributions can pull estimates away from their ‘correct’
values (that is, the values with correct implications about heterogeneity if interpreted
as intended). That is why it is important to include flexible error distributions in the
model. Simulations in Section 3.2 illustrate this phenomenon.

Model Evaluation

We follow the framework for model comparison by Bayesian cross validation laid out in
Vehtari and Lampinen (2002). A sensible measure of a model M ’s value is the expected
utility of using M to make predictions about future observations generated by the
same process that generated the training data. A Bayesian model produces a posterior
predictive distribution for future outcome ynew given future covariates xnew and the
data D that the model M was fit to:

p(y|xnew, D,M) =

∫
p(y|xnew, θ,D,M)p(θ|D,M)dθ, (6)

where θ denotes the model parameters. The utility of M for predicting a new outcome is
some function u[ynew, xnew, p(y|xnew, D,M)] of the outcome and the posterior predictive
distribution that measures how well the posterior predictive distribution predicted the
outcome. We can estimate the expected utility of a model on populations similar to the
training data as the average

1

N

N∑
i=1

u[yi, xi, p(yi|xi, D
−i,M)], (7)

where D−i denotes the data with the ith observation removed and N is the number
of observations in D. This is the Leave One Out Cross Cross Validation (LOO-CV)
estimate of the expected utility of a model M. To estimate the expected utility on a
population whose covariates differ from the training data in known ways, a weighted
average can be used. Because it is computationally prohibitive to fit the model once for
each data point, we approximate the LOO-CV estimate using an importance sampling
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scheme proposed by (Gelfand, 1996; Vehtari and Lampinen, 2002). To compare two
models M1 and M2, interest lies in their expected difference in utility, which can be
estimated as:

ūM1−M2 =
1

N

N∑
i=1

u[yi, xi, p(yi|xi, D
−i,M1)]− u[yi, xi, p(yi|xi, D

−i,M2)]. (8)

Generally, the choice of utility function depends on the application. For many applica-
tions, the posterior predictive mean is taken as the forecast and an appropriate utility
is a monotonic function of the distance of the posterior predictive mean from the actual
outcome. For example, the squared error utility function would be:

use[ynew, xnew, p(y|xnew, D,M)] = (ynew −
∫

yp(y|xnew, D,M)dy)2. (9)

Such utilities are problematic for the purpose of distinguishing models that contain
discrete latent class heterogeneity from those that contain only continuous heterogeneity
because they ignore the shape of the posterior predictive distribution. If there really
is heterogeneity, the posterior predictive distribution for a latent class model will be
multimodal and its mean will lie somewhere between the modes. The posterior predictive
distribution for a continuous effect modification model will usually be unimodal but have
a similar mean, so utilities based on the accuracy of the posterior predictive mean will
have low power to distinguish these potentially quite different models.

A commonly used utility function that does not suffer from this problem is the
posterior predictive density (ppd):

uppd[ynew, xnew, p(y|xnew, D,M)] = p(ynew|xnew, D,M). (10)

This utility rewards models that place lots of posterior predictive probability mass near
future outcome values. A model with a multimodal posterior predictive distribution
would be rewarded for outcomes that lie near any mode and penalized for outcomes
that lie in the low density regions between modes. This utility has several nice theoret-
ical properties as well. The model with the highest mean posterior predictive density
minimizes Kullback Leibler distance to the true model. Posterior predictive density is
also a proper scoring rule (Dawid and Musio, 2014). A drawback of this utility is that it
is sensitive to our choice of error distribution, and we do not directly care about model-
ing the error distribution for our application. If we use very flexible error distributions
for all candidate models, though, this should not be a serious problem.

(Many authors prefer to use log(ppd) as a utility because it is more Bayesian in
spirit. If an observation has a ppd of 0 under a given model, this barely impacts the
mean ppd over all observations and the model is hardly penalized. Under standard
Bayesian reasoning, however, if a single observation has ppd equal to zero this should
effectively disqualify the model. Such an observation would have log(ppd) equal to −∞.
We performed all analyses using both ppd and log(ppd) as utilities, and there was no
substantive difference in results. We present just the ppd comparisons.)

In practice, for any given experiment we might consider many candidate models
M1, . . . ,MK with varying numbers of latent classes and functional forms. We prefer
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the model with the highest LOO-CV estimated expected posterior predictive density.
However, we want to be mindful of the possibility that, due to sampling variability, the
model with the highest estimated expected utility is not the model with the highest true
expected utility. Each model’s estimated expected utility is the sample mean of the LOO-
CV posterior predictive densities of all the observations from the experiment. Since the
samples of LOO-CV ppds produced by each model are based on the same observations,
they are dependent and their centers can be compared using classical methods for
dependent samples such as paired t-tests or Wilcoxon signed rank tests. Suppose that
Mi has the highest estimated expected utility. We can obtain a conservative p-value
for the null hypothesis that Mi has the highest true expected utility of all models
considered by taking the p-value of the comparison between Mi and the next best
model and adjusting for K multiple comparisons using Holm’s method (Holm, 1979).
There are K possible comparisons we might have made because we would have tested
this null hypothesis for whichever model had the best estimated utility. If the p-value
we obtain in this way is very low, we would weight the implications of the top model
highly compared to the other candidates. If the p-value is high, we would not dismiss
the implications of other models with comparable utilities and would accept uncertainty
where those implications conflicted with our chosen model.

Of course, just because a model is the best of those we considered does not mean it
is a good model. We perform posterior predictive checks (Gelman et al., 1996) to try to
identify deviations of our chosen model from the data. If we fail to identify any serious
lack of fit, this improves confidence in the conclusions we draw from our model. If we
do identify lack of fit, we can address them with new models and repeat the process
described above.

3 Simulations
We apply our approach in several simulated examples demonstrating its capabilities
and the importance of some of its features. First, we demonstrate the ability of cross
validation to distinguish between discrete and continuous heterogeneity. Next, we illus-
trate the necessity of flexible error distributions. All code for simulations discussed in
this section is available in the supplementary materials.

In Sim1, we generated data from MNorm with the following settings:

Yz=0,i ∼ N(μz=0,i, 1), Yz=1,i ∼ N(μz=1,i, 1), Gi ∼ Bernoulli(pi),

logit(pi) = αG +Xi · βG,

μz=0,i = αGi

C +Xi · βGi

C , Δi = λGi

Δ +Xi · βΔ, μz=1,i = μz=0,i +Δi,

where

αG = −1, βG = (−2,−1, 0, 1, 2),

αGi

C =

{
5 if Gi = 1,

0 if Gi = 1,
βGi

C =

{
(−2,−1, 0, 1, 2) if Gi = 0,

(1, 2, 3, 4, 5) if Gi = 1,

βΔ = (−2,−1, 0, 1, 2), λGi

Δ =

{
5 if Gi = 0,

15 if Gi = 1.
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Figure 2: The results of fitting MFlex to Sim1. The dots are the true parameter values
and the lines are 95% credible intervals.

We simulated a two armed clinical trial with 500 patients in each arm. X consisted
of 5 predictor variables generated from a standard normal distribution. Both contin-
uous and discrete heterogeneity was present. We then fit three models to this data:
MFlex, M

Continuous
F lex (which is identical to MFlex but without a discrete heterogeneity

component), and MConstant
F lex (which is identical to MFlex but without discrete or con-

tinuous heterogeneity). In Figure 2, we see that the posterior of MFlex is accurate and
clearly does not sacrifice too much precision for the robustness gained from flexible error
distributions.

The LOO-CV estimated expected posterior predictive densities for MFlex,
MContinuous

F lex , and MConstant
F lex were 0.22, 0.12, and 0.12 respectively. A paired t-test com-

paring MFlex and MContinuous
F lex rejected the null hypothesis that

E[uMFlex
− uMContinuous

Flex
] ≤ 0 with p-value numerically 0. Hence, cross validation deci-

sively favored the correct heterogeneity model MFlex.

In Sim2, we generated data from a model we will call MContinuous
Norm , which is identical

to MNorm but without any discrete components:

Yz=0,i ∼ N(μz=0,i, 1), Yz=1,i ∼ N(μz=1,i, 1),

μz=0,i = Xi · βC , Δi = Xi · βΔ, μz=1,i = μz=0,i +Δi,

where

βC = (−2,−1, 0, 1, 2), βΔ = (−2,−1, 0, 1, 2).

Again, we simulated a clinical trial with 500 patients in each arm. X again consisted
of 5 predictor variables generated from a standard normal distribution. We then fit
the same three models to this data that we fit to Sim1. MFlex exhibited the identifi-
ability issues discussed in the previous section that can arise when there are no latent
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classes in the true data generating process and the error distributions are correctly
(over-)specified. Different MCMC chains got stuck at very high or low values of αG,
but all chains converged to 0 for βG and the correct values for βΔ. The LOO-CV esti-
mated expected posterior predictive densities for MFlex, M

Continuous
F lex , and MConstant

F lex

were .2799, .2801, and 0.133 respectively. The p-value from a paired t test comparing
the samples from MFlex and MContinuous

F lex was 0.001. So cross validation selected the
simplest correct model MConstant

F lex .

3.1 The Importance of Flexible Error Distributions

We simulated data from a model similar to MNorm from Sim1 but with highly skewed
error distributions:

Yz=0,i ∼ Gamma(μz=0,i, shape0, scale0),

Yz=1,i ∼ Gamma(μz=1,i, shape1, scale1),

Gi ∼ Bernoulli(pi),

logit(pi) = αG +Xi · βG,

μz=0,i = αGi

C +Xi · βGi

C , Δi = λGi

Δ +Xi · βΔ, μz=1,i = μz=0,i +Δi,

where

αG = −1, βG = (−2,−1, 0, 1, 2),

αGi

C =

{
5 if Gi = 1,

0 if Gi = 1,
βGi

C =

{
(−2,−1, 0, 1, 2) if Gi = 0,

(1, 2, 3, 4, 5) if Gi = 1,

βΔ = (−2,−1, 0, 1, 2), λGi

Δ =

{
5 if Gi = 0,

15 if Gi = 1.

X consisted of 5 predictor variables generated from a standard normal distribution.
Gamma(μ, shape, rate) denotes a Gamma distribution shifted to have mean μ. We chose
shape0 = shape1 = 1 and scale0 = scale1 = 10 so that the error distributions were

Figure 3: Skewed Error Distribution.
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Figure 4: Comparison of MNorm and MFlex.

highly skewed as in Figure 3. We fit the models MNorm and MFlex described in the

previous section to the data simulated from the above process. The two models only

differed in their error distributions and were correctly specified in all other respects.

Figure 4 compares the models’ estimates of certain parameters of interest. We see that

the MNorm estimates are off target for some parameters, including the λ2
Δ − λ1

Δ pa-

rameter that represents the magnitude of discrete heterogeneity between latent classes.

The MFlex estimates are fairly accurate for all parameters. These results illustrate sen-

sitivity to misspecification of the error distribution and reassure us that the strategy of

employing a flexible (mixture of normals) error distribution is sufficient to handle the

problem.

To illustrate model comparison in this setting, we also consider MContinuous
F lex . We

use LOO-CV to compare MContinuous
F lex to MFlex, which we know to be the superior

model. In our simulated example, the LOO-CV estimated expected posterior predictive

density of MFlex was .04 compared to .03 for MContinuous
F lex . A paired t-test comparing

the samples of LOO-CV ppd’s from the two models rejected the null hypothesis that

E[uMFlex
− uMContinuous

Flex
] ≤ 0 with p-value numerically 0.
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4 Re-Analysis of Data from the ACTG 320 Clinical Trial

The ACTG 320 trial compared two AIDS treatments – a combination of indinavir, zi-
dovudine, and lamivudine versus just zidovudine and lamivudine. Following Shen and
He (2015), who themselves follow Hammer et al. (1997) and Zhao et al. (2012), we
take change in CD4 count at the 24th week of treatment as the response variable, ex-
clude patients with missing outcome values or extreme CD4 counts, and ignore any bias
that we may induce by these exclusions. We are left with a dataset of 800 patients.
A summary of the data is included in the Supplementary Appendix (Shahn and Madi-
gan, 2016).

Before fitting any models, we test the null hypothesis of a constant treatment effect
using Rosenbaum’s covariance adjustment test (Rosenbaum, 2002). The test produces
a p-value that is approximately 0, so we are quite certain that there is heterogeneity.
The question remains whether it is related to observed covariates and whether we can
effectively model it.

We fit multiple models and compare them using LOO-CV with posterior predictive
density as the utility function. In some models, we use just the 3 covariates that Shen
and He considered (baseline CD4, baseline RNA, and age), while in others we take
advantage of regularization to include the 9 other variables that were available. All
continuous effect modification was specified as linear, and all latent class membership
models were specified as logistic or, in the case of M9, multinomial logistic regressions.
The table at the top of Figure 5 summarizes key attributes of the models. A summary
of parameter estimates from select models is in the Supplementary Appendix. Figure 5
depicts the LOO-CV estimated expected posterior predictive densities of each model.
The first thing that jumps out in this plot is that M1, which is Shen and He’s model
with a normal error distribution, performs far worse than the other models which all use
flexible error distributions. This is not necessarily meaningful, however. Our parameters
of interest do not govern the error distribution, so the utility could be rewarding these
models purely for better modeling an aspect of the data that is not important to us. But
comparing the parameter estimates of M3 (which is Shen and He’s model with flexible
error distributions) to M1, we see that there are substantive differences. The estimated
difference in treatment effects between latent classes is significantly smaller in M3 than
in M1. Observing that the residuals are highly skewed and recalling the lessons learned
from the simulation in Section 3.1, we suspect that the misspecified error distribution
of M1 biased the estimates of parameters of interest. However, it is still true that much
of the difference in expected utility could be due to error distribution alone.

Next we turn our attention to the models with flexible error distributions. The most
complex model, M9, has the highest expected utility. When comparing models, we note
that the estimated utilities are the sample means of the LOO-CV posterior predictive
densities of the 800 observations. Since the samples of LOO-CV ppds produced by
each model are based on the same observations, they are dependent and can be com-
pared using classical methods for dependent samples such as paired t-tests or Wilcoxon
signed rank tests. Paired t-tests indicate that the sample mean LOO-CV utility for M9

is statistically significantly greater than the sample mean LOO-CV utilities of every
other model. We can obtain a conservative p-value for the null hypothesis that M9
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Figure 5: LOO-CV estimated expected posterior predictive densities of each candidate
model fit to the ACTG data. M1 is Shen and He’s model with two latent classes, a
common normal error distribution for all patients, no continuous effect modification, and
just 3 covariates. M2 is a constant effect model with separate flexible error distributions
for each treatment group. Note that ‘constant effect’ is a misnomer, since the distinct
error distributions for the two treatment arms allow for heterogeneity, just not associated
with the covariates. M3 is the same as M1 but with separate flexible error distributions
for each treatment group. M4 is the same as M3 but includes all 12 covariates. M5

is a continuous effect modification model with separate flexible error distributions for
each treatment group and only 3 covariates. M6 is the same as M5 but includes all 12
covariates. M7 is a 2 latent class mixture model with continuous effect modification and
flexible error distributions and only 3 covariates.M8 is the same asM7 but includes all 12
available covariates.M9 is the same as M8 except that it has 3 latent classes instead of 2.

has the highest true expected utility of all models considered by taking the p-value of
the comparison between M9 and the next best model (M8) and adjusting for multiple
comparisons using Holm’s method. The paired t-test comparing M9 to M8 had p-value
.006, and adjusting for the other 7 similar comparisons we might have made (i.e. testing
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whether models 2 through 8 were the best) yields p ≈ .04. That is, the probability
of M9 having such a superior estimated utility due to sampling variation alone if any
of the other models had true expected utilities as good as M9’s is less than .04 (‘less
than’ because our p-value is conservative). This indicates strong but not necessarily
overwhelming support for M9, so we would not completely dismiss other models with
similar utilities such as M8, M7, and M4. We definitely prefer M9 but would take its
implications with a grain of salt if they contradicted one of the other models with fairly
similar utility.

We now take a closer look at what the models said about heterogeneity. Where com-
parisons between models could be made, the models were generally in agreement. First,
every model found that heterogeneity was associated with the covariates (apart from
the constant model M2, obviously). Of the three covariates that were included in every
model (except M2), baseline CD4 count and RNA levels, which we will denote cd40
and rna0, were unanimously positively associated with treatment effect after adjust-
ing for other covariates. The models that contained all 12 covariates also agreed that
weight was positively associated and prior zidovudine exposure negatively associated
with treatment effect adjusting for other covariates. (We will omit ‘adjusting for other
covariates’ for the remainder of this discussion, but it should be understood that all
associations might depend on which other covariates were included in the model.)

Every model that contained both continuous and discrete heterogeneity components
(M9, M8, and M7) attributed most covariate associated heterogeneity to discrete differ-
ences between latent classes. Every model that included latent classes agreed that there
was a substantial difference of about 60-80 CD4 count between the highest treatment
effect class and the lowest. The three class model, M9, also included a middle class
with estimated treatment effect approximately 10 higher than in the lowest class. The
treatment effect in the low class for an average patient was about 45-55 CD4 count in
all models. All latent class models agreed that cd40 and rna0 were positively associated
with membership in the highest class. The models with 12 covariates also agreed that
weight was positively associated and prior zidovudine negatively associated with mem-
bership in the highest class. In the two class models (M3,M4,M7, and M8), strength of
association with class membership is easily discerned from the posterior distributions
of the relevant logistic regression coefficients from the βG parameter. In the preferred
three class model, in which class is determined by a multinomial logistic regression,
the relationship between βG and the nature of the association is more subtle. Figure 6
compares the M9 posterior distributions of probability of membership in the highest
effect class for three hypothetical patients – one with the maximum observed value of
cd40, one with the median observed value of cd40, and one with the minimum observed
value of cd40. All three hypothetical patients were assigned median values for all other
covariates. Comparing the high and medium patients, we see that the high cd40 value
makes low probabilities of membership in the highest treatment effect class less likely
but does not alter the mode. For very low values of cd40, membership in the high treat-
ment effect class is virtually impossible. So M9 appears to pick up on a nonlinear aspect
to the association between cd40 and highest treatment effect class membership proba-
bility. Low values of cd40 are also strongly associated with membership in the middle
class. Figure 7 depicts how the M9 posterior predictive distribution of Δ varies with
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Figure 6: Posterior predictive distributions from model M9 of probability of membership
in the highest treatment effect class for hypothetical patients with low, median, and high
cd40 values.

rna0. The models that contained both continuous and discrete heterogeneity compo-
nents (M9, M8, and M7) also all detected a possible moderate linear association with
rna0 and no other significant linear associations. So our preferred model M9 and all
the other credible models together imply mostly discrete heterogeneity associated with
cd40, rna0, weight, and zidovudine exposure along with possible modest continuous ef-
fect modification by rna0. The strong performance of M9 might be attributed to the
more flexible relationships it allows between covariates and high effect class member-
ship. A more thorough analysis would explore models with nonlinear regressions, more
than three latent classes, interactions among covariates, and distinct error distributions
for each latent class instead of just for each treatment group.

As a last step, we performed some basic posterior predictive checks (Gelman et al.,
1996) to affirm that M9 not only outperforms the other candidates but also fits the data
reasonably well. First, Figure 8 compares a histogram of the outcomes from the real
trial to a histogram of fake outcomes that were simulated from the posterior mean val-
ues of the parameters from M9 and the observed covariate values. The distributions are
remarkably similar. We then simulated 1000 fake data sets from the posterior predictive
distribution of M9, computed summary statistics of each fake data set, and checked
whether the corresponding summary statistics of the true data fall within the range of
the simulations. The exercise is summarized in Figure 9, in which the red dots indicate
the summary statistic values in the real data. The model appears to fit well by these
criteria. While it is possible that a four latent class model could have superior expected
utility to M9, we stopped at three classes because the substantive implications of the
three class model are very similar to the implications of similar models with two classes
and all of these models fit the data well. Interpretability would also suffer from fur-
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Figure 7: Posterior predictive distributions from model M9 of the Δ parameter for
hypothetical patients with low, median, and high rna0 values.

Figure 8: The distribution of the outcome variable in the trial (right) and a draw from
the M9 posterior predictive distribution of the outcome variable (left).

ther complexity, as we have seen that interpretation of the parameters governing class
membership in M9 is already subtle. Further, it is well known that LOO-CV exhibits a
tendency toward overfitting, so it can be good practice to cap model complexity when
substantive implications are constant and fit is adequate.
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Figure 9: Posterior Predictive Checks of M9. Posterior predictive distributions of the
median, standard deviation, kurtosis, and maximum of the outcomes assign high prob-
ability to the values observed in the actual data.

5 The Oregon Health Insurance Experiment (OHIE)
Study

5.1 Description of the Study and the Data

In 2008, Oregon instituted a lottery to determine who could enroll in a new Medicaid
program with limited openings. The randomness of the lottery induced a natural exper-
iment that has allowed researchers to explore various public health and economic effects
of Medicaid (Taubman et al., 2014). One important health economic question was what
effect if any Medicaid might have on emergency department (ED) utilization. The in-
tuitive and naive guess would be that health insurance would increase utilization by
decreasing cost. However, many experts had predicted that expanding health insurance
would actually decrease ED utilization for two main reasons. First, uninsured patients
sometimes go to EDs for problems that could be addressed in a primary care setting
because, unlike primary care physicians, EDs cannot turn patients away for being un-
able to afford treatment. Second, assuming Medicaid coverage would increase primary
care utilization, regular monitoring of chronic conditions at primary care visits might
prevent flareups that necessitate trips to the ED.

Taubman et al. addressed this question by looking at ED utilization among the
24,000 lottery participants who lived in Portland. They matched these lottery partici-
pants to medical records from 12 hospitals that accounted for almost all ED visits for
Portland residents over the period of the study. Unfortunately, because many lottery
winners did not go on to actually enroll in Medicaid and some lottery losers managed to
enroll through other channels, Taubman et al. could not simply compare lottery winners
to losers to directly estimate the average causal effect (ACE) of Medicaid coverage. In
these situations, the best one can do is to estimate the ‘Complier Average Causal Effect’
(CACE) using an instrumental variable analysis. The CACE is the average causal effect
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of Medicaid coverage on those lottery participants who would enroll in Medicaid if and
only if they won the lottery (Angrist, Imbens and Rubin, 1996; Frangakis and Rubin,
2002), i.e. the compliers. Taubman et al estimated the CACE to be positive with high
confidence, supporting the naive and intuitive prediction that Medicaid coverage would
increase ED utilization.

Restricting their data to approximately 10,000 lottery participants who filled out
a survey containing questions pertaining to pre-treatment covariates, Taubman et al.
explored heterogeneity in the CACE by performing both pre-registered and post hoc
subgroup comparisons. They discovered several possible disparities in treatment effect
(e.g. between smokers and non-smokers and between people with and without a prior
serious chronic disease) but did not adjust either the pre-registered or the post-hoc com-
parisons for multiple testing. See the Supplementary Appendix for tables summarizing
the data and covariates.

5.2 Results of Application to OHIE

We applied model MIV defined in Section 2 to the OHIE data. In the context of the
OHIE, the definitions of the principal strata are as follows: always takers would enroll
in Medicaid regardless of whether they won the lottery; never takers would not enroll
in Medicaid regardless of whether they won the lottery; compliers would enroll if they
won the lottery and not enroll if they lost; and defiers would enroll if they lost and
not enroll if they won. We make the common assumption that there are no defiers. We
get to observe the principal strata of some subjects, but other subjects’ principal strata
are latent. Lottery winners who don’t enroll in Medicaid are definitely never takers,
and lottery losers who do enroll are definitely always takers. But winners who enroll
could either be compliers or always takers, and losers who do not enroll could either
be compliers or never takers. Gi takes one value for never takers, one value for always
takers, and one value for each treatment effect class for compliers to allow for discrete
heterogeneity in the CACE. The model specified two treatment effect classes within the
subgroup of compliers. Because we assume that the instrument only affects the outcome
through the treatment, the instrument effect (represented by Δi in Figure 1) must be
0 whenever latent class Gi indicates a never-taker or always-taker.

When we included all recorded baseline covariates and used hierarchical shrinkage
priors, we did not find evidence that treatment effect among compliers was associated
with any of the recorded covariates. (Or, assuming that all covariates are associated with
treatment effect at least a little bit, we did not find strong evidence of the direction of
any of the associations.) The posterior distributions of all components of βG and βΔ

were centered near zero with substantial probability mass on either side. A summary of
the results is in the Supplementary Appendix.

6 Conclusion

We have illustrated a general Bayesian framework for modeling treatment effect hetero-
geneity in experiments with non-categorical outcomes. Our modeling approach incorpo-
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rates latent class mixture components to capture discrete heterogeneity and regression
interaction terms to capture continuous heterogeneity. Flexible error distributions allow
robust posterior inference on parameters of interest. Hierarchical shrinkage priors on
relevant parameters address multiple comparisons concerns. Leave-one-out cross vali-
dation estimates of expected posterior predictive density obtained through importance
sampling, together with posterior predictive checks, provide a convenient method for
model selection and evaluation.

Simulated and real examples demonstrate the utility of this framework and the im-
portance of its various features. The method provides convincing evidence that the
heterogeneity in the ACTG HIV trial is truly discrete and characterizes potential sub-
groups in terms of baseline covariates. Parameter estimates differ substantially from a
prior analysis using a similar method (though the subjective interpretation of the out-
put remains the same) as a result of using flexible error distributions, the importance
of which is illustrated in simulations. In the IV analysis of the OHIE data, shrinkage
priors serve their purpose and prevent premature identification of heterogeneities that
may be due to multiple comparisons.

We see five immediate opportunities for future work. First, it should be relatively
straightforward to develop implementations of this approach for other specialized out-
come models, in particular for survival analyses. Second, if one could obtain stable
estimates of Bayes factors, possibly using the method of Chib and Jeliazkov (2005),
more formal methods for model comparison with certain desirable properties would be
available, and model averaged estimates of some relevant quantities could be computed.
Third, variational Bayes approximations to the posteriors of these models would enable
applications to experiments with very large numbers of covariates. Fourth, nonparamet-
ric implementations could mitigate concerns about model misspecification. And finally,
we have focused on the context of randomized experiments in this paper as opposed
to observational studies so that issues surrounding adjustment for confounding did not
distract from a direct emphasis on treatment effect heterogeneity. In observational stud-
ies, it is usually difficult enough to obtain reliable estimates of average treatment effects
without fitting elaborate models for heterogeneity. However, it is conceptually straight-
forward if perhaps overly ambitious to extend this method to observational settings.

Supplementary Material

Supplementary Appendices of “Latent Class Mixture Models of Treatment Effect Het-
erogeneity” (DOI: 10.1214/16-BA1022SUPP; .pdf).
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