
Bayesian Analysis (2017) 12, Number 2, pp. 465–490

Automated Parameter Blocking for Efficient
Markov Chain Monte Carlo Sampling

Daniel Turek∗, Perry de Valpine†, Christopher J. Paciorek‡,

and Clifford Anderson-Bergman§

Abstract. Markov chain Monte Carlo (MCMC) sampling is an important and
commonly used tool for the analysis of hierarchical models. Nevertheless, prac-
titioners generally have two options for MCMC: utilize existing software that
generates a black-box “one size fits all” algorithm, or the challenging (and time
consuming) task of implementing a problem-specific MCMC algorithm. Either
choice may result in inefficient sampling, and hence researchers have become ac-
customed to MCMC runtimes on the order of days (or longer) for large models. We
propose an automated procedure to determine an efficient MCMC block-sampling
algorithm for a given model and computing platform. Our procedure dynami-
cally determines blocks of parameters for joint sampling that result in efficient
MCMC sampling of the entire model. We test this procedure using a diverse suite
of example models, and observe non-trivial improvements in MCMC efficiency for
many models. Our procedure is the first attempt at such, and may be generalized
to a broader space of MCMC algorithms. Our results suggest that substantive
improvements in MCMC efficiency may be practically realized using our auto-
mated blocking procedure, or variants thereof, which warrants additional study
and application.

Keywords: MCMC, Metropolis–Hastings, block sampling, integrated
autocorrelation time, mixing, NIMBLE.

1 Introduction

Markov chain Monte Carlo (MCMC) has become a core computational method for many
statistical analyses. These include routine Bayesian analyses, but also hybrid algorithms
that use MCMC as one component, such as Monte Carlo Expectation Maximization
(MCEM; Caffo et al., 2005) or data cloning (Lele et al., 2007). Nevertheless, the au-
tomated generation of black-box MCMC algorithms, as occurs in generally available
software, does not necessarily result in efficient MCMC sampling. Analysts are thereby
accustomed to MCMC run times measured in minutes, hours or even days for large
hierarchical models. Computation time is frequently the limiting factor, either limiting
the range of models considered, or limiting the potential for performing diagnostics and
comparisons using methods such as bootstrapping (Efron and Tibshirani, 1994), cross
validation (Gneiting and Raftery, 2007), or calibration of posterior predictive p-values
(Hjort et al., 2006), among others. Therefore, any widely applicable improvements to

∗493 Evans Hall, University of California, Berkeley, CA 94704, dbt1@williams.edu
†201 Wellman Hall, University of California, Berkeley, CA 94704,
‡495 Evans Hall, University of California, Berkeley, CA 94704,
§493 Evans Hall, University of California, Berkeley, CA 94704,

c© 2017 International Society for Bayesian Analysis DOI: 10.1214/16-BA1008

http://bayesian.org
mailto:dbt1@williams.edu
mailto:
mailto:
mailto:
http://dx.doi.org/10.1214/16-BA1008

466 Automated Parameter Blocking for Efficient Markov Chain

MCMC performance may greatly improve the practical analyses of large hierarchical
models.

Among the many MCMC sampling algorithms developed to improve MCMC effi-
ciency, one of the most basic approaches has been block sampling: jointly updating
multiple dimensions of a target distribution simultaneously (Roberts and Sahu, 1997;
Sargent et al., 2000). When one or more dimensions of the posterior distribution are
correlated, joint sampling of these dimensions (with any variety of block samplers) can
increase sampling performance relative to updating each dimension independently (e.g.,
Liu et al., 1994). Despite wide recognition of the usefulness of this basic idea for de-
signing efficient MCMC algorithms, there has been no automated method for choosing
blocks to optimize – or at least greatly improve – performance. Here we develop such a
method.

Existing theoretical work comparing block samplers to univariate samplers
(Mengersen and Tweedie, 1996; Roberts and Tweedie, 1996; Roberts et al., 1997, among
others) has provided many insights but falls short of providing a complete assessment
of MCMC efficiency for several reasons. First, it uses MCMC convergence rates as the
metric for comparison, without consideration of the computational demands of block
sampling. Instead, our viewpoint is that any measure of MCMC efficiency must in-
corporate both the convergence rate and the computational requirements of achieving
improvements in convergence rate. This may give a different picture of the actual effi-
ciency of a sampling algorithm. Accelerated convergence at an extreme computational
cost is obviously not optimal. Second, the computational requirements of different steps
will vary greatly across platforms, depending on such factors as processor, memory
architecture, use of efficient linear algebra packages, etc. Therefore, even if theoreti-
cal comparisons were extended to incorporate aspects of computation, the best block
sampling scheme would remain platform-dependent. It is important to recognize that
computational costs affect not only the proposal step – such as the cost of generating a
multivariate normal proposal – but also model computations and density evaluations.
Some parts of hierarchical models may inherently involve expensive computations, which
can impact the relative efficiency of different blocking schemes. Third, existing theories
and methods presume that some wise, manual selection of blocks may be feasible, based
for example on an understanding of the model structure, which leads to understand-
ing which posterior dimensions may be correlated. In general, however, it is difficult to
know a priori which dimensions will be correlated, which is one purpose of automating
a procedure like MCMC in the first place.

Here, we present a procedure for the automated exploration of MCMC blocking
schemes, seeking a highly efficient MCMC algorithm specific to the hierarchical model
and computing environment at hand. This represents a higher level of automated algo-
rithm generation than is provided by existing software, which serves to produce “one
size fits all” MCMC algorithms. The family of BUGS packages (WinBUGS, JAGS, and
OpenBUGS; Lunn et al., 2000; Plummer, 2011; Lunn et al., 2012) assigns samplers based
on local characteristics of each model parameter, using a combination of Gibbs sam-
pling, adaptive rejection sampling, slice sampling, and, in limited cases, block sampling.
Other MCMC packages including ADMB (Skaug and Fournier, 2006) and Stan (Stan

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 467

Development Team, 2014) use Hamiltonian MCMC sampling (Neal, 2011), which may
generally be more efficient but nevertheless represents a static approach to MCMC al-
gorithm generation. Yet other promising methods such as Langevin sampling (Marshall
and Roberts, 2012) are not incorporated into software commonly used by practition-
ers. For simplicity, we restrict our attention to univariate and blocked adaptive random
walk sampling. However, the main concept of exploring the space of parameter blocks
to improve MCMC efficiency generalizes to allow the use of other sampling methods.

In Section 2, we examine the pros and cons of univariate versus block random walk
sampling, both in terms of algorithmic and computational efficiencies. From these con-
siderations we conclude that the combination of samplers that yields optimal MCMC
efficiency (defined as an MCMC algorithm’s rate of generating effectively independent
samples) will be model- and platform-specific. Section 3 introduces a procedure for au-
tomated blocking of hierarchical model parameters, designed to maximize the resulting
MCMC algorithm efficiency. The main idea of this procedure is to iteratively cluster
model parameters based upon empirical posterior correlations, then subdivide the hier-
archical clustering tree (a dendrogram) to determine blockings of parameters that result
in efficient MCMC sampling. A series of simulated and real data examples given in Sec-
tion 4 demonstrate that this procedure can improve MCMC efficiency many-fold over
statically defined MCMC algorithms and can dynamically generate algorithms compara-
ble in performance to model-specific, hand-tuned algorithms. We close with a discussion
in Section 5.

2 MCMC Algorithms: Definitions and Efficiency

In this section, we first define a space of valid MCMC algorithms. Then, we examine
two dominant contributors to the efficiency of an MCMC algorithm: the algorithmic
capability to produce effectively-independent samples from the target distribution, and
the computational demands of the algorithm in generating MCMC samples; these are
composed to form our metric of overall MCMC efficiency. Drawing upon existing asymp-
totic theory of MCMC sampling, the scaling of computational costs of different sampling
schemes, and on several illustrative examples, we argue that achieving an optimally ef-
ficient MCMC algorithm for a specific model by pure theory is prohibitively difficult.
That conclusion motivates our approach of computationally optimizing – or at least
greatly improving – MCMC performance through automated exploration of a space of
valid MCMC algorithms.

2.1 MCMC Definition

We assume a given, fixed, hierarchical model M, which may be represented as a di-
rected acyclic graph where vertices represent top-level model parameters, latent states,
or fixed observations (data), and edges represent dependencies between these compo-
nents. Denote the set of all top-level model parameters and latent states (the unknown
components for which we may seek inferences) as Θ = {θ1, . . . , θd}, which will be re-
ferred to as the parameters of M.

468 Automated Parameter Blocking for Efficient Markov Chain

An MCMC algorithm may be defined in terms of its sampling scheme over Θ. Let
b be any non-empty subset (“block”) of Θ, and u ∈ U be any valid MCMC sampling
(or “updating”) method such as slice sampling or conjugate Gibbs sampling (see Gilks,
2005, for a broad overview of MCMC sampling methods). We define a valid MCMC
sampler ψ = u(b) as the application of u to b, where b satisfies any assumptions of
u (e.g., conjugacy). In addition to satisfying standard properties of Markov chains
(see, for example, Robert and Casella, 2004), we define a valid MCMC algorithm as
any set of samplers Ψ = {ψ1, . . . , ψk}, where ψi = ui(bi) for i = 1, . . . , k, satisfying
∪k
i=1bi = Θ; that is, the MCMC algorithm updates each model parameter in at least

one sampler. We represent the chain of samples generated from successive applications
of Ψ as X(0), X(1), . . ., where sample X(i) implies model state Θ = X(i), X(0) is the set

of initial values, X(i) = (X
(i)
1 , . . . , X

(i)
d), and Xk = {X(0)

k , X
(1)
k , . . .} is the scalar chain

of samples of θk (for k = 1, . . . , d).

This paper focuses attention on the restricted set of sampling methods U0 = {uscalar,
ublock}, where uscalar denotes univariate adaptive random walk Metropolis–Hastings
sampling (hereafter, scalar sampling; Metropolis et al., 1953; Hastings, 1970), and ublock

denotes the multivariate generalization of this algorithm (hereafter, block sampling;
Haario et al., 1993), with the practical restriction that any ψ = ublock(b) satisfies |b| > 1.
The uscalar algorithm adaptively tunes the proposal scale, while ublock additionally tunes
the proposal covariance (Roberts and Rosenthal, 2009). All scalar and block samplers
asymptotically achieve the theoretically optimal scaling of proposal distributions (and
therefore acceptance rates, and mixing) as derived in Roberts et al. (1997), and imple-
ment adaptation routines as set out in Shaby and Wells (2011).

For hierarchical model M with parameters Θ, our studies focus almost exclusively
on the set of MCMC algorithms ΨM, which contains all algorithms of the form Ψ =
{ψ1, . . . , ψk}, where ψi = ui(bi), each ui ∈ U0, and the sets bi form a partition of Θ. We
specifically name two algorithms in ΨM which are boundary cases. The first consists of
d scalar samplers: Ψscalar = {ψ1, . . . , ψd}, where each ψi = uscalar(θi). The second has a
single block sampler for all parameters: Ψblock = {ublock(Θ)}. Implicit is the assumption
that each θi is continuous-valued, which is the case throughout this paper.

2.2 Algorithmic Efficiency

We first consider MCMC algorithmic efficiency, independent of any computational re-
quirements. This measure of efficiency solely represents the best mixing, or equivalently
the least autocorrelation, or the highest effective sample size, without consideration for
the computational (time) requirements of generating a set of samples. After reviewing
the definition of MCMC algorithmic efficiency which is based upon integrated autocor-
relation time, we study the use of Ψscalar or Ψblock for particular choices of M, and
quantify the effects on this measure of efficiency.

As in Roberts and Rosenthal (2001), we define MCMC algorithmic efficiency as the
effective sample size divided by the chain length. This represents the rate of production
of effectively independent samples per MCMC sample. The effective sample size (ESS)
of an MCMC chain is defined as ESS = N/τ , where N is the chain length and τ is
the integrated autocorrelation time. For a scalar chain of samples X0, X1, . . ., which is

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 469

assumed to have converged to its stationary distribution, Straatsma et al. (1986) define
the integrated autocorrelation time as τ = 1+2

∑∞
i=1 cor(X0, Xi). τ may be interpreted

as the number of MCMC samples required, on average, for an independent sample to
be drawn. Our measure of algorithmic efficiency is thus τ−1, the number of effective
samples per actual sample (Thompson, 2010). τ−1 also characterizes the speed at which
expectations of arbitrary functions of the sample values approach their stationary values
(Roberts and Sahu, 1997), and no less satisfies the natural intuition that larger values
indicate better performance.

For MCMC algorithm Ψ acting on model M with parameters Θ, we define the
algorithmic efficiency of each θ ∈ Θ as A(Ψ, θ) = τ−1, where τ is the integrated
autocorrelation time of the samples of θ generated from repeated application of Ψ.
Overloading notation, we define the algorithmic efficiency of MCMC algorithm Ψ as
A(Ψ) = minθ∈Θ A(Ψ, θ). This definition is motivated by noting that often an MCMC
produces seemingly good mixing of many model dimensions but poor mixing of just a
few dimensions. In this case, the poorly mixing dimensions will limit the validity of the
entire posterior sample (although this is not universally true of all model structures).
Therefore, we take the conservative approach, and our general aim is to maximize the
algorithmic efficiency for the parameter exhibiting the slowest mixing.

We now study the potential for algorithmic inefficiency that may result from scalar
or block sampling, by examining situations in which each are particularly ill-suited.

Efficiency Loss From Block Sampling

Consider MCMC algorithm Ψblock ∈ ΨM. Application of Ψblock generates a random
proposal vector X∗ ∈ R

d, then jointly accepts or rejects X∗. In the framework of the
sampling method ublock, X

∗ ∼ Nd(μ, σ
2
dΣ), where μ and Σ vary according to current

state of the MCMC chain and properties of the target stationary distribution, but not
proportionally to d. Roberts et al. (1997) show that in order to achieve the asymp-
totically optimal acceptance rate, and therefore sample chain mixing, σ2

d ∝ d−1. As
a consequence of this attenuation in the proposal variance, the rate at which Ψblock

explores the space of Rd, and accordingly A(Ψblock), is proportional to d−1. This result
applies equivalently to block samplers ψ = ublock(b) acting on subsets b ⊂ Θ, where the
algorithmic efficiency (for the elements of b) achieved by application of ψ is inversely
proportional to the number of elements in b.

This result has an important implication on block sampling. All other factors being
equal (e.g., effect of posterior correlations), a block sampler of dimension k must generate
k times more samples to have the same effective sample size as those samples produced
through scalar sampling (Roberts and Rosenthal, 2001). This inefficiency is inherent to
block sampling and scales with the dimension of any block sampler.

Efficiency Loss From Scalar Sampling

To study the potential loss of algorithmic efficiency which may result from scalar sam-
pling under Ψscalar ∈ ΨM, we consider correlated posterior distributions. It is well-

470 Automated Parameter Blocking for Efficient Markov Chain

understood that strong posterior correlations can inhibit the speed of convergence of
MCMC sampling (e.g., Roberts and Sahu, 1997; Gilks, 2005), and that block sampling
can alleviate this. However, the nature of this inefficiency is not characterized, in par-
ticular as a function of the degree of correlation and number of dimensions exhibiting
correlation. We undertake a simulation study, to gauge how these factors effect algorith-
mic efficiency. Consider target distribution Nd(0,Σ), where the covariance (equivalently,
correlation) matrix Σ consists of 1s on the main diagonal and ρ elsewhere, |ρ| < 1. We
consider the algorithmic efficiencies of individual model parameters under scalar sam-
pling, A(Ψscalar, θ) for θ ∈ Θ.

Empirically, we observe that each A(Ψscalar, θ) tends toward zero as ρ approaches
one, or as d diverges (ρ �= 0). The nature of these relationships is characterized on a
log-log scale in Figure 1 (left), where the horizontal axis plots − log(1 − ρ), such that
positive horizontal shifts represent ρ exponentially approaching the boundary ρ = 1, or
perfect correlation between parameters. As one would expect, when ρ = 0 all values of
d yield identical algorithmic efficiency. However, when ρ > 0 we enter a linear regime
where each A(Ψscalar, θ) exponentially decays towards zero. Even for fixed d, algorithmic
efficiency under Ψscalar can be arbitrarily poor as ρ approaches unity.

Figure 1: MCMC algorithmic efficiencies for different values of model dimension (d),
and intra-group correlation (ρ). The quantity − log(1 − ρ) is plotted on the horizontal
axis. Model structures include constant off-diagonal elements (equal to ρ) in the induced
correlation matrix (left), and exponentially decaying correlations (right).

It may be extreme to assume a target distribution with arbitrarily large blocks of
parameters that exhibit arbitrarily high pairwise-correlation. As an alternative, we con-
sider the same multivariate normal form, but with elements of Σ given as σi,j = ρ|i−j|,
|ρ| < 1, as might occur in the covariance structure of a spatial model (Banerjee et al.,

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 471

2003, p. 27). The algorithmic efficiency of the first model parameter – since elements
of Θ are no longer exchangeable – is shown in Figure 1 (right), where it displays
similar attenuation as in the prior example. Most notably, we now observe the in-
cremental effect of d diminishing as d increases, consistent with the covariance struc-
ture.

Through a combination of theory and simulated examples, we observe that the
algorithmic efficiency achieved under Ψscalar or Ψblock will depend non-trivially upon
the model dimension, and the extent and structure of the posterior correlation. We
have only considered two simple, highly modular and systematic posterior correlation
structures. In practice, any model of interest will demonstrate a substantially more
complex correlation structure (which is unknown, anyway), making a full analytical
study of MCMC algorithmic efficiency difficult. No less, we have only considered the two
boundary-case algorithms Ψscalar and Ψblock in ΨM. Our desire to derive general results
for algorithmic efficiency will be complicated substantially further when we consider the
complete set ΨM.

2.3 Computational Efficiency

While Section 2.2 considered the efficiency of MCMC algorithm Ψ at producing inde-
pendent samples without regard for computation time, we now consider the computa-
tional requirements of Ψ, measured in units of algorithm runtime per MCMC iteration.
We focus on computations for model density evaluations. There are also book-keeping
and loop-iteration costs, which we label as algorithm overhead. These overhead terms
comprise a small fraction of total computation, and we safely disregard them. Denote
the computational requirement of Ψ as C(Ψ), and again overload notation to define
C(ψ) as the computational requirement of a single sampler ψ. For Ψ = {ψ1, . . . , ψk},
C(Ψ) =

∑k
i=1 C(ψi). As far as we are aware, an analysis of MCMC efficiency which in-

corporates C(Ψ) has not been carried out to date. Literature which does address MCMC
efficiency typically recognizes that a computational aspect exists, but then focuses solely
on A(Ψ), e.g., Roberts and Sahu (1997).

We now present an accounting of the main contributions to C(Ψscalar) and C(Ψblock),
general for any M. To support our accounting, we denote the set of all fixed and known
components of M (e.g., observations, other data) as Y , which is disjoint from the
unknown set of parameters Θ = {θ1, . . . , θd}. For each θi ∈ Θ, let xi ⊂ Θ∪Y be the set
of model components which immediately depend on θi, or the set of direct descendants of
θi in the model graph introduced in Section 2.1. Finally, we denote the computational
cost of evaluating the density functions corresponding to any subset x ⊂ Θ ∪ Y as
dens(x).

Scalar Sampling Computation

On each iteration of Ψscalar = {ψ1, . . . , ψd}, each sampler ψi will incur computational
cost C(ψi) = dens(θi)+dens(xi)+O(1). The trailing constant term represents generation
of the proposal value and making the MH decision (generation from normal and uniform

472 Automated Parameter Blocking for Efficient Markov Chain

distributions, respectively). The total computational requirement of Ψscalar is thus

C(Ψscalar) =

d∑

i=1

C(ψi) =

d∑

i=1

dens(θi) +

d∑

i=1

dens(xi) +O(d).

Note that under Ψscalar, each density evaluation dens(θi) must occur independently.
This is true even when the evaluation of a particular dens(θi) term necessitates the
calculation of a subsuming multivariate density – in the most extreme case, dens(Θ).
Thus, in the worst case, a single MCMC iteration of Ψscalar could incur d evaluations
of the entire joint density of Θ. A similar computational explosion can result from the
calculation of each dens(xi) term.

Block Sampling Computation

We now consider the components of C(Ψblock). On each iteration of Ψblock, the sole
sampler ublock(Θ) requires evaluation of the complete prior and likelihood densities,
dens(Θ ∪ Y). This is notably different from the density evaluation terms appearing in
C(Ψscalar), in that it incurs only a single evaluation of the complete joint model density.
In addition, the adaptation routine of ublock(Θ) requires a Cholesky factorization of the
adapted covariance matrix, which requires O(d3) operations to calculate in full gener-
ality (Trefethen and Bau, 1997, p. 176). This factorization occurs every AI iterations,
where AI is the adaptation interval of ublock, and therefore has an amortized compu-
tational cost of O(d3/AI). Each iteration of ublock requires generating a d-dimensional
multivariate normal proposal, which requires O(d2) operations, and performing a single
constant-time MH decision, which is dropped as a lower-order term. The total amortized
computational requirement of Ψblock may be written as

C(Ψblock) = dens(Θ ∪ Y) +O(d3/AI) +O(d2).

Timing Comparison

We have seen that C(Ψblock) is at least quadratic in d, and technically cubic but with
a small leading coefficient. Depending on the distributional structure of Θ, the density
evaluations comprising C(Ψscalar) may be unwieldy. The relative magnitude of these
competing terms is difficult to intuitively gauge, so to gain practical insight, we perform
a timing study of the Ψscalar (All Scalar) and Ψblock (All Blocked) algorithms. Three
models involving no likelihood components are considered, with prior structures on Θ
given as:

• θi ∼ N(μ, σ) for each θi ∈ Θ

• θi ∼ Gamma(α, β) for each θi ∈ Θ

• Θ ∼ Nd(μ,Σ)

Figure 2 presents timing results measured in seconds per 10,000 iterations, plot-
ted against dimension d, without consideration of algorithmic efficiency (Section 2.2).

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 473

There are a number of interesting features, which we briefly summarize. C(Ψscalar)
is O(d) when each θi independently follows a univariate distribution, and therefore∑d

i=1 dens(θi) = dens(Θ) ≤ d · K, where K = maxθ∈Θ dens(θ). For all practical pur-
poses, it appears that C(Ψblock) is O(d2), as the cubic coefficient 1/AI = 1/200 is
relatively small. C(Ψblock) is largely resilient to changes in the underlying distribution
of Θ; univariate gamma densities are more costly than normal densities, as we would
expect, and as for C(Ψscalar); and the multivariate normal structure even slightly more
so. Perhaps most striking, C(Ψscalar) is O(d3) when the underlying distribution of Θ is
multivariate, since each multivariate normal density evaluation is O(d2), which occurs
d times for each iteration of Ψscalar. Although both are cubic in d, C(Ψscalar) dominates
C(Ψblock) due to the difference in the leading cubic coefficients.

Figure 2: MCMC runtimes for the All Scalar and All Blocked algorithms, for univariate
normal, univariate gamma, and multivariate normal model structures.

2.4 Overall Efficiency

We have examined both the algorithmic and computational efficiency of MCMC al-
gorithms, each of which fundamentally affect overall MCMC efficiency. We define the
overall efficiency of Ψ simply as E(Ψ) = A(Ψ)/C(Ψ). We consider this to be a sensible
measure of the overall efficiency of an MCMC algorithm, since E(Ψ) may be interpreted
as the number of effective samples produced per unit of MCMC algorithm runtime, for
the slowest mixing model parameter. If we can construct Ψ to maximize E(Ψ), then

474 Automated Parameter Blocking for Efficient Markov Chain

Ψ is the most time-efficient MCMC algorithm for generating effectively independent
samples to approximate the true, joint posterior distribution of Θ.

That being said, from our examination of algorithmic and computational efficiency,
it is not immediately clear how to balance tradeoffs between A(Ψ) and C(Ψ) to maxi-
mize E(Ψ). We have generally considered the two boundary-case algorithms Ψscalar and
Ψblock, but a huge number of intermediate algorithms exist. For Ψ ∈ ΨM, we may gain
useful insights regarding the factors affecting E(Ψ) in terms of the properties of each ψi.

C(Ψ) =
∑k

i=1 C(ψi), and the values A(Ψ, θi) which determine A(Ψ) each result from a
single application of scalar or block sampling – although this neglects the phenomenon
where improving A(Ψ, θi) may affect A(Ψ, θj), i �= j. However, finding a global optimum
Ψopt = argmaxΨ∈ΨME(Ψ) poses a combinatorial challenge. Instead of seeking Ψopt, we
now propose an iterative procedure to navigate ΨM, with the aim of maximizing E(Ψ)
to the degree possible.

3 Automated Blocking

In this section, we propose an iterative, self-tuning procedure for automated blocking of
hierarchical model parameters to produce an efficient MCMC algorithm. This procedure
uses the empirical posterior correlation to cluster groups of correlated parameters into
sampling blocks. A hierarchical clustering tree of model parameters is constructed, and
subsequently cut at some height (selected using a finite search) to produce parameter
groups each exhibiting a minimal intra-group posterior correlation. This procedure is
iterated, so that as MCMC efficiency improves, the empirical posterior correlations are
more accurate, and the resulting tree and parameter groups stabilize. The end-result
is a partition of the model parameters, which uniquely specifies an MCMC algorithm
Ψ ∈ ΨM employing scalar and block sampling, for which the overall efficiency E(Ψ)
(Section 2.4) is increased to the degree possible. We also discuss more sophisticated
approaches, but our heuristic approach allows huge efficiency gains in some cases and
establishes the basic procedure.

3.1 Procedure

Assume a given, fixed, hierarchical model M, with parameters Θ = {θ1, . . . , θd}. Al-
gorithm 1 presents pseudocode for our automated blocking procedure, which produces
MCMC algorithm ΨAutoBlock ∈ ΨM. Samples are not retained throughout this proce-
dure; rather, the resulting highly-efficient MCMC algorithm may be used to generate
valid samples from the target posterior distribution of interest. Subscripting indices j
and k are understood to take all values in 1, . . . , d.

The procedure begins with the initial MCMC algorithm Ψ0 = Ψscalar, or scalar
sampling of all model parameters; lacking prior information, this is used as the starting
point for gaining insight about the posterior correlation structure. Subsequent iterations
are based upon the empirical posterior correlation produced in the previous iteration,
and, to a varying degree, will institute blocks for parameter groups exhibiting sufficiency
high intra-group correlations.

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 475

Algorithm 1 Automated Blocking

1: i ← 0
2: Ψ0 ← Ψscalar

3: loop:
4: i ← i+ 1
5: Generate samples of Θ under Ψi−1, where Xj represents the sample chain of θj
6: Discard initial 50% of each chain Xj

7: ρj,k ← cor(Xj , Xk)
8: dj,k ← 1− |ρj,k|
9: Construct distance matrix D from elements dj,k

10: Construct hierarchical clustering tree T from D
11: Ψcand ← {Ψ(Tcut=0),Ψ(Tcut=0.1),Ψ(Tcut=0.2), . . . ,Ψ(Tcut=1)}
12: Ψi ← argmaxΨ∈Ψcand

E(Ψ)
13: if E(Ψi) > E(Ψi−1) and Ψi �= Ψi−1 then goto loop
14: ΨAutoBlock ← Ψi

15: return ΨAutoBlock

Prior to calculating the empirical correlation terms ρj,k, we discard the seemingly
excessive and somewhat arbitrary initial 50% of all samples. This should not be confused
with a traditional “burn-in,” whose purpose is to “forget” the initial state and ensure
convergence to the target distribution. Instead, discarding these initial samples allows
all adaptive scalar and block samplers ample time to self-tune, and thereby achieve
their theoretically optimal algorithmic efficiency. The choice of 50% is largely arbitrary,
and excessive in most cases, and could almost certainly be relaxed without affecting
algorithm performance.

Empirical correlations are transformed into distances using the transformation dj,k =
1 − |ρj,k|. The form of this transformation is selected to induce several properties for
elements of the distance matrixD: the main diagonal consists of zeros; strong correlation
results in d ≈ 0; weak or zero correlation results in d ≈ 1; and correlations of ρ and −ρ
result in the same distance.

We use the R function hclust to create the hierarchical tree T from the distance
matrix D. The default “complete linkage” clustering (Everitt, 2011, Chapter 4) is ap-
propriate, since this ensures that all parameters within each cluster have a minimum
absolute pairwise correlation. At height h ∈ [0, 1] in T , the absolute correlation between
parameter pairs (within clusters) is at least 1− h.

We use the R function cutree for cutting the hierarchical clustering tree T at a
specified height h ∈ [0, 1] to produce disjoint parameter groupings, which may be used
to define parameter blocks for the purpose of MCMC sampling. We justify this means
of generating parameter sampling blocks, insofar as to increase algorithmic efficiency we
strive to group correlated parameters into sampling blocks – the exact effect of cutting
T at any particular height.

We define the MCMC algorithm Ψ(Tcut=h) ∈ ΨM as the unique MCMC algorithm
defined by scalar and/or block sampling applied to the parameter blocks that result from

476 Automated Parameter Blocking for Efficient Markov Chain

cutting T at height h. We note that for all T , Ψ(Tcut=0) = Ψscalar, and Ψ(Tcut=1) =
Ψblock.

There is no universally optimal value of the cut height h, as our findings in Section 2
imply that any h ∈ [0, 1] may maximize the efficiency E(Ψ(Tcut=h)) for a particular
model M. We recognize that a combination of distinct cut heights applied to different
branches of T may produce the maximal efficiency, but we do not consider such strategies
herein.

Rather than attempting to infer what might be an appropriate cut height for model
M, we consider a range of potential cut heights, and the resulting MCMC algorithms.
These comprise Ψcand, the candidate set of MCMC algorithms for a particular iteration.
This approach allows the blocking procedure to adjust according to the model, the
posterior correlation structure, and the underlying computational architecture. The
MCMC algorithm for each iteration (i ≥ 1) is selected from among Ψcand as that
which produces the maximal overall efficiency.

To estimate the integrated autocorrelation time, and hence the algorithmic efficiency,
of a chain of MCMC samples, we use the effectiveSize function in the R coda package.
The approach underlying this function – using a fitted autoregressive model to estimate
the spectral density at frequency zero – has been seen to converge fastest among several
methods to the true integrated autocorrelation time (Thompson, 2010).

As E(Ψi) increases through successive iterations, improved estimates of the posterior
correlation are produced, giving the potential for more refined parameter blockings, and
thus progressive increases in E(Ψi) in subsequent iterations. This iterative procedure
continues until either (1) Ψi = Ψi−1, where identical algorithms are selected on consec-
utive iterations, and therefore the procedure would continue to select this same MCMC
algorithm thereafter (convergence), or (2) E(Ψi) < E(Ψi−1), efficiency decreases be-
tween iterations, indicating the procedure was unable to transition to a more efficient
MCMC algorithm from its current state. In practice, our procedure typically halts with
terminating condition (1). This may be concurrent with terminating condition (2), on
account of stochastic variation in sampling and/or runtime.

We select the output from our automated blocking procedure as ΨAutoBlock, the
MCMC algorithm selected in the final iteration. In our experience, ΨAutoBlock is typi-
cally identical to the MCMC algorithm of the second-to-last iteration; that is, the pro-
cedure has converged to a stationary state. If a situation arises where the final iteration
produces a different MCMC algorithm with efficiency inferior to that of the previous
iteration, then prudence would suggest a thoughtful examination of the posterior sam-
ples, empirical correlation matrices, properties of the adapted samplers, convergence
diagnostics, etc.

4 Automated Blocking Performance

We now compare the performance of MCMC algorithms produced using the automated
blocking procedure of Section 3 against various static MCMC algorithms. First, we
describe the computing environment in which our analyses are performed. We then

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 477

describe a broadly representative suite of example models, and present the performance
results of automated and static MCMC algorithms for each. A public Github repository
containing scripts for reproducing our results may be found at: https://github.com/
danielturek/automated-blocking-examples.

4.1 Computing Environment

Since one of our points is that optimal design of MCMC algorithms depends on the
computing environment, we briefly summarize the software tools and computing plat-
form used. All statistical models and MCMC algorithms were built using the NIMBLE
package (NIMBLE Development Team, 2014) for R (RCo, 2014). NIMBLE allows hi-
erarchical models to be defined within R using the BUGS model declaration syntax
introduced by the BUGS project (Lunn et al., 2000, 2012). MCMC algorithms in NIM-
BLE are written using NIMBLE’s domain specific language for specifying hierarchical
model algorithms. This language is an enhanced subset of R (interfaced through an R
session) which is compiled into C++ code, which is subsequently compiled and run.

As a result, the examples here use highly efficient code generated automatically for
each model and algorithm. Of particular importance is that matrix operations are done
via the highly optimized C++ Eigen library (Guennebaud and Jacob, 2010). Finally,
the high-level programmability provided by R facilitated the dynamic exploration of
MCMC algorithms. Examples were run using R version 3.1.2, using the BLAS (Basic
Linear Algebra Subprograms) provided by R for multivariate density calculations and
simulation, and running under Macintosh OSX version 10.9.5 on a 2.5 GHz Intel Core
i7 processor.

4.2 Model Descriptions

We tested the automated blocking procedure on seven examples, including real-data
and toy models, and compared the results against standard MCMC algorithms. When
there are obvious “hand-tuned” algorithms that an experienced MCMC practitioner
would consider for a particular model, we included those as well. For the toy models,
the goal was to construct posterior distributions with specific correlation structures as
described below. In these cases the models are simply prior distributions without any
likelihood component.

Varying Size Blocks of Fixed Correlation

This model structure demonstrates parameter groups of varying size, where each group
exhibits a fixed intra-group pairwise correlation. The model contains N = 64 parame-
ters, half of which are grouped to have pairwise posterior correlation of ρ. This is ac-
complished using a prior multivariate normal distribution with appropriate covariance
(equivalently, correlation) matrix, which in the absence of a likelihood term fully deter-
mines the posterior distribution for these 32 parameters. Similarly, additional disjoint
groups of correlated parameters are constructed of sizes 16, 8, 4, and 2. The remaining

https://github.com/danielturek/automated-blocking-examples
https://github.com/danielturek/automated-blocking-examples

478 Automated Parameter Blocking for Efficient Markov Chain

two parameters are uncorrelated to any others, specified using univariate normal prior
distributions. We consider three values for the intra-group correlation, ρ = 0.2, 0.5,
and 0.8. As these models have no likelihood, we are using MCMC to sample from the
prior distribution. We note that the dependence structure is the same as the block-
diagonal covariance structure (with the blocks having compound symmetry) obtained
when analytically integrating over the exchangeable prior means of clustered random
effects. This example thereby mimics the structure found in basic multilevel hierarchical
models, albeit without the explicit computational expense of a likelihood calculation.

Fixed Size Blocks of Varying Correlation

The next model structure exhibits fixed size groupings of parameters, with posterior
correlations ranging between 0 and 0.9. Each such model contains N = 10n parameters.
Again employing multivariate normal distributions, we induce nine disjoint groupings
of n parameters each, having intra-group pairwise correlations of 0.1, 0.2, . . ., and 0.9.
The remaining n parameters are fully uncorrelated. Three such models of this structure
are constructed, using the values n = 2, 5, and 10. As in the previous models, these do
not include any likelihood term.

Random Effects Model

We select the “litters” model from among the original example models provided with
the MCMC package WinBUGS. This random effects model contains two groups of 16
binomial observations. Within each group, the binomial probabilities are modeled as
random effects arising from a beta distribution. The particular parameterization of
the beta distributions (in terms of α and β, rather than μ and σ) results in strong
correlations between each αi, βi pair. The WinBUGS manual comments upfront that
this model exhibits slow mixing. We consider an informed MCMC algorithm, which
blocks each αi, βi pair. In addition, the beta-binomial conjugacy relationships permit
use of cross-level sampling, where we jointly sample top-level parameters and conjugate
latent states, as used by Rue and Held (2005, pp. 141–143).

Auto-Regressive Model

We select the “ice” model from among the examples provided with WinBUGS as an
auto-regressive (AR; Harvey, 1993) example, which is also analyzed in Breslow and
Clayton (1993). The data contains 77 incident counts of breast cancer occurring in
Iceland, which are modeled as Poisson counts. Explanatory variables include age group,
year of birth (represented using 11 cohorts ranging between 1840 and 1949), and the
total person-years for the subjects in each group. The model uses second-order AR
smoothing of birth cohort effects.

Linear Gaussian State Space Models

We construct two linear Gaussian state space models (Durbin and Koopman, 2012)
each consisting of 100 latent states and observations. State transitions are governed

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 479

by a first order AR process, and we seek inferences about the transition process, and
the system and observation noise. We consider two equivalent parameterizations of the
state transition process. First, in terms of the intercept and mean of the AR process,
which have largely uncorrelated posteriors (independent parameterization), and second,
in terms of the intercept and autocorrelation, which are known to be highly correlated
(correlated parameterization). For the correlated parameterization, we consider an in-
formed MCMC algorithm, which blocks the intercept and autocorrelation parameters.
We deliberately include this inferior parameterization, to assess MCMC performance in
the case of known strong posterior correlation. In practice, an analyst may not know
which model parameterization(s) will produce uncorrelated posterior dimensions.

Spatial Model

We consider a spatially dependent hierarchical model. The data consist of 148 mea-
surements of scallop abundance at various locations off the New York and New Jersey
coastline, and was collected by the Northeast Fisheries Science Center of the National
Marine Fisheries Service in 1993. The data set is publicly available at http://www.

biostat.umn.edu/~brad/data/myscallops.txt, and is analyzed in Banerjee et al.
(2003), pp. 44–65. Following Banerjee et al. (2003), we model the mean log-abundance
as multivariate normal with covariance that decays exponentially as a function of dis-
tance. The covariance is given by cov(gi, gj) = σ2 exp(−di,j/ρ), where the observations
are modeled as Poisson counts yi ∼ Poisson(exp(gi)), and di,j is the distance between
observations yi and yj . Since this covariance structure induces a trade-off between σ
and ρ, we expect these parameters to be correlated in the posterior distribution.

Generalized Linear Mixed Model

We include a reasonably sized generalized linear mixed model (GLMM; Gelman and
Hill, 2006, Chapter 6). We make use of the Minnesota Health Plan dataset available in
Waller and Zelterman (1997) and follow the analysis of Zipunnikov and Booth (2006).
The dataset contains 968 counts of senior-citizen clinical visits, which are modeled as
Poisson counts. The linear predictor contains fixed and random effects, using a variety
of covariates and including several interaction terms.

4.3 Performance Results

We present three quantities to gauge the performance of MCMC algorithm Ψ. Rather
than algorithmic efficiency A(Ψ), for convenience of interpretation we present the pro-
portional quantity ESS = 10,000 A(Ψ), where ESS denotes effective sample size. This
scaling of A(Ψ) has a natural interpretation as the number of effective samples (for
the slowest mixing parameter) which result from a chain of 10,000 MCMC samples.
Similarly, to represent the computational requirement C(Ψ), we present the propor-
tional quantity Runtime = 10,000 C(Ψ), interpretable as the time (in seconds) required
to generate 10,000 MCMC samples. We directly present the overall MCMC efficiency
as Efficiency = ESS / Runtime = A(Ψ)/C(Ψ) = E(Ψ), which is independent of any

http://www.biostat.umn.edu/{~}brad/data/myscallops.txt
http://www.biostat.umn.edu/{~}brad/data/myscallops.txt

480 Automated Parameter Blocking for Efficient Markov Chain

scaling, and maintains the intuitive interpretation as the number of effective samples
generated per second of algorithm runtime (again, for the slowest mixing parameter).
MCMC sampling is performed using a fixed random number seed and identical initial
values for each model, so identical MCMC algorithms will produce identical sample
chains, and hence ESS, but not necessarily Runtime or Efficiency on account of discrep-
ancies in algorithm runtime. We observe the automated procedure producing the same
MCMC algorithm across repeated experiments, with numerical results for Runtime and
Efficiency varying less than 5% from those presented herein.

For each example model M, we present results for MCMC algorithm Ψblock de-
noted as “All Blocked,” and those of Ψscalar as “All Scalar,” noting that Ψscalar also
represents the initial state (0 th iteration) of the automated blocking procedure. The
maximally efficient algorithm generated via automated blocking is presented as “Auto
Blocking,” which will generally represent a dynamically determined blocking scheme.
We also present a third static MCMC algorithm, which is not necessarily a member
of ΨM on account of the possible use of conjugate sampling. This algorithm assigns
block samplers to groups of parameters arising from multivariate distributions, scalar
samplers to parameters arising from univariate distributions, and assigns conjugate
samplers whenever the structure of M permits; this static algorithm may be more rep-
resentative of default MCMC algorithms provided by software packages, and is denoted
as “Default.” Finally, for several example models we include an informed blocking of
the model parameters, based upon expert or prior knowledge, which is referred to as
“Informed Blocking.” Results for the random effects model also include the “Informed
Cross-Level” MCMC algorithm which makes use of cross-level sampling, which is not
in ΨM.

Although we focus on algorithmic efficiency, the posterior statistics generated using
each MCMC algorithm agree to within statistical uncertainty. This is expected, since
each algorithm itself is a valid MCMC, and necessarily generates samples from the true
joint posterior distribution. Posterior density plots produced using the All Scalar and
Auto Blocking algorithms for the real-data example models are provided as Supplemen-
tary Material (Turek et al., 2016).

Varying Size Blocks of Fixed Correlation

The left pane of Figure 3 displays the Efficiency performance for the model structures
containing varying sized blocks of fixed correlation. For ρ = 0.2, the Auto Blocking
algorithm selects cut height h = 0, which corresponds to re-selecting the algorithm
All Scalar. Since this MCMC algorithm is identical to the initial state, the automated
procedure terminates there. The All Blocked scheme actually runs faster, but the algo-
rithmic efficiency loss inherent to large block sampling dominates, resulting in Efficiency
approximately four times lower. For larger values of ρ, the All Scalar algorithm suffers
progressively more since it fails to institute any blocking in the presence of increasing
correlations. For ρ = 0.5 and 0.8, Auto Blocking algorithm selects cut heights h = 0.6
and h = 0.3, respectively, which each exactly place all correlated terms into sampling
blocks. In every case, the slowest mixing parameter is from among the largest correlated
group of 32 parameters.

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 481

Figure 3: Efficiency results for two contrived model structures: varying sized blocks of
fixed correlation (left), and fixed sized blocks of varying correlation (right).

Fixed Size Blocks of Varying Correlation

The right pane of Figure 3 presents results for the model structure containing fixed
size parameter groupings with correlations between 0 and 0.9. For each size model,
the automated blocking procedure selects a particular cut height (and hence, MCMC
algorithm) twice consecutively, thus terminating on the third iteration. The cut heights
selected for models N = 20, 50, and 100 are h = 0.5, 0.8, and 0.9, respectively (not
shown), progressively pushing more of the correlated parameter groupings into sampling
blocks. The Auto Blocking algorithm produces increases in Efficiency by factors of 4.5,
7, and 21 in the three models, over the static All Scalar and All Blocked algorithms.

Random Effects Model

In the random effects model (Table 1), automated blocking generates an MCMC algo-
rithm identical to the Informed Blocking algorithm (blocking each αi, βi pair), which
produces a tenfold improvement in Efficiency over the most efficient static algorithm –
for this model, All Scalar sampling. The cut height h = 0.1 indicates that only the αi, βi

pairs exhibit posterior correlations above 0.9. The Informed Cross-Level algorithm re-
quires a substantially longer Runtime and produces a high ESS, which results in nearly
identical Efficiency as the efficiently blocked Auto Blocking algorithm.

482 Automated Parameter Blocking for Efficient Markov Chain

Auto-Regressive Model

In the auto-regressive model (Table 1), an AR process value exhibited the slowest mixing
under All Scalar sampling. When all 24 model parameters (AR process values, fixed
effects, and one hyper-parameter) are blocked, the algorithm Runtime is nearly halved.
This decrease in Runtime is largely due to the dependency structure inherent to the AR
process. Scalar sampling of AR process values requires nearly a three-fold increase in
density evaluations of the process values (since it’s a second-order AR process) relative
to All Blocked sampling. In addition to the improved Runtime, the All Blocked sampling
of the correlated AR process values increases their individual algorithmic efficiencies,
and the slowest mixing parameter is among the fixed effects. The Efficiency under All
Blocked sampling is over double that of All Scalar sampling. The automated blocking
procedure identifies a blocking scheme which blocks together all AR process values
and fixed effects (23 total; cut height h = 0.4), and performs univariate sampling of
the single hyper-parameter. This has a similar Runtime to All Blocked sampling, but
increases algorithmic efficiency for all parameters. The resulting overall Efficiency under
the Auto Blocking MCMC algorithm is over three times that of All Scalar sampling.

Linear Gaussian State Space Models

Table 1 presents results for both parameterizations of the state space model. In the In-
dependent parameterization, the observation noise parameter is the slowest mixing, in
all except the All Blocked algorithm. The All Blocked algorithm runs quickly, but is lim-
ited by the extremely low algorithmic efficiency of the AR process intercept parameter.
The Default algorithm assigns conjugate normal samplers to each latent state, resulting
in high algorithmic efficiency but a substantially longer Runtime, which diminishes the
overall Efficiency. Auto Blocking (cut height h = 0.8) creates a block of six parameters
containing five latent states and the observation noise, and a disjoint block of the two
AR process parameters. This combination, unlikely to be discovered though any combi-
nation of prior knowledge or trial and error, produces a 40% increase in Efficiency over
All Scalar sampling, which is the most efficient static MCMC algorithm.

We suspect the intercept and autocorrelation parameters of the AR process to be
correlated in the näıve parameterization of the state space model. The All Blocked al-
gorithm once again runs quickly, but is limited by the ESS of the AR process intercept.
The Default algorithm is again slow due to conjugate sampling, but similar to the All
Scalar algorithm, produces low algorithmic efficiency of the correlated AR process pa-
rameters. The Auto Blocking algorithm (cut height h = 0.1) selects the same parameter
block as in the Informed Blocking algorithm (AR process intercept and autocorrelation),
and additionally a block containing the observation noise and a latent state. The Run-
times are, accordingly, nearly identical, however the ESS of the observation noise, the
limiting parameter, increases. Automated blocking produces Efficiency over 20 times
higher than the All Blocked algorithm, which is the most efficient static algorithm, and
25% higher than the Informed Blocking algorithm. It is important to note that the
automated blocking procedure overcame the sampling inefficiencies introduced by this
näıve parameterization, without requiring user intervention.

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 483

Model MCMC Scheme ESS Runtime Efficiency

Random
Effects

All Blocked 0.4 0.29 1.3
Default 1.1 1.19 1.0
All Scalar 2.1 0.51 4.2
Informed Blocking 19.0 0.50 38.2
Informed Cross-Level 101.3 2.64 38.5
Auto Blocking 19.0 0.48 39.2

Auto-
Regressive

All Blocked 8.9 0.3 27.3
All Scalar 6.5 0.6 11.5
Auto Blocking 12.7 0.3 37.5

State Space
Independent

All Blocked 0.3 0.8 0.4
Default 27.6 4.6 6.0
All Scalar 20.2 1.3 15.7
Auto Blocking 29.1 1.3 22.4

State Space
Correlated

All Blocked 0.6 0.7 0.8
Default 1.7 4.9 0.4
All Scalar 1.1 1.3 0.8
Informed Blocking 18.4 1.2 15.6
Auto Blocking 26.1 1.2 20.9

Spatial

All Blocked 0.2 5.71 0.04
Default 0.4 10.86 0.04
All Scalar 171.3 83.87 2.0
Auto Blocking 1208.0 78.62 15.4

GLMM
All Blocked 2.2 44.3 0.05
All Scalar 60.9 22.6 3.0
Auto Blocking 60.9 22.6 3.0

Table 1: MCMC performance results for the suite of example models. Effective sample
size (ESS) is measured in effective samples per 10,000 iterations, Runtime is presented
as seconds per 10,000 iterations, and Efficiency is in units of effective samples produced
per second of algorithm runtime.

Spatial Model

MCMC performance results for the spatial model (Table 1) display several interesting
trade-offs in MCMC efficiency. The spatial model contains 148 latent parameters jointly
following a multivariate normal distribution, and three top-level parameters that govern
this distribution (μ, σ, and ρ). As there are no conjugate relationships between param-
eters, the sole difference between the All Blocked algorithm and the Default algorithm
is the inclusion of these top-level parameters in the large sampling block. Therefore, the
five second difference in Runtime can be attributed to three fewer multivariate density
evaluations (per MCMC iteration) under the All Blocked algorithm. However, under ei-
ther algorithm, the blocked sampling of latent parameters produces extremely low ESS
values of 0.2 and 0.4 among the latent parameters. The minimal ESS value increases by
a factor of two when the top-level parameters are removed from the large block sampler,
and thereby achieve better mixing.

484 Automated Parameter Blocking for Efficient Markov Chain

The All Scalar algorithm frees all latent parameters from block sampling. Each scalar
sampler requires its own, independent, evaluation of the latent multivariate density,
hence the Runtime of the All Scalar algorithm increases dramatically. That being said,
the ESS values of the slowest mixing latent parameters under the All Blocked and
Default algorithms both increase to approximately 4000 (not shown). ρ is the slowest
mixing parameter under the All Scalar algorithm, with ESS increased from 139.6 (under
the Default algorithm) to 171.3, even though it underwent scalar sampling in both
cases; this is another example of the slowest mixing parameter affecting the algorithmic
efficiency of other model parameters.

The automated blocking procedure selects cut height h = 0.1, which produces a
single block containing ρ and σ; this indicates an empirical posterior correlation of
at least 0.9 between these parameters. The ESS of ρ increases to approximately 1500
(not shown). A latent parameter once again produces the slowest mixing with ESS of
1208, which produces nearly a tenfold increase in Efficiency relative to the All Scalar
algorithm. The Runtime of the Auto Blocking algorithm decreases slightly compared to
the All Scalar algorithm, since the single block sampler induces one fewer evaluation of
the latent multivariate density.

Generalized Linear Mixed Model

We first note that our GLMM model is by far the largest example considered, contain-
ing nearly 2000 stochastic model components (including observations); so we anticipate
comparatively low MCMC Efficiencies regardless, since MCMC algorithms simply take
time to carry out all model calculations. For this model (Table 1), the automated pro-
cedure converges on the All Scalar algorithm, which is the same as its initial state,
and which produces overall MCMC Efficiency of about 3. In hindsight this result may
not surprise us, since the fully exchangeable nature of the random effects in this model
does not induce correlations among the sampled parameters for this particular dataset.
Correspondingly, for a large number of un-correlated random effects, and in the absence
of multivariate distributions, univariate sampling produces the highest Efficiency. We
also note that the All Blocked algorithm, which consists of a single block sampler of
dimension 858, has Runtime approximately twice that of the All Scalar algorithm, and
produces an overall Efficiency of approximately 0.05.

Efficiency Gains from Automated Blocking

In Figure 4, we present the overall Efficiencies achieved for our suite of example models
(excluding the two contrived model structures). The Auto Blocking algorithm consis-
tently out-performs any static algorithm in terms of Efficiency, ranging between roughly
a 50% increase to several orders of magnitude of improvement. The exception is the
GLMM example, in which Auto Blocking matches the All Scalar algorithm identically.
We observe variation in the relative Efficiencies among the static algorithms, reinforcing
our notion that overall MCMC efficiency is highly dependent upon hierarchical model
structure, and attempting to infer what might be an efficient MCMC algorithm for a
particular problem is, in general, difficult.

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 485

Figure 4: Efficiencies of MCMC algorithms for the suite of example models.

Method of hierarchical clustering

We have also explored performance when using several different methods of hierarchi-
cal clustering. These include complete-linkage clustering (results presented), as well as
single-linkage, average-linkage, and Ward’s criterion (Everitt, 2011; Murtagh and Leg-
endre, 2014). Using these alternative clustering methods in the blocking procedure pro-
duces more (or larger) blocks of parameters, since they impose no minimum intra-group
pairwise correlation, and results in lower overall Efficiency. The decrease in Efficiency
relative to the complete-linkage method ranges between 10–50% depending on the model
and the clustering method.

5 Discussion

We have presented a general automated procedure for determining an “efficient” MCMC
algorithm for hierarchical models. Our procedure is a greedy, iterative algorithm, which
traverses a finite and well-defined set of MCMC algorithms. This is the first such auto-
mated MCMC-generating procedure of its kind, so far as we are aware. Using a suite of
example models, we have observed that our automated procedure generates improve-
ments in efficiency (relative to static MCMC algorithms) ranging between one and three
orders of magnitude. In each case, the automated procedure produced an MCMC algo-
rithm at least as efficient as any model-specific MCMC algorithm making use of prior
knowledge or expert opinion. In all examples, our iterative procedure terminated within
four iterations, although it is plausible that for more complex models it would proceed
longer.

486 Automated Parameter Blocking for Efficient Markov Chain

We have implemented this automated blocking procedure using NIMBLE (NIMBLE
Development Team, 2014), an R package facilitating statistical algorithms for hierar-
chical (graphical) models. NIMBLE algorithms are model generic, and therefore may
be applied to any hierarchical model specified using BUGS syntax (Lunn et al., 2000).
Our blocking procedure is included as part of the current version of NIMBLE (version
0.4-1). Usage is described in the NIMBLE User Manual, available at http://r-nimble.
org/documentation-2.

Our study has been confined to a single dimension of a much broader problem.
We have strictly considered combinations of scalar and blocked adaptive Metropolis–
Hastings sampling, with a small number of exceptions only for the purpose of compar-
ison (e.g., the use of conjugate sampling). No less, we have restricted ourselves to non-
overlapping sampling: each model parameter may only be sampled by a single MCMC
sampler function. We may instead view the domain of our problem (automated determi-
nation of an efficient MCMC algorithm) as a broader space of MCMC algorithms. This
space may permit a wide range of sampling algorithms not considered herein: auxiliary
variable algorithms such as slice sampling (Neal, 2003), or derivative-based sampling
algorithms such as Hamiltonian Monte Carlo (Duane et al., 1987), among many possi-
bilities. The resulting combinatorial explosion in the space of MCMC algorithms makes
any process of trial-and-error, or an attempt at comprehensive exploration, futile. It
is for this reason we seek to develop an automated procedure for determining an effi-
cient MCMC algorithm, which may not be globally, maximally efficient, but provides
non-trivial improvements in efficiency, nonetheless.

It should be noted that aspects of the problem addressed herein superficially resem-
ble, but are fundamentally different in nature from hierarchical clustering, or sparse
covariance estimation. Granted, our automated procedure firstly utilizes an empirical
covariance matrix generated from MCMC sampling chains. However, whereas sparse
covariance estimation seeks to estimate the non-zero elements of the underlying covari-
ance structure (Cai and Liu, 2011), our procedure concerns the non-trivial (correlated)
elements, with little concern for the smaller entries. Our blocking algorithm also makes
use of the complete linkage clustering algorithm, for determining groupings of correlated
model parameters. Clustering algorithms have been applied to a wide variety of prob-
lems (Xu and Wunsch, 2005), but not to parameters of hierarchical models specifically
with the aim of accounting for trade-offs between MCMC algorithmic efficiency and
computational requirements, to produce a computationally efficient MCMC algorithm.
This is a fundamentally different goal than merely producing groupings of “similar”
parameters (given some measure of similarity), as is generally the goal in most cluster-
ing applications. Thereby, the existing literature on these subjects is related, but not
intimately applicable to our problem at hand. A deeper consideration of these topics
may be worthwhile, but we consider it beyond the scope of this paper.

Reasonably straightforward improvements could be made to our automated blocking
procedure, which is presented as a sensible first approach that addresses the factors
affecting MCMC algorithm efficiency. By design, our procedure natively accounts for
differences in system platform or architecture that may affect the relative efficiencies
of MCMC algorithms. We can envision a wide variety of possible extensions to our

http://r-nimble.org/documentation-2
http://r-nimble.org/documentation-2

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 487

algorithm, ranging from only re-blocking the slowest mixing parameter on each iteration,
to permitting cuts at different heights on distinct branches of the hierarchical clustering
tree. Our procedure is intended as a proof-of-concept for the automated generation of
efficient MCMC algorithms, and to serve as a starting point for subsequent research.

Supplementary Material

Automated Blocking Posterior Density Plots (DOI: 10.1214/16-BA1008SUPP; .pdf).

References
Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2003). Hierarchical Modeling and Anal-
ysis for Spatial Data. CRC Press. MR3362184. 470, 479

Breslow, N. E. and Clayton, D. G. (1993). “Approximate Inference in Generalized Linear
Mixed Models.” Journal of the American Statistical Association, 88(421): 9–25. 478

Caffo, B. S., Jank, W., and Jones, G. L. (2005). “Ascent-Based Monte
Carlo Expectation-Maximization.” Journal of the Royal Statistical So-
ciety. Series B (Statistical Methodology), 67(2): 235–251. MR2137323.
doi: http://dx.doi.org/10.1111/j.1467-9868.2005.00499.x. 465

Cai, T. and Liu, W. (2011). “Adaptive Thresholding for Sparse Covariance Matrix
Estimation.” Journal of the American Statistical Association, 106(494): 672–684.
MR2847949. doi: http://dx.doi.org/10.1198/jasa.2011.tm10560. 486

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). “Hybrid Monte
Carlo.” Physics Letters B, 195(2): 216–222. 486

Durbin, J. and Koopman, S. J. (2012). Time Series Analysis by State Space Methods:
Second Edition. Oxford University Press. MR3014996. doi: http://dx.doi.org/10.
1093/acprof:oso/9780199641178.001.0001. 478

Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC Press.
MR1270903. doi: http://dx.doi.org/10.1007/978-1-4899-4541-9. 465

Everitt, B. (2011). Cluster Analysis. Wiley Series in Probability and Statistics. Wiley,
5th edition. MR3155074. doi: http://dx.doi.org/10.1002/9780470977811. 475,
485

Gelman, A. and Hill, J. (2006). Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press. 479

Gilks, W. R. (2005). “Markov Chain Monte Carlo.” In Encyclopedia of Biostatis-
tics. John Wiley & Sons, Ltd. MR2238833. doi: http://dx.doi.org/10.1142/

9789812700919. 468, 470

Gneiting, T. and Raftery, A. E. (2007). “Strictly Proper Scoring Rules, Prediction,
and Estimation.” Journal of the American Statistical Association, 102(477): 359–378.
MR2345548. doi: http://dx.doi.org/10.1198/016214506000001437. 465

http://dx.doi.org/10.1214/16-BA1008SUPP
http://www.ams.org/mathscinet-getitem?mr=3362184
http://www.ams.org/mathscinet-getitem?mr=2137323
http://dx.doi.org/10.1111/j.1467-9868.2005.00499.x
http://www.ams.org/mathscinet-getitem?mr=2847949
http://dx.doi.org/10.1198/jasa.2011.tm10560
http://www.ams.org/mathscinet-getitem?mr=3014996
http://dx.doi.org/10.1093/acprof:oso/9780199641178.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199641178.001.0001
http://www.ams.org/mathscinet-getitem?mr=1270903
http://dx.doi.org/10.1007/978-1-4899-4541-9
http://www.ams.org/mathscinet-getitem?mr=3155074
http://dx.doi.org/10.1002/9780470977811
http://www.ams.org/mathscinet-getitem?mr=2238833
http://dx.doi.org/10.1142/9789812700919
http://dx.doi.org/10.1142/9789812700919
http://www.ams.org/mathscinet-getitem?mr=2345548
http://dx.doi.org/10.1198/016214506000001437

488 Automated Parameter Blocking for Efficient Markov Chain

Guennebaud, G. and Jacob, B. (2010). “Eigen.” http://eigen.tuxfamily.org. 477

Haario, H., Saksman, E., and Tamminen, J. (1993). “Adaptive proposal distribution for
random walk Metropolis algorithm.” Computational Statistics, 3. 468

Harvey, A. C. (1993). Time Series Models. The MIT Press, 2nd edition. MR1230848.
478

Hastings, W. K. (1970). “Monte Carlo sampling methods using Markov chains and their
applications.” Biometrika, 57(1): 97–109. 468

Hjort, N. L., Dahl, F. A., and Steinbakk, G. H. (2006). “Post-Processing Posterior
Predictive p Values.” Journal of the American Statistical Association, 101(475): 1157–
1174. MR2324154. doi: http://dx.doi.org/10.1198/016214505000001393. 465

Lele, S. R., Dennis, B., and Lutscher, F. (2007). “Data cloning: easy maximum likelihood
estimation for complex ecological models using Bayesian Markov chain Monte Carlo
methods.” Ecology Letters, 10(7): 551–563. 465

Liu, J. S., Wong, W. H., and Kong, A. (1994). “Covariance structure of the Gibbs sam-
pler with applications to the comparisons of estimators and augmentation schemes.”
Biometrika, 81(1): 27–40. MR1279653. doi: http://dx.doi.org/10.1093/biomet/
81.1.27. 466

Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D. (2012). The BUGS
Book: A Practical Introduction to Bayesian Analysis. CRC Press. 466, 477

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). “WinBUGS –
A Bayesian modelling framework: Concepts, structure, and extensibility.” Statistics
and Computing, 10(4): 325–337. 466, 477, 486

Marshall, T. and Roberts, G. (2012). “An adaptive approach to Langevin MCMC.”
Statistics and Computing, 22(5): 1041–1057. MR2950084. doi: http://dx.doi.org/
10.1007/s11222-011-9276-6. 467

Mengersen, K. L. and Tweedie, R. L. (1996). “Rates of convergence of the Hastings
and Metropolis algorithms.” The Annals of Statistics, 24(1): 101–121. MR1389882.
doi: http://dx.doi.org/10.1214/aos/1033066201. 466

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). “Equation of State Calculations by Fast Computing Machines.” The Journal
of Chemical Physics, 21(6): 1087–1092. 468

Murtagh, F. and Legendre, P. (2014). “Ward’s hierarchical agglomerative cluster-
ing method: which algorithms implement Ward’s criterion?” Journal of Classifica-
tion, 31(3): 274–295. MR3277707. doi: http://dx.doi.org/10.1007/s00357-014-
9161-z. 485

Neal, R. (2011). “MCMC using Hamiltonian dynamics.” Handbook of Markov Chain
Monte Carlo, vol. 2. MR2858447. 467

Neal, R. M. (2003). “Slice Sampling.” The Annals of Statistics, 31(3): 705–741.
MR1994729. doi: http://dx.doi.org/10.1214/aos/1056562461. 486

http://eigen.tuxfamily.org
http://www.ams.org/mathscinet-getitem?mr=1230848
http://www.ams.org/mathscinet-getitem?mr=2324154
http://dx.doi.org/10.1198/016214505000001393
http://www.ams.org/mathscinet-getitem?mr=1279653
http://dx.doi.org/10.1093/biomet/81.1.27
http://dx.doi.org/10.1093/biomet/81.1.27
http://www.ams.org/mathscinet-getitem?mr=2950084
http://dx.doi.org/10.1007/s11222-011-9276-6
http://dx.doi.org/10.1007/s11222-011-9276-6
http://www.ams.org/mathscinet-getitem?mr=1389882
http://dx.doi.org/10.1214/aos/1033066201
http://www.ams.org/mathscinet-getitem?mr=3277707
http://dx.doi.org/10.1007/s00357-014-9161-z
http://dx.doi.org/10.1007/s00357-014-9161-z
http://www.ams.org/mathscinet-getitem?mr=2858447
http://www.ams.org/mathscinet-getitem?mr=1994729
http://dx.doi.org/10.1214/aos/1056562461

D. Turek, P. de Valpine, C. J. Paciorek, and C. Anderson-Bergman 489

NIMBLE Development Team, . (2014). “NIMBLE: An R Package for Programming
with BUGS models, Version 0.1.” http://r-nimble.org. 477, 486

Plummer, M. (2011). “JAGS Version 3.1. 0 user manual.” International Agency for
Research on Cancer. 466

R Core Team. (2014). “R: A Language and Environment for Statistical Computing.”
477

Robert, C. P. and Casella, G. (2004).Monte Carlo Statistical Methods, vol. 319. Citeseer.
MR2080278. doi: http://dx.doi.org/10.1007/978-1-4757-4145-2. 468

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). “Weak convergence and optimal
scaling of random walk Metropolis algorithms.” The Annals of Applied Probability,
7(1): 110–120. MR1428751. doi: http://dx.doi.org/10.1214/aoap/1034625254.
466, 468, 469

Roberts, G. O. and Rosenthal, J. S. (2001). “Optimal scaling for various
Metropolis–Hastings algorithms.” Statistical Science, 16(4): 351–367. MR1888450.
doi: http://dx.doi.org/10.1214/ss/1015346320. 468, 469

Roberts, G. O. and Rosenthal, J. S. (2009). “Examples of Adaptive MCMC.”
Journal of Computational and Graphical Statistics, 18(2): 349–367. MR2749836.
doi: http://dx.doi.org/10.1198/jcgs.2009.06134. 468

Roberts, G. O. and Sahu, S. K. (1997). “Updating Schemes, Correlation Structure,
Blocking and Parameterization for the Gibbs Sampler.” Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology), 59(2): 291–317. MR1440584.
doi: http://dx.doi.org/10.1111/1467-9868.00070. 466, 469, 470, 471

Roberts, G. O. and Tweedie, R. L. (1996). “Geometric convergence and central limit the-
orems for multidimensional Hastings and Metropolis algorithms.” Biometrika, 83(1):
95–110. MR1399158. doi: http://dx.doi.org/10.1093/biomet/83.1.95. 466

Rue, H. and Held, L. (2005).Gaussian Markov Random Fields: Theory and Applications.
CRC Press. MR2130347. doi: http://dx.doi.org/10.1201/9780203492024. 478

Sargent, D. J., Hodges, J. S., and Carlin, B. P. (2000). “Structured Markov Chain
Monte Carlo.” Journal of Computational and Graphical Statistics, 9(2): 217–234.
MR1823802. doi: http://dx.doi.org/10.2307/1390651. 466

Shaby, B. and Wells, M. (2011). “Exploring an adaptive Metropolis algorithm.” Depart-
ment of Statistics, Duke University. 468

Skaug, H. J. and Fournier, D. A. (2006). “Automatic approximation of the marginal
likelihood in non-Gaussian hierarchical models.” Computational Statistics & Data
Analysis, 51(2): 699–709. MR2297480. doi: http://dx.doi.org/10.1016/j.csda.
2006.03.005. 466

Stan Development Team (2014). “Stan: A C++ Library for Probability and Sampling,
Version 2.5.0.” http://mc-stan.org/. 466

Straatsma, T., Berendsen, H., and Stam, A. (1986). “Estimation of statistical errors in
molecular simulation calculations.” Molecular Physics, 57(1): 89–95. 469

http://r-nimble.org
http://www.ams.org/mathscinet-getitem?mr=2080278
http://dx.doi.org/10.1007/978-1-4757-4145-2
http://www.ams.org/mathscinet-getitem?mr=1428751
http://dx.doi.org/10.1214/aoap/1034625254
http://www.ams.org/mathscinet-getitem?mr=1888450
http://dx.doi.org/10.1214/ss/1015346320
http://www.ams.org/mathscinet-getitem?mr=2749836
http://dx.doi.org/10.1198/jcgs.2009.06134
http://www.ams.org/mathscinet-getitem?mr=1440584
http://dx.doi.org/10.1111/1467-9868.00070
http://www.ams.org/mathscinet-getitem?mr=1399158
http://dx.doi.org/10.1093/biomet/83.1.95
http://www.ams.org/mathscinet-getitem?mr=2130347
http://dx.doi.org/10.1201/9780203492024
http://www.ams.org/mathscinet-getitem?mr=1823802
http://dx.doi.org/10.2307/1390651
http://www.ams.org/mathscinet-getitem?mr=2297480
http://dx.doi.org/10.1016/j.csda.2006.03.005
http://dx.doi.org/10.1016/j.csda.2006.03.005
http://mc-stan.org/

490 Automated Parameter Blocking for Efficient Markov Chain

Thompson, M. B. (2010). “A Comparison of Methods for Computing Autocorrelation
Time.” arXiv:1011.0175. 469, 476

Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra. SIAM. MR1444820.
doi: http://dx.doi.org/10.1137/1.9780898719574. 472

Turek, D., de Valpine, P., Paciorek, C. J., and Anderson-Bergman, C.
(2016). “Automated Blocking Posterior Density Plots.” Bayesian Analysis.
doi: http://dx.doi.org/10.1214/16-BA1008SUPP. 480

Waller, L. A. and Zelterman, D. (1997). “Log-Linear Modeling with the Neg-
ative Multinomial Distribution.” Biometrics, 53(3): 971–982. MR1475055.
doi: http://dx.doi.org/10.2307/2533557. 479

Xu, R. and Wunsch, I. D. (2005). “Survey of clustering algorithms.” IEEE Transactions
on Neural Networks, 16(3): 645–678. 486

Zipunnikov, V. V. and Booth, J. G. (2006). “Monte Carlo EM for generalized linear
mixed models using randomized spherical radial integration.” 479

Acknowledgments

This work was supported by the NSF under grant DBI-1147230.

http://arxiv.org/abs/1011.0175
http://www.ams.org/mathscinet-getitem?mr=1444820
http://dx.doi.org/10.1137/1.9780898719574
http://dx.doi.org/10.1214/16-BA1008SUPP
http://www.ams.org/mathscinet-getitem?mr=1475055
http://dx.doi.org/10.2307/2533557

	Introduction
	MCMC Algorithms: Definitions and Efficiency
	MCMC Definition
	Algorithmic Efficiency
	Computational Efficiency
	Overall Efficiency

	Automated Blocking
	Procedure

	Automated Blocking Performance
	Computing Environment
	Model Descriptions
	Performance Results

	Discussion
	Supplementary Material
	References

