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Posterior Belief Assessment: Extracting
Meaningful Subjective Judgements from

Bayesian Analyses with Complex Statistical
Models

Daniel Williamson∗ and Michael Goldstein†

Abstract. In this paper, we are concerned with attributing meaning to the re-
sults of a Bayesian analysis for a problem which is sufficiently complex that we are
unable to assert a precise correspondence between the expert probabilistic judge-
ments of the analyst and the particular forms chosen for the prior specification and
the likelihood for the analysis. In order to do this, we propose performing a finite
collection of additional Bayesian analyses under alternative collections of prior and
likelihood modelling judgements that we may also view as representative of our
prior knowledge and the problem structure, and use these to compute posterior
belief assessments for key quantities of interest. We show that these assessments
are closer to our true underlying beliefs than the original Bayesian analysis and
use the temporal sure preference principle to establish a probabilistic relationship
between our true posterior judgements, our posterior belief assessment and our
original Bayesian analysis to make this precise. We exploit second order exchange-
ability in order to generalise our approach to situations where there are infinitely
many alternative Bayesian analyses we might consider as informative for our true
judgements so that the method remains tractable even in these cases. We argue
that posterior belief assessment is a tractable and powerful alternative to robust
Bayesian analysis. We describe a methodology for computing posterior belief as-
sessments in even the most complex of statistical models and illustrate with an
example of calibrating an expensive ocean model in order to quantify uncertainty
about global mean temperature in the real ocean.

Keywords: prevision, subjective Bayes, temporal sure preference, Bayesian
analysis, MCMC.

1 Introduction

The idea that uncertainty is a subjective property of individuals underlies the devel-
opment of the field of Bayesian statistics (cf. Savage, 1977; Lindley, 2000). You are
uncertain about some aspect of the world, you specify this uncertainty in the form of
a prior probability distribution. You specify a probability model describing the data
generating process that you will use to learn about the world and update your prior
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probabilities to posterior probabilities, upon observation of the data, using Bayes the-
orem. We term this the subjective Bayesian approach.

Many aspects of a Bayesian analysis are challenging, in particular, when a prior and
likelihood have been established, computing or sampling from the posterior distribution
can be extremely difficult. This challenge, however, has been well met by the Bayesian
field, with modern techniques in Markov Chain Monte Carlo (MCMC) allowing even
the most complicated statistical models to be sampled from in order to obtain posterior
probabilities (see, for example, Liang et al., 2010). However, given the complexity of
the statistical models that we are able to develop, the demands of the science that
they apply to, and the power of our computational methods for sampling from them,
methodology for the elicitation of subjective prior probabilities lags behind and remains
extremely difficult and highly controversial.

For these reasons and, perhaps, others, the field of so called “objective” Bayesian
analysis (or O-Bayes), is now extremely popular and represents, arguably, the most
popular approach to Bayesian inference. O-Bayes seeks to develop and use automatic
prior distributions for any probability model that, in some sense depending on the type
of prior developed, have a minimal influence on the output of a Bayesian analysis. For
details of the approach see Berger (2006), for a discussion of the competing philosophies
between O-Bayes and subjective Bayes see Goldstein (2006); Berger (2006) and the
following discussion. This paper concerns the development of the subjective Bayesian
approach, hence we do not comment further on O-Bayes solutions or philosophies in the
rest of our narrative.

The statistical models we are now able to develop would, if we were to attempt a
fully subjective Bayesian analysis, often require elicitation of high dimensional joint prior
distributions, perhaps over spatio-temporal fields or over parameters of multiple types,
and perhaps involving non-standard distributional forms. Current state-of-the-art elici-
tation frameworks and tools such as SHELF (Oakley and O’Hagan, 2010) and MATCH
(Morris et al., 2014), enable the elicitation of univariate distributions of standard forms
such as Normal, Beta and Gamma distributions and do not come close to meeting
the requirements made for some statistical models. Even univariate parameters in a
complex hierarchical statistical model can be subject to so many layers of abstraction
that even understanding what they mean or how they might impact upon an analysis
can make elicitation using current tools challenging or even dubious. Even if elicitation
methodology were substantially more advanced, time and budget constraints in many
investigations may prohibit the sort of elicitation that involves either the statistician,
the experts or both believing every probability statement made in order to facilitate
the Bayesian analysis.

Our argument then is that even if elicitation methodology catches up with the com-
putational capabilities of the field and the demand of the problems we study, in most
cases we will not hold any prior probability distribution or even the likelihood as rep-
resentative of our beliefs in complex problems. What meaning can we then give to any
Bayesian analysis that we do perform? Most importantly, is there anything we can
conclude about our own uncertainty from a Bayesian analysis?
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Bayes linear methods (Goldstein and Wooff, 2007) are an offered solution to this
problem. The idea is based on making only partial subjective prior specifications in the
form of means, variances and covariances, and using the geometry of Hilbert spaces
to update these beliefs using data. Whilst attractive and computationally tractable
in many applications, these methods do not allow us to take advantage of the many
advanced technologies and benefits of the modern fully probabilistic Bayesian approach,
nor do they allow us to combine and update any fully probabilistic judgements for
certain aspects of our statistical model that we might hold. We also comment that the
fully Bayesian approach is well established and it is therefore easier to explain to and
ultimately publish with collaborators from other fields.

Robust Bayes was a potential avenue of study into this problem. Popular in the 1980s
and 1990s, robust Bayes looked to explore whether any conclusions from a Bayesian
analysis were robust to classes of prior and likelihood choices (see Berger, 1994, for a
nice overview). However, the method focussed on analytic solutions in relatively simple
Bayesian models and, as the computational capabilities of the field increased exponen-
tially and Bayesian models became more complex, robust Bayesian approaches became
intractable and are now rarely pursued.

Robust Bayes can be thought of as a formalism of sensitivity analysis, whereby
alternative Bayesian analyses are considered to explore how sensitive posterior inferences
are to prior modelling choices (see, for example, Gelman et al., 2004, chapter 5). Though
sensitivity analysis is an important and useful step in any Bayesian analysis, there is no
formal mechanism for arriving at posterior judgement following it. For example, what
do samples from any alternative posterior distributions obtained during the sensitivity
analysis say about your actual judgements? Do these alternative posteriors, or indeed
that which formed the main analysis, represent subjective probabilities? In addition to
this, there is no formal method for ensuring a sensitivity analysis is “complete” in the
sense that it fully explores all possible alternative analyses that might have been deemed
reasonable by the analyst and expert.

In this paper, we describe a new methodology, which we term posterior belief as-
sessment, that aims to improve a full Bayes analysis that we have performed (or can
perform) with prior distributions and likelihood (judgements) that represent our best
current judgement (without our necessarily believing every probability statement made
by these judgements). By best current judgement here, we mean that we have expert
probabilistic judgements that we are unable to adequately express and that the chosen
combination of prior and likelihood represent these in some way but, due to the com-
plexity of the problem, we are unable to assert a precise correspondence between the
chosen judgements and our actual beliefs.

Our methodology improves our Bayesian analysis through performing further cal-
culations under alternative judgements, in order to get closer to our actual posterior
beliefs for key quantities of interest in a measurable way. Similar to robust Bayes, we at-
tempt to consider all possible alternative forms that we might give to these judgements.
However, our approach is to use this information along with foundational arguments, to
derive our subjective judgements for key quantities rather than to look for any posterior
probability statements that are robust to these choices.
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Before proceeding, we comment that Bayesian model averaging (BMA, Hoeting et
al., 1999), makes similar arguments regarding the existence of alternative judgements
(or models). That approach, which puts a probability distribution over a class of al-
ternative models, is, however, fundamentally different to what is described here. By
putting a subjective probability distribution over any alternative judgements we con-
sider, as in BMA, we would, under a subjectivist definition of probability, be making
the extremely strong statement that there is a true model within the set considered. We
already know that this is false in problems of reasonable complexity, such as that given
above. Our approach will not make assumptions of this type. Instead, we begin with
the foundations of subjective inference to establish a relationship between our underly-
ing judgements and our Bayesian analysis (Section 3). We then use this relationship to
develop a methodology for combining an original analysis with alternatives to get closer
to those judgements (Sections 4 and 5).

We begin, in Section 2, by setting up a motivating example involving the Bayesian
calibration of an expensive ocean model for learning about the real ocean temperatures.
In Section 3, we discuss the meaning of a subjective Bayesian analysis and develop the
foundational arguments and machinery needed in order to develop our methodology.
Section 4 describes our approach in the case of finite, quantifiable, alternative modelling
judgements. Section 5 extends the approach to the case where we have infinitely many
alternative modelling judgements by using co-exchangeability to partition the space of
alternatives. Section 6 illustrates the application of posterior belief assessment to the
example introduced in Section 2, and Section 7 contains discussion.

2 A motivating example

Throughout the paper we will discuss current judgements and alternative judgements
regarding our models and specification for the prior and likelihood in complex statistical
problems, and we will claim that perhaps none of these actually reflect our internal
expert probabilistic judgements on the observables or any key elements of the problem
for which we intend to make probabilistic inference (if such probabilistic judgements
could ever exist or be obtained if they did). To motivate this discussion, we introduce
an example from our own work that is sufficiently complex to illustrate these ideas and
to make concrete some of our terminology. We apply our methodology to this example
in Section 6.

Our example involves the calibration of a computationally expensive ocean model
used to learn about the state of the real ocean. We describe the particular ocean model
we are using and our experiments on it in detail in Section 6. To keep things more
general initially, we will denote the ocean model f(x, d) with x representing the model
input parameters chosen for a particular run and f(·, d) representing the model output
of interest, which, in this case will be the global mean temperature at depth d (in fact,
the model will output 6 hourly values for temperature, velocity and salinity over a 3D
mesh covering the globe at 31 depth levels, and we post-process it to only work with
outputs of interest).

Computer model calibration (developed in Kennedy and O’Hagan, 2001) is a method
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for combining computer model output and real world data in order to probabilistically
describe past, current or future states of the real world. To motivate our methodology, we
describe a statistical model for calibrating our ocean model using observed temperature
at a number of depths in order to predict temperature at an unobserved depth. What
follows is a brief outline of the statistical modelling involved in calibration in order to set
up a Bayesian network (BN) that enables us to easily talk about required judgements
and not ruled out alternatives, and to have an example in mind when we develop
the underlying theory behind our approach. We do not reproduce the details of the
calculations required to obtain conditionals for posterior sampling via MCMC. These
are available in Kennedy and O’Hagan (2001).

The modelling begins with observations z(d) at depth d of components of the ocean
y made with independent error e so that

z(d) = y(d) + e; e ∼ N(0, σ2
e).

These elements relating to the real world only appear in blue on our BN shown in
Figure 1.

Figure 1: Bayesian network for the ocean model calibration problem.

Components relating the ocean model to the ocean appear in green in Figure 1.
The model refers to the best input approach, which indicates that there is a particular
setting of the inputs, x∗, that is sufficient for the ocean model in informing us about
reality at any depth d. The model is

y(d) = f(x∗, d) + η(d);
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with discrepancy η(d) independent from x∗ and f(x, d) for all x. The model runs that
inform us about f(x, d) are denoted F1:n. Next we use a statistical model called an
emulator to model our uncertainty about f(x, d). Components of the emulator appear
as the red nodes in Figure 1. The emulator is

f(x, d) = βT g(x, d) + ε(x, d); ε(x, d) ∼ GP (0, cf (·, ·))

with g(x, d) a chosen vector of basis functions, β uncertain coefficients and ε(x, d) an
independent (from β) mean zero Gaussian process with specified covariance function
cf ((x, d), (x

′, d′)). We usually take this to be weakly stationary so that
cf ((x, d), (x

′, d′)) = cf (|(x, d)− (x′, d′)|).
Parameters that must be specified to characterise our uncertainty for each model

component described so far appear on the BN as orange nodes. Starting with the discrep-
ancy, η(d), Kennedy and O’Hagan (2001) suggest a mean zero weakly stationary Gaus-
sian process prior with Gaussian covariance function cη(d, d

′) = σ2
η exp{−ζ|d− d′|2}, so

that a variance parameter σ2
η and a depth correlation parameter ζ are introduced. The

best input x∗ is given a uniform distribution for each of the r dimensions of the input

space with lower and upper bounds, a
[i]
x∗ and b

[i]
x∗ .

We will build separate univariate emulators for each depth d, altering the specifica-
tion from one of requiring βT g(x, d) and ε(x, d) to one requiring βT

d gd(x) and εd(x). For
the response surface βT

d gd(x) we restrict the prior specification to one of choosing the
number and type of basis functions to enter into each gd(x), choices we identify with
the symbol Ψ and whose options will be detailed in Section 6.2. We specify a joint prior
p(β, σ2

f ) as described in Section 6.2. For the Gaussian process residual, εd(x), we let

c(x, x′) = σ2
f (ν1x=x′ + (1− ν)R(|x− x′|;κ1:r))

where ν, traditionally called the “nugget” (Andrianakis and Challenor, 2012), represents
the proportion of the residual variability that is, in this case, due to internal variability of
the climate model (see Williamson and Blaker, 2014, for discussion) and R(|x−x′|;κ1:r)
is a correlation function depending on roughness parameters κ on each dimension of the
input space. We say more on the possible choices of correlation function below.

For each of the model parameters, we might be uncomfortable in expressing values
directly and could put hyper-priors on each. In our Bayesian network we do this for 4
of the more difficult parameters to consider: the correlation lengths and variance of the
discrepancy, ζ and σ2

η, the nugget term ν and the r correlation parameters, κ1:r, of the
emulator residual. We choose

ζ ∼ G(aζ , bζ), σ2
η ∼ IG(aη, bη), ν ∼ Be(aν , bν),

and use separate Be(aiκ, b
i
κ) priors for each half length correlation of the emulator resid-

ual. A half length correlation for the ith input between the correlated parts of ε(x)
and ε(x′) is the value of R(|x − x′|) when all elements of x and x′ are equal with the
exception of xi and x′

i and where |xi − x′
i| is equal to half of the possible range of xi

(see Higdon et al., 2008; Williamson and Blaker, 2014; Williamson, 2014, for further
details). Hyper-parameters appear on our BN in yellow.
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The Bayesian network for this problem in Figure 1 required many complex proba-
bilistic modelling judgements just to write down, and requires a great deal more specifi-
cation before a Bayesian analysis can be performed. Values for all hyper-parameters and
other parent nodes are required to specify prior distributions, and modelling choices such
as the form of the correlation function for the Gaussian process are required before we
have established a likelihood. Even at this stage, the required modelling and specification
is, perhaps, too advanced to expect an ocean modeller, or even a statistician-modeller
team to ever be able to complete the specification in such a way so that every proba-
bilistic statement we have made about any collection of nodes on the graph represents
what they really believe.

In fact, as we believe would often be the case with a complex statistical model, it
is very easy to criticise the modelling we have done as not representative of the beliefs
of any expert ocean modeller. We have stated already that in order to complete a
subjective elicitation in this problem directly from the expert, we would require an ocean
modeller with a deep understanding of probabilistic reasoning and the implications
of this type of statistical model. However, even if such an expert did exist and had
enough time to spend with us, there are a number of criticisms they could level at
the model right off the bat. First, there is the idea that the discrepancy is additive
and independent of the model. This is problematic because if we knew x∗, our ocean
reconstruction y would not be dynamically consistent, i.e. it would not obey the Navier–
Stokes equations over a reasonably short time period. This is because our modelling of
η does not require that it does (nor could it ever, reasonably). We might visit every
part of our modelling and point out holes in the realism, though we satisfy ourselves
with one further example. We know that the residual from the response surface we fit
using our emulator is not really a realisation of a weakly stationary Gaussian process.
Though, if we are lucky, we might find a reasonable fit using such a process on a scale
similar to the average distance between our design points, it is unlikely that this model
adequately captures the behaviour of the function at, for example, much smaller scales
in all parts of the parameter space. The assumption of stationarity here is one made
largely for computational convenience and one made because experience in this type of
modelling has often shown that breaking this assumption does not gain a great deal in
terms of predictive power relative to the effort required in its implementation.

There are many judgements already made that we might view as equivalent to or
“just as good as” alternative judgements that we might have made (for example, we
could have chosen a lognormal prior for ζ instead of a gamma). There are many more
we are yet to make to which the same argument will apply and, we know, for any
alternative set of judgements, that the framework we are using is only a model for
our actual underlying judgement. We make this precise in our theoretical development
below.

3 Interpreting a Bayesian analysis

There are different views as to the primitive concepts underpinning the Bayesian ap-
proach to inference. In this paper, we are driven by the requirement to give a formal
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and operational treatment which deals with the difference between the inferences made
within a traditional Bayesian model for a complex problem and the actual inferences
that we are confident to assert on the basis of our modelling and analysis. It is easy
to see why there will often be a mismatch between these two levels of inference. The
full Bayes model requires prior specification over complex high dimensional spaces for
which we may struggle to make meaningful judgements to the extreme level of detail
required for the analysis. Lacking confidence in our prior assessments and in the many,
often somewhat arbitrary, modelling choices that we have made in order to complete our
analysis, it is hard to have confidence in our posterior judgments. We need to express
our uncertainty about the relevance of our Bayesian modelling to our actual real world
inferences. However, an attempt to make such a higher level uncertainty specification
through the medium of probability is, in many ways, more difficult than was the orig-
inal modelling task itself. Partly, this difficulty is intrinsic to the task itself. However,
partly this is because probability, due to the exhaustive level of detail that is required
in the analysis, is not an appropriate primitive, in our view, to bridge the gap between
a formal Bayes analysis and the actual posterior judgements that we may wish to make.

Therefore, in this paper, we treat expectation, rather than probability, as the prim-
itive for this higher level analysis. In this way, we may still consider any probabilities
that are of direct concern, as probabilities, in this view, are simply the expectation of
the corresponding indicator functions. However, we have the option of restricting the
level of detail of our specification, by just considering those expectation specifications
which are directly relevant to the problem at hand. We shall show, with expectation
as primitive, how to develop a formal and operational approach to addressing the gap
between Bayesian inference and actual real world inference for complex models, and
illustrate the practicality of the approach in application to a model of realistic size and
complexity.

It would be interesting to compare our approach with a corresponding alternative
developed purely within the formalism of probability, but we do not know of any prac-
tical way to do this. If we were to choose probability as primitive, then we would need
to assess a full probabilistic specification describing the relationship between the Bayes
analysis and our judgements, the specification of which would be even more difficult
to attribute precise meaning to than the probabilistic specification underpinning the
original Bayes analysis.

3.1 Expectation as primitive

In the fundamental volumes summarising his life’s work (de Finetti, 1974, 1975), de
Finetti based the theory of probability on expectation, or, as he termed it, prevision, as
the primitive for the theory. de Finetti gives the following operational definition for your
expectation, E [X], for the random quantity X, namely that it is your preferred choice
for the value of c when confronted with the penalty (X−c)2, where the pay-off is in some
appropriate units, for example, probability currency. (In this theory, all expectations are
the subjective judgements of specified individuals. There is no place for the notion of
objective probability, beyond, informally, the common language meaning of a consensus
judgement shared among a group of individuals.) Of course, in practice, we may choose
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many alternative ways to elicit your choice for E [X], but this definition is particularly
appropriate when deriving the formal properties of expectation as it leads directly to
the geometric structure underpinning expectation based approaches to inference (see,
for example, Goldstein and Wooff, 2007, chapter 3).

Within this formulation of probability theory, we may derive an account of the
relationship between conditional expectation, E [X|D] given observation of a member
of the partition D = (D1, . . . , Dk), for which one and only one of the outcomes Di

will be observed, and the actual expectation, or prevision, Pt(X) that we may specify
at the future time t when we do observe the outcome of the partition (We use Pt(X)
rather than Et [X] here, as the latter is reserved for an operation that we will define
later and make a great deal of use of. Only the currently unobtainable time t prevision
is denoted with P . For all other subjective expectations we use the more conventional E
operator). This development was first described in Goldstein (1997) and the remainder
of this section gives a summary of it.

As the conditional probability of an event is equivalent to the conditional expecta-
tion for the indicator function for the event, this also gives an account of the relationship
between conditional probabilities, for example, assessed by Bayes theorem, and actual
posterior probabilities when the conditioning event is observed. It is important to main-
tain the distinction between conditional probabilities, defined in subjective probability
theory as bets which are called off unless the conditioning event occurs, and posterior
probabilities which you assign when you have seen the corresponding event. There is
no obvious formal relationship between these two notions whatsoever, and foundational
descriptions typically restrict the formal development to perfectly rational individuals,
operating in small and very tightly constrained worlds. As such, conditional probability
may be interpreted as a simple and flexible model for real world inference. However, like
any model, it is essential to be careful in considering the relationship between the model
and the real world, which is not tightly constrained and concerns the actual inferences
of real individuals.

Although there is no deterministic relationship between conditional and posterior
probabilities, we can derive certain probabilistic relationships between the two concepts.
Specifically, we may use the notion of temporal sure preference. Suppose that we must
choose between two random penalties A and B. We say that we have a sure preference
for A over B at (future) time t if we are sure now that, at time t, we will prefer A to B.
The temporal sure preference (TSP) principle says that if we have a sure preference for
A over B at t, then we should not have a preference for B over A now. Temporal sure
preference is a very weak property (as it is hard for us to hold temporal sure preferences).
However, it is sufficient to derive the basic probabilistic relationship between conditional
and posterior expectations, which is as follows.

Suppose that we currently specify our conditional expectation for a random vector
X given partition D = (D1, . . . , Dk). Suppose, at future time t when we have observed
which element of D occurs, we make an actual posterior expectation statement Pt(X).
If we denote by E [X|D] the random quantity which takes value E [X|Di] if we observe
outcome Di, then given TSP we can show (see Goldstein, 1997, for details) that, now,
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we must have the following orthogonal decomposition:

X = (X − Pt(X))⊕ (Pt(X)− E [X|D])⊕ (E [X|D]− E [X])⊕ E [X] . (1)

Each of the three bracketed terms on the right hand side of (1) has expectation
zero, and the three terms are mutually uncorrelated (the notation A ⊕ B means that
the random vectors A and B are uncorrelated). More strongly, (Pt(X) − E [X|D]) has
expectation zero conditional on each member of the partition. We may view E [X|D]
as a prior inference for Pt(X), in the sense that E [X|D] bears the same relationship
to Pt(X) that Pt(X) bears to X. In this way, we can make precise the notion that the
formal Bayes analysis is a model for your posterior judgements, whose relationship is
the same as for any model of a real world process (Goldstein, 2011).

As the terms in (1) are uncorrelated, we can interpret this construction in terms of
the resulting variance partition,

Var [X] = Var [X − Pt(X)] + Var [Pt(X)− E [X|D]] + Var [E [X|D]] . (2)

The variance of X is decomposed into three components. Var [E [X|D]] expresses the
information content of the formal Bayes analysis, Var [Pt(X)− E [X|D]] expresses the
information content of the further judgements and information, in addition to the formal
Bayes analysis, that we may bring to bear by time t, and Var [X − Pt(X)] expresses the
intrinsic limitations to our inferences by this time. We can expand the value of the
Bayesian component of the analysis by expanding the partition and thus the variation
attributable to the conditioning.

While we have described the variance partition for a full Bayes analysis, the argument
from TSP actually establishes the more general property that for any random quantity
W which we will certainly observe by time t, then we must assign

E
[
(Xi − Pt(Xi))

2
]
≤ E

[
(Xi −W )2

]
.

By varying the choice of W , we can derive the corresponding representation

X = (X − Pt(X))⊕ (Pt(X)− EU [X])⊕ (EU [X]− E [X])⊕ E [X] (3)

where EU [X] is the orthogonal projection of X into the collection of linear combinations
of the elements of the collection U = (W1, . . . ,Wk) where each Wi is a random quantity
which will be observed by time t, and the terms on the right hand side of (3) obey the
same orthogonality properties as those of (1), with a similar interpretation.

In this next section, we shall combine these two variance partitions to give a general
representation of the inference that we may make through a formal Bayes analysis for
a complex problem. Firstly, (1) is based on the requirement that all of the condition-
ing statements refer to your actual probabilistic judgements. In practice, for complex
problems, the level of detail required is too extreme for this to be possible. We should
instead view the choices made in the full Bayes analysis as providing a model for your
actual probabilistic judgements (in a way we shall make clear in the next section),
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which is itself a model for your posterior inferences. Therefore, we will consider a range
of modelling choices for likelihoods, priors and so forth. Each choice leads to a Bayesian
conditional expectation. We now use (3) to construct the corresponding relationship
between the outcomes of each collection of modelling choices that have been considered
and the actual inferences that you are able to make given the data and your collection
of analyses.

4 Posterior belief assessment

Define a vector of quantities of interest, y, so that your principal interest in your
Bayesian analysis is in finding posterior expectations of y given relevant data z. Note
that this definition allows us to be interested in posterior variances and posterior prob-
abilities of key events (defined as expectations of indicator functions), for example,
the probability that some quantity exceeds a threshold. Define your current modelling
judgements as the set J0. These judgements comprise everything required to perform
the Bayesian calculation, including form and any hyper-parameters of both the prior
and the likelihood. We do not believe all of the probability statements in J0, but we
do view J0 as “representative enough” of the structure of the problem and any sci-
entific judgements and beliefs that we do hold, to allow us to perform the Bayesian
computation and to believe that E [y|z; J0] is informative for our posterior prevision
for y. As discussed in Section 3, this conditional expectation will not be your prevision.
Operationally, this means that we prefer penalty (yi − Pt(yi))

2 to (yi − E [yi|z; J0])2,
equivalently

E
[
(yi − Pt(yi))

2
]
≤ E

[
(yi − E [yi|z; J0])2

]
.

In Section 3, we argued that nothing we can do prior to time t will give us Pt(y) at
time t after seeing z. In particular, we cannot set up a called off bet via our Bayesian
analysis under J0 and be required to hold E [y|z; J0] at time t, even if we really believed
all of the probability statements in J0. However, though Pt(y) may be unobtainable
within the constraints of the Bayesian formalism that we have expressed, we would like
to get as close as possible to it using the fully Bayesian machinery. For example, can
we find good choices of Γ(z) to improve upon E [y|z; J0] (in the sense that you prefer
penalty (yi − Γi(z))

2 to (yi − E [yi|z; J0])2 for any vector-valued function Γ of the data
at time t, for all i)?

Though the J0 contains sufficient structure to enable us to perform a Bayesian
analysis that we view as informative for certain posterior expectations over quantities
of interest, as we do not believe all of the probability statements made by J0, we do
not view these judgements as uniquely representative of the problem structure and our
scientific insight. By changing parts of the model and/or the prior (or even the way we
generate posterior samples) in a way that either represents our scientific insights and
beliefs in a different way, or that changes them in such a subtle way that we would
still view the analysis as informative for our prevision for y, we can arrive at a set
of alternative judgements J1, . . . , Jk. We could, in principle, run alternative Bayesian
analyses under each set of judgements and compute E [y|z; Ji] for i = 1, . . . , k. We
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assume a finite collection of alternative judgements we would adopt here, and relax this
constraint in Section 5.

We note here that in viewing the Bayesian analysis like this, we are using probability
in two different ways. The first, in the true subjective sense, represents what we actually
believe about a quantity, and these are our previsions. The second uses probability
as a useful modelling language for transforming our judgements into previsions. The
probability statements made as part of any Ji are therefore not belief statements, nor
do we assume that there is an underlying true representation of our beliefs, J∗ say, that
could be elicited if we could think hard enough for long enough to extract it. However,
it is reasonable to talk of potential sets of judgements not representing our beliefs well
enough, so that we could rule them out as being informative for our previsions. For this
reason, we will sometimes refer to the set of alternative judgements J1, . . . , Jk as not
ruled out judgements.

That we have chosen J0 over any J1, . . . , Jk, may lead us to the view that we prefer
penalty (yi − E [yi|z; J0])2 to (yi − E [yi|z; Ji])2 for i = 1, . . . , k. However, some of the
elements of J0 may have been chosen for pragmatic reasons. For example, we might
choose a conjugate prior family to reduce the computational burden in part of our
posterior sampling scheme. Even if we were to adopt the view that J0 leads to conditional
expectations that we do prefer to conditional expectations derived through Bayesian
analyses under any of the alternative sets of judgements, there may be derivable random
penalties that make use of the collection of our current and alternative judgements
that we prefer over any based on one set of them. We now consider combinations of
quantities related to our alternative judgements, J1, . . . , Jk. We show that there is a
linear combination of the collection of conditional expectations that is at least as close
to your actual prevision as E [y|z; J0] and derive its properties. Define G to be the vector
(E [y|z; J0], E [y|z; J1],. . ., E [y|z; Jk]) = (G1, . . . ,Gk+1). Let G0 be the unit constant. We
have the following result.

Theorem 1. Let

EG [y] = E [y] + Cov [y,G] Var [G]−1
(G − E [G]), (4)

an expectation which we term, our posterior belief assessment for y. Then

(i) EG [y] is at least as close to y as E [y|z; J0]. Equivalently, for each i,

E
[
(yi − EG [yi])

2
]
≤ E

[
(yi − E [yi|z; J0])2

]
.

where EG [yi] is the ith component of EG [y].

(ii) EG [y] is at least as close to Pt(y) as E [y|z; J0]. Equivalently, for each i,

E
[
(Pt(yi)− EG [yi])

2
]
≤ E

[
(Pt(yi)− E [yi|z; J0])2

]
.

Proof. Our posterior belief assessment is the Bayes linear rule for y, given G (see Gold-
stein and Wooff, 2007). For each i, EG [yi] is the Bayes linear rule for yi, namely the
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linear combination
∑

i=0 αiGi that minimises

E

⎡
⎣
(
yi −

∑
i=0

αiGi

)2
⎤
⎦ .

(see page 56 in Goldstein and Wooff, 2007, for a proof of this result). Therefore, property
(i) follows immediately.

From TSP, y − Pt(y) has mean zero and is uncorrelated with all random quantities
that will be known by time t, and, in particular, all the elements of G. Therefore, for
each i,

E
[
(yi − EG [yi])

2
]
≤ E

[
(yi − E [yi|z; J0])2

]
⇒

E
[
(yi − Pt(yi))

2
]
+ E

[
(Pt(yi)− EG [yi])

2
]
≤ E

[
(yi − Pt(yi))

2
]

+ E
[
(Pt(yi)− E [yi|z; J0])2

]
,

and property (2) follows immediately.

Our theorem identifies the key quantities that we need to assess in order to implement
the method, namely E [G], Var [G] and Cov [y,G]. In Section 4.2, we present a method
for evaluating these quantities. Note that the theorem implies that by computing the
posterior belief assessment using additional experiments, we resolve an additional pro-
portion of our uncertainty in y, compared with the case where we only have one Bayesian
analysis. We can estimate a lower bound on the proportion of uncertainty reduced by
observing the ratio of the adjusted variances Var [yi − EG1 [yi]] and Var [yi − EG [yi]]
(note EG1 [yi] is computed using (4) replacing G with G1). This is a direct corollary of
part (i).

Readers familiar with Bayesian Model Averaging (BMA, Hoeting et al., 1999), may
notice that (4), which is simply a constant plus a linear combination of each alterna-
tive posterior expectation, may be interpreted as a constant plus the BMA posterior
expectation under a posterior distribution over model Ji equal to Wi+1 with

Wj = (Cov [y,G] Var [G]−1
)j .

However, our approach is not the same as we have made expectation primitive and not
probability. In BMA, one needs a probability distribution over all possible models in
order to proceed. Hence, in this context, the BMA cure to needing to make so many
judgements in a full Bayesian analysis and to not being sure that any of these judgements
represent our actual beliefs, is to make infinitely more judgements (in the form of a
probability distribution across all possible models and conditional probabilities under
each model), and proceed from there. But now we are back in the same boat in which we
started, requiring many more prior judgements in order to do the Bayesian analysis. We
can ask the same questions regarding whether we actually hold each of these judgements,
whether the statistical modelling is representative of them, or if there are alternatives
that we feel should be explored and so on. More subtly, as mentioned in the introduction,
BMA must also assume that one of our alternative models is the truth, and we are
unwilling to make this assumption.
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With expectation as primitive in a posterior belief assessment, we avoid the infinite
regress. We make no probabilistic prior statements about any of our alternative models,
hence do not assume any represent our true underlying beliefs, and simply seek to
get closer to actual prevision, Pt(y), than E [y|z; J0] via orthogonal projection of y
onto a vector G of alternative Bayesian analyses. Importantly we have established the
relationship between our posterior belief assessment, EG [y], and what we will actually
think at time t, Pt(y), which would be a task still ahead of an analyst adopting BMA.

4.1 Practical considerations

The above account states that if we can write down a finite set of alternative judgements
J1, . . . , Jk, to J0, and if we can obtain conditional expectations for key quantities, y,
given data z, using a full Bayesian analysis under each Ji, i = 0, . . . , k, then we can
perform a posterior belief assessment to get closer to our actual judgements if we can
compute (4). However, there are a number of practical considerations to doing this, even
if we can write down J1, . . . , Jk.

One such consideration is that each alternative Bayesian analysis must be performed
in order to obtain each E [y|z; Ji] , i = 1, . . . , k, so that we may evaluate G. There are,
essentially, two factors impacting upon the feasibility of this step. The first involves the
availability of extra computer power. For many of the Ji, we may only have small changes
to hyper-prior quantities to make, or alternative, yet trivially computable, formulations
of the likelihood. In these cases, performing the alternative Bayesian computations (e.g.
via MCMC) involves little or no manpower and instead requires more computing. In
these cases the alternative analyses can run in parallel either on single multi-core ma-
chines, or via clusters or distributed computing, representing little additional complexity
to the overall analysis. The second factor to consider regards the additional complexity
of the Bayesian computation for any of the alternative judgements Ji. An alternative
model may lead to a Bayesian calculation that we don’t yet know how to do well, or
that would take so much additional effort to implement that we regard performing this
alternative analysis in order to provide a posterior belief assessment to be either imprac-
tical (we do not judge it to be a good use of our time), or infeasible given our current
budget constraints. We visit a solution to this issue in Section 5.

An important consideration is that we require a number of quantities in order to
compute EG [y] via (4). In particular, we must either specify or compute E [y], E [G],
Var [G] and Cov [y,G]. Prior to offering practical suggestions for how this might be
achieved, we note that our account thus far has presented an argument for why (4), if it
can be computed, is closer to actual prevision and is thus important. If the meaning of
any posterior statements that we will make about y having obtained data z is important,
we have provided a route towards clear meaning through (4). Specifically, we have shown
that EG [y] is as close as possible with respect to squared error loss to time t prevision of
the true y. This represents a novel foundational and methodological step, focusing our
attention on the further key quantities we require to claim ownership of posterior belief
statements. As such, an interesting avenue for further research in this matter could focus
on precisely how key quantities for posterior belief assessment should be obtained.
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That said, we now discuss two particular ideas. The first is to focus elicitation on
E [y], E [G], Var [G] and Cov [y,G]. The elicitation of purely second order judgements
is necessarily simpler than the sort of careful elicitation required for a fully subjective
Bayesian analysis in a complex problem. This is discussed in many sources, an overview
is in Chapter 2 of Goldstein and Wooff (2007). For example, though an expert may find
it extremely hard to think about distributions for hyper-parameters of distributions
on other parameters that purportedly control the distribution of some quantity related
to the complex system y (wherein her expertise lies) through a conditional probability
model, she will be far more comfortable considering E [y] and Var [y] as it involves
thinking about the quantity she understands directly. Though simpler than a fully
probabilistic elicitation exercise for the statistical model in question, the above argument
may not be viewed, in certain problems, to be as strong when it comes to determining
those key judgements involving G. Hence we provide a second suggestion involving
sampling.

4.2 An algorithm for computing posterior belief assessments

Our algorithm for obtaining E [G], Var [G] and Cov [y,G], the key quantities required
to compute (4), requires that E [y] and Var [y] are specified, either through elicitation
or otherwise. We can then form a distribution (E [y] ,Var [y]) and sample values of y.
We also use the same arguments to form a distribution for the observables using the
mean and variance (E [z|y] ,Var [z|y]). For example, z might be a measurement on y
made with mean zero, uncorrelated error with given variance σ2

e and E [z|y] = y and
Var [z|y] = σ2

e . We can now sample a value of y from (E [y] ,Var [y]) and corresponding
values of z using (E [z|y] ,Var [z|y]). Once we are able to generate such samples, our
algorithm proceeds as follows.

Step 1 Sample a value ŷ and ẑ from (E [y] ,Var [y]) and (E [z|ŷ] ,Var [z|ŷ]), respectively.

Step 2 Use the full Bayes machinery to compute each E [y|ẑ; J0], E [y|ẑ; J1] , . . ., and
use them to form Ĝ.

Step 3 Repeat this process to obtain a large number, N , of sample pairs (ŷ1, Ĝ1), . . . ,
(ŷN , ĜN ).

Step 4 Assess E [G], Var [G] and Cov [y,G] by computing the sample means and vari-
ances of the Ĝs and their covariance with the ŷs.

To make the sampling algorithm computationally feasible using distributed com-
puting, we may have to, for example, reduce the number of samples in our MCMC at
step 2. When we do not have a firm judgement as to our choice for the distribution
of y or z|y, then, for negligible computational cost, we may repeat the analysis under
a variety of choices, by re-weighting the samples that we obtain using our algorithm,
under each such choice.

Performing such alternative analyses by re-weighting may be important in the case
where we have no firm choice for these distributions or where the model we use to obtain
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z|y is tentative or one of a collection of models we are comfortable with. Depending on
the problem, there is a potential for the impact on the posterior belief assessment of
these choices to be non-negligible. If, through re-weighting to other reasonable forms of
distribution for y and z|y, we establish this to be the case, we would invest more time
and effort eliciting features (such as skew, kurtosis, certain percentiles of the distribution
function) of these distributions from our experts. As these quantities (each of which is an
expectation) are functions of the observables, we view this as easier for a domain expert
than elicitation of parameter distributions in our complex statistical models. However,
we do not require that any elicited distribution here represent the subjective beliefs
of the analyst or expert in the sense that every or any probability statement made is
believed, as we are using probability here in the way described near the beginning of
Section 4: as a tool to assist with obtaining a handful of beliefs we are prepared to adopt
as prevision through the machinery of posterior belief assessment. The impact of these
choices on the results of our sampling algorithm and the posterior belief assessment
itself, as well as formal methods for assessing this and handling large impacts would be
an interesting avenue for future research in this area.

4.3 Comparison with robust Bayes and sensitivity analysis

A robust Bayesian analysis requires us to be able to explore, analytically (usually), the
behaviour of any key posterior quantities under all possible classes of prior and likeli-
hood combination of interest. This is an extremely complex and arduous task, and may
be infeasible for complex models. Even if completed, however, unless a particular poste-
rior quantity is (practically) invariant to all choices, it is unclear what belief statements
you can make and how they might relate to your prevision. Similarly, though a sensi-
tivity analysis has the potential to be just as thorough as a posterior belief assessment
in terms of the alternative models and priors explored (J1, . . . , Jk in our account thus
far), it leaves any formal relationship between the quantities computed under alterna-
tive judgements, your beliefs and prevision unestablished. Typically, we might report
posterior beliefs under J0 and use the alternative analyses to comment on sensitivity of
these beliefs to our judgements, without actually incorporating data from any further
analyses into our beliefs given the data.

A posterior belief assessment offers a practical and tractable investigation into the
robustness of any conclusions you may wish to draw to alternative prior and likeli-
hood choices. Though requiring extra computing power, the calculations required are
essentially repeats of previous analyses and are therefore relatively straightforward to
undertake, regardless of the complexity of the statistical modelling. Further, our ap-
proach reduces your uncertainty about the quantities of interest and gives an actual
quantification of the current state of your beliefs about each quantity that accounts for
all of the additional information contained in further analyses, through EG [y].

The account in this section has described posterior belief assessment for the situation
where we can write down and construct full Bayes analyses for a finite set of alternative
judgements J0, J1, . . . , Jk. However, in many practical cases of interest, it is unlikely that
k will be small enough to permit an exhaustive analysis, or perhaps the number of not
ruled out judgements is, in principle, infinite (for example, we may have had to specify
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continuous hyper parameters). In the next section, we outline how exchangeability may
be imposed on our judgements and exploited to provide posterior belief assessment in
more realistic and general situations.

5 Co-exchangeable classes and posterior belief
assessment

One of the key tools in the subjective Bayesian’s armoury when faced with a collection
of similar random quantities is the judgement of exchangeability. Suppose we have
collection of separate flips of a coin, X1, X2, . . . , and we want to predict the outcome
of some future flip of the same coin. The judgement of exchangeability, effectively that
our judgements for any combination of the Xs does not depend on the indices, allows
us to treat each Xi as a draw from some probability distribution, to learn about the
parameters of that distribution using our collection of flips, and to make inference
about future, yet unobserved Xs. This is a consequence of the representation theorem
(de Finetti, 1974), and a detailed introductory discussion is given in Goldstein (2012).

Having a collection of alternative judgements J0, J1, . . . leading, in principle, to quan-
tities E [y|z; J0], E [y|z; J1] , . . . leads us to ask questions such as are there any exchange-
ability judgements we might be willing to make and what might they be? There is no
reason to assume, in general, that the collection E [y|z; J0] ,E [y|z; J1] , . . . should be ex-
changeable. For example, the way Ji affects either the modelling or the prior choices
might be quite different from another Jj , and this might lead us to strong a priori views
on the differences between E [y|z; Ji] and E [y|z; Jj ].

The key idea in this section will be to group our alternative judgements into classes
within which we are prepared to impose some form of exchangeability on E [y|z; Ji1 ] ,
E [y|z; Ji2 ] , . . . for Ji1 , Ji2 , . . . in class i. This will allow us to perform a handful of
alternative Bayesian analyses for some of our not ruled out judgements and to use the
information from these, to learn about other analyses, for example, those that we do
not have time or the ability to perform. Before detailing our approach, we must first set
up the type of exchangeability we require, namely second order exchangeability.

5.1 Second order exchangeability

In order to establish an inferential framework within which alternative Bayesian analyses
may be used to discover relationships between explored judgements and the rest of our
not ruled out judgements, we require further statistical modelling. We prefer to minimise
the number of additional judgements required in order to do this, and so turn to second
order exchangeability (SOE). A collection of quantities X1, X2, X3, . . . are SOE if

E [Xi] = μ; Var [Xi] = Σ ∀i; Cov [Xi, Xj ] = Γ ∀i �= j.

In words, SOE represents an invariance of our judgements about means, variances and
pairwise covariances in a collection to labelling. For an infinite SOE collection, the
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representation theorem (Goldstein and Wooff, 2007, chapter 6) gives an orthogonal
decomposition of each Xj into a common term M(X) and a residual Rj(X):

Xj = M(X) +Rj(X) (5)

with
E [M(X)] = μ; Var [M(X)] = Λ; (6)

E [Rj(X)] = 0; Var [Rj(X)] = Σ− Λ; (7)

and
Cov [M(X),Rj(X)] = Cov [Rj(X),Rk(X)] = 0 ∀ j, and k �= j. (8)

The inferential power of this judgement is that it leads to the orthogonality of a
set of n observations Dn = (X1, X2, . . . , Xn) and any Xj , j > n, given M(X). This
orthogonality, termed Bayes linear sufficiency, means that the Bayes linear update
EDn∪M(X) [Xj ], is equivalent to EM(X) [Xj ], which implies (cf. Goldstein and Wooff,
2007, page 195)

EDn [Xj ] = EDn [M(X)] . (9)

Hence, suppose we judged that E [y|z; J1], E [y|z; J2] , . . ., were an infinite SOE sequence
and that we only observed Dk = {E [y|z; Jk] ; k = 1, . . . , 4}, then any EDk

[E [y|z; Ji]],
i > 4, is equal to EDk

[M] and can be computed using (5), (6), (7) and (8). (Note that
a Bayes linear update takes the same form as (4).)

In general, we will not wish to impose SOE across the collection of posterior expecta-
tions under all alternative judgements we might make, as we may have relatively strong
judgements regarding the relationship between certain alternative modelling choices.
For example, if Ji and Jj differ only in the values of the hyper-parameters of one partic-
ular prior distribution, and Jk represents an alternative formulation of the likelihood,
then we might view, a priori, that

Cov [E [y|z; Ji] ,E [y|z; Jj ]] �= Cov [E [y|z; Ji] ,E [y|z; Jk]]

and similarly for Cov [E [y|z; Jj ] ,E [y|z; Jk]]. The potential existence of such relation-
ships between posterior conditional expectations under different judgements motivates
a partitioning of our judgements into co-exchangeable classes.

5.2 Co-exchangeable classes

Let Y1, Y2, . . . be a collection of sequences. We say that they are co-exchangeable if, for
any fixed k, the sequence Yk1, Yk2, . . . is infinite second order exchangeable and if, for
j �= k, Cov [Yjm, Ykn] = Σjk for any m, n. Let our alternative judgements be partitioned
into k classes J1, . . . , Jk with Ji = {Ji1 , Ji2 , . . .}, each chosen so that we may define cor-
responding co-exchangeable classes C1, . . . , Ck with Ci = {E [y|z; Ji1 ] ,E [y|z; Ji2 ] , . . .}.
Then, the representation theorem gives

E
[
y|z; Jij

]
= M(Ci) +Rj(Ci). (10)
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Equation (10) and co-exchangeability between classes means that

Cov
[
E
[
y|z; Jij

]
,E [y|z; Jml

]
]
= Cov [M(Ci),M(Cm)] i �= m, (11)

and, from (6), (7) and (8), we have

Cov
[
E
[
y|z; Jij

]
,E [y|z; Jil ]

]
= Var [M(Ci)] j �= l. (12)

By partitioning into co-exchangeable classes in this way, we are able to run a small
number of alternative Bayesian analyses corresponding to a subset of alternative judge-
ments, to use these to update beliefs about any other Bayesian analysis we might have
performed and to compute our posterior belief assessment. Suppose we were to compute
posterior expectations based on Bayesian analyses on N sets of alternative judgments.
Let n(1), . . . , n(N) ∈ {1, . . . , k} and m(1), . . . ,m(n) ∈ Z be indices corresponding to
the chosen judgements, so that the jth Bayesian analysis performed happens under
Jn(j)m(j)

. Define D = {E[y|z; Jn(1)m(1)
], . . . ,E[y|z; Jn(N)m(N)

]}, then (11) and (12) lead
to a version of (9), namely

ED

[
E
[
y|z; Jij

]]
= ED [M(Ci)] . (13)

Further, each ED [M(Ci)], for i = 1, . . . , k, is linear combination of the elements of D.
Hence, when looking to use the elements of D to perform a posterior belief assess-
ment, we can simultaneously include D and all of the information contained therein
regarding unobserved alternative Bayesian analyses by selecting G to be the vector
(E [y|z; J0] ,ED [M(C1)] , . . . ,ED [M(Ck)]) = (G1, . . . ,Gk). Letting G0 be the unit con-
stant, then the results in Theorem 1 hold.

5.3 Special case: co-exchangeability of y

A further co-exchangeability judgement simplifies the task of prior specification required
in order to compute EG [y]: namely, that of co-exchangeability between y and the mem-
bers of each class, C1, . . . , Ck.

Determining Cov [y,G] requires determining Cov [y,E [y|z; J0]] and
Cov [y,ED [M(Ci)]] for i = 1, . . . , k. Supposing we have the quantities required to
compute each ED [M(Ci)], then the co-exchangeability of y and the members of each
class C1, . . . , Ck means that we require only Cov [y,E [y|z; J0]] and Cov [y,M(Ci)] for
i = 1, . . . , k in order to compute Cov [y,G].

To show this, we first note that

Cov [y,ED [M(Ci)]] = Cov
[
y,Cov [M(Ci), D] Var [D]

−1
D
]

= Cov [y,D]Wi

with Wi = Var [D]
−1

Cov [D,M(Ci)]. Wi is required in order to compute ED [M(Ci)],
hence, the additional burden in prior specification in order to compute
Cov [y,ED [M(Ci)]] requires us to compute Cov [y,D]. From (10),

Dj = M(Cn(j)) +Rm(j)(Cn(j)).
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Defining M̃ = M(Cn(1)), . . . ,M(Cn(N)), then co-exchangeability of y implies that

Cov [y,D]Wi = Cov
[
y,M̃

]
Wi

so that we need only specify Cov [y,M(Ci)] for i = 1, . . . , k in order to compute
Cov [y,ED [M(Ci)]]. If we are unwilling or unable to specify prior covariances here, we
may obtain the Cov [y,ED [M(Ci)]] using a similar sampling scheme to that described
in Section 4.2.

6 Application: calibrating an expensive ocean model

We return to the ocean model calibration problem described in Section 2, with the
model established by Figure 1. We first describe the ocean model and the data we will
use to calibrate it before returning to the problem of establishing judgements for prior
and likelihood that will enable the formal Bayesian analysis to proceed. We will also
describe a collection of alternatives and perform the posterior belief assessment using
the methodology described in Sections 4 and 5.

6.1 The ocean model and the data

The NEMO ocean model (Madec, 2008) simulates the global ocean for given atmo-
spheric forcing files. The 2◦ ORCA configuration that we use here divides the globe into
approximately 2◦ latitude/longitude grid boxes and has 32 depth levels. The model is
extremely computationally expensive, taking approximately 7.5 hours to complete 30
years of model time on the UK supercomputer ARCHER. For any setting of the param-
eters, we run the model for 180 model years under climatological forcing (atmospheric
forcing designed to replicate an “average year” in the late 20th century), and perform
our analysis on the results of the last 30 years of the simulation.

The initial parameter space, containing 1 switch variable with 2 settings and 20

continuous parameters defined on a hypercube with the ranges for each input (a
[i]
x∗

and b
[i]
x∗ in our Bayesian network) elicited by the first author from the developer of

the code, Gurvan Madec, is explored using a 400 member k-extended Latin Hypercube
design (LHC), a Latin Hypercube of size 400 constructed based on an initial LHC and
extended k− 1 times so that the design comprises k smaller LHCs of size 400/k (in this
case k was 25). The design method and rationale for this choice applied to the 2◦ NEMO
model is discussed in Williamson (2014). Figure 2 plots global mean temperature as a
function of depth with cyan lines representing the 400 model runs and the red solid line
representing real world data (using the EN3 dataset, Ingleby and Huddleston, 2007).
Dashed red lines represent ±2 standard deviations of the model error calculated from
Ingleby and Huddleston (2007). The dashed horizontal lines represent the 31 model
depths.

To illustrate a posterior belief assessment, we will calibrate the 2◦ NEMO using
observations at 4 depths (illustrated by the black dashed lines) in order to predict
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Figure 2: Global mean temperatures for each of the 400 members of our ocean model
ensemble (cyan lines) plotted against model depth. The red solid line represents observed
global mean temperature and the dashed red lines indicate ±2 standard deviations of
the error on the observations. Horizontal dashed lines indicate the model depth levels,
with the black dashed lines those depths used to calibrate the model and the magenta
long-dashed line the prediction depth.

the temperature at a new depth for which we pretend not to have observed data (the
magenta long-dashed line). Though clearly illustrative (the goal of this paper is not to
provide a detailed ocean reanalysis based on NEMO), this analysis will be sufficiently
complex to highlight the features of our methodology and to provide a roadmap for
posterior belief assessment in the calibration of computer models.

6.2 Alternative judgements

Even with the detailed modelling in Section 2, there is a great deal left to specify before
a Bayesian analysis can be completed. The remaining choices for prior and likelihood
are part of one member of a collection of judgements from J0, J1, . . .. We describe the
elements of J0 and list the types of possible alternatives to each element we consider
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and the rationale behind choosing them. We will then divide the types of alternatives
into a number of co-exchangeable classes, following Section 5, and select a number of
representatives for each class.

We begin with judgements concerning the prior and likelihood of the emulator com-
ponent, starting with the type and number of terms in response surface component
gd(x). Our preference is to fit complex response surfaces with gd(x) containing complex
polynomial terms in x chosen using some model selection algorithm. There is consider-
able literature adopting this approach (cf. Craig et al., 2001; Cumming and Goldstein,
2009; Williamson et al., 2012; Vernon et al., 2010; Kaufman et al., 2011; Williamson et
al., 2014), which is based on a philosophy that global effects can be captured using the
response surface, allowing local effects to be captured by the Gaussian process residual.
We use a stepwise selection routine described in Williamson et al. (2013) similar to that
used in Sexton et al. (2011) that aims to add as many variance describing terms to each
gd(x) as possible and then deletes those that describe the least variance, one at a time,
until there are fewer terms than a maximum allowed number (specified as a percentage
of the number of degrees of freedom available) and the explained variance of the best
current best candidate for deletion is above a certain threshold (usually 0.1%). Our
default choice is to use 10% of the available degrees of freedom allowing up to 40 terms
in each gd(x). This is part of J0.

As well as the potential to choose fewer terms using our model selection routine,
we also consider other approaches that are popular within the literature. A popular
choice is gd(x) = (1, x1, . . . , xr)

T (Andrianakis and Challenor, 2012; Lee et al., 2013),
as is the choice made in the original computer experiments paper of gd(x) = 1 (Sacks
et al., 1989). We view these two as not ruled out alternatives reflecting, for example,
a difference in expert opinion in the form of the likelihood. In this study, as in most
applications with emulators (cf. Haylock and O’Hagan, 1996; Kennedy and O’Hagan,
2001; Santner et al., 2003), we use the reference prior for response surface coefficients
so that π(βd, σ

2
f ) ∝ 1/σ2

f .

Popular choices of correlation function R(|x−x′|;κ1:r) in the literature include power
exponential forms and Matérn forms. Power exponential correlation functions take the
form

R(|x− x′|;κ1:r) =

r∏
i=1

exp{−κi|xi − x′
i|p}

with the special case p = 2 being the Gaussian covariance function. Though this is
popular, Bayarri et al. (2007) suggested p = 1.9 was a better alternative as the residual
under the Gaussian correlation function was often too smooth; and others favour Matérn
forms, which are popular in spatial statistics. The two Matérn functions we consider
are chosen for computational convenience and have

R(|x− x′|;κ1:r) =
r∏

i=1

(1 +
√
3κi|xi − x′

i|) exp{−
√
3κi|xi − x′

i|}

and

R(|x− x′|;κ1:r) =
r∏

i=1

(1 +
√
5κi|xi − x′

i|+
1

3

√
5κi|xi − x′

i|2) exp{−
√
5κi|xi − x′

i|}.
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In J0, we select the power exponential form with p = 1.9 as this is the form we are most
familiar with. The other forms (including powers p closer to 1) change both the prior
and the likelihood and are considered as alternatives.

We used the MATCH elicitation tool (Morris et al., 2014) to select values for the
hyper-priors a1:rκ and b1:rκ , selecting values of 2.9 and 5, respectively, for the hyper
parameters in each dimension for J0. We do not rule out alternatives with the same
prior mean for each κ, but allow the variance to be up to twice as large or as low as
5 times smaller. As the nugget in this paper represents the proportion of the residual
variability that is due to the initial condition uncertainty in the model, we base our
prior judgements for ν on how much of the signal in the data we believe our response
surface will capture. Given gd(x) the emulator is fitted using the joint Bayesian update
described in Haylock and O’Hagan (1996). However, we select gd(x) using a stepwise
selection routine (described above) based on ordinary least squares. Following selection
of gd(x), we use the R

2 value of the last fit in the stepwise routine to judge how much of
the residual variability should be uncorrelated based on 7 separately elicited scenarios.
For example, the first scenario is that the OLS fit captures more than 95% of the
variability in the ensemble. In this case we believe the residual is mainly uncorrelated.
We use the MATCH tool to elicit a Be(3.8, 1.7) distribution for ν that is skewed towards
high values. The other scenarios are R2 > 0.9, R2 > 0.8, R2 > 0.7, R2 > 0.6, R2 >
0.4 and R2 ≤ 0.4, with MATCH elicited priors Be(2.3, 1.7), Be(2, 1.5), Be(1.5, 1.5),
Be(1.6, 2.1), Be(1.8, 3.8) and Be(1.4, 3.1), respectively. These judgements are in J0. We
consider alternative judgements that respect the mean of distribution for ν but inflate
the variance by multiplying both aν and bν by a scalar as large as 4.

As we have σ2
e (as shown by the red dashed lines on Figure 2), all that remains is to

specify hyper-parameters controlling the model discrepancy. For ζ we choose a prior for
the roughness length that reflects our belief that if the model is biased at one depth,
it is very likely to be similarly biased at nearby depths. We specify aζ = 1, bζ = 7 to
reflect this. We do not explore changes to these judgements, however, we concentrate
on the impact of specifying different discrepancy variance distributions. Our current
judgements for this are aη = 1000, bη = 6.8 ∈ J0. This gives an expectation for σ2

η

equivalent to the observation error and is a value we have considered as the modeller’s
tolerance to error in our work with NEMO (see Williamson et al., 2015, for discussion).

Retaining the same mean value, we consider two alternative types of discrepancy
judgement. The first type we describe as “medium” discrepancy where the hyper-
parameters are in the same proportion but roughly an order of magnitude smaller so
that the distribution on σ2

η has a slightly larger variance and is a little more skewed to
higher values. The second is “large” discrepancy, which is similar, but with 2 orders of
magnitude difference in the values of aη and bη so that σ2

η has a much larger variance
and is very highly skewed towards higher values. Unlike some of the alternatives to the
likelihood described earlier in this subsection, these alternatives represent quite different
perspectives on the relevance of the NEMO ocean model to the actual ocean (for global
mean temperature at least). Hence, we might view these alternatives as representative of
different levels of confidence held by different ocean modellers about the NEMO model.

Before describing our co-exchangeable classes of alternative judgements, it is worth
making a brief comment about the way the emulators are fitted and the calibration
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performed. Though we do run MCMC to obtain posterior judgements about y(d), we
follow the standard approach in calibration and first fix the correlation and nugget
parameters after conditioning on the ensemble (Kennedy and O’Hagan, 2001). This
means first fitting the emulator, then using it in the calibration to the data. We choose
the MAP estimates of κ1:r and ν instead of maximum likelihood estimates, as these
account for our prior modelling. MAP estimates are obtained using simulated annealing.

6.3 Co-exchangeable classes of not ruled out alternatives

We will be interested in E [y(d5)|z(d1:4)], the expected global mean temperature at
around 1405 metres depth given the four observations we have taken. For many of the
alternative modelling and prior choices we have described there may well be an impact
upon this posterior expectation, however, due to the complexity of the model it is not
clear to us, a priori, how any impacts might be related. However, we do have views
regarding how the type of response surface we fit and how the different discrepancy
choices might lead us to quite different analyses. Hence our division of the collection of
possible alternative posterior expectations under different judgements will be based on
these 2 parts of our modelling.

Considering the type of response surface fitted first, we view the alternatives as
forming 3 distinct impacts upon our analysis. In the case of complex mean functions
fitted using our stepwise routine, we consider that much of global signal will be captured
by βT gd(x), allowing the Gaussian process εd(x) to capture only local departures from
this surface. Hence posterior estimates of σ2

f , ν and κ1:r are likely to be much different
than in the cases where either a linear or constant response surface is fitted. In the case
of complex mean functions, as the εd(x) process will be more tuned to local deviations
from the response surface rather than the behaviour of the function in the whole model
parameter space, we believe it will be more accurate than the other emulators in regions
of parameter space that are close to our design points. If we have any design points that
are quite close to x∗, we expect E [y(d5)|z(d1:4)] to be captured more accurately using
this emulator than the other types.

However, we have no strong views on how reducing the number of allowed degrees of
freedom to be spent on fitting the stepwise regression will impact upon this argument.
As we only allow a minimum of 5% of the degrees of freedom to be spent on the
response surface (in this case the same number of degrees of freedom spent using the
linear response surface with all of the parameters), we believe that the major global
non-linearities will be captured by βT gd(x) anyway. Therefore, even though εd(x) may
contain more of the global signal than if a higher number of degrees of freedom were
spent, it may not (some of the additional terms retained in βT gd(x) when a higher
percentage of our degrees of freedom are spent may in fact be capturing local signal
through high order interactions between inputs).

We view the cases of the linear (in the model inputs) and constant response surfaces
to have distinct impacts upon our posterior expectation, both from the complex mean
case (for the reason given above) and from each other, as we now explain. In the case of
the emulator with linear mean, the posterior uncertainty of the emulator will increase
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asymptotically as we move outside of the convex hull of design points (as it would
with the complex mean), however, the same is not true of the constant mean emulator.
Hence, we may view this increased uncertainty outside of the convex hull of design
points as contributing to our posterior expectation in some way. Perhaps, for example,
x∗ is outside of that convex hull, leading to our range of possible values of the computer
model at x∗ to be quite different in the two cases. Or perhaps the model outputs that are
possible in the linear mean case, but not in the constant mean case, bias the posterior
expectation in one particular direction (perhaps they allow much higher temperatures,
but not lower).

So far, we have defined 3 distinct classes of judgements based only on our choice of
emulator. The choice of discrepancy variance parametrisation (“standard”, “medium”
or “high”) will also impact upon our prior judgements for E [y|z]. High values of model
discrepancy variance reduce the impact of information from the ocean model on our
posterior expectations for ocean temperature. If the discrepancy is high enough, it can
effectively “take over” as there is little information in the data about the ocean model
parameters so that our prediction is driven by the Gaussian process discrepancy fitted
as (approximately) a deviation from the ensemble mean. We do not view the “medium”
case as being different enough from the “standard” to change our beliefs about E [y|z].
The medium case has a wider range for σ2

η and is slightly more skewed towards higher
values, but only slightly and not enough to give us any strong views. However, we
view the “high” case, which is much more skewed and allows much higher discrepancy
variances, to be distinct from these other two.

Combinations of our two distinct classes driven by discrepancy judgements and 3
distinct classes based on the type of emulator lead to 6 classes of potential judgements.
Within each class we have all choices of covariance function and hyper-priors for the
emulator residual. By just considering our alternative hyper prior choices a1:rκ and b1:rκ ,
(any values such that the prior mean of the half length correlation is the same but
that the variance can be up to twice as large or as low as 5 times smaller), we can see
that there are infinitely many alternative judgements within each class (a1:rκ and b1:rκ are
continuous). Within each class we have no a priori views on how the means, variances or
covariances of E [y|z] would differ with each possible alternative. We also have no views
on any specific member dependent differences between E [y|z] calculated from different
classes. Hence we assume that the 6 defined classes C1, . . . , C6 are co-exchangeable.

6.4 Posterior belief assessment

Let Jij represent a collection of modelling judgements from Ci, then (10) gives

E
[
y(d5)|z(d1:4); Jij

]
= M(Ci) +Rj(Ci),

and we can apply (6), (7), (8), (11) and (12) to compute ED [M(Ci)] for i = 1, . . . , 6,
with D = {E[y(d5)|z(d1:4); Jn(1)m(1)

], . . . ,E[y(d5)|z(d1:4); Jn(N)m(N)
]} and with

Jn(1)m(1)
, . . . , Jn(N)m(N)

chosen modelling choices from each class. Defining G as in Sec-
tion 5, then in order to perform the posterior belief assessment and compute EG [y(d5)]
via (4) we require E [y(d5)], Cov [y(d5),G], Var [G], E [G] and a means to computing G
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from D which, further, requires E [M(Ci)], Cov [M(Ci),M(Cj)] and Var [Rj(Ci)] for
each i = 1, . . . , 6.

We first select the further Bayesian analyses we will do to obtain D, by choos-
ing a representative set of judgements from each class. We do this by first selecting a
number of distinct alternative choices from those not ruled out in Section 6.3 for each
prior/likelihood decision in our modelling. These are as follows: for classes involving
complex response surfaces, we allow both 10% and 5% of the degrees of freedom to
be spent in model selection. For the “medium” and “high” discrepancy settings we di-
vide both the standard choices of the hyper-parameters by 10 and 100, respectively.
For all classes, we allow both classes of Matérn, the Gaussian covariance function and
the power exponential with p = 1.5. We multiply all hyper-parameters of κ1:r by 5 or
0.5, respectively, and allow the nugget hyper-parameters to be multiplied by 4. Each
combination of alternative choices and our standard choices is also allowed.

Instead of running alternative Bayesian analyses for each possible combination, we
take advantage of co-exchangeability, sampling 32 choices from C1 (the largest class)
and 8 from each of the remaining classes. Each Bayesian analysis builds the emulator
determined by our modelling choices, then uses a random walk metropolis hastings
algorithm with 21, 000 samples, discarding 1000 as burn in and thinning every 20, to
obtain a sample from the posterior distribution implied by our modelling choices from
which an expectation can be computed. This gives D, however, in order to compute
G and EG [y(d5)] we require each of the other ingredients described above. We obtain
these here by sampling.

We use the sampling scheme described in Section 4.2. The first step of this process
was to be able to form distributions (E [y] ,Var [y]) and (E [z|y] ,Var [z|y]) and to be
able to sample values of y then z. Given y, we can easily obtain z using σ2

e and our
statistical model. In an application where our judgements would be crucial in informing
scientists about global temperatures in the real ocean, rather than one conducted for
illustrative purposes, we would prefer to attempt to elicit means and variances for y
directly. However, as this example is illustrative, we do not have the expertise available
to do this. We therefore sample values of y by sampling one of our sets of judgements
at random and forming the emulator f̂(x), sampling an x∗, drawing a sample from f̂(x)
at this sample and adding it to a sample from the discrepancy distribution.

Having generated a y and z pair, we run a similar MCMC calculation to that de-
scribed above in order to generate a sample of D under the sampled y and z in the
manner described in Section 4.2 step 2. To make things computationally more feasible
we run shorter simulations (6000 MCMC steps) with the same number discarded as
burn in, thinning every 10. We took 13,000 samples of the 72 elements of D for different
y and z pairs like this using the condor cluster at Durham University Maths department
to complete all calculations within a day.

We first use these samples to assess E [M(Ci)], Cov [M(Ci),M(Cj)] and Var [Rj(Ci)]
for each i = 1, . . . , 6. We obtain the first two of these three quantities for each class
by taking the mean over all experiments for each member of D and by computing the
mean and variances of these within each class. The latter is assessed by taking the mean
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of the variances over all experiments for each class and subtracting the assessment for
the variance of M(Ci). For simplicity, we assume Cov [M(Ci),M(Cj)] = 0 for j �= i as
each had a small variance so was treated as known. When conducting these samples, an
important part of any application of our methodology to a real world problem would be
to perform diagnostics, using the samples, on our exchangeability judgements. Whilst
we do not have the space to address this here, we comment that the sampling method
offers the chance to examine the validity of our statistical modelling without confronting
it with our only real data.

For each sample, we now compute the sample Bayes linear adjusted expectation
ED [M(Ci)] using the quantities derived as above, and use them to form sample val-
ues of G as in step 3 of our algorithm. We now have coherent sample values of y and
G and use them to establish all quantities required to compute EG [y] via (4) as de-
scribed in step 4. We then compute the actual ED [M(Ci)] based on our observation
driven MCMC calculations, form G and compute EG [y]. The values of EG [y(d5)] and
E [y(d5)|z(d1:4); J0] are 2.921◦C and 2.951◦C, respectively. The adjusted variance in y
following each analysis, Var [y(d5)] − Var [EG [y(d5)]] and Var [y(d5)] − Var [EG1 [y(d5)]]
was 0.0262 and 0.0226. As described in Section 4, part (i) of the theorem implies that a
lower bound on the amount of uncertainty reduction in y(d5) achieved performing a pos-
terior belief assessment (computed by taking the ratio of these two adjusted variances)
is 14.0%.

We note here that our choice of how many samples to take from each class was largely
arbitrary in this problem. However, if we built in a way of using elements of D to learn
about Var [Rj(Ci)] before then computing ED [M(Ci)] as part of what Goldstein and
Wooff (2007) called a two stage Bayes linear analysis, we would be able to use this
information to see how our uncertainty in M(Ci) was reduced using D. The idea would
be to use information from this procedure to decide how many samples would be required
from each class. Developing a two stage procedure for posterior belief assessment would
be technically challenging and is a possible avenue of future research.

The posterior belief assessment for y is a constant plus a linear combination of the
elements of G. Hence it is instructive to observe what the coefficients of this linear
combination are. We show these in Table 1. The larger coefficients for the three classes
corresponding to the high discrepancy case indicate that this judgement may represent
the main difference between our expectation following posterior belief assessment and
that conditioned only on our original judgements. Though the goal of this analysis is
not model selection, these coefficients do offer some a posteriori information about the
relative merit of each class of model. If model selection was of interest, any particu-
larly influential classes might be further explored by looking at the particular linear
combination of the elements of D that influence its adjusted expectation to see if there
were any particularly influential conditional expectations. We note, however, that the
elements of G (and of D) are not orthogonal so any interpretation as to the relative
merits of any class of model (or individual model) on the posterior belief assessment is
not straightforward.

The adjusted variance, Var [EG [y]] is such that E [y|z; J0] is not even 1 standard
deviation away from EG [y]. Hence, in this example, our modified posterior judgements
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are close to those from the initial Bayesian analysis under J0. This is not strictly a robust
Bayesian analysis, however, given the number of alternative modelling choices explored,
we would view our conclusions as robust to both the prior and likelihood choices we
have made. Though there are obvious similarities with sensitivity analysis here, we note
that our inference actually combines all of the information from the sensitivity study,
rather than only using the extra information as a sanity check. Further, if our analysis
suggested, for example, that our assessment was sensitive to the samples we had taken,
that would only suggest performing further analyses in order to reduce Var [EG [y]],
rather than requiring us to think more carefully about certain aspects of the prior or
likelihood.

E [y|z; J0] ED [M(C1)] ED [M(C2)] ED [M(C3)] ED [M(C4)] ED [M(C5)] ED [M(C6)]
0.133 0.383 −0.078 0.361 1.140 1.024 −0.842

Table 1: Coefficients from EG [y] for each of the elements of G.

7 Discussion

Performing a truly subjective Bayesian analysis (where all elements of the prior mod-
elling are held subjective beliefs, leading to a clear interpretation of the posterior dis-
tribution) in problems requiring complex statistical models, would be extremely chal-
lenging, expensive and time consuming. This would be the case even if elicitation of
high-dimensional joint distributions, even for non-standard forms, was well supported
and routine in Bayesian analysis. However, the case where we require posterior beliefs for
every, or even very many, combinations of quantities in our statistical model is perhaps
rare at best, though likely non-existent. Posterior belief assessment is a methodology
that allows us to use the full Bayesian machinery in order to obtain beliefs for key
quantities of interest using as many alternative forms of prior and likelihood modelling
judgements as we are prepared to consider as representative of our judgements regarding
the problem structure and our beliefs before undertaking the analysis.

We showed that, as a consequence of temporal sure preference, the posterior belief
assessment is closer to the prevision we would specify at time t, than a full Bayesian
analysis on our initial/default set of modelling judgements. We showed that we ex-
pect a posterior belief assessment to resolve more of our uncertainty about those key
judgements of interest than a standard Bayesian analysis.

We argued that posterior belief assessment was a powerful and tractable alternative
to traditional robust Bayesian analyses (that attempt to proceed analytically) when
of interest is how robust any key judgements might be to plausible alternatives to
modelling. Whilst a traditional analytic robust Bayesian analysis might not be possible
in most applications with complex statistical models, we can perform a posterior belief
assessment as long as we are able to repeat the Bayesian sampling computation (either
in parallel or otherwise) for a finite set of alternative judgements. Our approach both
gives us posterior judgements about quantities of interest, the difference between these
and a one-off Bayesian analysis, and information as to which alternative prior modelling
choices contribute to these and by how much.



D. Williamson and M. Goldstein 905

Though tractable, particularly when compared to robust Bayes in complex statistical
models, a posterior belief assessment requires a number of additional full Bayes analyses,
that will likely involve computationally expensive sampling procedures to be repeated. If
it would exhaust the analyst’s computational resources to perform one of these analyses,
posterior belief assessment will not be feasible. However, in most cases, either additional
time or access to distributed computing facilities will be available and will allow the
extra calculations to be done. In some cases, an alternative set of judgements may lead
to a statistical model for which the Bayesian machinery has not yet been adequately
developed to sample from, or that would involve a great deal of extra effort to implement.
In these cases, it may be that such models belong to a co-exchangeable class containing
models that are easier to sample from. If so, we run the simpler alternatives from this
class and proceed as discussed in Section 5. If difficult to implement alternatives are not
second order exchangeable with simpler alternatives, then further methodology may be
required to perform a posterior belief assessment.

The principal challenge when performing a posterior belief assessment is in consid-
ering all possible alternatives of prior and likelihood to the original set of judgements
J0 that you would be unwilling to rule out based on your current understanding. As
illustrated by our application to the ocean model, in complex models the ways in which
the model can be plausibly (in your view) changed can quickly grow and be difficult to
think about and to then group into co-exchangeable classes. There are many statisti-
cal models being developed that are far more complex than our ocean model example
(but that can be readily sampled from using MCMC), so this task could seem far more
daunting than in our case in some applications. However, in subjective Bayes there is
no such thing as a free lunch and, making meaningful belief statements updated prop-
erly by available data, necessarily involves careful thought so that their meaning is well
understood following the analysis.

The other main challenge in performing a posterior belief assessment involves ob-
taining the quantities required to compute EG [y], namely E [y], Cov [y,G], Var [G] and
E [G]. If these could not be elicited directly using partial prior specification methods dis-
cussed in chapter 2 of Goldstein and Wooff (2007), a combination of expert judgement
(for quantities only involving y), and a sampling scheme we outlined in Section 4.2 could
be used. The sampling method required many many more Bayesian computations to be
performed (perhaps in more approximate form, e.g. MCMC with fewer samples), and
may be infeasible if access to distributed computing is unavailable or in particularly
complex problems. In particular, the number of Bayesian calculations required for a
posterior belief assessment using our sampling algorithm will require a certain amount
of automation in order to be feasible. Distributed computing programs such as condor
make this feasible, as highlighted in our application. Our application was reasonably
complex, yet we managed to perform 13000 × 72 separate Bayesian analyses based on
MCMC using the automation provided by the condor program and a 1000 core clus-
ter at Durham University in only 1 day. Developing tools to allow elicitation of these
quantities directly, or developing alternative methods of deriving them through further,
less computationally burdensome, calculations could be an important avenue of further
investigation in this area.
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