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Nonparametric Goodness of Fit via
Cross-Validation Bayes Factors

Jeffrey D. Hart∗‡ and Taeryon Choi†§

Abstract. A nonparametric Bayes procedure is proposed for testing the fit of
a parametric model for a distribution. Alternatives to the parametric model are
kernel density estimates. Data splitting makes it possible to use kernel estimates
for this purpose in a Bayesian setting. A kernel estimate indexed by bandwidth
is computed from one part of the data, a training set, and then used as a model
for the rest of the data, a validation set. A Bayes factor is calculated from the
validation set by comparing the marginal for the kernel model with the marginal
for the parametric model of interest. A simulation study is used to investigate how
large the training set should be, and examples involving astronomy and wind data
are provided. A proof of Bayes consistency of the proposed test is also provided.
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1 Introduction

Nonparametric testing of the fit of a parametric model for a distribution has a long and
rich history in frequentist statistics; see, e.g., Rayner et al. (2009). However, the litera-
ture on Bayesian goodness-of-fit tests is much smaller. Müller and Quintana (2004) and
Tokdar et al. (2010) review some Bayesian approaches to goodness of fit, an important
one being that of Berger and Guglielmi (2001) based on Pólya trees. More recently Tok-
dar and Martin (2013) have proposed a Bayesian test of normality versus a Dirichlet
process mixture alternative. The purpose of the current paper is to introduce a Bayesian
approach to goodness of fit that has the virtues of (i) simplicity, and (ii) transparency to
users unfamiliar with the somewhat daunting notions of Dirichlet processes and Pólya
trees.

Given data X ≡ (X1, . . . , Xn) from a density f , a kernel estimator of f(x) has the
form

f̂(x|X, h) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (1)
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where K is an appropriate kernel, typically a finite variance, unimodal density that is
symmetric about 0, and h is a positive bandwidth. Kernel estimators have reached the
point of being a familiar means of describing the distribution of a data set. They are
no more intimidating than their primitive cousin the histogram, and have the appeal of
being smooth, like one envisions the density from which the data are drawn.

Kernel estimators are attractive in the nonparametric goodness-of-fit problem since
they are nonparametric estimators of the underlying density. Given a fitted parametric
density, it seems natural to test the fit of this density by seeing how close it is to
a kernel estimate. Such an approach in the frequentist realm dates at least to Bickel
and Rosenblatt (1973). From a Bayesian point of view, however, it is not immediately
clear how kernel estimates could be used in the goodness-of-fit problem. The Bayesian
approach requires models for the underlying density that are well defined prior to data
collection. By its nature, though, a kernel estimate only becomes a model after the
data are observed. Kernel estimates do, nonetheless, have a connection with Bayesian
methodology. Ferguson (1983) showed that when n is large and K is a Gaussian density,
estimate (1) approximates a posterior predictive density in a model where the densities
are mixtures of normals and the prior for the parameters of the mixtures is a Dirichlet
process.

In this paper we use data splitting to sidestep the problem that kernel estimates
are not a priori models. Given a random sample X1, . . . , Xn, suppose one randomly
splits the data set into two parts, X1 and X2. Let f̂( · |X1, h) be a kernel estimate
computed from the data X1. The key idea of this paper is that the collection of densities
{f̂( · |X1, h) : h > 0} comprises a parametric model (with parameter h) for the data X2.
To test the fit of a parametric model, such as normality, one may compute a Bayes factor
based on marginal distributions of X2 corresponding to {f̂( · |X1, h) : h > 0} and the
parametric model of interest. The kernel model for X2 should be a reasonably good
one, since X1 and X2 come from the same distribution. So, if the parametric model
is wrong, the Bayes factor should favor the kernel model. If the parametric model is
correct, then the parametric estimate is more efficient than the best kernel estimate,
and the Bayes factor should favor the null model.

An appealing aspect of our approach is that it does not require specification of alter-
native parametric models. In a traditional Bayesian, nonparametric test of a parametric
hypothesis, the alternative would be a rich collection of parametric models. The prior
distributions for such rich collections do not always reflect sensible beliefs about the
alternative, and hence the resulting Bayes factor does not necessarily have the desirable
properties that Bayes factors have when testing one parametric model versus another.
In contrast, under the alternative our approach only involves one parameter, the band-
width h of the kernel estimate, and so choosing a prior is relatively straightforward. If
the null hypothesis is rejected in our approach, one may consider the kernel density esti-
mate that led to this conclusion to seek guidance as to an appropriate parametric model
for the underlying density. Such an approach has long been promoted by advocates of
kernel estimates.

Our method based on data splitting has an obvious connection to cross-validation.
Indeed, we term the Bayes factor computed from the partitioned data as a cross-
validation Bayes factor, or CVBF. Our idea may be regarded as a Bayesian analog
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of the method proposed by van der Laan et al. (2004) for choosing the bandwidth of
a kernel estimator. The most common version of cross-validation in density estima-
tion is leave-one-out, in which an estimate using all but one data value is evaluated at
the deleted observation. In contrast, and using the notation of the previous paragraph,
van der Laan et al. (2004) advocate computing a likelihood by evaluating f̂( · |X1, h)
at the observations in X2, and then choosing the bandwidth that maximizes this like-
lihood. The use of cross-validation in Bayesian model selection has been previously
considered by Alqallaf and Gustafson (2001).

The purpose of this paper is to explore the use of CVBFs for testing goodness of fit.
The paper is by no means a comprehensive study of this idea. We do, however, establish
conditions under which our test is Bayes consistent, and we present simulations and real
data examples that indicate considerable promise for the method. The rest of the paper
proceeds as follows. The method is described in detail in Section 2, and choosing a
prior for the bandwidth of the kernel estimator is discussed in Section 3. The effect
of the size of the training set X1 is investigated by simulation in Section 4, and real
data examples are the subject of Section 5. A theorem on Bayes consistency of the
proposed goodness-of-fit test is provided in Section 6, and concluding remarks given in
Section 7.

2 The method

We describe the method in the context of checking the fit of a parametric model for a
probability distribution. The method could also be applied to other testing problems,
such as lack-of-fit in regression, although we do not pursue that possibility here. For
n > k, suppose that X1 = (X1,1, . . . , X1,k) and X2 = (X2,1, . . . , X2,n−k) are indepen-

dent random samples from density f , and define f̂( · |X1, h) to be a kernel estimate as
follows:

f̂(x|X1, h) =
1

kh

k∑
i=1

K

(
x−X1,i

h

)
,

where K is an appropriate kernel, typically a finite variance, unimodal density that
is symmetric about 0, and h is a positive bandwidth. Of interest is testing the fit of
M0, a parametric model for f . Given X1, M1(X1) = {f̂( · |X1, h) : h > 0} is another
parametric family of densities for the data X2. Assuming only smoothness of f , one
can expect a member of M1(X1) to be relatively close to f , especially when k is large.
So, we may test the fit of M0 by computing a Bayes factor from the data set X2 that
compares M0 and M1(X1). The posterior of h given X2 is

π(h|X2) =

n−k∏
i=1

f̂(X2,i|X1, h)π(h)/m(X2|M1(X1)),

where π( · ) is the prior for h and

m(X2|M1(X1)) =

∫ ∞

0

n−k∏
i=1

f̂(X2,i|X1, h)π(h) dh.
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If m(X2|M0) is the marginal of X2 assuming that M0 is the correct model, then a
Bayes factor would be m(X2|M1(X1))/m(X2|M0).

Given a single data set X = (X1, . . . , Xn), the previous idea may be applied by
randomly splitting the data set into two parts. Using the parlance of cross-validation,
these two sets are called the training and validation sets. The kernel estimate is computed
from the training set and the Bayes factor from the validation set. We shall refer to a
Bayes factor computed in this way as a cross-validation Bayes factor, or CVBF. In
principle one could obtain Bayes factors for all splits corresponding to a given k, and
then compute either an arithmetic or geometric mean of all the Bayes factors. The idea
of averaging Bayes factors has been used by Berger and Pericchi (1996) in defining
intrinsic Bayes factors. Unless n is very small, it would be prohibitive to consider all(
n
k

)
splits for a given k. Instead, it seems to be sufficient to randomly choose a large

number (say 1000 to 10,000) of random splits, compute a Bayes factor for each and
average the results. We also believe it is worthwhile to consider the distribution of the
Bayes factors.

What should one use for k? Ideally one would choose k so that, with high probability,
the resulting Bayes factor is less than 1 under H0 and considerably larger than 1 under
alternatives. Calibration of CVBF may be performed by investigating how it behaves
when data are generated from the null model. Doing so has somewhat the same flavor as
methodology proposed by Xu et al. (2011), who suggest that data splitting be used to
calibrate Bayes factors. Their approach uses a training sample to construct posteriors
which are used as priors for models that are fitted to the validation data. The calibration
is aimed at finding priors that contain a given amount of information. Calibration in our
setting consists of determining a value of k such that CVBF has a very small probability
of exceeding, say, 0.50 when the null hypothesis is true. Having determined a k that
produces the desired CVBF behavior, one would then have to accept the resulting
behavior in the event that H0 is false. This is similar to what a frequentist does in
choosing a test to have a small type I error probability, and then accepting the fact
that test power will not be good unless the alternative is sufficiently discrepant from
the null.

Another consideration in choosing k is Bayes consistency of the test. In Section 6
we establish conditions under which a test based on CVBF for a single random split is
Bayes consistent. A condition required to prove our result is that k tend to ∞, but at
a much slower rate than n.

3 Prior for the bandwidth

In the sequel, we will always use a Gaussian kernel for K. The density estimation
literature (e.g., Silverman, 1986) tells us that the Gaussian kernel is nearly optimal in
a mean squared error sense. We do not claim that a similar property of the Gaussian
kernel is true in the current context. However, the point of this paper is to introduce
ideas and to demonstrate the potential of CVBFs, and hence we defer an investigation
of kernel effect to future work.
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Our experience with CVBFs indicates that choosing a good prior for the bandwidth
h can be quite important. A good prior will produce stable Bayes factors that tend to
be much less than 1 when the null hypothesis is true and much larger than 1 when the
null hypothesis is false. For this purpose we have found that a prior of the following
form works quite well:

π(h|β) = 2β√
π

1

h2
exp

(
−β2

h2

)
I(0,∞)(h), (2)

where β > 0. When π(h|β) is used as the prior for the bandwidth of kernel estimate

f̂( · |X1, h), we take β to be R/1.35, where R is the interquartile range of the validation
data X2. Using the validation data to tune the prior for h is consistent with the practice
of using the same data set to compute parameters of reference priors and a Bayes factor.

Two aspects of prior (2) make it appealing. First of all, it is proper, which is a
necessary condition for a Bayes factor to be well-defined. Secondly, the prior tends to 0
as h tends to 0. As a prior for the bandwidth of an observed kernel estimate, it seems
that this should almost be a requirement, since one can plot the estimate for different
values of h and identify an h below which the corresponding empirical kernel models
are clearly unsatisfactory. On the other hand, if one uses prior (2) with the same β for
all n, then for all n sufficiently large the prior is giving very low probability to values of
h that are a priori the most likely under H0. (This is because an asymptotically optimal
choice of h tends to 0 as n tends to ∞.) Such a prior may seem odd, but is in the same
spirit as the idea of a non-local prior espoused by Johnson and Rossell (2010). Suppose
Θ0 and Θ1 are mutually exclusive and exhaustive subsets of a parameter space Θ. When
testing H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, a local alternative prior, in the terminology of
Johnson and Rossell (2010), is one that assigns nonzero probability to Θ0, and a non-
local alternative prior assigns probability 0 to Θ0. Johnson and Rossell (2010) advocate
the use of non-local alternative priors that are quite small for values of θ that are in Θ1

but close to Θ0. They prove that certain priors of this type can induce an exponential
rate of convergence of a Bayes factor to 0 when H0 is true, while not disturbing the
exponential convergence rate of the Bayes factor under alternatives. We will show in
Section 6 that a Bayes factor using prior (2) also converges to 0 at an exponential rate
under H0.

Another motivation for (2) comes from an idea as in Berger and Pericchi (1996) for
circumventing the problem of using noninformative priors in model selection. Berger
and Pericchi (1996) suggest using a small part of the data to compute a posterior
based on a noninformative prior, and to then use this posterior as a prior for the
remainder of the data. One uses the smallest number of observations such that the
posterior for those observations is proper. Arguably, a reasonable noninformative prior
for h would be the improper prior h−1I(0,∞)(h), which results from an invariance-under-
scale-transformations argument. Suppose one computes a kernel density estimate using
a Gaussian kernel and a single observation Xi. A posterior can be formed by then
evaluating that estimate at an independent data value Xj , and multiplying by h−1.
This posterior is proportional to

h−2 exp

(
− (Xi −Xj)

2

2h2

)
,
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which obviously has the same form as (2). Our data-driven choice of β2 targets E[(Xi−
Xj)

2]/2 when the observations are Gaussian.

Though our subsequent results will only use the prior (2), we have experimented
extensively with other priors, for example gamma distributions with shape parameters
less than 1. Our finding is that priors that do not tend to 0 as h tends to 0 produce
CVBFs that are somewhat unstable. In particular, the CVBFs are sensitive to the choice
of k. A choice of k that is acceptable under the null hypothesis is not necessarily a good
choice under alternative hypotheses. In contrast, we show numerically in the next section
that CVBFs based on (2) seem to perform well for any k under the null hypothesis,
which means that one is free to choose k so that it is optimal for alternatives.

4 Choice of training set size

An important consideration in using CVBFs is the size k of the training set. Ideally one
would consider this problem theoretically, but at this early stage of our investigation we
study it using simulation. We consider testing the fit of two parametric models: normal
and Laplace. For each data set generated, values of k equal to 0.20n, 0.30n, . . . , 0.80n
were considered, and a CVBF for each k was computed by averaging the log(CVBF)
values from 100 random data splits. Whether testing for a normal or Laplace density,
data were generated from three different distributions. These were normal, Laplace and
skew-normal distributions when testing for normality, and Laplace, normal and skew-
Laplace when testing the fit of a Laplace density.

Two sample sizes, n = 200 and 500 were considered, and five hundred indepen-
dent data sets were generated for each of the twelve combinations of n and test-
ing/distribution scenario. The skew-normal density considered was

fSN(x) = 2φ(x)Φ(5x),

where φ and Φ are the pdf and cdf of a standard normal distribution, respectively, and
the skew-Laplace density was

fSL(x) =

(
α

α+ β

)
fE(−x|α) +

(
β

α+ β

)
fE(x|β),

where fE( · |θ) is an exponential density with mean θ, and we take α = 1/4 and β = 1.

Whether testing the fit of a normal or Laplace distribution, our prior for the location
and scale parameters, (μ, σ), has the form

π0(μ, σ) =
1

σ
g1

(
μ−m

σ

)
1

γ
g2

(
σ

γ

)
,

where g1 and g2 are densities with respective supports the real line and the positive
reals, m is a location estimate and γ a scale estimate. When testing normality, we take
g1 to be standard normal,

g2(s) =
2√
π
· 1

s2
e−1/s2I(0,∞)(s),
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Figure 1: Averages of log-CVBF as a function of the training set size. The null hypothesis
tested is normality, and the sample size is n = 200. The solid, dashed and dotted lines
correspond to normal, Laplace and skew-normal data, respectively. The horizontal line
indicates Jeffreys’ cutoff between substantial and insubstantial evidence against the null
hypothesis.

m to be the sample mean and γ = σ̂/
√
2, where σ̂ is the sample standard deviation. The

resulting prior is a unit-information reference prior, in that it is centered at the observed
data and contains an amount of information equivalent to that in a single observation.

When testing the fit of a Laplace density, we take g1 to be a standard Laplace
distribution, g1(x) = exp(−|x|)/2, and g2 an inverse gamma distribution: g2(s) =
s−2e−1/sI(0,∞)(s). For γ we use R/ log 2, and for m the sample median. As in the
normal case, this prior is a unit-information reference prior. Finally, as prior for h we
use (2) with β = R/1.35. The data used in computing the parameters of the priors for
both null and kernel models were always the validation data X2, i.e., the data from
which the Bayes factor is computed. It is important to note that defining the priors as
we do makes our Bayes factors invariant to the location and scale of the density from
which the data were generated.

The results of our simulations are summarized in Figures 1–4. We desire two things
from a Bayes factor: that it be smaller than 1 when the null hypothesis is true, and quite
a bit larger than 1 when the null is not true. Of course, on the log scale, 0 is the value
representing indifference between the two models. With this in mind, Figures 1–4 show
that the average log(CVBF) always increased with k when the null hypothesis was true,
but never exceeded 0. Jeffreys (1961) considered Bayes factors larger than

√
10 = 3.16 to

be “substantial evidence” against H0. When the null hypothesis was false, the only time
the geometric mean of the CVBF was smaller than 3.16 was when testing normality at
n = 200. This occurred with Laplace data at k = 40 and skew-normal data at k = 160,
both of which are extreme choices for k. Under alternatives, the average log(CVBF)
was either approximately flat or increasing between k = 0.2n and k = 0.4n, and then
decreasing from k = 0.4n to 0.8n. This suggests that 0.4n is a good choice for k in the
8 scenarios where H0 was false. At k = 0.4n, the smallest geometric mean for CVBF
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Figure 2: Averages of log-CVBF as a function of the training set size. The caption for
this case is identical to that in Figure 1 except that n = 500.

Figure 3: Averages of log-CVBF as a function of the training set size. The null hypothesis
tested is that the data are Laplace, and the sample size is n = 200. The solid, dashed
and dotted lines correspond to Laplace, normal and skew-Laplace data, respectively. The
horizontal line indicates Jeffreys’ cutoff between substantial and insubstantial evidence
against the null hypothesis.

over these 8 scenarios was 16.81. On the other hand, at k = 0.4n the geometric mean
of CVBF was no larger than 0.089 for any of the four scenarios where H0 was true.

On the basis of our simulation results, it seems reasonable to suggest using a value
of k between 0.3n and 0.4n, at least for sample sizes between 200 and 500. Of course,
much more work needs to be done on the problem of choosing the training set size. In
order for CVBF to be fully efficient, it may be necessary that k/n tend to 0 as n tends
to ∞. Only then is CVBF computed on a data set whose size is asymptotic to n. Our
simulation results suggest that choosing k very small is not a problem when the null
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Figure 4: Averages of log-CVBF as a function of the training set size. The caption for
this case is identical to that in Figure 3 except that n = 500.

hypothesis is true. However, if H0 is false, it is conjectured that k should tend to ∞,
albeit at a rate slower than n.

It would be interesting to develop a theory that would indicate an optimal rate at
which k should grow with n. A possible definition of an optimal k is as follows. First,
determine a set of k-values, call it K, such that for each k ∈ K the expected value of
log(CVBF) under H0 is no larger than a given threshold (which would certainly be
less than 0). For a specific alternative, define the optimal k to be a member of K that
maximizes expected value of log(CVBF) when the data come from that alternative.

5 Examples

5.1 Analysis of planetary nebula luminosity data

Here we analyze observations of planetary nebula luminosity in the Messier 31, or An-
dromeda, galaxy. For background on the data analyzed, the reader is referred to Ciar-
dullo et al. (1989) and Ciardullo et al. (2002). The frequency distribution of planetary
nebula luminosities is referred to as a planetary nebula luminosity function, or PNLF.
From a visual inspection of a histogram of Messier 31 data, Ciardullo et al. (1989)
claimed that the PNLF of Messier 31 does not follow a power law. We wish to validate
this claim using our CVBF.

The available data from Messier 31 are brightness readings from 238 planetary neb-
ulae, which can be downloaded from http://astrostatistics.psu.edu/datasets/

plan neb.html. These readings are measured on a scale such that smaller values corre-
spond to brighter objects. Ciardullo et al. (1989) note that dimmer readings are subject
to more measurement error. Therefore, they used only observations smaller than 22 to fit
the PNLF curve. In statistical parlance, their data are censored. Let X1, . . . , Xn be the
actual observations and Y1, . . . , Yn be the underlying data that are free of errors. When

http://astrostatistics.psu.edu/datasets/plan_neb.html
http://astrostatistics.psu.edu/datasets/plan_neb.html
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Figure 5: Estimates of log-density of luminosity. The solid line is a fitted power law
curve that maximizes the posterior density. The dashed line is the log of a kernel density
estimate. Each estimate is computed from 61 luminosity readings smaller than 22.

Xi < 22, it is assumed that Xi = Yi, but if Xi > 22 then we only know that Yi > 22.
We wish to test whether the PNLF curve follows a power law at brightnesses less than
22. Plots of kernel and power law estimates of log-density are shown in Figure 5. Of the
238 observed luminosities, only 61 were smaller than 22.

The null density of Yi is such that

f0(y) = (1− p)f(y|α), y < 22,

where p = P (Yi > 22) and

f(y|α) = α 22α

(44− y)α+1
I(−∞,22)(y). (3)

The parameters p and α are unknown, with α > 0. Let X1 be an arbitrary subset of k
of the 238 observations, and let X2 be the other 238 − k observations. Under the null
hypothesis, the likelihood function for X2 is

L(α, p) = pnT (1− p)238−k−nT

∏
xi∈S

f(xi|α),

where nT is the number of observations among X2 that are at least 22 and S contains
the observations inX2 that are smaller than 22. Now let f̂( · |X1, h) be a kernel estimate
computed from the observations in X1 that are smaller than 22. Treating such kernel
estimates as a model for X2, the kernel likelihood has the form

LK(h, p) = pnT (1− p)238−k−nT

∏
xi∈S

f̂(xi|X1, h).
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Figure 6: CVBF as a function of k, the size of the training set, for the luminosity data.
Each value is the geometric mean of 1000 Bayes factors. The flat line indicates the
smallest value that is considered substantial evidence against H0.

If p is assumed a priori independent of h and α, then a Bayes factor is simply

B =

[∫ ∞

0

π(h)
∏
xi∈S

f̂(xi|X1, h) dh

][∫ ∞

0

π0(α)
∏
xi∈S

f(xi|α) dα
]−1

.

In other words, the Bayes factor has exactly the same form it would have if the
uncensored data were a random sample of size 238 − k − nT from density
(1 − p)−1f(y)I(−∞,22)(y), where f is the true density of Yi. To compute the Bayes
factor we assumed that the prior for h is π( · |β), as defined in Section 3. We used a
gamma prior for α, which is a conjugate prior in this case, taking the shape parameter
to be 2 and the rate parameter equal to M =

∑
xi∈S log((44− xi)/22)/(238− k − nT ).

This prior has an amount of information equivalent to one observation from the power
law density.

As is well-known, kernel estimates are subject to edge effects when the underlying
density does not tend to 0 at the endpoints of its support. Such is the case here at
x = 22 because of the data censoring. We thus used a reflection technique (Silverman,

1986, p. 30) to compute f̂( · |X1, h). Suppose there are m observations in X1 that are
less than 22. If xi is any one of these m, then the reflection technique involves defining
a new data value larger than 22 that is the same distance from 22 as is xi. One then
computes a standard kernel estimate based on the new data set of 2m observations, and
multiplies it by 2, to ensure that it integrates to 1 over (−∞, 22).

Initially we considered the effect of using different choices for k, the size of the
training set. At each of 18 choices for k ranging from 30 to 200, we considered 1000
random data splits, computed CVBF for each split, and then found the geometric mean
of the 1000 Bayes factors. The results are summarized in Figure 6. The largest evidence
against H0 occurred when k was 50, which is 21% of n = 238. The flat line is at

√
10,
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Figure 7: Quantile function of log Bayes factors corresponding to 10,000 randomly chosen
splits of the luminosity data. The training and validation splits were of size 50 and 188,
respectively. The flat line indicates the smallest value that is considered substantial
evidence against H0.

which Jeffreys (1961) deemed to be the smallest value indicating substantial evidence
against the null hypothesis.

Using k = 50, we did a more detailed analysis. First we computed a Bayes factor
for each of 10,000 randomly selected data splits. The geometric mean of these 10,000
Bayes factors was 164.23, a value generally regarded as strong evidence against the null
hypothesis. An empirical quantile function for the logarithm of the 10,000 Bayes factors
is shown in Figure 7. It is advisable to ensure that CVBF behaves appropriately when
the null hypothesis is true. If it does, then one is justified in regarding a Bayes factor of
164.23 as evidence against the null hypothesis. We thus generated 1000 data sets, each
of size 61, from density (3) with α = 31.48, which is the maximum likelihood estimate
of α for the luminosity data. Each data set was augmented with 177 = 238− 61 values
larger than 22, and then 100 random splits with k = 50 were considered for each data
set of size 238. (The values ascribed to data larger than 22 are inconsequential since
only values less than 22 are used in computing CVBF.) The geometric mean of the 100
values of CVBF was computed for each data set. These 1000 means had a geometric
mean of 0.0176, only 0.6% were larger than

√
10, and the largest was 17.95.

5.2 Wind direction data

Here we consider daily peak wind directions from Dallas, TX, USA for the year 2014.
The available data consist of n = 364 directions in degrees, with 0 (or 360) degrees
indicating a peak wind from due north. Defining W to be the reading in degrees, the
data were transformed to radians as follows:

X =

{
−π

2

(
W
90 − 1

)
, 0 ≤ W ≤ 270

−π
2

(
W
90 − 5

)
, 270 < W ≤ 360.
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Figure 8: Kernel estimate (solid line) and fitted von Mises distribution (dashed line) for
the wind data.

With this transformation northerly winds correspond to x = π/2 and southerly winds
to −π/2.

The circularity of the data should be taken into account when estimating their
distribution. One anticipates that the density of W is continuous at 270 degrees, which
entails that the density, f , of X is such that f(−π) = f(π). This condition is ensured
by using a kernel estimate of the following form:

f̂(x|h) = 1

n

n∑
i=1

Kh(x−Xi), −π ≤ x ≤ π, (4)

where

Kh(u) =
1

h

∞∑
j=−∞

φ

(
u− 2πj

h

)
, −π ≤ u ≤ π. (5)

Kernel (5) is a wrapped normal kernel (Mardia and Jupp, 2000), and the estimate (4)
integrates to 1 over the interval (−π, π).

For descriptive purposes the bandwidth h of the kernel estimate was selected using
the likelihood cross-validation method of van der Laan et al. (2004). The resulting kernel
estimate is shown in Figure 8. The estimate shows that peak winds are usually from the
north or south, with southerly peak winds being more frequent than northerly ones.

A commonly used model in circular data applications is the von Mises distribution,
which is a circular analog of the normal distribution. The von Mises density is

f(x|μ, κ) = 1

2πI0(κ)
eκ cos(x−μ), −π ≤ x ≤ π,

where −π ≤ μ ≤ π, κ > 0 and I0 is the modified Bessel function of order 0. The
maximum likelihood estimates (MLEs) of μ and κ using all of the wind data are −1.245



666 Nonparametric Goodness of Fit via Cross-Validation Bayes Factors

and 0.3982, respectively. Figure 8 shows the MLE of the von Mises density along with
the kernel estimate.

We shall compute CVBFs for comparing kernel estimates with the von Mises model.
The prior for h was taken to be (2) with β equal to a circular data scale estimate com-
puted from the validation data. The parameters μ and κ of the von Mises distribution
were taken to be a priori independent, with μ being uniform on (−π, π) and κ having
an exponential density with mean equal to the MLE of κ from the validation data. The
size k of each training set was taken to be 146. To ensure that this choice of k pro-
duces Bayes factors that behave appropriately under the null hypothesis, we generated
200 random samples of size 364 from a von Mises distribution with μ = −1.245 and
κ = 0.3982. For each data set, 50 random splits, each with k = 146, were considered.
The geometric mean of the 50 CVBF values was computed for each of the 200 data
sets. These 200 geometric means ranged between 0.080 and 0.738 and had a geometric
mean of 0.237. We then considered 1000 random splits, each with k = 146, of the wind
data and computed CVBF for each split. The smallest value of CVBF among the 1000
data splits was 3.48 · 1011 and the geometric mean of the CVBF values was 7.51 · 1020,
providing overwhelming evidence against the von Mises model.

The von Mises model may seem like something of a straw man since the nonpara-
metric estimate is strikingly bimodal. To make the goodness of fit problem more chal-
lenging, we thus consider testing the fit of a mixture of two von Mises distributions.
Taking μ1 ≤ μ2, the model considered is

f(x|μ1, μ2, κ1, κ2, w) = wf(x|μ1, κ1) + (1− w)f(x|μ2, κ2), −π ≤ x ≤ π.

We use a prior in which κ1, κ2 and w are mutually independent, the pair (μ1, μ2) is
independent of (κ1, κ2, w), w is uniform on (0, 1), each κ has a standard exponential
density, and μ1 and μ2 are order statistics for a random sample of size 2 from the uniform
density on (−π, π). Initially we used the Markov chain Monte Carlo (MCMC) method to
determine a good point estimate of the mixture model. A multivariate normal proposal
distribution was used. Several iterations of MCMC were used to tweak the parameters
of the proposal, and ultimately excellent mixing was obtained. The mixture density
corresponding to the average of 10,000 values generated from the posterior is shown in
Figure 9. The mixture density matches the kernel estimate reasonably well.

We computed values of CVBF corresponding to training set sizes (k) of 73, 109,
146, 182, 218, 255 and 291. At each k we computed CVBF for 200 random splits. The
marginal for the mixture model was determined (for each data split) by using importance
sampling. Denoting the prior by π and letting θ = (μ1, μ2, κ1, κ2, w), the marginal for
data x1, . . . , xm is approximated by

1

N

N∑
i=1

m∏
j=1

f(xj |θi)π(θi)/g(θi),

where θ1, . . . ,θN is a random sample from g, and g is a multivariate normal distribution
whose mean and covariance matrix are determined from our initial MCMC analysis. The
geometric mean of the 200 CVBF values at each k is shown in Figure 10. These values
show that the von Mises mixture model is strongly favored over the kernel model.
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Figure 9: Kernel estimate (solid line) and fitted mixture of two von Mises distributions
(dashed line) for the wind data.

Figure 10: Values of CVBF for comparing kernel estimates with the von Mises mixture
model. Each value is the geometric mean of CVBF over 200 random splits.

6 Bayes consistency

In our goodness-of-fit context, Bayes consistency occurs if the Bayes factor tends to 0 in
probability when H0 is true and to ∞ when H0 is false. Here we provide a theorem on
consistency in a case where the underlying density is defined on a known, finite interval.
While the finite support assumption is less than ideal, we at least provide a first rigorous
step towards a theoretical justification of our methodology.

Notation.

• Given observations X1, . . . , Xn, the training set is XT = (X1, . . . , Xk) and the
validation set XV = (Xk+1, . . . , Xn).
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• The kernel K is a standard normal density.

• Ikh =
∫ b

a
1
kh

∑k
i=1 K(x−Xi

h ) dx.

• f̂(x|h,XT ) =
1
kh

∑k
i=1 K(x−Xi

h ) · I−1
kh .

• Jkn =
∑n

i=k+1 log f0(Xi).

• 
k(h) =
∑n

i=k+1 log f̂(Xi|h,XT ).

• 
̃k(h) = (n− k)
∫ b

a
log f̂(x|h,XT )f0(x) dx.

• 
(θ) =
∑n

i=k+1 log f̂(Xi|θ).

• The priors for h and θ are π and p, respectively.

• hM = k−β , h1 = k−α (0 < β < α), hj = h1 + (hM − h1)(j − 1)/(M − 1),
j = 1, . . . ,M .

• HM = {h1, . . . , hM}.

• BFkn = (hM − h1)(M − 1)−1
∑M

j=1 exp(
k(hj))π(hj)/
∫
Θ
exp(
(θ))p(θ) dθ.

Assumptions.

1. X1, . . . , Xn is a random sample from density f0 that has known, finite support
(a, b).

2. The density f0 and its first derivative are bounded and continuous on (a, b), and
f ′′
0 exists and is uniformly continuous on (a, b). In addition, f0, f

′
0 and f ′′

0 are right
and left continuous at a and b, respectively, with f ′

0(a+) = 0 and f ′
0(b−) = 0.

3. When H0 is true, f0 ≡ f( · |θ0) for some θ0 ∈ Θ. The integral∫ b

a

log f(x|θ)f0(x) dx

exists for all θ under both null and alternative hypotheses. When the alternative
is true, there exists a θ0 ∈ Θ such that θ0 maximizes∫ b

a

log f(x|θ)f0(x) dx,

with respect to θ. Furthermore, the Kullback–Leibler discrepancy∫ b

a

log[f0(x)/f(x|θ0)]f0(x) dx

is strictly positive, and
∫ b

a
[log f0(x)]

2f0(x) dx < ∞.
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4. Under both null and alternative hypotheses the marginal for the parametric model
is asymptotic to the following Laplace approximation:

(2π)d/2n−d/2|I(θ̂)|−1/2p(θ̂) exp(
(θ̂)),

where θ̂ is the MLE based on XV and I(θ) is the d× d matrix with ij element∫ b

a

∂2

∂θi∂θj
log f(x|θ)f0(x) dx.

5. The MLE θ̂ converges in probability to θ0 under both null and alternative hy-
potheses as n → ∞. Also, I and p are continuous at θ0, and p(θ) is positive for
all θ in a neighborhood of θ0.

6. Under both null and alternative hypotheses, 
(θ̂)−
(θ0) converges in distribution
to a positive random variable Y as n → ∞.

7. The upper bound, k−β , on the bandwidth is such that β can be arbitrarily close
to 0. The lower bound, k−α, is such that 1/4 < α < 1. We assume that k = nc

with c < [8(α+ 1/5)]−1, and M = O(k).

Theorem 1. Suppose that Assumptions 1–7 hold. If the null hypothesis is true, then
BFkn is bounded above by a random variable Bn satisfying

logBn = −Pn1−c(2α+4/5) + op(n
1−c(2α+4/5))

as n → ∞, where P is a positive constant and 1− c(2α+ 4/5) > 1/2. If the alternative
is true

logBFkn = Qn+ op(n)

as n → ∞, where Q is a positive constant.

Some remarks are in order concerning our theorem.

• Note that our proof is for the case where only one random split is used. Clearly,
though, a Bayes factor based on the geometric mean of many random splits will
perform even better.

• The Bayes factor analyzed actually uses a Riemann sum approximation to the
marginal of the kernel model. This seems perfectly reasonable, however, since in
practice numerical methods (such as a Riemann sum) must be used to approximate
this marginal.

• It is noteworthy that under the null hypothesis our Bayes factor converges to 0 at
a rate of exp(−Pnη) for some 1/2 < η < 1. This is in contrast to typical results
when testing a parametric null hypothesis against a nonparametric alternative,
where under the null hypothesis the Bayes factor converges to 0 at slower than an
exponential rate. (See, for example, McVinish et al. (2009).) The reason for expo-
nential convergence in our case is the inefficiency of the kernel estimate relative
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to the parametric model under H0. This creates a sharper contrast between null
and alternative models when using our methodology. This is a tangible benefit of
using our method as opposed to one in which the null is a special case of a larger
alternative model.

• Exponential convergence of Bayes factors under alternatives is typical, and we
note that our method also has this desirable property.

• Our proof requires that k = nc, where c must be less than 5/18.

• Finally, it is worth noting that our proof of consistency does not require using any
of the optimality properties of likelihood cross-validation as proven by van der
Laan et al. (2004). In particular, we do not need to assume (as do van der Laan
et al. (2004)) that the density is bounded away from 0.

Proof. We begin with a lemma and its proof.

Lemma 1. The statistic Ik = minh∈HM
I2kh converges in probability to 1 as n → ∞.

Proof. We have

Ikh =
1

k

k∑
i=1

[
Φ

(
b−Xi

h

)
− Φ

(
a−Xi

h

)]
,

where Φ is the standard normal cdf, and hence Ikh is between 0 and 1 almost surely.
For ε an arbitrarily small positive number,

P (|Ik − 1| > ε) ≤ P (∪M
j=1{|I2khj

− 1| > ε})

≤
M∑
j=1

P (|I2khj
− 1| > ε)

=
M∑
j=1

P
(
Ikhj < (1− ε)1/2

)
. (6)

Letting Ej denote E(Ikhj ), consider

P
(
Ikhj < (1− ε)1/2

)
≤ P (Ikhj − Ej < aε) + P (Ej − 1 < aε),

where aε = [(1− ε)1/2 − 1]/2.

We have

Ikh = 1− 1

k

k∑
i=1

[
Φ

(
a−Xi

h

)
+Φ

(
Xi − b

h

)]
,

and hence

Ej = 1−
∫ b

a

[
Φ

(
a− x

hj

)
+Φ

(
x− b

hj

)]
f0(x) dx
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= 1− hj

∫ 0

(a−b)/hj

Φ(y) [f0(a− hjy) + f0(b+ hjy)] dy.

Using Assumption 2, it follows from the last expression that

Ej = 1− hj(f0(a+) + f0(b−))/
√
2π + h2

jγj , (7)

where γ1, . . . , γM are all bounded by the same number. Assumption 7 then implies that,
for some positive constant C1, |Ej − 1| ≤ C1k

−β for all j, and so for all k sufficiently
large P (Ej − 1 < aε) = 0 for j = 1, . . . ,M .

Theorem 1 of Hoeffding (1963) implies that for 0 < t < Ej ,

P (Ikhj − Ej ≤ −t) ≤ e−2kt2 .

But for all k sufficiently large −aε < Ej for j = 1, . . . ,M , and therefore

P (Ikhj − Ej ≤ aε) ≤ exp(−2ka2ε ), j = 1, . . . ,M.

Combining previous results and using (6) now implies that, for all k sufficiently large,

P (|Ik − 1| > ε) ≤ M exp(−2ka2ε),

from which Lemma 1 follows since M = O(k) by Assumption 7.

Null case. Using Assumptions 4–6, it is enough to prove that

1

M

M∑
j=1

exp(
k(hj)− Jkn)π(hj)

is bounded by a quantity that converges in probability to 0 at an exponential rate. To
this end, for some positive constant C2, the last quantity is bounded by

C2 exp(
k(ĥ)− Jkn)

where ĥ maximizes 
k(h) for h ∈ HM .

Write

k(ĥ)− Jkn = 
̃k(ĥ)− Jkn + 
k(ĥ)− 
̃k(ĥ),

and consider

1

n− k

̃k(h) =

∫ b

a

log f̂(x|h,XT )f0(x) dx

=

∫ b

a

log f0(x)f0(x) dx+

∫ b

a

[f̂(x|h,XT )− f0(x)] dx

−1

2

∫ b

a

[f̂(x|h,XT )− f0(x)]
2 f0(x)

f̃0(x)2
dx
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=

∫ b

a

log f0(x)f0(x) dx− 1

2

∫ b

a

[f̂(x|h,XT )− f0(x)]
2 f0(x)

f̃0(x)2
dx,

where f̃0(x) is between f̂(x|h,XT ) and f0(x).

If D is a bound on f0, then for all x ∈ (a, b),

f̃0(x) ≤ max

(
D,

K(0)

hIkh

)
≤ max

(
D,

kαK(0)

minh∈HM
Ikh

)
,

and hence
1

f̃0(x)2
≥ min

(
D−2,

k−2α minh∈HM
I2kh

K2(0)

)
= Ck.

Therefore, ∫ b

a

[f̂(x|ĥ,XT )− f0(x)]
2 f0(x)

f̃0(x)2
dx ≥ CkISE(ĥ0), (8)

where ISE(h) =
∫ b

a
[f̂(x|h,XT ) − f0(x)]

2f0(x) dx for all h, and ĥ0 is the minimizer of
ISE(h) over all h in an appropriately large set of which HM is a subset. It follows that

1

n− k

(

̃k(ĥ)− Jkn

)
≤ −1

2
CkISE(ĥ0) +

∫ b

a

log f0(x)f0(x) dx− 1

n− k
Jkn

= −1

2
CkISE(ĥ0) +Op(n

−1/2).

We may use results of Hall and Marron (1987) to argue that either k3/4ISE(ĥ0)

or k4/5ISE(ĥ0) converge in probability to a positive constant, depending on how f0
behaves at the boundary of its support. We take the more conservative approach and

assume that k4/5ISE(ĥ0)
p−→ A1 > 0. From Lemma 1 Ck ∼ k−2α/K2(0), in probability,

as k → ∞, and hence we may write

−1

2
CkISE(ĥ0) = −k−(2α+4/5)A1

2K2(0)
+ op(k

−(2α+4/5)).

Combining previous results,

exp(
k(ĥ)− Jkn) ≤ exp

(
−nk−(2α+4/5)A1

2K2(0)
+ 
k(ĥ)− 
̃k(ĥ)

)
× exp

(
Op(n

1/2) + op

(
nk−(2α+4/5)

))
.

Since k = nc, to guarantee consistency at an exponential rate, we need 1−c(2α+4/5) >
1/2, or c < (1/2)(2α+ 4/5)−1, which holds by the condition on c in Assumption 7.

We next consider 
k(ĥ) − 
̃k(ĥ), which we must show is op(nk
−(2α+4/5)). Let d be

such that 1/2 < d < 1− c(2α+ 4/5). We have

P (|
k(ĥ)− 
̃k(ĥ)| > nd) ≤ P

⎛⎝ M⋃
j=1

{
|
k(hj)− 
̃k(hj)| > nd

}⎞⎠
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≤
M∑
j=1

P
(
|
k(hj)− 
̃k(hj)| > nd

)

=

M∑
j=1

∫ b

a

· · ·
∫ b

a

P
(
|
k(hj)− 
̃k(hj)| > nd

∣∣∣
XT = (x1, . . . , xk)

)
×

k∏
i=1

f0(xi) dxi.

We have

P
(

k(hj)− 
̃k(hj) > nd

∣∣∣XT

)
=

P

(
1

n− k

n∑
i=k+1

log f̂(Xi|hj ,XT )− μj >
nd

n− k

∣∣∣XT

)
, (9)

where μj =
∫ b

a
log f̂(x|hj ,XT )f0(x) dx. Given XT , log f̂(Xi|hj ,XT ), i = k + 1, . . . , n,

are i.i.d. with mean μj . In addition, log f̂(Xi|hj ,XT ) is bounded above and below
almost surely. These properties allow us to use a result of Hoeffding (1963) to bound
the probability (9).

It is easy to establish that for all x ∈ (a, b)

1

hj
K

(
b− a

hj

)
≤ f̂(Xi|hj ,XT ) ≤ K(0)

[
K

(
b− a

hj

)]−1

,

and hence

Aj = − log hj + logK

(
b− a

hj

)
≤ log f̂(Xi|hj ,XT ) ≤ logK(0)− logK

(
b− a

hj

)
= Bj .

We may now use Theorem 1 of Hoeffding (1963) to assert that

P
(

k(hj)− 
̃k(hj) > nd

∣∣∣XT

)
≤ exp

(
−2(n− k)

(
nd

(n− k)(Bj −Aj)

)2
)
.

Importantly, the bound is free of XT , and hence

P (|
k(ĥ)− 
̃k(ĥ)| > nd) ≤ 2

M∑
j=1

exp
(
−2n2d(n− k)−1(Bj −Aj)

−2
)
.

Since d > 1/2, n2d/(n− k) ∼ n(2d−1) → ∞. Furthermore,

(Bj −Aj)
−2 = h4

j

[
(b− a)2 + h2

j (log
√
2π − log(b− a) + log hj)

]−2

≥ h4
j (b− a)−2,
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with the last inequality holding for all n sufficiently large. Therefore,

n2d

n− k
(Bj −Aj)

−2 ≥ n2d−4cα

n− k
(b− a)−2,

and
P (|
k(ĥ)− 
̃k(ĥ)| > nd) ≤ 2M exp

(
−2n2d−4cα(n− k)−1(b− a)−2

)
.

We need to choose c and d to satisfy 2d − 4cα > 1 and 1/2 < d < 1 − c(2α + 4/5).
These two inequalities imply that 1/2 + 2cα < d < 1 − c(2α + 4/5), which requires
1/2+2cα < 1− c(2α+4/5). The last inequality is true under the condition imposed on
c in Assunption 7, thus establishing the existence of an appropriate d and completing
the proof of consistency in the null case.

Alternative case. Because of Assumptions 4 and 5, the result will be established by
showing that

exp (−
(θ0))
(hM − h1)

M

M∑
j=1

exp (
k(hj))π(hj)

tends to ∞ at the stated exponential rate. The last quantity is at least

(hM − h1)

M
exp (
k(h1)− 
(θ0))π(h1).

By Assumptions 2 and 3 and the result of Ahmad and Lin (1976),


k(h1)− 
(θ0) + log π(h1) = (n− k)

∫ b

a

log f0(x)f0(x) dx− 
(θ0)− β/h2
1 + op(n).

Therefore, 
k(h1)− 
(θ0) + log π(h1) equals

(n− k)

[∫ b

a

log f0(x)f0(x) dx−
∫ b

a

log f(x|θ0)f0(x) dx

]

+(n− k)

[∫ b

a

log f(x|θ0)f0(x) dx− (n− k)−1
n∑

i=m+1

log f(Xi|θ0)

]
+O(n2cα) + op(n),

which is equal to

(n− k)

∫ b

a

log[f0(x)/f(x|θ0)]f0(x) dx+ op(n).

7 Concluding remarks

We have proposed a Bayesian goodness-of-fit test based on ordinary kernel estimators.
The idea that makes this possible is that kernel estimates indexed by bandwidth com-
prise a parametric model for the distribution of data that are not used in calculating the
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kernel estimates. This idea in conjunction with data splitting leads to straightforward
calculation of Bayes factors that compare a specific parametric model with the kernel
model. Prior specification for alternative models is straightforward since the only prior
required is for the bandwidth of the kernel estimate. A particular prior for the bandwidth
of a Gaussian-kernel estimator was proposed and shown by examples and simulations to
perform very well. We also applied our method to a wrapped Gaussian-kernel estimator
in a setting with circular data.

The ideas proposed herein for testing model fit easily extend to other settings. For
example, the same method could be used to test the fit of a multivariate distribution,
to test the fit of a parametric regression model, or to compare multiple curves in either
k-sample goodness-of-fit or testing the equality of regression functions. A challenging
but undoubtedly fascinating problem for future research would be to determine, at least
asymptotically, optimal sizes for the training and validation sets.
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