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Comment on Article by Page and Quintana∗

Brian J. Reich† and Montserrat Fuentes‡

Congratulations to the authors on this nice contribution! The proposed model fuses
ideas from spatial methods and Bayesian nonparametrics to produce a new approach for
heterogeneous areal and geostatistical data. The paper is quite thorough, with extensive
study of the model’s properties, simulation studies to evaluate performance in different
settings, and multiple worked examples. It is welcomed addition to the spatial literature.

A key argument is that connected partitions are too restrictive. As the authors
acknowledge, disconnected partitions such as those considered in the paper prohibit
continuous (even locally) spatial processes. We tend to agree with the authors that
most environmental data are either measured with spatially-uncorrelated errors or in-
clude spatial variation at a scale smaller than can be captured in a finite sample, and
so discontinuous models are often a reasonable choice. However, there are counterex-
amples where a continuous process maybe preferred, such as numerical climate model
output. For these cases, it would be interesting to compare the proposed method the
spatial tessellation model of Kim et al. (2005) (or perhaps the similar construction in
Gramacy (2007) and Gramacy and Lee (2008) for computer model output). On a re-
lated note, Table 4 shows that the proposed method dramatically outperforms the usual
spatial regression model (SR) when data are generated with a single cluster. This is sur-
prising because SR is the true model in this case with cluster mean μ∗

1 as the overall
mean.

Selecting the number of clusters is a crucial step in classical clustering analysis.
Similar to the non-spatial Dirichlet process, the authors avoid fixing the number of
clusters by assuming the number of clusters in the population is infinite and studying
the prior and posterior effective number of clusters that partition the n data points (kn).
The Bayesian model then averages over the effective number of clusters. However, this
flexibility comes at the price of having to specify the prior over the number of clusters,
which in this formulation boils down to the hyperparameters M and α. The authors
examine sensitivity to the choice of M both in the prior and posterior, and find that
for prediction the results are slightly sensitive to M ; likely inference on the number and
location of clusters is highly sensitive to M .

An alternative to fixing M is to treat it as an unknown parameter to be esti-
mated in the Bayesian model. It is not clear how to implement this though because
the prior for the partition in (2) contains an unspecified normalizing constant that is
a complicated function of M . One approach to estimating M is to use a truncated
stick-breaking representation of the DP. If we assume there are at most H clusters in
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the population, the proposed model (3) permits the hierarchical representation (Park
and Dunson, 2010) si|ci = h ∼ q(s∗h, ε) and Prob(ci = h) = Vh

∏
l<h(1 − Vl), where

V1, ..., VH−1
iid∼ Beta(1,M) and VH = 1. In this hierarchical formulation, if M has a

Gamma(aM , bM ) prior then its full conditional distribution is conjugate and updating
M is straight-forward. Of course, this approach increases the number of parameters in
the MCMC algorithm and requires specification of H, aM , and bM , but it also offers
increased modeling flexibility.

When the cohesion is a function of location through distance penalties the interpre-
tation ofM is not very intuitive and it is difficult to determine how the expected number
of clusters would potentially grow as a function of M , complicating prior specification
and posterior inference. Thus, as an alternative approach, instead of putting a prior on
M , one could consider putting the prior directly on the number of clusters modelled
using local spatial stationary Gaussian processes, and adopting a Voronoi partitioning
scheme as done by Kim et al. (2005) that is tractable and computationally efficient.
The number and center location of the clusters that define the tessellation would be
unknown and estimated using a tailored RJMCMC to move between models of differ-
ent dimensions. An advantage of this approach is the flexibility, interpretability and
the computational advantages by having to invert several covariance matrices of small
dimensions rather than the potentially very large global covariance matrix.

Another area for further development is the connection between the cluster centers s∗h
and the cluster-specific parameters θ∗h. For example, Fuentes and Reich (2013) extend
the SSB model (Reich and Fuentes, 2007) to have cluster means following a spatial
process defined over the cluster centers with Cov(θ∗h, θ

∗
g) = ρ(s∗h, s

∗
g). They show that

with this prior, the mixture model can approximate a continuous process arbitrarily
well. It would be interesting to see if this idea can be used to approximate continuous
processes within the proposed product-partition framework. Another opportunity to
connect cluster centers and model parameters is via the spatial correlation parameters.
For example, if φh is the spatial range parameter in cluster h, then log(φh) could be
modeled as a Gaussian process over s∗h or even as a simple function of s∗h such as

log(φh) = β0 + s∗h
Tβ1. In either case, plots of the posterior of φci could be used to

evaluate nonstationarity.

Finally, we discuss potential computational benefits of spatial partitioning for large
datasets. With n observations, evaluating the Gaussian likelihood requires operations
on the dense n × n spatial covariance matrix, which is cumbersome for large n. As
the authors point out, partitioning the observations into smaller blocks replaces the
dense covariance matrix with the block diagonal matrix in (15) leading to a welcomed
speed increase for evaluating the likelihood. In addition, allowing each cluster to have its
own spatial covariance is attractive for large datasets because they are often collected
over a vast and heterogeneous domain, such as North America, where stationarity is
implausible. However, to exploit this potential benefit would require delicate MCMC
implementation. Updating all n cluster labels in sequence would likely be too slow and
a careful joint update would be required. An alternative is to fix the cluster labels based
on a standard clustering algorithm. Parker et al. (2016) provide an example of this form
of clustering for a non-Bayesian analysis non-stationary geostatistical data.
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In summary, we reiterate our thanks and congratulations to the authors for providing
such a nice paper to discuss. It is easy to envision methodological extensions such as
non-Gaussian or multivariate spatial models, and applications is diverse areas such as
environmental epidemiology and climate research. We look forward to following these
developments.
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