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Data-Dependent Posterior Propriety
of a Bayesian Beta-Binomial-Logit Model

Hyungsuk Tak∗ and Carl N. Morris†

Abstract. A Beta-Binomial-Logit model is a Beta-Binomial model with covari-
ate information incorporated via a logistic regression. Posterior propriety of a
Bayesian Beta-Binomial-Logit model can be data-dependent for improper hyper-
prior distributions. Various researchers in the literature have unknowingly used
improper posterior distributions or have given incorrect statements about pos-
terior propriety because checking posterior propriety can be challenging due to
the complicated functional form of a Beta-Binomial-Logit model. We derive data-
dependent necessary and sufficient conditions for posterior propriety within a class
of hyper-prior distributions that encompass those used in previous studies. When
a posterior is improper due to improper hyper-prior distributions, we suggest us-
ing proper hyper-prior distributions that can mimic the behaviors of improper
choices.

Keywords: objective Bayes, hierarchical models, random effects, overdispersion,
logistic regression, beta-binomial, uniform shrinkage prior.

1 Introduction

Binomial data from several independent groups sometimes have more variability than
the assumed Binomial distribution for each group’s count data. To account for this extra-
Binomial variability, called overdispersion, a Beta-Binomial (BB) model (Skellam, 1948)
puts a conjugate Beta prior distribution on unknown success probabilities by treating
them as random effects. A Beta-Binomial-Logit (BBL) model (Williams, 1982; Kahn
and Raftery, 1996) is one way to incorporate covariate information into the BB model.
The BBL model has a two-level structure as follows: For each of k independent groups
(j = 1, 2, . . . , k),

yj | pj
indep.∼ Bin(nj , pj), (1)

pj | r,β
indep.∼ Beta(rpEj , rqEj ), (2)

pEj = 1−qEj ≡ E(pj | r,β) =
exp(x�

j β)

1 + exp(x�
j β)

(3)

where yj is the number of successful outcomes out of nj trials, a sufficient statistic
for the random effect pj , pEj = 1 − qEj denotes the expected random effect, xj =

(xj1, xj2, . . . , xjm)� is a covariate vector of length m for group j, β = (β1, β2, . . . , βm)�

is a vector of m logistic regression coefficients, and r represents the amount of prior
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information on pEj , considering that the Beta prior distribution in (2) concentrates on

pEj as r increases (Albert, 1988). We focus only on a logit link function in (3) because
it is canonical and is well defined for both binary (nj = 1) and aggregate (nj ≥ 2) data.
When there is no covariate with an intercept term, i.e., x�

j β = β1, the conjugate Beta
distribution in (2) is exchangeable, and the BBL model reduces to the BB model.

A Bayesian approach to the BBL model needs a joint hyper-prior distribution of r
and β that affects posterior propriety. Though a proper joint hyper-prior distribution
guarantees posterior propriety, various researchers have used improper hyper-prior dis-
tributions hoping for minimal impact on the posterior inference. The articles of Albert
(1988) and Daniels (1999) use dr/(t+r)2 with a positive constant t as a hyper-prior prob-
ability density function (PDF) for r, and independently an improper flat hyper-prior
PDF for β, dβ. Chapter 5 of Gelman et al. (2013) suggests putting an improper hyper-
prior PDF on r, dr/r1.5, and independently a proper standard Logistic distribution on
β1 when x�β = β1. (They use a different parameterization: pj | α, β ∼ Beta(α, β) and
dαdβ/(α+ β)2.5. Transforming r = α+ β and pE = α/(α+ β), we obtain dpEdr/r1.5.)
However, the paper of Albert (1988) does not address posterior propriety, the propo-
sition in Daniels (1999) incorrectly concludes that posterior propriety holds regardless
of the data, and Chapter 5 of Gelman et al. (2013) specifies an incorrect condition for
posterior propriety.

To illustrate with an overly simple example for data-dependent conditions for poste-
rior propriety, we toss two biased coins twice each (nj = 2 for j = 1, 2). Let yj indicate
the number of Heads for coin j, and assume a BB model with x�β = β1. If we use any
proper hyper-prior PDF for r together with an improper flat density on an intercept
term β1 independently, posterior propriety holds except when both coins land either all
Heads (y1 = y2 = 2) or all Tails (y1 = y2 = 0) as shown by an X in the diagram. Here
the notation O means that the resulting posterior is proper. See Section 4.1 for details.

y1\y2 0 1 2
0 X O O
1 O O O
2 O O X

Also, there is a hyper-prior PDF for r that always leads to an improper posterior
distribution regardless of the data. The article of Kass and Steffey (1989) adopts an
improper joint hyper-prior PDF, dβdr/r, without addressing posterior propriety. The
paper of Kahn and Raftery (1996) uses the same improper hyper-prior PDF for r,
dr/r, which they show is a Jeffreys’ prior, and independently a proper multivariate
Gaussian hyper-prior PDF for β, declaring posterior propriety without a proof. However,
the hyper-prior PDF dr/r used in both articles always leads to an improper posterior
regardless of the data.

Making an inference unknowingly based on an improper posterior distribution is
dangerous because the improper posterior distribution is not a probability distribution,
and thus Markov chain Monte Carlo methods may draw samples from a nonexistent
probability distribution (Hobert and Casella, 1996). We derive data-dependent necessary
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and sufficient conditions for posterior propriety of a Bayesian BBL model equipped with
various joint hyper-prior distributions, and summarize these conditions in Figure 1, the
centerpiece of this article. We mainly work on a class of hyper-prior PDFs for r, dr/(t+
r)u+1, where t is non-negative and u is positive. It includes a proper dr/(1+r)2 (Albert,
1988; Daniels, 1999) and an improper dr/r1.5 (Gelman et al., 2013) as special cases.
Independently the hyper-prior PDF for β that we consider is improper flat (Lebesgue
measure) for its intended minimal impact on posterior inference or any proper one.
When a posterior distribution is improper due to improper hyper-prior distributions,
one possible alternative is to use proper hyper-prior distributions that can mimic the
behavior of improper choices, e.g., dr/(t + r)u+1 with a small constant t to mimic
dr/ru+1 and a diffuse Gaussian distribution for β to mimic its improper flat choice.

The article is organized as follows. We derive an equivalent inferential model of
the Bayesian BBL model in Section 2. We derive necessary and sufficient conditions
for posterior propriety, address posterior propriety in past studies, and discuss possible
alternatives when posterior distributions are improper in Section 3. In Section 4, we
check posterior propriety and investigate posterior properties using two examples.

2 Inferential model

One advantage of the BBL model is that it allows the shrinkage interpretation in infer-
ence (Kahn and Raftery, 1996). For j = 1, 2, . . . , k, the conditional posterior distribution
of a random effect pj given hyper-parameters and data is

pj | r,β,y
indep.∼ Beta(rpEj + yj , rqEj + (nj − yj)) (4)

where y = (y1, y2, . . . , yk)
�. The posterior mean of the conditional posterior distribution

in (4) is p̂j ≡ (1 − Bj)ȳj + Bjp
E
j . This mean is a convex combination of the observed

proportion ȳj = yj/nj and the expected random effect pEj weighted by the relative
amount of information in the prior compared to the data, called a shrinkage factor
Bj = r/(r+nj); r determines the precision of pEj and nj determines the precision of ȳj .
If the conjugate prior distribution contains more information than the observed data,
i.e., ensemble sample size r exceeds individual sample size nj , then the posterior mean
shrinks more towards pEj than towards ȳj . The posterior variance of this conditional
posterior distribution in (4) is a quadratic function of p̂j , i.e., p̂j(1− p̂j)/(r + nj + 1).

The conjugate Beta prior distribution of random effects in (2) has unknown hyper-
parameters, r and β. Assuming r and β are independent a priori, we introduce their
joint hyper-prior PDF as follows:

πhyp.prior(r,β) = f(r)g(β) ∝ g(β)

(t+ r)u+1
, for t ≥ 0 and u > 0. (5)

This class of hyper-prior PDFs for r, i.e., dr/(t+ r)u+1, is proper if t > 0 and improper
if t = 0. A hyper-prior PDF for a uniform shrinkage prior on r, transformed from a
uniform prior on a shrinkage factor dB = d{r/(t + r)}, is dr/(t + r)2 with u = 1 for
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any positive constant t (Christiansen and Morris, 1997; Daniels, 1999). This uniform
shrinkage prior is known to have good frequentist properties for Bayesian estimates
(Strawderman, 1971; Christiansen and Morris, 1997; Daniels, 1999). A special case of
the uniform shrinkage prior density function is dr/(1+r)2 corresponding to t = 1 used by
Albert (1988). As t goes to zero, a proper uniform shrinkage prior density, dr/(t+ r)2,
becomes close to an improper hyper-prior PDF dr/r2. This improper choice, dr/r2,
is free of an arbitrary constant t and is the most conservative choice that leads to the
widest posterior intervals for random effects compared to those obtained by any uniform
shrinkage prior (Christiansen and Morris, 1997). Chapter 5 of Gelman et al. (2013)
suggests using dr/r1.5 as a diffuse hyper-prior PDF, which corresponds to u = 0.5 and
t = 0, together with a standard Logistic distribution on β. Jeffreys’ prior dr/r (Kahn
and Raftery, 1996) is not included in the class because it always leads to an improper
posterior distribution regardless of the data;1 see Section 3.2. The hyper-prior PDF for
β, g(β), can be any proper PDF or an improper flat density.

The marginal distribution of the data follows independent Beta-Binomial distribu-
tions (Skellam, 1948) with random effects integrated out. The probability mass function
for the Beta-Binomial distribution is, for j = 1, 2, . . . , k,

πobs(yj | r,β) =
(
nj

yj

)
B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rqEj )
(6)

where the notation B(a, b) indicates a beta function defined as
∫ 1

0
va−1(1− v)b−1dv for

positive constants a and b. The probability mass function in (6) depends on β because
the expected random effects, {pE1 , pE2 , . . . , pEk }, are a function of β as shown in (3). The
likelihood function of r and β is the product of these Beta-Binomial probability mass
functions being treated as expressions in r and β, i.e.,

L(r,β) =
k∏

j=1

πobs(yj | r,β) =
k∏

j=1

(
nj

yj

)
B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rqEj )
. (7)

When nj = 1, this likelihood function reduces to the one of a logistic regression model:

L(r,β) =

k∏
j=1

(pEj )
yj (1−pEj )

1−yj =

k∏
j=1

(
exp(x�

j β)

1 + exp(x�
j β)

)yj
(

1

1 + exp(x�
j β)

)1−yj

, (8)

which is free of r. Since the data tell nothing about r when nj = 1 for all j, it is better
not to make any inference on the random effects, p1, p2, . . . , pk, via a Bayesian BBL
model unless we have prior information on r.

The joint posterior density function of hyper-parameters, πhyp.post(r,β | y), is pro-
portional to their likelihood function in (7) multiplied by the joint hyper-prior PDF

1If the symbol A represents a second-level variance component in a two-level Gaussian multilevel
model, e.g., yj | μj ∼ Normal(μj , 1) and μj | A ∼ Normal(0, A), then A is proportional to 1/r.
The improper hyper-prior PDF dr/r2 = −d(1/r) corresponds to dA leading to Stein’s harmonic prior
(Morris and Tang, 2011), dr/r1.5 corresponds to dA/

√
A (Gelman et al., 2013), and dr/r is equivalent

to an inappropriate choice dA/A (Morris and Lysy, 2012).
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in (5):
πhyp.post(r,β | y) ∝ πhyp.prior(r,β)× L(r,β). (9)

Finally, the full posterior density function of p = (p1, p2, . . . , pk)
�, r, and β is

πfull.post(p, r,β | y) ∝ πhyp.prior(r,β)×
k∏

j=1

πobs(yj | pj)× πprior(pj | r,β)

∝ πhyp.post(r,β | y)×
k∏

j=1

πcond.post(pj | r,β,y) (10)

where the distribution for the prior density function of random effect j, πprior(pj | r,β),
is specified in (2), and the distribution of the conditional posterior density of random
effect j, πcond.post(pj | r,β,y), is specified in (4).

3 Posterior propriety

The full posterior density function in (10) is proper if and only if πhyp.post(r,β | y) is

proper because
∏k

j=1 πcond.post(pj | r,β,y) is a product of independent and proper Beta
density functions. We therefore focus on posterior propriety of πhyp.post(r,β | y).
Definition 1. Group j whose observed number of successes is neither 0 nor nj, i.e.,
1 ≤ yj ≤ nj − 1, is called an interior group. Similarly, group j is extreme if its observed
number of successes is either 0 or nj . The symbol Wy denotes the set of indices corre-
sponding to interior groups, i.e., Wy ⊆ {1, 2, . . . , k}, and ky is the number of interior
groups, i.e., the number of indices in Wy. We use W c

y to represent the set of k − ky
indices for extreme groups. The notation X ≡ (x1,x2, . . . ,xk)

� refers to the k × m
covariate matrix of all groups (k ≥ m) and Xy is the ky × m covariate matrix of the
interior groups.

The subscript y emphasizes the data-dependence of ky, Wy, and Xy. The rank of
Xy can be smaller than m when X is of full rank m because we obtain Xy by removing
rows of extreme groups from X. If all groups are interior, then ky = k and Xy = X. If
all groups are extreme, then ky = 0 and Xy is not defined.

3.1 Conditions for posterior propriety

In Figure 1, we summarize the necessary and sufficient conditions for posterior propriety
according to different hyper-prior PDFs, f(r) and g(β), under two settings: The data
contain at least one interior group (1 ≤ ky ≤ k) and the data contain only extreme
groups (ky = 0).

To prove these conditions, we divide the first setting (1 ≤ ky ≤ k) into two: A setting
where at least one interior group and at least one extreme group exist (1 ≤ ky ≤ k− 1)
and a setting where all groups are interior (ky = k). The key to proving conditions for
posterior propriety is to derive certain lower and upper bounds for L(r,β) that factor
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Figure 1: Necessary and sufficient conditions for posterior propriety of πhyp.post(r,β | y)
according to πhyp.prior(r,β) = f(r)g(β) under two settings: The data contain at least
one interior group (1 ≤ ky ≤ k) and the data contain only extreme groups (ky = 0). The
condition, rank(Xy) = m, implicitly requires ky ≥ m because Xy is a ky ×m matrix.

into a function of r and a function of β. We first derive lower and upper bounds for the
Beta-Binomial probability mass function of group j with respect to r and β because
L(r,β) is just the product of these probability mass functions of all groups.

Lemma 1. Lower and upper bounds for the Beta-Binomial probability mass function
for interior group j with respect to r and β are rpEj q

E
j /(1 + r)nj−1 and rpEj q

E
j /(1 + r),

respectively, up to a constant multiple. Those for extreme group j with yj = nj are
(pEj )

nj and pEj , each, and those for extreme group j with yj = 0 are (qEj )
nj and qEj ,

respectively, up to a constant multiple.

Proof. See Section 6.1.

Lemma 1 shows that our bounds for the Beta-Binomial probability mass function
for either interior or extreme group j with respect to r and β factor into a function of
r and a function of β. Because L(r,β) is a product of these Beta-Binomial probability
mass functions of all groups, bounds for L(r,β) also factor into a function of r and a
function of β. Next we derive certain lower and upper bounds for L(r,β) with respect
to r and β under the first setting where all groups are interior.

Lemma 2. When all groups are interior (ky = k), L(r,β) can be bounded by

c1
rk

∏k
j=1 p

E
j q

E
j

(1 + r)
∑k

j=1(nj−1)
≤ L(r,β) ≤ c2

rk
∏k

j=1 p
E
j q

E
j

(1 + r)k
(11)

where c1 and c2 are constants that do not depend on r and β.
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Proof. See Section 6.2.

When all groups are interior, the joint posterior density function πhyp.post(r,β | y)
equipped with any joint hyper-prior PDF πhyp.prior(r,β) is proper if

∫
Rm

∫ ∞

0

πhyp.prior(r,β)×
rk

∏k
j=1 p

E
j q

E
j

(1 + r)k
drdβ < ∞ (12)

because rk
∏k

j=1 p
E
j q

E
j /(1 + r)k is the upper bound for L(r,β) specified in (11). Also,

the joint posterior density function πhyp.post(r,β | y) is improper if

∫
Rm

∫ ∞

0

πhyp.prior(r,β)×
rk

∏k
j=1 p

E
j q

E
j

(1 + r)
∑k

j=1(nj−1)
drdβ = ∞ (13)

because rk
∏k

j=1 p
E
j q

E
j /(1 + r)

∑k
j=1(nj−1) is the lower bound for L(r,β) in (11).

Theorem 1. When all groups are interior (ky = k), the joint posterior density func-
tion of hyper-parameters, πhyp.post(r,β | y), equipped with a proper hyper-prior density
function on r, f(r), and independently an improper flat hyper-prior density function on
β, g(β) ∝ 1, is proper if and only if rank(X) = m.

Proof. See Section 6.3.

The condition for posterior propriety with a proper hyper-prior PDF for r is the same
as the condition for posterior propriety when r is a completely known constant due to
the factorization of the bounds for L(r,β) in (11). Thus, the condition for posterior
propriety in Theorem 1 arises only from the improper hyper-prior PDF for β.

Theorem 2. When all groups are interior (ky = k), the joint posterior density function
of hyper-parameters, πhyp.post(r,β | y), equipped with f(r) ∝ 1/ru+1 for positive u and
independently a proper hyper-prior density function on β, g(β), is proper if and only if
k ≥ u+ 1.

Proof. See Section 6.4.

The condition for posterior propriety when β has a proper hyper-prior distribution
is the same as the condition for posterior propriety when β is not a parameter to be
estimated (m = 0) due to the factorization of bounds for L(r,β) in (11). Thus, the
condition for posterior propriety arises solely from the improper hyper-prior PDF for r.

Theorem 3. When all groups are interior (ky = k), the joint posterior density func-
tion of hyper-parameters, πhyp.post(r,β | y), equipped with the joint hyper-prior density
function πhyp.prior(r,β) ∝ 1/ru+1 for positive u is proper if and only if (i) k ≥ u+ 1
and (ii) rank(X) = m.

Proof. See Section 6.5.
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The conditions for posterior propriety in Theorem 3 are the combination of the
condition in Theorem 1 and that in Theorem 2 because of the factorization of bounds
for L(r,β).

We begin discussing the conditions for posterior propriety under the second setting
with at least one interior group and at least one extreme group in the data (1 ≤ ky ≤
k − 1).

Corollary 1. With at least one interior group and at least one extreme group in the
data (1 ≤ ky ≤ k − 1), posterior propriety is determined solely by interior groups, not
by extreme groups.

Proof. See Section 6.6.

Corollary 1 means that we can remove all the extreme groups from the data to
determine posterior propriety, treating the remaining interior groups as a new data set
(ky = k). Then we can apply Theorem 1, 2, or 3 to the new data set. If posterior
propriety holds with only the interior groups, then posterior propriety with the original
data with the combined interior and extreme groups (1 ≤ ky ≤ k − 1) also holds.
Corollary 1 justifies combining the first and second settings as shown in Figure 1.

We start specifying the conditions for posterior propriety under the third setting
where there are no interior groups in the data (ky = 0).

Lemma 3. When all groups are extreme (ky = 0), L(r,β) can be bounded by

c3

k∏
j=1

(pEj )
nj×I{yj=nj}(qEj )

nj×I{yj=0} ≤ L(r,β) ≤ c4

k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0} (14)

where c3 and c4 are constants that do not depend on r and β, and I{D} is the indicator
function of D.

Proof. See Section 6.7.

The upper and lower bounds in (14) are free of r, indicating that the hyper-prior
distribution of r must be proper for posterior propriety in this case (ky = 0). If the hyper-
prior distribution of β, g(β), is also proper, the resulting posterior is automatically
proper and we do not need to check posterior propriety. However, the posterior can be
improper when g(β) is improper. The next theorem deals with a case where g(β) ∝ 1.

Theorem 4. When all groups are extreme (ky = 0), the posterior density function of
hyper-parameters, πhyp.post(r,β | y), equipped with a proper hyper-prior density function
for r, f(r), and independently g(β1) ∝ 1, is proper if and only if there exists a finite
value of β that maximizes the upper bound in (14) up to a constant, i.e.,

k∏
j=1

(
exp(x�

j β)

1 + exp(x�
j β)

)I{yj=nj}
(

1

1 + exp(x�
j β)

)I{yj=0}

. (15)
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Proof. See Section 6.8.

The function in (15) is essentially the same as the likelihood function of a logistic
regression in (8) because the powers in (15) are either one or zero with I{yj=0} =
1 − I{yj=nj}. Thus, the value of β that maximizes (15) is the same as the maximum
likelihood estimate (MLE) of β in (8) for which we set yj = 1 if yj ≥ 1. A quick way
to check whether there exists a finite value of β that maximizes (15) is to fit a logistic
regression model after setting yj = 1 if yj ≥ 1, using any statistical software, e.g., glm
in R (R Development Core Team, 2016). If no errors emerge, then the finite MLE of β
exists; its uniqueness is guaranteed if the MLE exists in a logistic regression (Jacobsen,
1989). However, Theorem 4 is inconvenient in that we need to fit a logistic regression
model to check posterior propriety. The next theorem specifies more descriptive sufficient
conditions for posterior propriety that do not require fitting a logistic regression, which
are also necessary conditions when there is only an intercept term, x�

j β = β1 for
all j.

Theorem 5. When all groups are extreme (ky = 0), the posterior density function of
hyper-parameters, πhyp.post(r,β | y), equipped with a proper hyper-prior density function
for r, f(r), and independently g(β1) ∝ 1, is proper if (i) there are at least m clusters
of groups whose covariate values are the same within each cluster and different between
clusters, and (ii) in each cluster there are at least one group of all successes and at least
one group of all failures. The k×m covariate matrix X is assumed to be of full rank m.
These two conditions are also necessary conditions when x�

j β = β1.

Proof. See Section 6.9.

When x�
j β = β1, the necessary and sufficient conditions in Theorem 5 simply reduce

to having at least one group with all successes and at least one group with all failures in
the data. Theorem 4 of Natarajan and Kass (2000) shows that this reduced condition
is the same as the condition in Theorem 4, i.e., there exists a finite value of β that
maximizes (15).

The two conditions in Theorem 5 are only sufficient conditions when there are co-
variates. For necessary conditions in this case, we need to show that integration of the
lower bound in (14) with respect to β is not finite when either conditions in Theo-
rem 5 are not met. However, the integration itself seems mathematically intractable.
If either conditions in Theorem 5 are not met, we need to go back to Theorem 4,
checking the existence of a finite value of β that maximizes (15) by fitting a logistic
regression.

Theorem 6. When all groups are extreme (ky = 0), the posterior density function
of hyper-parameters πhyp.post(r,β | y), equipped with any improper hyper-prior density
function f(r) and independently any hyper-prior density g(β), is always improper.

Proof. Because the lower bound for L(r,β) in Lemma 3 is free of r, L(r,β) cannot
make the integration of f(r) finite when f(r) is improper. Thus, πhyp.post(r,β | y)
should always be improper under this setting.
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3.2 Posterior propriety in previous studies

The article of Albert (1988) does not address posterior propriety for dβdr/(1+r)2. Our
work in Figure 1 shows that the condition for posterior propriety is that rank(Xy) = m
when 1 ≤ ky ≤ k, i.e., the covariate matrix of interior groups is of full rank m, and that
there exists a finite value of β that maximizes (15) when ky = 0.

The proposition (1c to be specific) in Daniels (1999) for posterior propriety of the
Bayesian BBL model with hyper-prior distributions dβdr/(t+ r)2 argues that the pos-
terior distribution is always proper. However, its proof is based on a limited case with
only an intercept term, x�

j β = β1. Under this simplified setting, if there is only one
extreme group with two trials (y1 = 2, n1 = 2), the resulting joint posterior density
function of r and β1 is

πhyp.post(r, β1 | y) ∝ (1 + rpE)pE

(1 + r)(t+ r)2
. (16)

The integration of (16) with respect to β1 is not finite because pE = exp(β1)/(1 +
exp(β1)) converges to one as β1 approaches infinity. Figure 1 shows that at least one
interior group is required in the data for posterior propriety of the Bayesian BBL model
under the simplified setting (x�

j β = β1) of Daniels (1999). Moreover, if all groups are
extreme in the data under the simplified setting with an intercept term, the posterior
is proper if and only if there exist at least one extreme group with all successes and
at least one extreme group with all failures. In our counter-example, there is only one
extreme group with all successes, and thus the resulting posterior in (16) is improper.

With only an intercept term (x�
j β = β1), Chapter 5 of Gelman et al. (2013) specifies

that the joint posterior density function πhyp.post(r, β1 | y) with dr/r1.5 and indepen-
dently with a proper standard Logistic distribution on β1 is proper if there is at least
one interior group. However, the resulting posterior can be improper with this condition.
For example, when there is only one interior group with two trials (y1 = 1, n1 = 2), the
joint posterior density function of r and β1 is

πhyp.post(r, β1 | y) ∝ πhyp.prior(r, β1)× L(r, β1) ∝
pEqE

r1.5
× rpEqE

(1 + r)
, (17)

where pE = 1 − qE = exp(β1)/(1 + exp(β1)). The integration of this joint posterior
density function with respect to r is not finite because the density function goes to
infinity as r approaches zero. (The integral of dr/r0.5 over the range [0, 0 + ε] for a
positive constant ε is not finite.) To achieve posterior propriety in this setting, we need
at least two interior groups in the data as shown in Figure 1.

The posterior distributions of Kass and Steffey (1989) and Kahn and Raftery (1996)
are always improper regardless of the data due to their hyper-prior PDF dr/r. This
is because the likelihood function in (7) approaches c(β), a positive constant with re-
spect to r, as r increases to infinity. Then the hyper-prior PDF dr/r, whose integration
becomes infinite over the range [ε,∞) for a positive constant ε, governs the right tail
behavior of the conditional posterior density function of r, πhyp.cond.post(r | β,y). It
indicates that πhyp.cond.post(r | β,y) is improper, and thus the joint posterior density
πhyp.post(r,β | y) is improper.
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3.3 Inference when a posterior distribution is improper

Making an inference based on an improper posterior distribution is dangerous because
most statistical inferential tools assume that the target distribution is a probability
distribution but the improper posterior distribution is not a probability distribution.
For example, Hobert and Casella (1996) call attention to running a Gibbs sampler on
an improper posterior distribution because the Gibbs sampler may seem to work well
even when the posterior distribution is improper. They emphasize checking posterior
propriety in advance to prevent a (non-recurrent) Gibbs chain from converging to some
nonexistent probability distribution. Athreya and Roy (2014) also show that Markov
chain Monte Carlo methods can be misleading when the posterior is improper because a
standard average estimator based on Markov chains converges to zero with probability
one. They introduce regenerative sequence Monte Carlo methods that enable a valid
inference even when a posterior distribution is improper.

When it comes to a BBL model, the conditions for posterior propriety in Figure 1
can be met in most cases because in practice the data are composed of a suitably large
number of groups, k. However, improper hyper-prior PDFs may result in posterior
impropriety when the data are composed of a small number of groups. In this case, we
recommend using proper hyper-prior PDFs for r and β, e.g., a uniform shrinkage prior
on r, dr/(t+ r)2, which is known to produce good frequentist properties (Strawderman,
1971; Christiansen and Morris, 1997), and a diffuse Gaussian prior on β with relatively
large standard deviations (Kahn and Raftery, 1996). Setting a small constant t in a
uniform shrinkage prior is considered as a conservative choice that allows the data to
speak more with smaller shrinkage factors (Christiansen and Morris, 1997). Another
possibility (except when nj = 1 for all j) is to estimate MLEs of r and β via (7) and
plug these estimates into the conditional Beta distributions of random effects in (4). This
approach can be considered as an empirical Bayes (EB) approach (Efron and Morris,
1975) with πhyp.prior(r,β) ∝ 1. However, this EB approach tends to be over-confident in
estimating random effects when k is small because the EB approach does not account
for the uncertainties of unknown r and β though these uncertainties are large when k
is small.

4 Numerical illustration

4.1 Data of two bent coins

We have two biased coins; a bent penny and a possibly differently bent nickel (k = 2).
We flip these coins twice for each (n1 = n2 = 2) and record the number of Heads for the
penny (y1) and also for the nickel (y2). We model this experiment as yj | pj ∼ Bin(2, pj)
independently, where pj is the unknown probability of observing Heads for coin j. We
assume an i.i.d. prior distribution for random effects, pj | r, β1 ∼ Beta(rpE , rqE), where
pE = 1− qE = exp(β1)/[1 + exp(β1)], i.e., a BB model.

We look into posterior propriety under four different settings depending on whether
the hyper-prior distribution for β1 (or equivalently pE) is proper or improper flat dβ,
and on whether the hyper-prior distribution of r is proper or dr/r2.
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Table 1 shows when the posterior distribution is proper (denoted by O) and when it
is not (denoted by X). The posterior distribution in case (a) is always proper because
both hyper-prior distributions for r and β1 are proper. In case (b) where β1 has the
Lebesgue measure and r has a proper hyper-prior PDF, the posterior is proper unless
both coins land either all Heads (y1 = y2 = 2) or all Tails (y1 = y2 = 0). This is
because the condition for posterior propriety is that the covariate matrix of interior
coins is of full rank and this condition without any covariates is met if at least one coin
is interior; see Figure 1. In cases (c) and (d), where r has the improper hyper-prior
PDF, dr/r2, posterior propriety holds only when each coin shows one Head and one
Tail, i.e., both coins are interior (y1 = y2 = 1); see Figure 1. Cases (c) and (d) have
the same condition for posterior propriety because the condition that arises from the
improper flat hyper-prior PDF for β1 in case (d) is automatically met if the condition
arising from the improper hyper-prior PDF for r, i.e., ky ≥ 2, is met.

Next, we check the effect of different joint hyper-prior PDFs used in cases (a)–(d) on
the random effect estimation, e.g., p1. For this purpose, we set g(β1) = N(β1 | 0, 1010),
a diffuse Gaussian distribution with mean zero and variance 1010 for a proper hyper-
prior PDF of β1, and set f(r) ∝ 1/(10−5 + r)2 for a proper hyper-prior PDF of r.
We draw 55,000 posterior samples of r and β1 from their joint posterior distribution,
πhyp.post(r, β1 | y), using a Metropolis within Gibbs sampler (Tierney, 1994), discarding
the first 5,000 samples as burn-in. We adjust proposal scales of independent Gaussian
proposal distributions to obtain a reasonable acceptance probability around 0.35 for each
parameter. Using the posterior samples of r and β1, we draw the posterior sample of p1
from its marginal posterior distribution πmarg.post(p1 | y) via a Monte Carlo integration:

πmarg.post(p1 | y) =
∫
R

∫ ∞

0

πcond.post(p1 | r, β1,y)× πhyp.post(r, β1 | y)drdβ1, (18)

i.e., sampling p1 from πcond.post(p1 | r, β1,y) given already sampled r and β1. In addition,
we estimate p1 via an EB approach for a comparison; estimating MLEs of r and β1,

(a) Any proper f(r) and any proper g(β1)

y1\y2 0 1 2
0 O O O
1 O O O
2 O O O

(b) Any proper f(r) and g(β1) ∝ 1

y1\y2 0 1 2
0 X O O
1 O O O
2 O O X

(c) f(r) ∝ 1/r2 and any proper g(β1)

y1\y2 0 1 2
0 X X X
1 X O X
2 X X X

(d) f(r) ∝ 1/r2 and g(β1) ∝ 1

y1\y2 0 1 2
0 X X X
1 X O X
2 X X X

Table 1: The symbol O indicates that the posterior distribution is proper on correspond-
ing data, and the symbol X indicates that the posterior distribution is not proper on
corresponding data.
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Data \ Model Case (a) Case (b) Case (c) Case (d) EB
y1 = y2 = 1 (0.048, 0.950) (0.048, 0.951) (0.049, 0.951) (0.049, 0.950) (0.490, 0.510)
y1 = 0, y2 = 1 (0.000, 0.247) (0.000, 0.242) Improper Improper (0.218, 0.284)

Table 2: The 95% posterior intervals of p1 obtained by Bayesian BBL models equipped
with joint hyper-prior PDFs in cases (a)–(d), and those obtained by an empirical Bayes
(EB) approach. We set g(β1) = N(β1 | 0, 1010) and f(r) ∝ 1/(10−5 + r)2 for proper
hyper-prior PDFs of β1 and r, respectively.

inserting these into πcond.post(p1 | r, β1,y), and calculating (0.025, 0.975) quantiles of
this conditional Beta posterior distribution πcond.post(p1 | r, β1,y).

We fit these models on the data {y1 = y2 = 1} for which posterior distributions in
cases (a)–(d) are all proper. The resulting 95% posterior intervals for p1 are summarized
in the first row of Table 2. All these intervals are similar because the proper hyper-prior
PDF of r, dr/(10−5 + r)2, used in cases (a) and (b) mimics well its improper limit,
dr/r2, used in cases (c) and (d), and because the diffuse Gaussian hyper-prior PDF
of β1 behaves similarly to an improper flat density function. These intervals are wide,
reflecting on the lack of information about r and β1 in two observations. However, the
EB interval centered at 0.5 is much too narrow because it does not account for the
uncertainties of unknown r and β1.

The hyper-prior PDFs in cases (c) and (d) result in an improper posterior for the
data {y1 = 0, y2 = 1}. Thus, we fit models equipped with hyper-prior PDFs in cases (a)
and (b) and an EB model on these data. The posterior intervals for p1 are summarized
in the second row of Table 2. The intervals in cases (a) and (b) are similar because the
diffuse Gaussian prior for β1 is close to an improper flat prior. The EB interval centered
at around 0.25 is again much narrower than the full Bayesian intervals in (a) and (b).

4.2 Data of five hospitals

New York State Cardiac Advisory Committee (2014) has reported the outcomes for the
Valve Only and Valve/CABG surgeries. The data are based on the patients discharged
between December 1, 2008, and November 30, 2011 in 40 non-federal hospitals in New
York State. We select the smallest five hospitals with respect to the number of patients
for simplicity. Table 3 shows the data including the number of cases (nj), the number of
deaths (yj), and expected mortality rate (EMRj). The EMRj is a hospital-wise average
over the predicted probabilities of death for each patient; the larger the EMRj is, the
more difficult cases hospital j handles. We use the EMRj as a continuous covariate.
We assume yj | pj ∼ Bin(nj , pj) independently. We also assume that the unknown true
mortality rates pj come from independent conjugate Beta prior distributions in (2) with
xT
j β = β1x1j + β2x2j , where x1j = 1 and x2j = EMRj .

This time we consider four joint hyper-prior densities: dβdr/r2, dβdr/(10−5 + r)2,
dβdr/r1.5 and dβdr/(10−5 + r)1.5. The condition for posterior propriety is the same as
rank(Xy) = 2 for all four joint hyper-prior PDFs because this condition automatically
meets ky ≥ 2. The data in Table 3 satisfy the condition for posterior propriety because
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j 1 2 3 4 5
nj 54 75 93 104 105
yj 3 4 1 1 1

EMRj (x2j) 4.30 2.21 2.59 4.73 3.28

Table 3: Data of five hospitals. The number of patients in hospital j is denoted by nj ,
the number of deaths in hospital j is denoted by yj , and the expected mortality rate
(%) for hospital j is denoted by EMRj , which is a continuous covariate.

all the hospitals are interior (1 ≤ yj ≤ nj − 1 for all j and thus k = ky = 5) and their
covariate matrix X = Xy is of full rank.

Based on the data in Table 3, we make two hypothetical data sets in Table 4. In
the first hypothetical data set, only one hospital is interior. The resulting posterior
distribution is improper for the four joint hyper-prior PDFs because the rank of the
covariate matrix of this interior hospital is not two (rank(Xy) = 1). In the second
hypothetical data set, two hospitals are interior but their EMRs are the same, meaning
that the rank of the covariate matrix of these two interior hospitals is one. Thus, the
resulting posterior is improper for the four joint hyper-prior PDFs.

Next we compare several models using these data sets in Table 3 and Table 4 to
see the effect of different constants, t and u, in dr/(t+ r)u+1; we consider using either
u = 1 or u = 0.5 and either t = 0 or t = 10−5. The sampling configurations are the
same as those in the previous section except that we set g(β) = N(β | 0×12, 10

10 × I2)
for all models, where 12 is a vector of ones and I2 is a 2 × 2 identity matrix. Table 5
summarizes the 95% posterior intervals for p1.

When models are all proper based on the data in Table 3, the interval estimates are
similar between t = 10−5 and t = 0, but quite different depending on whether u = 1
or u = 0.5. Clearly, intervals based on u = 1 are wider (more conservative) than those
based on u = 0.5. This is because dr/r2 puts more weight at zero than dr/r1.5 a priori,
and thus dr/r2 produces smaller posterior samples of r that leads to wider interval
estimates in turn; the variance of a conditional Beta posterior distribution for pj in (4),
p̂j(1 − p̂j)/(r + nj + 1), increases as r decreases, where p̂j is its posterior mean. The
improper hyper-prior PDFs, dr/r2 and dr/r1.5, lead to posterior impropriety for the
data in Table 4 due to the reasons specified above. The EB approach leads to much
narrower intervals for all three data sets.

j 1 2 3 4 5
nj 54 75 93 104 105
yj 1 0 0 0 0

EMRj 4.30 2.21 2.59 4.73 3.28

j 1 2 3 4 5
nj 54 75 93 104 105
yj 1 2 0 0 0

EMRj 4.30 4.30 2.59 4.73 3.28

Table 4: Two hypothetical data sets of five hospitals. The number of patients in hospital
j is denoted by nj , the number of deaths in hospital j is denoted by yj , and the expected
mortality rate (%) for hospital j is denoted by EMRj , which is a continuous covariate.
In the first data set, only the first hospital is interior. In the second data set, the first
two hospitals are interior but their EMRs are the same, i.e., their covariate matrix, Xy,
is not of full rank.
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Data\Model 1/r2 1/(10−5 + r)2 1/r1.5 1/(10−5 + r)1.5 EB
Table 3 (0.011, 0.116) (0.011, 0.115) (0.008, 0.099) (0.008, 0.100) (0.012, 0.046)

Table 4 (L) Improper (0.000, 0.067) Improper (0.000, 0.066) (0.003, 0.005)
Table 4 (R) Improper (0.000, 0.068) Improper (0.001, 0.062) (0.002, 0.030)

Table 5: The 95% posterior intervals of p1 obtained by Bayesian BBL models equipped
with hyper-prior PDFs, g(β) = N(β | 0 × 12, 10

10 × I2), which is the same for all
models, and dr/(t + r)u+1 with u = 1 or u = 0.5 and with t = 0 or t = 10−5. The
95% intervals obtained by an empirical Bayes (EB) approach appear in the last column.
The left hypothetical data in Table 4 are denoted by Table 4 (L) and the right one by
Table 4 (R).

5 Concluding remarks

The Beta-Binomial-Logit (BBL) model accounts for the overdispersion in the Binomial
data obtained from several independent groups with their covariate information consid-
ered. From a Bayesian perspective, we derive data-dependent necessary and sufficient
conditions for posterior propriety of the Bayesian BBL model equipped with a joint
hyper-prior density, g(β)dβdr/(t + r)u+1, where t ≥ 0, u > 0, and g(β) can be any
proper density or an improper flat density. This joint hyper-prior density encompasses
those used in the literature. Using two numerical illustrations, we look into posterior
propriety and posterior properties, suggesting conservative and diffuse choices of proper
hyper-prior densities be used when the posterior is improper due to improper hyper-
prior probability density functions.

There are several opportunities to build upon our work. First of all, it is not clear
whether the necessary and sufficient conditions specified in Figure 1 hold for other
link functions, e.g., a complementary log-log link function; a probit link function is
not appropriate for a BBL model because it is defined on binary data (nj = 1) not
on aggregate data (nj ≥ 2). As for frequency coverage properties, the data-dependent
conditions for posterior propriety make it hard to evaluate these properties because some
models with improper hyper-prior distributions do not define a frequency procedure for
all possible data sets; the resulting posterior can be improper for some data sets. Thus,
in a repeated sampling simulation, we may evaluate frequency properties given only
the simulated data sets that achieve posterior propriety. If the probability of generating
the data sets that lead to an improper posterior is negligible, this frequency evaluation
procedure will be justified. We leave these for our future research.

6 Proofs

6.1 Proof of Lemma 1

If group j is interior (1 ≤ yj ≤ nj − 1, nj ≥ 2), we can derive an upper bound for
the Beta-Binomial probability mass function of interior group j with respect to r and
β as follows. All bounds in this proof are up to a constant multiple. With notation
qEj = 1− pEj ,
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πobs(yj | r,β) ∝
B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rqEj )
(19)

=
B(1 + rpEj , 1 + rqEj )

B(rpEj , rqEj )

B(yj + rpEj , nj − yj + rqEj )

B(1 + rpEj , 1 + rqEj )
(20)

=
rpEj q

E
j

1 + r

B(yj + rpEj , nj − yj + rqEj )

B(1 + rpEj , 1 + rqEj )
(21)

=
rpEj q

E
j

1 + r

∫ 1

0
vyj−1+rpE

j (1− v)nj−yj−1+rqEj dv∫ 1

0
vrp

E
j (1− v)rq

E
j dv

≤
rpEj q

E
j

1 + r
. (22)

The ratio of the two beta functions in (22) is less than or equal to one because the
integrand of the beta function in the numerator is less than or equal to the integrand
of the beta function in the denominator, considering that 0 ≤ yj − 1 ≤ nj − 2 and
0 ≤ nj − yj − 1 ≤ nj − 2.

A lower bound for the ratio of the two beta functions in (19) is

B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rqEj )
(23)

=
(yj − 1 + rpEj ) · · · (1 + rpEj )rp

E
j (nj − yj − 1 + rqEj ) · · · (1 + rqEj )rq

E
j

(nj − 1 + r)(nj − 2 + r) · · · (1 + r)r
(24)

≥
r2pEj q

E
j

(nj − 1 + r)(nj − 2 + r) · · · (1 + r)r
≥

rpEj q
E
j

(nmax + r)nj−1
≥

rpEj q
E
j

(1 + r)nj−1
(25)

where nmax ≡ max{n1, . . . , nk}. The first inequality in (25) holds because each factor
(except rpEj and rqEj ) in the numerator of (24) is greater than or equal to one. The third

inequality holds up to a constant multiple, 1/n
nj−1
j , because (nmax + r)/(1 + r) ≤ nj .

If group j is extreme with all successes (yj = nj ≥ 1), the upper bound for the
Beta-Binomial probability mass function of group j with respect to r and β is

πobs(yj = nj | r,β) ∝
B(nj + rpEj , rqEj )

B(rpEj , rqEj )
≤

B(1 + rpEj , rqEj )

B(rpEj , rqEj )
= pEj . (26)

The inequality holds because the integrand of the beta function in the numerator be-
comes the largest when nj = 1. The lower bound for the Beta-Binomial probability
mass function of this extreme group with respect to r and β is

B(nj + rpEj , rqEj )

B(rpEj , rqEj )
=

(nj − 1 + rpEj )(nj − 2 + rpEj ) · · · (1 + rpEj )p
E
j

(nj − 1 + r)(nj − 2 + r) · · · (1 + r)
≥ (pEj )

nj . (27)

The inequality holds because the ratio of the two beta functions in (27) is a decreasing
function of r, and thus the lower bound is achieved as r goes to infinity.
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Similarly, when group j is extreme with all failures (yj = 0, nj ≥ 1), we can bound
the ratio of the two beta functions of this extreme group by

(qEj )
nj ≤

B(rpEj , nj + rqEj )

B(rpEj , rqEj )
≤ qEj . (28)

6.2 Proof of Lemma 2

Without any extreme groups in the data, an upper bound for L(r,β) is the product
of the k upper bounds for the Beta-Binomial probability mass function of each interior
group in (22), i.e., rk(

∏k
j=1 p

E
j q

E
j )/(1 + r)k. Similarly, a lower bound for L(r,β) is the

product of the k lower bounds for the Beta-Binomial probability mass function of each

interior group in (25), i.e., rk(
∏k

j=1 p
E
j q

E
j )/(1+r)

∑k
j=1(nj−1). It is clear that both bounds

factor into a function of r and a function of β.

6.3 Proof of Theorem 1

Because the r part of the upper bound for L(r,β) in Lemma 2, i.e., rk/(1+r)k, is always
less than one, an upper bound for πhyp.post(r,β | y), up to a normalizing constant,
factors into a function of r and a function of β as follows:

πhyp.post(r,β | y) ∝ f(r)g(β)L(r,β) < f(r)×
k∏

j=1

pEj q
E
j . (29)

The integration of f(r) with respect to r is finite because it is a proper hyper-prior PDF.

The integration of
∏k

j=1 p
E
j q

E
j with respect to β is finite if and only if the covariate

matrix of all groups, X, is of full rank m. To show the sufficient condition, let us choose
m sub-groups, whose index set is denoted by Wsub, such that the m×m covariate matrix
of the sub-groups is still of full rank m. Then,

k∏
j=1

pEj q
E
j ≤

∏
j∈Wsub

pEj q
E
j =

∏
j∈Wsub

exp(x�
j β)

[1 + exp(x�
j β)]

2
. (30)

The integration of this upper bound in (30) with respect to β factors into m separate
integrations after linear transformations, hj = x�

j β for all j ∈ Wsub, whose Jacobian is
a constant:∫

Rm

∏
j∈Wsub

exp(x�
j β)

[1 + exp(x�
j β)]

2
dβ ∝

∫ ∞

−∞
· · ·

∫ ∞

−∞

∏
j∈Wsub

exp(hj)

[1 + exp(hj)]2
dhj = 1. (31)

Each integration on the right hand side leads to one because each integrand is a proper
density function of the standard Logistic distribution with respect to hj .

Next, we show that if the rank of X is not of full rank m, then the integration of the
β part of the lower bound for L(r,β) in Lemma 2, i.e.,

∏k
j=1 p

E
j q

E
j , cannot be finite.
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Without loss of generality, let us assume that the rank of X is m− 1 and that the last
column of X can be expressed as a linear function of the first m−1 columns. Due to the
singularity of X, we can always find m−1 linear functions, ti(βi, βm), i = 1, 2, . . . ,m−1,
such that x�

j β = xj1t1(β1, βm)+xj2t2(β2, βm)+· · ·+xj,m−1tm−1(βm−1, βm). As a result,

the integration of
∏k

j=1 p
E
j q

E
j with respect to β is infinity after a linear transformation

from β to (β∗
1 = t1(β1, βm), β∗

2 = t2(β2, βm), . . . , β∗
m−1 = tm−1(βm−1, βm), βm)�,

whose Jacobian is one. For notational simplicity, we use two (m− 1)× 1 vectors, x∗
j ≡

(x1, x2, . . . , xm−1)
� and β∗ = (β∗

1 , β
∗
2 , . . . , β

∗
m−1)

�:

∫
Rm

k∏
j=1

exp(x�
j β)

[1 + exp(x�
j β)]

2
dβ =

∫
Rm−1

k∏
j=1

exp(x∗T
j β∗)

[1 + exp(x∗T
j β∗)]2

dβ∗ ×
∫
R

dβm, (32)

where
∫
R
dβm = ∞.

6.4 Proof of Theorem 2

The β part of the upper bound for L(r,β) in Lemma 2, i.e.,
∏k

j=1 p
E
j q

E
j , is always less

than one. Thus, the upper bound for πhyp.post(r,β | y) up to a normalizing constant
factors into a function of r and a function of β as follows:

πhyp.post(r,β | y) ∝ f(r)g(β)L(r,β) <
rk−(u+1)g(β)

(1 + r)k
. (33)

The integration of this upper bound with respect to r is finite if k ≥ u + 1 because in
this case we can bound the r part by 1/(1 + r)u+1 whose integration with respect to
r is always finite. The integration of g(β) with respect to β is finite because g(β) is a
proper probability density function.

If k < u + 1, then the integration of the lower bound for πhyp.post(r,β | y) is not
finite because there is rk in the numerator of the lower bound for L(r,β) in Lemma 2.
Specifically, once multiplying f(r) (∝ dr/ru+1) by rk, we know that rk−(u+1) goes to
infinity as r approaches zero if k < u+ 1.

6.5 Proof of Theorem 3

Based on the upper bound for L(r,β) in Lemma 2, the upper bound for πhyp.post(r,β | y)
up to a normalizing constant factors into a function of r and a function of β as follows:

πhyp.post(r,β | y) ∝ πhyp.prior(r,β)L(r,β) ≤
rk−(u+1)

(r + 1)k

k∏
j=1

pEj q
E
j . (34)

The double integration on the upper bound in (34) with respect to r and β is finite
if and only if (i) k ≥ u + 1 for the r part as proved in Theorem 2 and (ii) the k × m
covariate matrix of all groups X has a full rank m for the β part as proved in Theorem 1.

If at least one condition is not met, then πhyp.post(r,β | y) becomes improper as
proved in Theorem 1 and 2.
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6.6 Proof of Corollary 1

Regarding the sufficient conditions for posterior propriety, an upper bound for L(r,β)
up to a constant multiple is

L(r,β) ∝
k∏

j=1

B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rqEj )
<

∏
j∈Wy

B(yj + rpEj , nj − yj + rqEj )

B(rpEj , rqEj )
(35)

=
∏

j∈Wy

rpEj q
E
j

1 + r

B(yj + rpEj , nj − yj + rqEj )

B(1 + rpEj , 1 + rqEj )
≤

rky
∏

j∈Wy
pEj q

E
j

(1 + r)ky
. (36)

The inequality in (35) holds because the upper bound for the ratio of two beta functions
for extreme group j is either pEj (< 1) in (26) or qEj (< 1) in (28). The inequality in
(36) holds because the integrand of the beta function in the numerator is less than or
equal to the integrand of the beta function in the denominator.

The upper bound for L(r,β) in (36) would be the same as the upper bound for
L(r,β) in Lemma 2 if we removed all extreme groups from the data and treated the
interior groups as a new data set (ky = k). Thus, if the joint posterior density func-
tion πhyp.post(r,β | y) is proper with the new data set of ky interior groups based on
Theorem 1, 2, or 3, then posterior propriety with the original data with all interior and
all extreme groups combined (1 ≤ ky ≤ k − 1) also holds. In other words, the extreme
groups do not affect the sufficient condition for posterior propriety no matter how many
of them are in the data as long as there exists at least one interior group in the data.

For the necessary conditions for posterior propriety, we will show that if a new data
set with all the extreme groups removed does not meet the conditions for posterior
propriety based on Theorem 1, 2, or 3, then πhyp.post(r,β | y) is still improper even
after we add extreme groups into the new data.

Because a lower bound for the Beta-Binomial probability mass function for extreme
group j is either (pEj )

nj in (27) or (qEj )
nj in (28), the extra product term for extreme

groups to the lower bound for the likelihood function based only on interior groups is∏
i∈W c

y
(pEi )

niI{yi=ni}(qEi )
niI{yi=0} .

Specifically, let us consider a proper hyper-prior PDF for r, f(r), and an improper
flat hyper-prior PDF for β, g(β) ∝ dβ as in Theorem 1. Suppose we removed all the
extreme groups in the data. If the rank of Xy is not of full rank, e.g., rank(Xy) = m−1,
then we see the term

∫
R
dβm in (32). This term does not disappear even after we add all

the extreme groups to the data because multiplying
∏

i∈W c
y
(pEi )

niI{yi=ni}(qEi )
niI{yi=0}

by the first integrand in (32) cannot make the term,
∫
R
dβm, disappear. It means that

πhyp.post(r,β | y) is still improper.

Next, we consider f(r) ∝ dr/ru+1 for positive u and a proper hyper-prior PDF on
β, g(β), as in Theorem 2. Because contribution of extreme groups to the lower bound
for the likelihood function, i.e.,

∏
i∈W c

y
(pEi )

niI{yi=ni}(qEi )
niI{yi=0} , is free of r, if ky is

smaller than u + 1, then πhyp.post(r,β | y) is still improper even after we add all the
extreme groups into the data.
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If the data of interior groups do not meet the condition for posterior propriety
specified in Theorem 3, then adding the extreme groups cannot change the result of
posterior propriety. This is because Theorem 3 is an improper mixture of Theorem
1 and 2 and we already showed that extreme groups can be ignored in determining
posterior propriety in Theorem 1 and 2.

6.7 Proof of Lemma 3

A lower bound for the Beta-Binomial probability mass function of extreme group j
is either (pEj )

nj in (27) or (qEj )
nj in (28) depending on whether yj = nj or yj = 0.

Thus, the product of k lower bounds for the Beta-Binomial probability mass functions
of extreme groups, i.e.,

∏k
j=1(p

E
j )

nj×I{yj=nj}(qEj )
nj×I{yj=0} , bounds L(r,β) from below.

The product of the k upper bounds for the Beta-Binomial probability mass functions
of extreme groups in (26) or (28), i.e.,

∏k
j=1(p

E
j )

I{yj=nj}(qEj )
I{yj=0} , bounds L(r,β) from

above.

6.8 Proof of Theorem 4

Considering the upper bound of the likelihood function in (14) when all groups are
extreme (ky = 0), the upper bound of πhyp.post(r,β | y) up to a constant multiple is

πhyp.post(r,β | y) ∝ f(r)g(β)L(r,β) ≤ f(r)
k∏

j=1

(pEj )
I{yj=nj}(qEj )I{yj=0} . (37)

The integration of f(r) with respect to r is finite because f(r) is proper. The integration
of the β part in (37), i.e.,

k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0} , (38)

with respect to β is finite if there exists a finite value of β that maximizes (38). This is
because (38) is essentially a likelihood function of a logistic regression in (8) in that the
powers in (38) are either one or zero with I{yj=0} = 1− I{yj=nj}. Thus, we can use the
fact that the posterior distribution of β with its constant prior (Lebesgue measure) in a
logistic regression is proper if there exists a finite MLE of β (Albert and Anderson, 1984;
Speckman et al., 2009). (Jacobsen (1989) shows that the MLE of a logistic regression
is unique if it exists.) Consequently, the integration of (38) with respect to β is finite if
there exists a finite value of β that maximizes (38).

The lower bound of πhyp.post(r,β | y) up to a constant multiple can be derived from
the lower bound of the likelihood function in (14), i.e.,

πhyp.post(r,β | y) ∝ f(r)g(β)L(r,β) ≥ f(r)
k∏

j=1

[
(pEj )

I{yj=nj}(qEj )
I{yj=0}

]nj

. (39)

The integration of the β part in (39) with respect to β can be bounded from below by
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∫
Rm

k∏
j=1

[
(pEj )

I{yj=nj}(qEj )
I{yj=0}

]nj

dβ ≥
∫
Rm

⎡
⎣ k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0}

⎤
⎦
nmax

dβ

≥

⎡
⎣∫

Rm

k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0}dβ

⎤
⎦
nmax

,

(40)

where the first inequality holds because of the largest power nmax ≡ max(n1, n2, . . . , nk)
and the second inequality holds via Jensen’s inequality because the power function is
convex. The integrand in (40) is the same as (38). This indicates that the integration
in (40) is not finite (and thus πhyp.post(r,β | y) is improper) if a finite value of β that
maximizes (38) does not exist (Albert and Anderson, 1984; Speckman et al., 2009).

6.9 Proof of Theorem 5

First, we show that the integration of (38) with respect to β is finite if (i) there are at
least m clusters of groups whose covariate values are the same within each cluster and
different between clusters, and (ii) in each cluster there are at least one group of all
successes and at least one group of all failures. We define ci as the index set of cluster i,
e.g., ci = {2, 5} means that groups 2 and 5 are in cluster i. Then we can bound (38)
with groups only in the m clusters as follows.

k∏
j=1

(pEj )
I{yj=nj}(qEj )

I{yj=0} ≤
∏

j∈{ci,i=1,2,...,m}
(pEj )

I{yj=nj}(qEj )
I{yj=0} ≤

m∏
i=1

pEciq
E
ci , (41)

where pEci = 1 − qEci = exp(x�
ciβ)/{1 + exp(x�

ciβ)} is the same expected random effect
for all groups in cluster i and xci is the same covariate vector for all groups in cluster i.
The first equality holds because some groups may not be included in one of m clusters.
The second inequality holds for two reasons. First, groups in the same cluster share
the same covariate values, meaning that every group in cluster i has the same expected
random effect, pEci = 1 − qEci . Second, in each cluster there are at least one group with
all successes and at least one group with all failures, indicating that in cluster i, pEciq

E
ci

is the largest value of
∏

j∈ci
(pEj )

I{yj=nj}(qEj )
I{yj=0} . The integration of the upper bound

in (41) is finite with a linear transformation, hi = x�
ciβ, as follows:∫

Rm

m∏
i=1

pEciq
E
cidβ ∝

∫ ∞

−∞
· · ·
∫ ∞

−∞

m∏
i=1

exp(hi)

[1 + exp(hi)]2
dhi = 1. (42)

The last equality holds because exp(hi)/[1 + exp(hi)]
2 is a PDF of a standard Logistic

distribution with respect to hi.

These conditions also become necessary conditions when x�
j β = β1 for all j. In

this case, the conditions simply reduce to having at least one group with all successes
and at least one group with all failures. Let us use notation pEj = pE = 1 − qE =
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exp(β1)/(1 + exp(β1)). If all the extreme groups have only successes (yj = nj for all j),
then we can bound πhyp.post(r, β1 | y) from below using the lower bound in (14) up to
a normalizing constant as follows:

πhyp.post(r, β1 | y) ∝ f(r)g(β1)L(r, β1) ≥ f(r)(pE)
∑k

j=1 nj . (43)

The integration of this lower bound in (43) with respect to β1 is not finite because pE

converges to one as β1 approaches infinity. Similarly, πhyp.post(r, β1 | y) is improper if
all the extreme groups have only failures (yj = 0 for all j).
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