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Bayesian Mixture Models with Focused
Clustering for Mixed Ordinal and Nominal Data

Maria DeYoreo∗,§,¶ Jerome P. Reiter†,§,¶ and D. Sunshine Hillygus‡,§

Abstract. In some contexts, mixture models can fit certain variables well at the
expense of others in ways beyond the analyst’s control. For example, when the data
include some variables with non-trivial amounts of missing values, the mixture
model may fit the marginal distributions of the nearly and fully complete variables
at the expense of the variables with high fractions of missing data. Motivated by
this setting, we present a mixture model for mixed ordinal and nominal data
that splits variables into two groups, focus variables and remainder variables. The
model allows the analyst to specify a rich sub-model for the focus variables and a
simpler sub-model for remainder variables, yet still capture associations among the
variables. Using simulations, we illustrate advantages and limitations of focused
clustering compared to mixture models that do not distinguish variables. We apply
the model to handle missing values in an analysis of the 2012 American National
Election Study, estimating relationships among voting behavior, ideology, and
political party affiliation.

Keywords: categorical, missing, mixture model, multiple imputation.

1 Introduction

Many government and social science surveys include a mix of ordered and nominal
categorical variables. Typically, these surveys suffer from missing values due to item
nonresponse. To deal with the complications that result, common strategies include
analyzing only the complete cases, which leads to inefficient and potentially biased
inferences (Little and Rubin, 2002), using multiple imputation in advance of likelihood-
based or survey-weighted inference on the completed datasets (Rubin, 1987), and using
Bayesian models that integrate over the missing data. For the latter two approaches,
mixture models are particularly effective and computationally convenient engines for
imputation and inference (Si and Reiter, 2013; Müller and Mitra, 2013; Manrique-Vallier
and Reiter, 2014; DeYoreo and Kottas, 2015).

While mixture models have the potential to capture complex dependencies, in prac-
tice they may fit the distribution of certain sets of variables at the expense of other
sets (Hannah et al., 2011; Banerjee et al., 2013; Wade et al., 2014a; Murray and Reiter,
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2016). For example, when the data comprise many nominal variables and a small num-
ber of ordinal variables, the model might seek clusters that estimate the distribution of
the nominal variables as best as possible, but in the process sacrifice the fit of the ordi-
nal variables (Murray and Reiter, 2016). Additionally, standard mixture models often
capture dependence among variables only through clustering. This may demand a large
number of mixture components, possibly more than the data can estimate reliably. Sim-
ilar problems are encountered in joint modeling for regression when the covariates are
high-dimensional compared to the response variables. The creation of a large number of
mixture components in order to fit the marginal distribution of the covariates accurately
can lead to poor predictive inference (Hannah et al., 2011; Wade et al., 2014a; Petralia
et al., 2012).

These types of practical problems can be compounded when the data include some
variables with non-trivial amounts of missing values. With modest sample sizes, mixture
models may fit the marginal distributions of the nearly and fully complete variables at
the expense of the variables with high fractions of missing data. When using the model
for multiple imputation, this is exactly the opposite of what we want: the quality of the
imputation model is particularly important for variables missing at high rates and less
important for variables missing at low rates or that are completely observed. Related,
suppose that in a database with p variables, an analyst seeks to estimate the joint
distribution of a particular subset of q < p variables as accurately as possible. When
q is small compared to p, fitting a model to all p variables can waste fitting power on
the p− q less important variables. Nonetheless, the analyst may not want to completely
throw away the information in the p − q variables, which can be useful for predicting
missing values among the q variables of interest (Rubin, 1996).

In this article, we present an approach for joint modeling of mixed ordinal and
nominal data intended to address these issues. The basic idea is to split variables into
two groups, focus variables and remainder variables. For example, in missing data con-
texts, the focus variables might include key variables with high rates of missing values,
and the remainder variables might include variables without much missing data. The
partitioning allows us to fit a rich mixture sub-model for the focus variables and a
relatively simple mixture sub-model for the marginal distribution of the remainder vari-
ables, thereby focusing fitting power where it is most desired. We induce dependence
between the focus and remainder variables in two ways. First, we use a multivariate
ordered probit specification (Albert and Chib, 1993; Chib and Greenberg, 1998) for the
ordinal focus variables and allow the means to depend on functions of the remainder
variables. Second, we use a tensor factorization (TF) prior (Banerjee et al., 2013) to
make cluster assignments in both sub-models dependent. A similar strategy is used by
Murray and Reiter (2016) in a mixture model for nominal and continuous data without
focused clustering. We call the integrated model a mixture model with focused clustering,
abbreviated as MM-FC.

The remainder of this article is organized as follows. In Section 2, we begin by mo-
tivating the benefits of using mixture models for modeling and multiple imputation
with mixed ordinal and nominal categorical data. We then describe the MM-FC and its
properties. In Section 3, we present results of simulation studies in which we assess the
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performance of a MM-FC that separates variables into groups based on degree of miss-
ingness. We consider different scenarios related to rate of missingness, sample size, and
number of focus variables. In Section 4, we use the MM-FC to create multiply-imputed
datasets from the 2012 American National Election Study (ANES), and make infer-
ences on relationships among voting behavior, ideology, and political party affiliation.
In Section 5, we conclude with a discussion of future research directions.

2 Motivation for and Specification of the MM-FC

2.1 Motivation

When modeling the joint distribution of categorical data, one standard approach is to
estimate a log-linear model (Bishop et al., 1975). This effectively treats any ordinal
variable as nominal, which sacrifices information in the ordering. Perhaps more impor-
tantly, with many variables the space of possible log-linear models is enormous, and
it is difficult to determine which interaction effects to include in the linear predictor
(Vermunt et al., 2008; Si and Reiter, 2013). Simple main effects or two-way interactions
models often are inadequate to describe relationships among survey variables, especially
in social science data. For example, in the ANES, a log-linear model with all two-way
interaction terms is insufficient for describing relationships among party, vote intent,
and ideology (χ2-test p-value < .01), which are included in many analyses in political
science.

Another approach is to form a joint model as a product of conditional distributions,
e.g., f(x, y, z) = f(x)f(y | x)f(z | x, y), as suggested by Lipsitz and Ibrahim (1996)
and Ibrahim et al. (1999). As the number of variables in the conditioning set increases,
specifying the conditional model becomes increasingly challenging. It can be difficult to
select the interactions that should enter any particular model, particularly when the data
have few complete cases that one can use to search for interactive relationships. Further,
when using multinomial probit regressions as conditional models, it may not be realistic
to assume that the ordinal outcomes have underlying latent continuous variables that are
normally distributed (Boes and Winkelmann, 2006). To illustrate, suppose that interest
in the ANES data centers on how congressional approval Y (levels 1 to 4) varies with
ideology X. A standard probit model implies that Pr(Y = 1 | X) has the opposite type
of monotonicity from Pr(Y = 4 | X) as a function of X. However, ANES data suggest
that both trends are unimodal, favoring moderate values. As discussed by Kottas et al.
(2005), the multivariate probit model is inappropriate for data that does not concentrate
most of its data in central cells. The ANES data contain many ordinal variables that
refer to opinions on various topics, and people are often more likely to fall into one of
the extreme categories indicating strong feelings than the moderate categories indicating
lack of feelings or opinions (e.g., opinion on President Obama, Congress, health care).

2.2 The MM-FC Model

The strategy of focused clustering can be applied with any type of mixture kernels for the
sub-models. Here, we present a model motivated by missing data contexts, where we seek
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a rich distribution for multiple imputation of variables with high amounts of missingness
and are willing to accept a simpler specification for the marginal distribution of variables
with few or no missing values. We use a hierarchically coupled mixture model with local
dependence (Murray and Reiter, 2016) for the ordinal and nominal focus variables, and a
computationally convenient finite mixture of independent multinomial kernels (Dunson
and Xing, 2009) for the remainder variables. We note that one also could account for
ordinality in the remainder variables; details on this alternative formulation are in the
Supplementary Material (DeYoreo et al., 2016).

In this section, we present the model for data that are fully observed—values that are
missing at random (MAR) can be handled in the Markov chain Monte Carlo (MCMC)
sampler—saving explanations of various model choices and properties for Section 2.3.
We suppose that the data comprise n individuals measured on a total of p ordered cate-
gorical and nominal variables. We split the p variables into pA focus variables referenced
by set A and pB remainder variables referenced by set B.

Within A, we suppose that there are pAc ordered categorical variables and pA − pAc

nominal variables. Let Y
(A)
ij ∈ {1, . . . , Lj} be the value of ordered categorical variable j ∈

{1, . . . , pAc} for individual i. Following the usual multivariate probit specification, for

i = 1, . . . , n and j = 1, . . . , pAc, let Z
(A)
ij be a latent continuous variable corresponding

to Y
(A)
ij . LetY

(A)
i = (Y

(A)
i1 , . . . , Y

(A)
ipAc

), and let Z
(A)
i = (Z

(A)
i1 , . . . , Z

(A)
ipAc

). For i = 1, . . . , n

and j = pAc+1, . . . , pA, let X
(A)
ij ∈ {1, . . . , Lj} be the value of nominal focus variable j

for individual i, and let X
(A)
i = (X

(A)
ipAc+1, . . . , X

(A)
ipA

). Treating all pB variables within B

as nominal, for i = 1, . . . , n and j = pA + 1, . . . , p, let X
(B)
ij ∈ {1, . . . , Lj} be the value

of remainder variable j for individual i. Let X
(B)
i = (X

(B)
ipA+1, . . . , X

(B)
ip ). Thus, the data

for individual i are (Y
(A)
i ,X

(A)
i ,X

(B)
i ), where Y

(A)
i is indexed by j = 1, . . . , pAc, X

(A)
i

is indexed by pAc + 1, . . . , pA, and X
(B)
i is indexed by pA + 1, . . . , p.

To enable focused clustering, we introduce distinct allocation variables for variables
in A and in B. Furthermore, following Murray and Reiter (2016), we introduce separate

mixture component indices for each data type within A. For i = 1, . . . , n, let H
(ZA)
i be

the ith individual’s label of the mixture component for the ordered categorical focus vari-

ables (via the latent continuous variables); let H
(XA)
i be the label of the mixture com-

ponent for the nominal focus variables; and, let H
(B)
i be the label of the mixture com-

ponent for the remainder variables. We assume that (H
(ZA)
i , H

(XA)
i , H

(B)
i ) arise from

discrete distributions supported on {1, . . . , N (ZA)}, {1, . . . , N (XA)}, and {1, . . . , N (B)},
respectively. We discuss how to choose these truncation levels in the supplementary
material.

The data model combines multivariate normal kernels (e.g., as in Böhning et al.,
2007; Elliott and Stettler, 2007; Kim et al., 2014, 2015) with multinomial kernels (e.g., as
in Dunson and Xing, 2009; Si and Reiter, 2013). Applying an ordinal probit specification

to handle the ordered categorical variables in A, and letting Xi = (X
(A)
i ,X

(B)
i ), we have

(Z
(A)
i | Xi, H

(ZA)
i = r,βr,Σr)

ind∼ NpAc
(Z

(A)
i ;D(Xi)βr,Σr), i = 1, . . . , n (1)
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(X
(A)
ij | H(XA)

i = l,ψ
(j)
l )

ind∼ categ(ψ
(j)
l ), i = 1, . . . , n, j = pAc + 1, . . . , pA (2)

(X
(B)
ij | H(B)

i = s,φ(j)
s )

ind∼ categ(φ(j)
s ), i = 1, . . . , n, j = pA + 1, . . . , p. (3)

Here, D(Xi) is a design vector of length d, and βr is a d × pAc matrix of regression
coefficients. We discuss specification of D(Xi) in Section 2.3. The notation categ(·)
denotes a categorical distribution, i.e., if X ∼ categ(p1, . . . , pk), then Pr(X = i) = pi,
for i = 1, . . . , k.

We let Y
(A)
ij = k if and only if γ

(A)
j,k−1 < Z

(A)
ij ≤ γ

(A)
j,k , for j = 1, . . . , pAc and

k = 1, . . . , Lj . The cut-off points (γ
(A)
j,1 , . . . , γ

(A)
j,Lj−1), where −∞ = γ

(A)
j,0 < γ

(A)
j,1 < · · · <

γ
(A)
j,Lj−1 < γ

(A)
j,Lj

= ∞, can be fixed to arbitrary increasing values, which we recommend

to be centered at zero and equally spaced (Kottas et al., 2005; DeYoreo and Kottas,
2014; Bao and Hanson, 2015). This is an attractive property of the mixture model, as
the cut-off points are computationally difficult to estimate when treated as random.

While we focus on settings with discrete variables only, one can include continuous
focus variables in the multivariate normal kernel for Z(A) and not treat them as latent.
Continuous remainder variables can be incorporated via independent normal kernels
in the model for B. See Canale and Dunson (2015) for a related model that deals
with mixed continuous, count, and ordinal data, modeled jointly through a multivariate
normal kernel. As with the ordinal variables in our model, the discrete realizations are
obtained through latent continuous random variables by partitioning of the real line.

We model (H
(ZA)
i , H

(XA)
i , H

(B)
i ) as conditionally independent given another set of

components, Hi ∈ {1, . . . , N}. For h = 1, . . . , N , we have Pr(H
(ZA)
i = r | Hi =

h) = π
(ZA)
rh where r = 1, . . . , N (ZA), Pr(H

(XA)
i = l | Hi = h) = π

(XA)
lh where

l = 1, . . . , N (XA), and Pr(H
(B)
i = s | Hi = h) = π

(B)
sh where s = 1, . . . , N (B). We

assume that Pr(Hi = h) = πh for all h. All these probabilities are determined through
stick-breaking of latent beta distributed random variables, defined as

π
(ZA)
rh = V

(ZA)
rh

r−1∏
k=1

(1− V
(ZA)
kh ), r = 1, . . . , N (ZA), h = 1, . . . , N (4)

π
(XA)
lh = V

(XA)
lh

l−1∏
k=1

(1− V
(XA)
kh ), l = 1, . . . , N (XA), h = 1, . . . , N (5)

π
(B)
sh = V

(B)
sh

s−1∏
k=1

(1− V
(B)
kh ), s = 1, . . . , N (B), h = 1, . . . , N (6)

πh = Vh

h−1∏
k=1

(1− Vk), h = 1, . . . , N (7)

V
(ZA)
rh | α(ZA) iid∼ beta(1, α(ZA)), r = 1, . . . , N (ZA) − 1, h = 1, . . . , N (8)

V
(XA)
lh | α(XA) iid∼ beta(1, α(XA)), l = 1, . . . , N (XA) − 1, h = 1, . . . , N (9)

V
(B)
sh | α(B) iid∼ beta(1, α(B)), s = 1, . . . , N (B) − 1, h = 1, . . . , N (10)



684 Focused Clustering for Mixed Data

Vh | α iid∼ beta(1, α), h = 1, . . . , N − 1. (11)

As a consequence of the finite truncation approximation to the DP prior that induces

the weights, each V
(ZA)

N(ZA)h
= 1, for h = 1, . . . , N . This makes each vector {π(ZA)

1h , . . . ,

π
(ZA)

N(ZA)h
} sum to 1. This also holds for the variables having superscripts (XA) and (B).

Additionally, VN = 1.

The MM-FC includes an extension of the model of Murray and Reiter (2016) that
accommodates ordinal data as a special case. We obtain the extension by removing (3),
placing all latent continuous variables in Z(A) and all nominal variables in X(A). We
refer to this model as MM-Mix. As there are no B variables in this model, lines (6) and
(10) are also removed.

For the MM-FC, we use conjugate base distributions for all mixing parameters.
These are given by

βr | B0, τ
iid∼ MNd×pAc

(B0, Id, diag(τ
2
1 , . . . , τ

2
pAc

)), r = 1, . . . , N (ZA) (12)

Σr | S iid∼ IW(ν,S), r = 1, . . . , N (ZA) (13)

ψ
(j)
l

ind∼ Dirichlet(a
(ψj)
1 , . . . , a

(ψj)
Lj

), j = pAc + 1, . . . , pA, l = 1, . . . , N (XA)

φ(j)
s

ind∼ Dirichlet(a
(φj)
1 , . . . , a

(φj)
Lj

), j = pA + 1, . . . , pB , s = 1, . . . , N (B) (14)

where MNd×pAc
denotes a matrix-normal distribution of dimension d by pAc. This im-

plies that vec(βr) ∼ NdpAc
(vec(B0), diag(τ

2
1 , . . . , τ

2
pAc

) ⊗ Id), where vec(βr) denotes
the vectorization of βr, obtained by stacking its columns. Hyperprior specification and
posterior inference is discussed in the supplementary material. An alternative to the
conjugate inverse–Wishart prior base distribution for Σr is to model Z(A) with a mix-
ture of factor analyzers (Ghahramani and Hinton, 1997; Gorur and Rasmussen, 2009;
McParland et al., 2014). This can be particularly useful when Σr is of high dimension,
although this is not the case in the ANES data that we analyze. We further discuss this
alternative model specification in the supplementary material.

2.3 Modeling Choices and Model Properties

To motivate some of the modeling choices behind MM-FC, it is instructive to compare
MM-FC with other approaches that might be considered for mixed ordinal and nominal
data. We begin with other models that implement focused clustering.

One could completely disregard the ordinal nature of Y(A) and use mixtures of
independent multinomial distributions for both focus and remainder variables. However,
evidence from Murray and Reiter (2016) and our own simulation studies suggest that
the sub-model in Section 2.2 for the focus variables can estimate the joint distribution of
the focus variables more accurately than a finite mixture of independent multinomials
sub-model; see the supplementary material for corroborating simulations. Hence, we
prefer to take the ordinal nature of Y(A) into account.

Alternatively, one could use a single shared cluster index for Z(A) and X(A), say
H(A), and set E(Z(A) | H(A) = h) = μh, making Z(A) locally independent of X. This
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would force all associations between Z(A) and X(A) to be captured by the clustering
in A, and all associations between Z(A) and X(B) to be captured by the dependent
cluster assignments in the TF prior. This is a significant challenge when complicated
relationships and distributions are present. As a result, this specification can require a
large number of mixture components, and therefore a large sample size, for accurate
estimation. When sample sizes are modest, the resulting inferences can be degraded; see
Banerjee et al. (2013) for discussion of this issue for similar classes of mixture models.
Hence, we prefer to use separate but dependent cluster variables (H(ZA), H(XA), H(B)),
and allow the means of Z(A) to depend locally on X.

Of course, one could completely eschew focused clustering and simply use the sub-
model for the focus variables for all of (Y(A),X). In the simulation studies, we compare
MM-FC against its closest analogue that does not used focused clustering, MM-Mix.

In MM-FC as well as MM-Mix, the role of D(X) is to help the model capture
dependence between Y(A) and X, so that the mixture components, and especially the
TF prior, need not do all the heavy lifting. Naturally, the functional form of D(X) that
generates the most useful results, e.g., imputations that come from a close approximation
of the true joint distribution, is specific to the data at hand. We recommend starting with
main effects of each variable in X as a default specification. The analyst can evaluate the
suitability of D(X) by looking for evidence of missed interaction effects. For example,
if draws from the posterior predictive distribution of Y(A) for some combination of
variables in X are quite different from the corresponding observed data distribution,
the model may benefit from adding interactions between those variables. We use such
checks in Section 4 in the analysis of the ANES data.

We now turn to specific properties of MM-FC. Marginalizing over the mixture
allocation indicator variables, the joint density for all variables can be expressed as
f(Z(A),X(A),X(B)) =

N∑
h=1

πh

⎛
⎝

N(ZA)∑
r=1

π
(ZA)
rh N(Z(A);βrD(X),Σr)

⎞
⎠

⎛
⎝

N(XA)∑
l=1

π
(XA)
lh

pA∏
j=pAc+1

categ(X
(A)
j ;ψ

(j)
l )

⎞
⎠

×

⎛
⎝

N(B)∑
s=1

π
(B)
sh

p∏
j=pA+1

categ(X
(B)
j ;φ(j)

s )

⎞
⎠ . (15)

This is a mixture with N components, where each component takes the form of a
product of three mixture models, one for each of Z(A), X(A), and X(B).

The sub-model corresponding to f(Z(A) | X(A),X(B)) is a mixture of multivariate
normal linear regressions, with means and weights that are functions of X. In particular,
we have f(Z(A) | X(A) = x(A),X(B) = x(B)) =

N(ZA)∑
r=1

wr(x
(A),x(B))∑N(ZA)

t=1 wt(x(A),x(B))
N(Z(A);D(x(A),x(B))βr,Σr), (16)
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with weights wr(x
(A),x(B)) =

N∑
h=1

πhπ
(ZA)
rh

⎛
⎝

N(XA)∑
l=1

π
(XA)
lh

pA∏
j=pAc+1

ψ
(j)

lx
(A)
j

⎞
⎠

⎛
⎝

N(B)∑
s=1

π
(B)
sh

p∏
j=pA+1

φ
(j)

lx
(B)
j

⎞
⎠ . (17)

Mixtures of linear regressions, even with main effects only in the design matrices, can
be highly flexible globally (Wade et al., 2014a). Because the weights and means of Z(A)

depend on X, MM-FC can capture a variety of complex conditional distributions for
Z(A), even relationships beyond those encoded in D(X). Nonetheless, in modest sized
samples it may be prudent to include interaction terms in D(X), which can allow the
model to use fewer mixture components and therefore potentially improve inferences.

The expressions in (16) and (17) also reveal features about two other possible spec-
ifications that use three sets of clusters. Suppose one instead assumes that Z(A) and X
are locally independent, so that D(X) has only an intercept term. This implies that the
mixture of normals for f(Z(A) | X) has weights that are dependent on X but means
that are not. Several researchers have described the downsides of such models (e.g.,
Dunson and Bhattacharya, 2010; Banerjee et al., 2013; DeYoreo and Kottas, 2015),
which may not perform well in modest sized samples due to the need to introduce
many clusters. On the other hand, suppose that one allows for local dependence be-
tween Z(A) and X, but assumes H(ZA), H(XA), and H(B) are independent. This yields

f(Z(A) | X = x) =
∑N(ZA)

l=1 Pr(H(ZA) = l)N(Z(A);D(x)βl,Σl), which is a mixture of
normal kernels with constant weights. As noted by Wade et al. (2014b), in curve fitting
(regression) contexts, mixtures with constant weights tend to generate lower quality
predictions than mixtures with covariate dependent weights, like those for MM-FC
in (17).

The model for Y(A), obtained by marginalizing over Z(A), is a mixture of probit
regressions. This has been shown to be very flexible and able to accommodate complex
associations among ordinal variables, as well as nonstandard regression trends (DeYoreo
and Kottas, 2014).

Turning to X(A) and X(B), we have P (X(A),X(B)) =

N∑
h=1

πh

⎛
⎝

N(XA)∑
l=1

π
(XA)
lh

pA∏
j=pAc+1

categ(X
(A)
j ;ψ

(j)
l )

⎞
⎠

⎛
⎝

N(B)∑
s=1

π
(B)
sh

p∏
j=pA+1

categ(X
(B)
j ;φ(j)

s )

⎞
⎠.

(18)
This can be rewritten as P (X(A),X(B)) =

N∑
h=1

N(XA)∑
l=1

N(B)∑
s=1

πhπ
(XA)
lh π

(B)
sh

⎛
⎝

pA∏
j=pAc+1

categ(X
(A)
j ;ψ

(j)
l )

⎞
⎠

⎛
⎝

p∏
j=pA+1

categ(X
(B)
j ;φ(j)

s )

⎞
⎠.

(19)
This is a mixture of products of independent multinomial distributions. Such mod-
els have the ability to capture any multivariate categorical data distribution for large
enough numbers of mixture components (Dunson and Xing, 2009). Marginally, we also



M. DeYoreo, J. P. Reiter, and D. S. Hillygus 687

have P (X(A)) =
∑N(XA)

l=1 Pr(H(XA) = l)
∏pA

j=pAc+1 categ(X
(A)
j ;ψ

(j)
l ), where

Pr(H(XA) = l) =
∑N

h=1 πhπ
(XA)
lh . Thus, X(A) also follows a mixture of products of

multinomials.

From (4)–(11), marginalizing over Hi yields Pr(H
(ZA)
i = r,H

(XA)
i = l,H

(B)
i = s) =∑N

h=1 πhπ
(ZA)
rh π

(XA)
lh π

(B)
sh . Thus, although H

(ZA)
i , H

(XA)
i , and H

(B)
i are independent

conditional on Hi, dependence is induced upon marginalization. This dependence helps
the model capture associations among variables in Y(A) and X(A), as well as among
the focus and remainder variables. The latter associations are strengthened by the local
dependence of Z(A) on (X(A),X(B)) through the regression in (1), and the covariate-
dependent weights that result from the mixture. We note, however, that any marginal
dependence of X(A) with X(B) has to be captured mostly by the TF prior distribution
on the components, which suggests that these dependencies are the most difficult for
the model to capture.

3 Simulation Studies

We conduct a series of simulation studies to investigate the properties of the MM-FC,
especially in comparison to similar models that do not distinguish focus and remainder
variables. We use the MM-FC as an engine for multiple imputation of missing data,
and assess the potential benefits of classifying variables with high rates of missingness
as focus variables A and other variables as remainder variables B. We consider eight
scenarios defined by a full factorial experiment with three binary factors: rate of miss-
ingness in the focus variables (“high” is 30% missing, “low” is 5% missing), number of
variables classified as focus variables (“few” is pAc = 2 and pA = 4, “more” is pAc = 4
and pA = 8), and sample size (“small” is n = 500, and “large” is n = 3000). Across
all scenarios, pB = 8, and the remainder variables have 5% missing values. When all
variables in A are missing at a high rate, the probability that a given observation is
complete is 0.02 when the number of focus variables pA = 8 and is 0.12 when pA = 4,
essentially prohibiting complete-case analysis.

We generate complete datasets to ensure interaction effects and complex depen-
dencies, both among variables within A and variables across A and B. The complete
data are not generated directly from a MM-FC; rather, we primarily use a series of
generalized linear models. The data-generating mechanism for Y(A) includes two and
three-way interaction effects, but we use a default application of the MM-FC that in-
cludes only main effect terms in the design vector D(·). See the supplementary material
for a detailed description of how the data are generated.

In each scenario, we repeat the process of generating data and randomly deleting
values 50 times, using a missing completely at random mechanism. In each dataset, we
use the MM-FC to generate m = 10 completed datasets by drawing from the posterior
predictive distribution (which assumes any missing values are MAR). We run each im-
plementation of the MCMC algorithm long enough to obtain m = 10 sets of imputations
for the missing values, using the completed data set from every 2000th iteration. We
began saving imputations after discarding 20000 iterations as burn-in.
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Figure 1: Multiple imputation point estimates and 95% confidence intervals from one
randomly drawn simulation run with high missingness, few focus variables, and large
sample size. Left panel includes all bivariate probabilities associated with pairs of vari-
ables in A, and right panel includes all bivariate probabilities for pairs of variables from
A and B. Trends are similar in other simulation runs for this setting.

We use the methods of Rubin (1987) for inferences on all marginal and bivariate
probabilities associated with the p-way contingency table. In each completed data set l,
where l = 1, . . . ,m, let q(l) be the estimate of a particular cell probability Q, and let u(l)

be the estimate of its variance. Here, q(l) is the empirical proportion of observations in
the particular cell, and u(l) = q(l)(1− q(l))/n. To make inferences about Q, we use the
point estimate q̄m =

∑m
l=1 q

(l)/m with associated variance, Tm = (1 + 1/m)bm + ūm,
where bm =

∑m
l=1(q

(l) − q̄m)2/(m − 1) and ūm =
∑m

l=1 u
(l)/m. Interval estimates are

based on (q̄m − Q) ∼ tνm(0, Tm), where tνm represents a t-distribution with νm =
(m − 1)(1 + ūm/{(1 + 1/m)bm})2 degrees of freedom. See Reiter and Raghunathan
(2007) for a review of multiple imputation inference.

3.1 Performance of MM-FC

Here, we summarize our main findings, focusing on the scenarios with a high rate of
missingness among the focus variables as the model is particularly intended for such
situations. Details and additional results are in the supplementary material.

As expected, the MM-FC estimates the distribution among the focus variables well.
As an example, Figure 1 displays the multiple imputation point estimates and 95% con-
fidence intervals for bivariate probabilities among A variables for one randomly sampled
simulation run with n = 3000 and “few” focus variables. Averaged over simulations, the
absolute errors of the point estimates for the marginal probabilities suggest the model
accurately captures the distribution of A in both the “few” and “more” settings: the
average across the 11 probabilities is less than 0.009 when n = 3000 and less than 0.021
when n = 500. The same holds for the 45 bivariate probabilities in A (these proba-
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Figure 2: Multiple imputation point estimates and 95% confidence intervals for all bi-
variate probabilities for pairs of variables in B from one randomly drawn simulation
run with high missingness, few focus variables, and large sample size.

bilities range from approximately 0.001 to 0.46): the average is less than 0.008 when
n = 3000 and 0.016 when n = 500. The empirical coverage rates, i.e., the percentage of
the fifty multiple imputation 95% confidence intervals that contain their corresponding
expected values, for the marginal and bivariate probabilities are generally at or slightly
below the nominal 95% level. For example, in the setting with few A variables and large
sample size, the average of the 56 empirical coverage rates is 0.93. A handful of rates
for bivariate probabilities fall between 80% and 90%. One interval corresponding to a
bivariate probability between two ordinal variables has low coverage at around 65%.
This estimand corresponds to a small probability of 0.012. The mean absolute error
of the point estimate is only 0.0056, which is a typical value among the 45 bivariate
probabilities.

The MM-FC also generates reliable inferences for the distributions among the re-
mainder variables, as is clear from Figure 2. This is not surprising, since we only impute
a small fraction of missing values. In the setting with few A variables and large sam-
ple size, the average of the 233 empirical coverage rates for the marginal and bivariate
probabilities is approximately 0.98.

Most interesting is the performance of MM-FC for estimating relationships between
focus and remainder variables. In general, the model continues to offer estimates with
modest absolute errors: the mean absolute errors of the probabilities for pairs of variables
from A and B are less than 0.011 when n = 3000 and less than 0.016 when n = 500.
The empirical coverage rates are around 76% to 79% in both settings with large sample
size, and 90% in both settings with small sample size. Evidently, in the simulations with
large sample size, the modest biases resulting from MM-FC are large enough relative to
the standard errors to reduce coverage rates, whereas this is not the case with the small
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sample size. As predicted, the model is least accurate when estimating relationships
between nominal variables in A and variables in B. For instance, in the setting with
more focus variables and large sample size, the average coverage rate when A and B
are both ordinal is 86%, the average coverage rate when A is ordinal and B is nominal
is 82%, the average coverage rate when A is nominal and B is ordinal is 77%, and the
average coverage rate when A and B are both nominal is 57%.

Looking across all eight scenarios, in general the model performs more effectively
with low fractions of missing data in both the focus and remainder variables. As would
be expected, increased sample size results in better ability to capture relationships
among the variables and hence lower absolute errors. For a given sample size and rate of
missingness, the differences in performance arising from few versus more focus variables
are not significant.

3.2 Evaluation of Use of Focus Variables

The simulations in Section 3.1 suggest that the MM-FC does what is intended: use
separate clusters for focus variables to fit their distribution accurately, possibly at the
expense of accurately modeling remainder variables. The question now is whether or
not the MM-FC offers gains over models that do not distinguish between focus and
remainder variables. To examine this, we compare the MM-FC against MM-Mix. We
use MM-Mix to generate m = 10 completed datasets for the same fifty simulations used
in Section 3.1.

In each simulation run, after generating ten completed datasets from each model,
we compute the Hellinger distance between the estimated and true joint distribution
of P (A) in each completed dataset. We use only cells for which the true probability
is at least 8 × 10−6. We then average the Hellinger distances across the 10 completed
datasets. We do this also for P (B) and P (A,B). In every scenario, the Hellinger dis-
tances for P (A) are smaller under MM-FC than MM-Mix. In the scenario with high
rate of missingness, large n, and few A variables, on average the Hellinger distance
for MM-FC is about 50% smaller than that for MM-Mix. The Hellinger distances for
B are similar for both models on average; however, the distances for MM-FC have
much smaller variance across the simulations than those for MM-Mix, indicating that
the MM-FC is more stable in offering a high quality estimate of the distribution of B.
MM-Mix produces Hellinger distances for P (A,B) that are slightly smaller than those
produced by MM-FC, indicating that some strength of dependence between A and B is
lost by the introduction of separate but dependent cluster assignments. The differences
between the models are in general more pronounced when the dimension of A is smaller
than that of B, i.e., under the few focus variables setting.

In all eight settings considered, the mean absolute errors resulting from estimates of
bivariate probabilities among A are lower under MM-FC than MM-Mix, with differences
too large to be plausibly explained by Monte Carlo error. Additionally, the empirical
coverage rates from MM-FC are closer to the nominal rate of 95% than those from MM-
Mix, which are often lower. In particular, MM-Mix often is less accurate for nominal–
nominal relationships within A, as illustrated in Figure 3. This is likely because of the
assumption of a common latent class for X(A) and X(B). The estimated distribution
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Figure 3: Simulation setting with high missing rate, few focus variables, and large sample
size. Left: Absolute errors of the 45 bivariate probabilities associated with all pairs of
A variables averaged over 50 simulations from MM-FC versus MM-Mix. Solid circle
indicates ordinal–ordinal probabilities, + indicates nominal–nominal probabilities, and
open circles represent ordinal–nominal probabilities. Right: Close up of the lower left
part of this figure.

Figure 4: Simulation setting with high missing rate, few focus variables, and large sam-
ple size. Coverage of 95% confidence intervals for the 45 estimands involving bivariate
probabilities associated with pairs of A variables from MM-FC versus MM-Mix. Points
have been jittered for readability.

of X(A) is degraded by having to estimate with common clustering the distribution of
X(B), which is of larger dimension and contains more information due to a smaller rate of
missingness. The overall difference is not due to one or two quantities being inaccurately
estimated under MM-Mix; as evident in Figure 3 most errors tend to be larger under
MM-Mix than MM-FC. As evident in Figure 4, coverage rates under MM-Mix average
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Figure 5: Simulation setting with high missing rate, few focus variables, large sample
size. Mean absolute errors of bivariate probabilities for pairs of A and B variables,
organized by variable types.

0.79 and under MM-FC average 0.93. We also note that in settings occurring with more
focus variables, MM-Mix is noticeably less accurate on ordinal–ordinal relationships as
well. For figures illustrating these findings, as well as results from all simulations, see
the supplementary material.

Turning to relationships among A and B, the simulations suggest mixed results. For
many bivariate probabilities, MM-FC and MM-Mix result in similar levels of accuracy.
However, MM-FC results in noticeably larger errors for some bivariate probabilities.
This pattern is exemplified in Figure 5, which displays average margins of error for
the setting with few focus variables and large sample size. We note that the simulation
setting in Figure 5 is least favorable to MM-FC among all we investigated. Apparently,
this scenario has few enough variables overall and large enough sample size that MM-Mix
is able to characterize the joint distribution reasonably well, making the MM-FC look
comparatively worse on relationships between A and B. Because the MM-FC introduces
more cluster variables, there is a further degree of separation between variables in A
and B. This improves inference for A, however it sacrifices some of the dependence
between A and B. This therefore leads to some relationships between A and B being
captured relatively poorly by MM-FC, hence the relatively large errors for some of the
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cells, as depicted in Figure 5. In other scenarios, the MM-FC produces fewer relatively
large errors than are evident in Figure 5.

Considering the results of all eight simulation scenarios, we find that MM-FC always
captures the distribution of A more effectively than does MM-Mix. The advantages are
especially evident for nominal–nominal relationships within A. These advantages are
greater when the number of remainder variables exceeds the number of focus variables.
The MM-FC also tends to capture the distribution within B more effectively than
does MM-Mix. However, MM-FC is generally less effective than MM-Mix at capturing
relationships between nominal A variables and ordinal B variables. For other relation-
ships involving A and B, the average absolute errors for joint probabilities typically
are smaller for MM-FC than for MM-Mix; however, MM-FC typically results in more
probabilities with relatively large errors than MM-Mix does. In general, the differences
between MM-FC and MM-Mix that we have described are more pronounced with a
large sample size.

4 American National Election Survey Analysis

4.1 Data and Modeling Approach

The ANES has been conducted during presidential election years since 1948. The most
recent in this series took place in 2012. We work with the data obtained from face-to-
face interviews conducted in the two months preceding the presidential election. The
questionnaire consisted almost entirely of ordered and unordered categorical data, and
the median survey length was 90 minutes.

As with many analyses in political science, we are especially interested in measures
related to voting behavior, ideology and candidate preference. Unfortunately, many of
these measures suffer from a high rate of item nonresponse or were not collected for
many individuals. For instance, liberal-conservative ideology (on an ordered 7 point
scale) is missing at a rate of 28%, candidate preference in 2008 is missing at a rate
of 35%, and Tea Party support is missing at a rate of 17%. Only 333 out of n = 2054
individuals have complete data. Most other variables of interest are missing at low rates.

We assume the data are MAR, which is the standard assumption within political
science (Honaker et al., 2011). The limited research explicitly evaluating the MAR
assumption for unit and item nonresponse in previous ANES studies finds some concerns
about bias in measures related to voter turnout and other outcomes with socially-
desirable responses (e.g., racial attitudes) but finds little evidence of bias in measures
related to candidate preference, as is the topic of study here (Peress, 2010; Bartles, 1999;
Berinsky, 2004).

We estimate the MM-FC on the 20 variables described in Table 1. Since Tea Party
support, ideology, candidate preference in 2008, defense spending and congressional
approval are missing at high rates, and most are important for inference, we include
these variables in A. We also include party affiliation and candidate preference in 2012
in A because they are substantively important measures for our analysis. We consider
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Variable Group Type Levels Percent missing

Party affiliation A nominal 3 1
Candidate pref. 2012 A nominal 4 2
Candidate pref. 2008 A nominal 3 36
Tea Party support A ordinal 7 17
Ideology A ordinal 7 29
Defense spending A ordinal 4 20
Congress approval A ordinal 4 17
Democrat approval B nominal 2 2
Republican approval B nominal 2 3
Country on track B nominal 2 5
Race B nominal 4 0.4
Gender B nominal 2 0
Pres. approval B ordinal 4 5
Foreign approval B ordinal 4 11
Health care B ordinal 4 7
Gun importance B ordinal 5 0.4
Social security spending B ordinal 3 3
Education B ordinal 5 0.8
Age B ordinal 6 3

Table 1: Summary of the variables included in the joint model of the ANES data.

all demographic variables and other attitudinal variables as B variables. Thus, we have
four ordinal A variables, three nominal A variables, eight ordinal B variables, and five
nominal B variables. We generate m = 10 completed datasets, using every 5000th draw
from the completed datasets generated by the MM-FC, after discarding the first 20000
iterations as burn-in.

The survey includes weights that account for the two-stage stratified cluster sam-
pling design and post-stratification adjustments. We do not consider the weights when
estimating the MM-FC. A variety of exploratory data analyses (based on regressing
each outcome on the weights and other variables) suggest that the weights are not im-
portant for predicting any of the variables when the other variables in Table 1 are in
the model. However, we use survey-weighted inference for finite population quantities
after creating the multiple imputations.

4.2 Analysis Results

Conducted during political campaigns, pre-election surveys are especially concerned
with identifying the subset of the electorate that will actually vote and with predicting
the preferences of voters who are undecided between the candidates. Thus, our analysis
focuses on candidate preference (vote intent) in 2012. We start by looking at how candi-
date preference relates to two of the variables with high rates of missingness: candidate
preference in 2008 and ideology. Candidate preference in 2008 is likely missing at a high
rate due to recall issues, lack of eligibility, and the fact that not all respondents were
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Figure 6: Point estimates and 95% uncertainty bands for candidate preference in 2012
conditional on 2008 candidate preference of Obama (left), McCain (middle) and other
(right).

asked who they preferred in the previous election. Ideology ranges from very liberal to
very conservative on a 7 point ordinal scale. Item nonresponse on the ideology question
tends to reflect respondent difficulty in using the scale to capture ideological preferences
or perceived sensitivity in answering the question (Treier and Hillygus, 2009).

Figure 6 describes the relationship between candidate preference in 2012 and 2008
based on the multiply-imputed datasets. Once we account for missingness, we find that
only 64% of those who preferred Obama in 2008 intend to vote for him again in 2012,
with a significant proportion saying they will not vote. Similarly, those who preferred
McCain in 2008 report they plan to vote for Romney in 2012; however, this probability
is larger by about 10%. In other words, there was greater stability in preferences across
elections on the Republican side than on the Democratic side. We also obtain estimates
for candidate preference in 2012 as a function of ideology. Although not shown, we find
that those most likely to say they are not voting are those who are liberal-moderate
and moderate. Moderate individuals are also most likely to be undecided in 2012.

A key substantive question of the 2012 campaign was whether or not Obama could
hold on to Independents between 2008 and 2012. That is, what does Pr(vote 2012 |
party= Ind, 2008 pref. = Obama) look like? We find that the majority of independents
who preferred Obama in 2008 intended to vote for him again in 2012. However, the
proportion that said they were not going to vote was larger than the proportion that
planned to vote for Romney. That is, Obama did not appear to lose many Independents
to Romney, but instead many of them planned to stay home in the 2012 election.

For each of the m = 10 completed data sets, we fit a logistic regression with vote
intent in 2012 as the binary response, indicating whether or not one intends to vote
for Obama. The explanatory variables include main effects and all two-way interactions
for candidate preference in 2008, party, ideology (liberal, moderate, conservative), and
opinion on the Tea Party (oppose, no opinion, support), all of which are considered
important predictors of vote choice (Pasek et al., 2009). Ideology is not significant
in explaining the way one intends to vote and is also moderately correlated with 2008
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Figure 7: Predicted probability of preferring Obama in 2012 for Democrats (left),
Republicans (middle) and Independents (right), by 2008 candidate preference
(N=neither, M=McCain, O=Obama) and Tea Party support (x=oppose, +=support,
and •=neither).

preference and Tea Party support. We therefore remove this variable from the regression.
We combine the ten resulting point and variance estimates of the regression coefficients
using multiple imputation inference; these estimates are given in the online supplement.

While overall the variables are related to 2012 candidate preference in expected
ways, the interaction effects reveal interesting insights about voter decision making.
There are significant interactions between party identification (Democrat, Republican,
Independent) and Tea Party support, as well as party and 2008 preference. To visualize
and interpret these effects, in Figure 7 we plot predicted probabilities of voting for
Obama for each of the 27 possible combinations of 2008 candidate preference, party,
and Tea Party support. Tea Party support is not strongly related to 2012 candidate
preference for partisans who previously voted along party lines: Obama Democrats and
McCain Republicans. However, Tea Party support is predictive of 2012 vote among
Obama Republicans and Independents. Opinions about the Tea Party are irrelevant for
Democrats – party loyalty and past support trumps Tea Party opinions.

The analysis also reveals two different types of Independents, with different strategic
implications for the candidates. The first are those who behave very much like partisan
identifiers. Those who claim to be Independent but support the Tea Party and preferred
McCain in 2012 are extremely unlikely to vote for Obama in 2012, behaving much like
self-identified Republicans. Additionally, Independents who oppose the Tea Party and
preferred Obama in 2008 look very much like self-reported Democrats. This group of
Independents are often called “closet partisans” and are not really “up for grabs” in the
campaign. In contrast, the Independents who are actually “in play” in the election are
those who are ambivalent or cross-pressured. For example, these include self-reported
Independents who voted for Obama in 2008 but also support the Tea Party, or who
voted for McCain but oppose the Tea Party. This group of Independents falls in the
middle in terms of the probability of preferring Obama in 2012.

Another interesting pattern is that Tea Party support does seem to be important
when considering those who are cross-pressured, i.e., Republicans who preferred Obama
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Figure 8: Distribution based on replicated data sets for the bivariate distribution of
candidate preference in 2012 and candidate preference in 2008 versus point estimate
from the multiple completed data sets (x symbol). For instance, the upper left plot
gives Pr(Obama 2012, Obama 2008) ≈ 0.5, while Pr(Obama 2012, McCain 2008) as
well as Pr(Obama 2012, other 2008) are both close to zero.

in 2008 and oppose the Tea Party are much more likely to vote for Obama than Repub-
licans who preferred Obama in 2008 and support the Tea Party. Of those who supported
Obama in 2008, those who support the Tea Party are most likely to vote against him
in 2012.

For readability, Figure 7 displays only point estimates. The uncertainty bands cor-
responding to the four largest probabilities as well as most of the small probabilities
are narrow, in that most 95% interval bands have width less than 0.1. The uncertainty
bands associated with those who preferred “neither” 2008 candidate are often extremely
wide. In particular, uncertainty is largest for Democrats who preferred a candidate other
than Obama or McCain in 2008.

To check the plausibility of the imputations generated by the MM-FC, we follow the
advice in Abayomi et al. (2008) and Gelman et al. (2005) by comparing distributions
of imputed and observed values. These distributions exhibit similar patterns with only
slight differences, suggesting the imputations are plausible. We also evaluate the plau-
sibility of the MM-FC imputations with posterior predictive checks (He and Zaslavsky,
2012). Using 25 draws of the parameters from the posterior distribution, we generate
25 replicated datasets, compute statistics of interest with the replicated data, and com-
pare the distribution of these statistics with the corresponding values computed with
the m = 10 multiple imputations. We choose statistics that correspond to inferences
of substantive interest. As examples, Figure 8 displays bivariate distributions of vote
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Figure 9: Distributions based on replicated data sets for the distribution of ideology
conditional on candidate preference in 2008 (indicated by row labels) and party (indi-
cated by column labels) versus point estimate from the multiple completed data sets
(x symbol).

intent and candidate preference, and Figure 9 displays distributions of ideology con-
ditional on candidate preference and party. There are no obvious indications that the
MM-FC generates implausible imputations. Figure 9, which involves Y(A) and pairs
of variables in X variables, provides some assurance that the specification for D(X)
is reasonable for these data. We include additional posterior predictive checks in the
supplementary material.

As comparisons, we implemented the chained equations approach to multiple impu-
tation (Raghunathan et al., 2001; van Buuren and Groothuis-Oudshoorn, 2011) using
default specifications in the MICE software in R (van Buuren and Groothuis-Oudshoorn,
2011). We also implemented the standard method used in political science using default
specifications in the software package “Amelia” (Honaker et al., 2011), which generates
discrete-valued imputations via transformations and rounding of draws from a multivari-
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ate normal distribution. For these approaches, the posterior predictive checks indicated
serious inadequacies in model fit. See the supplemental material for these results.

5 Discussion

The simulations indicate that separating variables into focus and remainder variables
can result in improvements in estimation accuracy. These gains are manifested most
clearly for the focus variables. There also can be gains when estimating relationships
between ordinal focus variables and the remainder variables. However, the separation
comes at a cost for estimating relationships between nominal focus variables and the
remainder variables. We note that we also observed improvements in accuracy when
evaluating focused clustering when using independent multinomial product kernels for
both sub-models; see the supplementary material for details.

These findings suggest future research directions around tailoring the selection of
the focus variable set. For example, there may be advantages to including in the focus
variable set all variables that are of primary interest, even when they have small rates
of missing values. This can allow the model to concentrate its fitting power on the
joint distributions of the variables of interest, but still use the remainder variables to
improve imputations. As another option, the analyst might include variables that are
not of direct interest, or are observed with low rates of missingness, but are highly
correlated with key focus variables. Finally, the results of these investigations suggest
extending the MM-FC to allow the data to determine automatically the most beneficial
allocations to focus and remainder variables.

As indicated in Section 2.3, various marginal distributions of the MM-FC are known
to possess desirable properties (when the number of clusters is allowed to be infinite),
such as large support and consistency. Large support refers to the ability of the prior
model to generate distributions that are arbitrarily close to any true data-generating
distribution. Dunson and Xing (2009) established that the marginal model for P (X)
has large support with respect to the L1 topology, and this is sufficient for posterior
consistency. DeYoreo and Kottas (2014) and Norets and Pelenis (2012) show that ordinal
regression models induced from mixtures of multivariate normals, similar to the model
we use for P (Y(A) | X), possess the Kullback–Leibler (KL) large support property.
However, this does not imply that such properties are inherited by the joint model.
Thus, the support and consistency properties of focused clustering models are topics
for future research. We note that large support and asymptotic results on posterior
consistency for multivariate, mixed-scale distributions have been established by Canale
and Dunson (2015) and Norets and Pelenis (2012), but generally are few in comparison
to the results available for continuous densities. For MM-FC, one possible approach
could involve extending the L1 support result for P (X) to KL support, and using
results of Norets and Pelenis (2012) to obtain KL support for P (Y(A) | X). The chain
rule for relative entropy could then be applied to establish KL support for the joint
model (DeYoreo and Kottas, 2014). Regardless, we envision MM-FC to be most useful
for modest-sized data, when focused clustering is most likely to be needed. In such cases,
it is crucial to check the quality of the model fit for the data at hand.
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Supplementary Material

Supplementary Material for “Bayesian Mixture Models with Focused Clustering for
Mixed Ordinal and Nominal Data” (DOI: 10.1214/16-BA1020SUPP; .pdf).
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