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Dynamic Chain Graph Models for Time Series
Network Data

Osvaldo Anacleto∗ and Catriona Queen†

Abstract. This paper introduces a new class of Bayesian dynamic models for
inference and forecasting in high-dimensional time series observed on networks.
The new model, called the dynamic chain graph model, is suitable for multivariate
time series which exhibit symmetries within subsets of series and a causal drive
mechanism between these subsets. The model can accommodate high-dimensional,
non-linear and non-normal time series and enables local and parallel computation
by decomposing the multivariate problem into separate, simpler sub-problems of
lower dimensions. The advantages of the new model are illustrated by forecasting
traffic network flows and also modelling gene expression data from transcriptional
networks.
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1 Introduction

Multivariate time series are often observed on a network or graph. Despite the ever-
increasing research on network modelling, statistical dynamic modelling on networks
has not been explored much so far (Kolaczyk, 2009, Chapter 9). This paper proposes a
new class of multivariate Bayesian dynamic models (West and Harrison, 1997) for time
series networks, called dynamic chain graph models.

Although Bayesian dynamic models have long been successfully applied in many
different application areas (see, for example Velozo et al., 2014; Xiao et al., 2015; Nasci-
mento et al., 2015; Quirós et al., 2015), few of these models can accommodate complex
high-dimensional series, while not being too demanding computationally. Furthermore,
established Bayesian multivariate dynamic models such as the matrix normal dynamic
linear model (Quintana and West, 1987) and its Gaussian graphical model extension
(Carvalho and West, 2007) are only suitable for multivariate series whose component
univariate series are similar and share a common structure.

The multiregression dynamic model (MDM) (Queen and Smith, 1993) is an alter-
native model that does not require all the component univariate time series to have a
common structure. This model assumes a conditional independence and causal struc-
ture among time series components at each time step, as expressed by a directed acyclic
graph (Lauritzen, 1996). This graph is then used to decompose the n-dimensional model
into n separate conditional models, each of which is a univariate Bayesian dynamic
model. As such, the MDM can accommodate arbitrarily high-dimensional structures,
while enabling local and parallel computation.
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The MDM has been extensively used in a variety of applications: brand sales fore-
casting (Queen, 1994), traffic flow forecasting (Queen et al., 2007; Queen and Albers,
2009; Anacleto et al., 2013a,b), functional magnetic resonance imaging (Costa et al.,
2015; Oates et al., 2015a,b), financial portfolio analysis (Zhao et al., 2015) and electric-
ity demand forecasting (Zhao, 2015). However, the directed acyclic graph used in the
MDM may be too restrictive: only directional associations between individual series can
be accommodated, and no symmetric associations are allowed.

Queen and Smith (1992) developed a Bayesian dynamic model called the dynamic
graphical model, in which a chain graph (Wermuth and Lauritzen, 1990) represents
a multivariate time series Y t at each time t, with both directional and symmetric
associations between the individual time series. In that model, Y t is partitioned into
ordered chain components, which are complete undirected graphs and are connected by
directed edges. However, if two chain components are connected in this model, then
there must be a directed edge from every variable in the first chain component to every
variable in the second. Also, the dynamic graphical model cannot accommodate chain
components as sparse undirected graphs, which simplify estimation of the observation
covariance matrix (Carvalho and West, 2007; Prado and West, 2010).

This paper presents a Bayesian dynamic model based on a chain graph which does
not rely on the stringent assumptions required for the dynamic graphical model devel-
oped in Queen and Smith (1992). This new model not only enables sparsity on chain
components, but it also allows for unrestricted directed edges between them, thus ac-
commodating more complex dependence patterns among multivariate time series com-
ponents. It is shown that, like the MDM, computation in this new model is simplified
and parallelizable since the multivariate problem is decomposed into separate, simpler
sub-problems of lower dimensions, although, unlike the MDM, not all of these will be
univariate.

The proposed model is illustrated using two application areas: road traffic flow fore-
casting and gene expression modelling. Both applications are examples where the MDM
cannot capture all types of dependencies among the time series components.

2 Basic graph theory concepts and notation

Before defining the new model in the next section, some notation and terminology is
introduced. The terms network and graph are interchangeably used throughout this
paper. A chain graph is defined as a pair (V,E), where V is a finite set of nodes (or
vertices) and E is a subset of ordered pairs of nodes, called edges.

Figure 1 shows an example of a chain graph for a 7-dimensional vector X with
chain components {X1, X2}, {X3, X4}, {X5, X6} and {X7}. If there is a directed edge
from Xi to Xj , then Xi is a parent of Xj while Xj is a child of Xi, and if Xk and Xl

are connected by an undirected edge, then they are neighbours. For set of variables A,
the parents, children and neighbours of A are denoted, respectively, pa(A), ch(A) and
ne(A). The boundary of set A is bd(A) = pa(A) ∪ ne(A). A path of length n from α
to β is any sequence (α0 = α, . . . , αn = β) of distinct nodes such that (αi−1, αi) ∈ E
for all i = 1, . . . , n. If there is a path from Xi to Xj , but no path from Xj to Xi, then
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Xj is a descendant of Xi: the descendants of the set of variables A is denoted de(A).
The non-descendants of A are nd(A) = X\(de(A)∪A). Then, for each Xi, i = 1, . . . , n
(Lauritzen, 1996),

Xi⊥⊥{nd(Xi)\bd(Xi)} | bd(Xi). (1)

For example, in Figure 1, pa(X6) = {X3, X4}, ch(X6) = {X7}, ne(X6) = {X5},
de(X6) = {X7}, nd(X6) = {X1, X2, X3, X4, X5} and so X6⊥⊥{X1, X2)} | {X3, X4, X5}.

Figure 1: Example of a chain graph.

3 The dynamic chain graph model

The dynamic chain graph model (DCGM) is defined for time series which can be rep-
resented over time by a dynamic chain graph. The DCGM makes explicit use of the
dynamic chain graph structure of the series to simplify computation. Before defining
the DCGM in Section 3.2, a dynamic chain graph representation for time series, together
with the associated conditional independence relationships between the component time
series, is presented in Section 3.1.

Firstly, some notation is required. Let {Y t}t∈N be an n-dimensional time series and
suppose that Y t is partitioned into N vector time series of dimensions r1, . . . , rN with∑N

i=1 ri = n, so that Y T

t = (Y t(1)
T, . . . ,Y t(N)T) where, for i = 1, . . . , N , Y t(i)

T =
(Yt1(i), . . . , Ytri(i)). Let Y

t = (Y 1, . . . ,Y t)
T, Y t(i) = (Y 1(i), . . . ,Y t(i))

T and Y t
j(i) =

(Y 1j(i), . . . ,Y tj(i))
T, and let yt, yt(i) and ytj(i) be the realizations of Y t, Y t(i) and

Ytj(i), respectively.

3.1 Representing multivariate time series with dynamic chain
graphs

The dependence structure of a dynamic chain graph can be divided into a set of intra
time-slice dependencies, which represent associations among time series components in a
fixed time t ∈ N, and a set of inter time-slice dependencies, which represent associations
among time series components across time.

Intra time-slice dependencies

Suppose that, at each time t ∈ N, there is an association structure between all individual
time series within each vector series Y t(1), . . . ,Y t(N) so that, for each i = 1, . . . , N ,
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Yt1(i), . . . , Ytri(i) form an undirected chain component in a chain graph. Suppose also
that for each time t ∈ N there is a causal drive through the system and a conditional
independence structure (which is the same structure for each time t ∈ N) so that
Y t(1), . . . ,Y t(N) are ordered chain components in the chain graph with pa(Ytj(i)) ⊆
{Y t(1), . . . ,Y t(i− 1)}. For example, consider the time series Y t represented at time t
by the chain graph given in Figure 2. Here there are three chain components (so that
N = 3): {Yt1(1), Yt2(1)}, {Yt1(2), Yt2(2), Yt3(2)} and {Yt1(3), Yt2(3)}, with r1 = 2, r2 = 3
and r3 = 2. Thus Y T

t = (Y t(1)
T,Y t(2)

T,Y t(3)
T) where Y t(1) = (Yt1(1), Yt2(1))

T,
Y t(2) = (Yt1(2), Yt2(2), Yt3(2))

T and Y t(3) = (Yt1(3), Yt2(3))
T.

Inferring intra-time slice dependencies from data is an important research area. This
problem is not the focus here, but it is briefly mentioned in Section 6.

Figure 2: Example of intra-time slice dependencies in a chain graph representation of a
7-dimensional time series at time t.

Inter time-slice dependencies

The chain graphs defined above for the time series vectors Y t(1), . . . ,Y t(N) at each
t ∈ N can be linked together by assuming inter time-slice dependencies, so that a
dynamic chain graph for the time series {Y t}t∈N is obtained. For a time series up to time
t, represented by Y t(1), . . . ,Y t(N), the inter time-slice dependencies of a time series
component Ytj(i), i = 1, . . . , N , j = 1, . . . , ri, are represented by its parents at previous

time steps, which are allowed to be from {Y k(1), . . . ,Y k(i)}, k = 1, . . . , t− 1. Together
with the contemporaneous parents defined in the previous section, in a dynamic chain
graph we then have

pa(Ytj(i)) ⊆ {Y t(1), . . . ,Y t(i− 1),Y t−1(i)}. (2)

The parent set pa(Ytj(i)) is assumed to be the same at each time t ∈ N.

Figure 3 shows a dynamic chain graph example based on the chain graph of Figure 2
and considering all time points up to time t. Notice that if Ytj(l) is a parent of Ytk(m),
it is not necessary that Y t−1

j (l) is also a parent of Ytk(m), nor that Y t−1
j (l) is a parent

of Ytj(l).

Dynamic chain graph conditional independence structure

The dynamic chain graph defines a conditional independence structure among contem-
poraneous variables as stated in the following theorem.
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Figure 3: Example of a dynamic chain graph for the 7-dimensional time series with intra-
time slice dependencies (black edges) defined in Figure 2. Inter time-slice dependencies
are represented by green edges. The figure shows inter time-slice dependences for the
series at a arbitrary time such that these dependencies are the same for any time step
t > 1. Undirected edges between processes represent intra-time slice relationships. For
example, the undirected edge connecting Y t−1

1 (1) and Y t−1
2 (1) means that there is an

undirected edge between Yi1(1) and Yi2(1) for i = 1, . . . , t− 1.

Theorem 1. Let {Y t}t∈N be represented by a dynamic chain graph where Y t can be de-
composed, for each time t ∈ N, into a set of ordered chain components Y t(1), . . . ,Y t(N),
with such ordering remaining constant over time. Then, the following conditional inde-
pendence statements hold for each time t ∈ N:

Y t(i)⊥⊥ [{Y t(1), . . . ,Y t(i− 1)} \pa(Y t(i))] | pa(Y t(i)). (3)

Proof. For notational convenience, define

Xt(i)
T = (Y t(1), . . . ,Y t(i− 1)), i = 2, . . . , N,

Zt(i)
T = (Y t(i+ 1), . . . ,Y t(N)), i = 1, . . . , N − 1,

where for i = 1, Xt(i) is ∅, as is Zt(i) for i = N .

For the dynamic chain graph representing Y t(1), . . . ,Y t(N) as described above,
conditional independence statements (1) imply that for each t ∈ N, i = 1, . . . , N and
j = 1, . . . , ri,

Ytj(i)⊥⊥{nd(Ytj(i))\bd(Ytj(i))} | bd(Ytj(i)). (4)

Now, the set nd(Ytj(i)) consists of {Y t(i)\Ytj(i)} together with Xt(i), Y t−1(i) and
Zt−1(i), while bd(Ytj(i)) = pa(Ytj(i))∪ne(Ytj(i)), where pa(Ytj(i)) ⊆

{
Xt(i),Y t−1(i)

}
from (2), and ne(Ytj(i)) ⊆ {Y t(i)\Ytj(i)}. Therefore, statement (4) becomes

Ytj(i)⊥⊥
[{

Xt(i), {Y t(i)\Ytj(i)},Zt−1(i)
}
\bd(Ytj(i))

]
| bd(Ytj(i))
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In particular, this means that

Ytj(i)⊥⊥ [{Y t(1), . . . ,Y t(i− 1)} \bd(Ytj(i))] | bd(Ytj(i)).

But since ne(Ytj(i)) ⊆ {Y t(i)\Ytj(i)} for each j = 1, . . . , ri, then collectively
bd(Y t(i)) ≡ pa(Y t(i)), so that the conditional independence statements in (3) hold.

As will be seen later, Theorem 1 is important for the proposed model as it plays
a key role in breaking the multivariate problem into N smaller subproblems. Next the
new model will be defined.

3.2 Model definition

For time series {Y t}t∈N represented by a dynamic chain graph as described above, the
DCGM is defined for all t ∈ N as follows. The initial information available is denoted
by D0.

Observation equations: Y t(i) = F t(i)
Tθt(i) + vt(i), vt(i) ∼ (0,Σt(i)), (5)

i = 1, . . . , N,

System equation: θt = Gtθt−1 +wt, wt ∼ (0,W t), (6)

Initial information: θ0 | D0 ∼ (m0,C0). (7)

Here F t(i)
T = (F t1(i)

T, . . . ,F tri(i)
T), where sj-dimensional vector F tj(i), j = 1, . . . , ri,

is allowed to be an arbitrary, but known, function of the contemporaneous values of
pa(ytj(i)) and yt−1(1), . . . ,yt−1(i), but not yt(i + 1), . . . ,yt(N) or yt(i). The vec-
tor θT

t = (θt(1)
T, . . . ,θt(N)T) is a s-dimensional state vector, where θt(i) is the si-

dimensional state vector for Y t(i) with si =
∑ri

j=1 sj and s =
∑N

i=1 si. The ri × ri
matrix Σt(i) is the observation covariance matrix for Y t(i). The s × s matrices Gt =
blockdiag(Gt(1), . . . ,Gt(N)) and W t = blockdiag(W t(1), . . . ,W t(N)), where Gt(i)
and W t(i) are, respectively, the si×si state evolution matrix and state evolution covari-
ance matrix for θt(i), i = 1, . . . , N , are allowed to be functions of yt−1(1), . . . ,yt−1(i),
but not yt−1(i + 1), . . . ,yt−1(N). In the s-dimensional vector wT

t =(wt(1)
T, . . . ,

wt(N)T), wt(i) is the si-dimensional system error vector for θt(i), i = 1, . . . , N . The
s-dimensional vector m0 and s× s matrix C0 = blockdiag(C0(1), . . . ,C0(N)) are mo-
ments of θ0 | D0. Errors vt(1), . . . ,vt(N) and wt(1), . . . ,wt(N) are mutually indepen-
dent of each other and through time.

To illustrate the DCGM, consider once again the time series represented by the
dynamic chain graph in Figure 3. Separate observation equations (5) are specified for
Y t(1), Y t(2) and Y t(3): F t(1)

T = (F t1(1)
T,F t2(1)

T ), such that F t1(1)
T is a function

of yt−1
1 (1); F t(2)

T = (F t1(2)
T,F t2(2)

T ,F t3(2)
T), such that F t1(2)

T is a function of
yt−1
1 (1) and F t3(2)

T is a function of yt−1
3 (2) and yt2(1); F t(3)

T = (F t1(3)
T,F t2(3)

T ),
such that F t1(3)

T is a function of yt−1
1 (3) and yt1(2) and F t2(3)

T is a function of
yt−1
2 (3) and yt3(2). Additionally, F t(1)

T, F t(2)
T and F t(3)

T can also be functions of
exogenous variables.
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Corollary 1 to follow presents a key result for the DCGM. Corollary 1 follows on from
a theorem which is provided in the Supplementary Material for the paper (Anacleto and
Queen, 2016). The proofs of this theorem and of the corollary are also provided in the
Supplementary Material.

Corollary 1. If ⊥⊥N
i=1θ0(i), then under the DCGM, for all t ∈ N,

1. ⊥⊥N
i=1θt(i) | yt, and

2. θt(i)⊥⊥yt(i+ 1), . . . ,yt(N) | yt(1), . . . ,yt(i), for i = 1, . . . , N − 1.

Corollary 1 means that if θt(1), . . . ,θt(N) start independent, then they remain so
after sampling: initial independence is ensured since C0 is block diagonal in (7). Corol-
lary 1 and Theorem 1 together mean that each parameter vector θt(i) can be updated
separately within the conditional multivariate model for Y t(i) | pa(yt(i)), and condi-
tional forecasts for Y t(i) | pa(yt(i)) can be found separately, since the joint forecast
distribution can be expressed as

f(yt | yt−1) =

N∏
i=1

∫
θt(i)

f(yt(i) | pa(yt(i)),θt(i))f(θt(i) | xt−1(i),yt−1(i))dθt(i).

Another consequence of θt(1), . . . ,θt(N) remaining independent after sampling, is
that the smoothing distributions θt−k(i) | yt, k = 1, . . . , t − 1, can be calculated sep-
arately for each i = 1, . . . N . (For example, when normal errors are assumed, each
smoothing density has the form as given in West and Harrison, 1997, page 113). The
DCGM therefore decomposes the n-dimensional model into N separate conditional mul-
tivariate models of smaller dimensions. This decomposition greatly simplifies model
computations, breaking what can be a highly complex multivariate problem into more
manageable parts.

It is worth emphasizing that the regression vectors, F tj(i), i = 1, . . . , N , j =
1, . . . , ri, are functions of the contemporaneous values of the parents of Ytj(i), which
are unknown at time t− 1 when forecasts for Ytj(i) are required. Although the regres-
sion vector at time t is usually known before time t in the Bayesian dynamic linear model
(DLM) framework, the idea of having unknown random variables in the regression vec-
tor is not new: both the MDM and Queen and Smith (1992) dynamic graphical model
also allow the regression vectors to be functions of the (unknown) contemporaneous
values of parents, while Wang et al. (2011) also consider DLMs with random vectors.
To obtain forecasts for Y t(1), . . . ,Y t(N) in the DCGM, marginal forecasts (marginal-
izing over pa(yt(i))) are required. Although the marginal distributions are not generally
simple distributional forms, it is usually straightforward to calculate the marginal fore-
cast moments from the conditional ones using the identities E(X) = E[E(X | Z)] and
V (X) = E[V (X | Z)] + V [E(X | Z)].

The MDM is a special case of the DCGM in which all the chain components are
single values so that N = n. In both models, the set of contemporaneous variables
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pa(ytj(i)) are used as regressors when modelling Ytj(i) and both models break the
multivariate problem into simpler sub-problems. However, whereas the MDM breaks
the n-dimensional problem into n univariate ones, the dynamic chain graph model
breaks the problem into N separate multivariate models for the chain components.

In this respect the proposed model is like the dynamic graphical model of Queen and
Smith (1992). The DCGM is, however, far more general: if Ytk(l) is a parent of Ytj(i)
in a chain graph representing Y t, then the dynamic graphical model would require all
components of the vector Y t(l) to be parents to all components of the vector Y t(i),
whereas in the DCGM Ytj(i) can have any number and combination of component series
of Y t(1), . . . ,Y t(i − 1) as parents and the other components of Y t(i) need not have
the same parents. Also, in the dynamic graphical model, all component series within a
chain component must be pairwise connected, whereas this need not be the case in the
DCGM. Further, unlike the dynamic graphical model, no distributional assumptions
are made for the priors or error distributions in the DCGM, F t(i) in (5) need not be a
linear function of its parents, and no assumptions are made regarding the multivariate
dynamic models for Y t(1), . . . ,Y t(N).

The dynamic graphical model uses matrix normal DLMs (Quintana and West, 1987)
to model each of Y t(1), . . . ,Y t(N). This model is conjugate and thus computationally
simple and quick to use. However, although the matrix normal DLM can be used to
model Y t(1) in the DCGM, it is not appropriate for Y t(i) | pa(yt(i)), i = 2, . . . , N :
the matrix normal DLM would require each of the individual series Yt1(i), . . . , Ytri(i),
i = 2, . . . , N , to have the same regression vector so that F t1(i) = · · · = F tri(i), whereas
in the DCGM each F tj(i), j = 1, . . . , ri, is potentially different because it is a function
of pa(ytj(i)), and pa(ytj(i)) is not necessarily equal to pa(ytk(i)), for j 	= k.

The simplest models for Y t(1), . . . ,Y t(N) are DLMs where F tj(i), j = 1, . . . , ri,
i = 1, . . . , N , is a linear function of regressor(s) pa(ytj(i)) and all distributions in (5)–
(7) are normal. This is the linear dynamic chain graph model (LDCGM). In the next
section, the LDCGM is applied to forecast road traffic network flows.

4 Application: forecasting traffic network flows

Anacleto et al. (2013a,b) used a linear version of the MDM, the LMDM, to forecast flows
in a road traffic network at the intersection of three busy motorways near Manchester,
UK. Figure 4(a) shows a schematic diagram of the network: arrows represented by the
roadways indicate the direction of travel and circles denote the flow data collection
sites which are labelled by identification numbers. In this paper, an LDCGM is used
to forecast flows in part of this network and the performance of the LDCGM and the
LMDM is compared.

Time series data of 5-minute counts of vehicles passing over induction loops (see
Li, 2009) in the Manchester network for November and December 2010 are available
from the Highways Agency in England (http://www.highways.gov.uk/). Let Yt(k)
denote the traffic flow (5-minute vehicle counts) at site k at time t. Anacleto et al.
(2013b) elicited a directed acyclic graph (DAG) to represent these traffic flow series.

http://www.highways.gov.uk/
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Figure 4: (a) Schematic diagram of a traffic network near Manchester. (b) A chain graph
for a subset of data collection sites of the Manchester network.

In that DAG, all variables have one or two parents except for the time series at the
four entrances to the network, namely Yt(9206B), Yt(6013B), Yt(9188A) and Yt(1431A),
which do not have parents: these variables without parents are referred to as root nodes.

Queen et al. (2008) showed that, for any two root nodes Yt(k) and Yt(l) being
modelled by an LMDM, the forecast covariance between Yt(k) and Yt(l) is 0. This
result also holds for the general MDM. However, this is an unrealistic assumption for
the Manchester network traffic flow series, where the root nodes (the series at the
entrances to the network) can be highly correlated (Anacleto, 2012). In this case, a
chain graph representing the root nodes in a chain component may be a more suitable
representation of the flow series.

For clarity of presentation, consider a small subset of the Manchester network com-
prising the flow series at the entrances to the network and four of the adjacent down-
stream flows (the four root nodes with one of each of their respective children in the
DAG representation). For notational convenience, let

Yt(9206B)=Yt1(1), Yt(6013B)=Yt2(1), Yt(9188A)=Yt3(1), Yt(1431A)=Yt4(1),

Yt(9200B)=Yt(2), Yt(6007L)=Yt(3), Yt(9193J)=Yt(4), Yt(1437A)=Yt(5),

and set Y t = (Y t(1)
T, Yt(2), . . . , Yt(5))

T where Y t(1)
T = (Yt1(1), . . . , Yt4(1)). A chain

graph representation of Y t is given in Figure 4(b): directed edges from Ytj(1) to Yt(j+1),
j = 1, . . . , 4, represent parent child relationships from the original DAG representation
in Anacleto et al. (2013b), and undirected edges represent associations between pairs of
root nodes.
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4.1 An LDCGM for the traffic network

The chain graph in Figure 4(b) has only one multivariate chain component, Y t(1), while
the other chain components are single series. In this case an LDCGM can be defined
in which a matrix normal DLM is used to model Y t(1), while conditional univariate
DLMs are used to model Yt(2), . . . , Yt(5).

A matrix normal DLM for Y t(1) is specified in terms of row vector Y t(1)
T and s1×4

matrix parameter Θt(1) = (θt1(1), . . . ,θt4(1)), where θtj(1) is the s1-dimensional state
vector for Ytj(1), j = 1, . . . , 4. Yt1(1), . . . , Yt4(1) each has the same regression vector
F t(1), and each state vector θt1(1), . . . ,θt4(1) has the same dimension (s1) and the
same state evolution matrix Gt(1).

Denoting θ̃
T

t = (θt(2)
T, . . . ,θt(5)

T), an LDCGM for Y t in the Manchester network
is defined as follows for times t ∈ N.

Observation equations:

Y t(1)
T = F t(1)

TΘt(1) + vt(1)
T, vt(1) ∼ N(0,Σt(1)), (8)

Yt(i) = F t(i)
Tθt(i) + vt(i), vt(i) ∼ N(0, Vt(i)), i = 2, . . . , 5. (9)

System equations:

Θt(1) = Gt(1)Θt−1(1) +Ωt(1),Ωt(1) ∼ N(0,W t(1),Σt(1)), (10)

θ̃t = G̃tθ̃t−1 + w̃t, w̃t ∼ N(0, W̃ t). (11)

Initial information:

Θ0(1) | D0 ∼ N(m0,C0(1),Σ0(1)), (12)

θ̃0 | D0 ∼ N(m̃0, C̃0). (13)

The s1-dimensional vector F t(1) may be a function of yt−1(1) but not yt(2), . . . ,yt(5);
si-dimensional vector F t(i) is a linear function of pa(yt(i)), i = 2, . . . , 5; 4 × 4 ma-
trix Σt(1) defines a cross-sectional covariance structure across Y t(1); Vt(i) is the scalar
observation variance for Yt(i), i = 2, . . . , 5; Gt(1) is the s1 × s1 state evolution ma-

trix for Θt(1); G̃t = blockdiag(Gt(2), . . . ,Gt(5)) is the state evolution matrix for θ̃t;
Ωt(1) is the s1 × 4 matrix of system errors for Θt(1) with matrix normal distribu-
tion (Dawid, 1981), with s1 × 4 mean matrix of zeros, s1 × s1 left covariance matrix

W t(1) and 4 × 4 right covariance matrix Σt(1); w̃t is the system error vector for θ̃t;

W̃ t = blockdiag(W t(2), . . . ,W t(5)) is the state evolution covariance matrix for θ̃t;
Θ0(1) | D0 has a matrix normal distribution with s1 × 4 mean matrix m0, s1 × s1 left

covariance matrix C0(1) and 4× 4 right covariance matrix Σ0(1); and m̃0 and C̃0 are

the moments of θ̃0 | D0. All model errors are mutually independent of each other and
independent through time.

Matrix Σt(1) and variances Vt(i), i = 2, . . . , 5, are estimated sequentially on-line
using conjugate inverse Wishart and gamma priors, respectively: see West and Harrison
(1997, pages 108–112, 603–604). Conjugacy allows quick and easy computation.

To evaluate the effect of the joint modelling of Yt1(1), . . . , Yt4(1) in a chain com-
ponent with the LDCGM, forecasts were also obtained using an LMDM with no such
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association structure. The graph for this LMDM is the DAG obtained by removing the
undirected edges from the chain graph in Figure 4(b), so that Yt1(1), . . . , Yt4(1) are
unconnected root nodes and Ytj(1) is a parent of Yt(j + 1), for j = 1, . . . , 4.

Series Yt(2), . . . , Yt(5) are modelled in exactly the same way via (9), (11) and (13)
in both the LMDM and the LDCGM, whereas in the LMDM each Ytj(1), j = 1, . . . , 4,
is modelled by a separate DLM of the form:

Obs. equation: Ytj(1) = F tj(1)
Tθtj(1) + vtj(1), vtj(1) ∼ N(0, Vtj(1)) (14)

Sys. equation: θtj(1) = Gtj(1)θt−1,j(1) +wtj(1), wtj(1) ∼ N(0,W tj(1)) (15)

Initial info.: θ0j(1) | D0 ∼ N(m0j(1),C0j(1)). (16)

Following Anacleto et al. (2013b), because of differences in flow patterns for different
weekdays, for clarity of presentation only flows from Wednesdays are used here. In
the absence of expert information, data from November were used to elicit all priors,
while one-step ahead forecasts are obtained for December. Heavy snow caused several
periods of disruption to the network traffic during December 2010. The models are thus
compared when an explicit factor was affecting the traffic flows: it is at such times when
forecasting is of most use for traffic control.

Traffic flow series exhibit daily patterns which both models need to accommodate.
Following Anacleto et al. (2013a), cubic splines can model these daily patterns so that
the regression vectors F t(1) in (8) and F t1(1), . . . ,F t4(1) in (14) contain fixed basis
functions, while Θt(1) in (8) and θt1(1), . . . ,θt4(1) in (14) contain dynamically evolving
spline parameters for individual series which are estimated sequentially online. In the
matrix normal DLM, the same F t(1), and hence basis functions, are used for each series
Yt1(1), . . . , Yt4(1). The daily patterns exhibited by Yt1(1), . . . , Yt4(1) are similar, and
variation in patterns is accommodated through each series having different parameters.
Evolution matrices, Gt(1) in (10) and Gt1(1), . . . ,Gt4(1), in (15) are identity matrices.

For both the LMDM and the LDCGM, Yt(2), . . . , Yt(5) are modelled in the same way:
separate regression DLMs are defined for Yt(2), . . . , Yt(5) where each Yt(i), i = 2, . . . , 5,
has pa(yt(i)) = yt,i−1(1) as a linear regressor. The parameters for these regressors ex-
hibit daily patterns, and, following Anacleto et al. (2013a), these can also be modelled
by cubic splines so that F t(i) and θt(i) in (9) contain fixed basis functions and dynami-
cally evolving spline parameters, respectively. Matrix G̃t(i) in (11) is an identity matrix.
Exogenous variables — namely, speed, occupancy and headway — are available at each
traffic site, and are also considered in the DLMs for Yt(2), . . . , Yt(5) using splines: see
Anacleto et al. (2013a) for details.

In the LDCGM, however, the matrix normal DLM for Y t(1) requires Yt1(1), . . .,
Yt4(1) to have the same regression vector F t(1). Thus, it is not possible for Ytj(1)’s
model to include exogenous variables (i.e. speed, occupancy and headway) at that site
as predictors, without also including exogenous variables at all the other sites in Y t(1)
as predictors as well. Thus these predictors are not included for Y t(1), and for fairness,
are also not included when modelling Yt1(1), . . . , Yt4(1) as root nodes in the LMDM.
As an alternative, predictors in Y t(1) could be included by using the seemingly unre-
lated regression model proposed in Wang (2010), which requires MCMC for parameter
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estimation. However, since the emphasis here is the evaluation of the effect of captur-
ing both directed and undirected relationships with the LDCGM in comparison to just
capturing directed relationships with the LMDM, a simpler model, such as the matrix
normal DLM, can be used.

For both models, the observation variances Vt(2), . . . , Vt(5) in (9) are estimated on-
line following variance laws (West and Harrison, 1997, Chapter 10.7) which relate the
observation variance with mean flow, introduced in Anacleto et al. (2013b) to account
for heterogeneity in traffic flow series. The cross-sectional covariance matrix, Σt(1), is
also estimated online. However, covariances between Yt1(1), . . . , Yt4(1) don’t necessarily
change with the mean, so this matrix is estimated using the discounting variance learn-
ing techniques of West and Harrison (1997, page 608) alone. For fairness of comparison
variance laws are not used to model each Vtj(1) in equation (14), so that the scalar
observational variances of Yt1(1), . . . , Yt4(1) in the LMDM are also modelled using dis-
counting techniques only. Discount factors for all observation variances and Σt(1) vary
around 0.90. Prado and West (2010) point out that variance learning via discount fac-
tors is only suitable when the (co)variances have a smooth and gradual random change.
This is a reasonable assumption between 15:00 to 19:59 for these data, but not at other
times. Thus only data between 15:00 and 19:59 are considered here.

Discount factors for all evolution covariance matrices in the LMDM and the LDCGM
vary around 0.97, estimated on-line using standard discounting techniques (see West and
Harrison, 1997, page 193). All discount factors are chosen by comparing the forecast
accuracy of different models for each chain component, obtained through combination
of observation and evolution discount factor values ranging from 0.80 to 1.

4.2 Forecast performance

Because of the heteroscedasticity of traffic flow series, the joint log-predictive likelihood
(LPL), which assesses the precision of forecasts as well as point forecasts, is used when
evaluating model forecast performance. The LPL calculates the log of the joint one-step
ahead forecast distribution for Y t before yt is observed, and then evaluates this at the
observed value yt. The LPL is the aggregate of all these values over all time points.
Anacleto et al. (2013a) provides details of the LPL for the LMDM and this is easily
adapted for the LDCGM.

Table 1 shows the LPL values when forecasting Wednesday traffic flows in December
2010 using the LMDM and the LDCGM. The first row of Table 1 shows the forecast
performance when only the four series in Y t(1) are modelled: clearly the matrix normal
DLM for Y t(1) used in the LDCGM provides better forecasts than the independent
DLMs assumed for Y t(1) under the LMDM. From the second row of Table 1, the
LDCGM also performs better than the LMDM when all eight series are considered.
The one-step ahead forecast means are very similar for both models, while the fore-
cast variances for the LDCGM are slightly smaller, and so slightly more informative,
than those for the LMDM. However, the real advantage of using the LDCGM is seen
when considering multivariate forecasts. Figure 5 shows (yt1(1), yt2(1)), represented by
a dot, at three consecutive time intervals. The 90% forecast regions for (Yt1(1), Yt2(1))
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LPL
Series considered LMDM LDCGM
Y t(1) only −6, 728 −6, 154
Y t(1), . . . , Yt(5) −11, 488 −10, 914

Table 1: LPL values for the LMDM and the LDCGM.

for the LMDM and the LDCGM are represented by black and grey ellipses, respec-
tively. In each plot, the forecast regions are smaller, thus more informative, for the
LDCGM. The LDCGM forecast regions also clearly indicate a positive correlation be-
tween (Yt1(1), Yt2(1)), which the other model does not. Forecast regions show positive
correlations amongst root nodes at other times too (Anacleto, 2012).

In Figure 5 the observed flows are not close to the centre of the forecast regions for
either model. This could be due to variability in traffic flows which is not captured by
the models. Neither model uses the exogenous variables speed, occupancy and headway,
which may have captured some of this variability. The LDCGM does, however, perform
better in Figure 5 than the LMDM: for example, in Figure 5(b), the observed flow lies
within the forecast region for the former, but does not for the latter.

Figure 5: Observed flows (·) and bivariate forecast limits at a pair of root nodes.

The matrix normal DLM is not ideal for modelling Y t(1): the covariances vary
too much between times 20:00 and 14:59 to estimate Σt(1) through variance learning
discounting, and the exogenous variables speed, occupancy and headway, cannot be
used. However, even with these restrictions, it has been shown that an LDCGM is
worth consideration as an alternative to the LMDM for modelling traffic flows.

5 Application: modelling time series gene expression
data

The graph in Figure 4(b) was elicited by exploiting the direction of traffic in the network
as the causal driving mechanism across the time series. Alternatively, graphs can be also
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inferred from data. As an example from biology, gene expression information, obtained
through measurements of DNA transcription, can be used to infer networks describing
regulatory mechanisms among genes (Kolaczyk, 2009). These networks can validate
known gene associations and also allow the discovery of new gene relationships.

To capture the dynamics of biological processes, time-varying expression data may be
preferable to transcriptional measurements obtained at steady-state. Dynamic Bayesian
networks (DBNs) have been extensively applied to analyse time series gene expression
data, as these models can capture feedback mechanisms which are ubiquitous in gene
regulation (Lèbre, 2009; Husmeier et al., 2011). Feedback mechanisms are captured in
DBNs by replicating a DAG at each time-slice, with arrows connecting these DAGs
based on the causal flow of time.

DCGMs can directly address two current limitations with DBNs for time series gene
expression data. Firstly, DBNs usually assume that parents of a expression time series
of a gene at a given time only take values at the previous time points. However, it
is experimentally challenging to define a suitable sampling rate to collect time-varying
transcriptional data so that this assumption is valid (Bar-Joseph et al., 2012). Secondly,
even though symmetric associations between expression of different genes are common
in transcriptional networks (Cantone et al., 2009), current DBNs for gene expression
data cannot capture both directed and undirected edges in a graph.

The DCGM was used to model two gene expression datasets. The first dataset was
obtained from an experiment involving the plant Arabidopsis Thaliana, as described
in Smith et al. (2004). The expression of 800 genes at 11 different time points were
measured and, following the correlation analysis in Opgen-Rhein and Strimmer (2007),
92 genes with the most significant connections were considered. The second dataset
consists of gene expression measurements at 18 time points from an experiment aimed
at understanding the developmental process of the mammary gland in mice (Stein et al.,
2004). For the second dataset, the focus is on 30 genes identified using cluster analysis by
Abegaz and Wit (2013) as providing the best separation between developmental stages.
Section S2 of the Supplementary Material provides a full description of the DCGM
application to both datasets. The results of the application strongly suggest that the
DCGM can improve modelling of gene expression data.

6 Final remarks

This paper presents a novel Bayesian dynamic model — the DCGM — for multivariate
time series which assume a chain graph representation of the conditional independence
structure among time series components. The new model deals with high-dimensional
time series by decoupling multivariate time series of lower dimensions for sequential infer-
ence, which can then be recoupled for forecasting and decision analysis. This decoupling
of high dimensional time series for sequential inference and recoupling for forecasting
and decision making is also at the heart of the MDM and a model recently developed
by Gruber and West (2015), although for these models the decoupling involves the uni-
variate time series components, rather than subsets of multivariate series. Under the
DCGM, state parameters of the time series subsets remain independent after sampling,
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which allows sequential and parallel inference of these subsets. The paper demonstrates
how the DCGM improves time series modelling when there is evidence that conditional
independence among time series components are better represented by both directed
and undirected relationships in a graph, rather than directed relationships alone.

Application of the DCGM was illustrated here using traffic flow and gene expression
networks. The model does, however, have much wider applicability to any multivariate
time series which exhibits symmetric associations between groups of series together
with a conditional independence and causal structure. The DCGM can also be used for
any chain graph application (such as can be found, for example, in Cox and Wermuth,
1996) which may be part of a longitudinal study over time. What’s more, the fact that
the model is very general and does not specify a particular multivariate model to use
for each chain component, nor impose linearity and normality, increases its potential
application areas.

The traffic flow time series analysed in this paper were obtained on a set of sites
distributed over space, and so can be viewed as being generated from a spatio-temporal
process. Multivariate time series from such processes are available in a variety of areas,
and Cressie and Wikle (2011, Chapter 2.4) suggest that chain graphs are a natural tem-
plate for representing such data. The DCGM could therefore be a potential candidate
when modelling time series originating from spatio-temporal processes.

Whereas inference of DAGs and undirected graphs from data is a lively research area
(see, for example, Scutari, 2013; Mohammadi and Wit, 2015; Wang, 2015), models for
inferring chain graphs from data has received little attention (McCarter and Kim, 2014).
A structural learning method for chain graphs using time series data has been recently
proposed by Abegaz and Wit (2013). However, their model is based on vector autore-
gressive (VAR) processes, therefore relying on stringent assumptions of those models. In
this context, following recent successful developments of DAG inference methods using
the MDM (see Costa et al., 2015; Oates et al., 2015a,b), the DCGM is an important
building block for inferring chain graphs from time series data.

Supplementary Material

Supplementary material for paper: Dynamic chain graph models for time series network
data (DOI: 10.1214/16-BA1010SUPP; .pdf). Supplementary material available online
includes the theorem for which Corollary 1 is a consequence, together with the proofs
of that theorem and Corollary 1. It also includes the description and results of the
application of the DCGM to two gene expression datasets, as mentioned in Section 5.

References
Abegaz, F. and Wit, E. (2013). “Sparse time series chain graphical models for recon-
structing genetic networks.” Biostatistics, 14(3): 586–599. 504, 505

Anacleto, O. (2012). “Bayesian dynamic graphical models for high-dimensional flow
forecasting in road traffic networks.” Ph.D. thesis, The Open University. 499, 503

http://dx.doi.org/10.1214/16-BA1010SUPP


506 Dynamic Chain Graph Models for Time Series Network Data

Anacleto, O. and Queen, C. (2016). “Supplementary material for paper: Dy-
namic chain graph models for time series network data.” Bayesian Analysis.
doi: http://dx.doi.org/10.1214/16-BA1010SUPP. 497

Anacleto, O., Queen, C., and Albers, C. J. (2013a). “Forecasting multivariate road
traffic flows using Bayesian dynamic graphical models, splines and other traffic vari-
ables.” Australian & New Zealand Journal of Statistics, 55(2): 69–86. MR3079021.
doi: http://dx.doi.org/10.1111/anzs.12026. 492, 498, 501, 502

Anacleto, O., Queen, C., and Albers, C. J. (2013b). “Multivariate forecasting of road
traffic flows in the presence of heteroscedasticity and measurement errors.” Jour-
nal of the Royal Statistical Society: Series C (Applied Statistics), 62(2): 251–270.
MR3045876. doi: http://dx.doi.org/10.1111/j.1467-9876.2012.01059.x. 492,
498, 499, 501, 502

Bar-Joseph, Z., Gitter, A., and Simon, I. (2012). “Studying and modelling dynamic
biological processes using time-series gene expression data.” Nature Reviews Genetics,
13(8): 552–564. 504

Cantone, I., Marucci, L., Iorio, F., Ricci, M. A., Belcastro, V., Bansal, M., Santini,
S., Di Bernardo, M., Di Bernardo, D., and Cosma, M. P. (2009). “A yeast synthetic
network for in vivo assessment of reverse-engineering and modeling approaches.” Cell ,
137(1): 172–181. 504

Carvalho, C. M. and West, M. (2007). “Dynamic matrix-variate graphical models.”
Bayesian Analysis, 2(1): 69–97. MR2289924. doi: http://dx.doi.org/10.1214/07-
BA204. 491, 492

Costa, L., Smith, J., Nichols, T., Cussens, J., Duff, E. P., and Makin, T. R.
(2015). “Searching multiregression dynamic models of resting-state fMRI networks
using integer programming.” Bayesian Analysis, 10(2): 441–478. MR3420889.
doi: http://dx.doi.org/10.1214/14-BA913. 492, 505

Cox, D. R. and Wermuth, N. (1996). Multivariate Dependencies: Models, Analysis and
Interpretation, volume 67. CRC Press. MR1456990. 505

Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. John Wiley
& Sons. MR2848400. 505

Dawid, A. P. (1981). “Some matrix-variate distribution theory: notational consid-
erations and a Bayesian application.” Biometrika, 68(1): 265–274. MR0614963.
doi: http://dx.doi.org/10.1093/biomet/68.1.265. 500

Gruber, L. F. and West, M. (2015). “GPU-accelerated Bayesian learning in simultaneous
graphical dynamic linear models.” Bayesian Analysis, 11(1): 125–149. MR3447094.
doi: http://dx.doi.org/10.1214/15-BA946. 504

Husmeier, D., Werhli, A. V., and Grzegorczyk, M. (2011). “Advanced Applications of
Bayesian Networks in Systems Biology.” In Stumpf, M. P. H., Balding, D. J., and
Girolami, M. (eds.), Handbook of Statistical Systems Biology , 270–289. Wiley Online
Library. MR2920207. doi: http://dx.doi.org/10.1002/9781119970606. 504

http://dx.doi.org/10.1214/16-BA1010SUPP
http://www.ams.org/mathscinet-getitem?mr=3079021
http://dx.doi.org/10.1111/anzs.12026
http://www.ams.org/mathscinet-getitem?mr=3045876
http://dx.doi.org/10.1111/j.1467-9876.2012.01059.x
http://www.ams.org/mathscinet-getitem?mr=2289924
http://dx.doi.org/10.1214/07-BA204
http://dx.doi.org/10.1214/07-BA204
http://www.ams.org/mathscinet-getitem?mr=3420889
http://dx.doi.org/10.1214/14-BA913
http://www.ams.org/mathscinet-getitem?mr=1456990
http://www.ams.org/mathscinet-getitem?mr=2848400
http://www.ams.org/mathscinet-getitem?mr=0614963
http://dx.doi.org/10.1093/biomet/68.1.265
http://www.ams.org/mathscinet-getitem?mr=3447094
http://dx.doi.org/10.1214/15-BA946
http://www.ams.org/mathscinet-getitem?mr=2920207
http://dx.doi.org/10.1002/9781119970606


O. Anacleto and C. Queen 507

Kolaczyk, E. D. (2009). Statistical Analysis of Network Data: Methods and Models.
Springer, New York. MR2724362. doi: http://dx.doi.org/10.1007/978-0-387-
88146-1. 491, 504

Lauritzen, S. L. (1996). Graphical Models. Oxford University Press. MR1419991. 491,
493
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