
Bayesian Analysis (2016) 11, Number 1, pp. 125–149

GPU-Accelerated Bayesian Learning and
Forecasting in Simultaneous Graphical Dynamic

Linear Models

Lutz Gruber∗ and Mike West†

Abstract. We discuss Bayesian analysis of dynamic models customized to learn-
ing and prediction with increasingly high-dimensional time series. A new frame-
work of simultaneous graphical dynamic models allows the decoupling of analyses
into those of a parallel set of univariate time series dynamic models, while flexibly
modeling time-varying, cross-series dependencies and volatilities. The strategy al-
lows for exact analysis of univariate time series models that are then coherently
linked to represent the full multivariate model. Computation uses importance
sampling and variational Bayes ideas, and is ideally suited to GPU-based paral-
lelization. The analysis and its GPU-accelerated implementation is scalable with
time series dimension, as we demonstrate in an analysis of a 400-dimensional
financial time series.

Keywords: decoupling models, high-dimensional time series, importance
sampling, parallel computing, recoupling models, variational Bayes.

1 Introduction

Scaling on-line Bayesian analyses of multivariate dynamic models to increasingly high-
dimensions demands new modeling and computational strategies. A key need is for
sequential analysis methods that are computationally accessible while applying to mod-
els of interest in many application areas – e.g., macroeconomics (Koop, 2012; Nakajima
and West, 2013a), financial portfolio studies (Aguilar and West, 2000; Zhou et al., 2014),
commercial and governmental forecasting (Agarwal et al., 2010; Queen, 1994; Anacleto
et al., 2013), large scale-networks in energy demand forecasting (Hosking et al., 2013),
and neuroscience (Trejo et al., 2007; Prado, 2010). This paper addresses this need.

We introduce Simultaneous Graphical Dynamic Linear Models (SGDLMs) and de-
velop their Bayesian analyses utilizing GPU-based computation. Our strategy is to
exploit fast, efficient sequential learning in a set of decoupled univariate dynamic linear
models that capture cross-series contemporaneous dependencies via a sparse and dy-
namic simultaneous equations formulation. We then recouple these parallel univariate
analyses using importance sampling-based reweighting of sets of direct simulations from
the univariate models. The recoupling analysis defines coherent inference and forecast-
ing of the multivariate series, and we then move ahead in time using decoupled models
based on a variational Bayes strategy.
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As defined in Section 2, SGDLMs consist of flexible state-space models of individual
series. Separately, each is amenable to efficient, closed form sequential filtering and fore-
casting (Prado and West, 2010; West and Harrison, 1997). Then, SGDLMs integrate
multivariate dependencies across series at each time point based on the simultaneous
equations representation, defining a new model class in the growing field of sparse mod-
eling of volatility matrices. Unlike Cholesky-style and factor models (e.g., Aguilar and
West, 2000; Lopes et al., 2010; Pitt and Shephard, 1999; Lopes and Polson, 2010; Naka-
jima and West, 2013b), SGDLMs do not require an ordering of the series, which can be
an obstacle to model specification. Compared to dynamic graphical models of precision
matrices (e.g., Quintana and West, 1987; Carvalho and West, 2007; Wang and West,
2009), SGDLMs are scalable computationally, and flexible in allowing for patterns of
change in volatility matrices that are specified implicitly via state-space models for sets
of simultaneous regression parameters. Compared to standard multi- and matrix-variate
DLMs (West and Harrison, 1997, Chapter 16.4), SGDLMs inherently define sparse rep-
resentations underlying time-varying variance matrices, and allow for differing sets of
predictors in each univariate series.

The recoupling analysis uses exact, within-series simulation of states and parameters
combined with importance sampling (IS) reweighting for inference and prediction of the
multivariate series. We then exploit an efficient and accurate variational Bayes (VB)
strategy (e.g., Jaakkola and Jordan, 2000; Wand et al., 2011, and West and Harrison,
1997, Section 12.3.4) to decouple and proceed to the next time point. Importantly, we
monitor and adjust for the VB approximation using information from the IS step.

A main interest is in scaling-up in the number of time series. We exploit (C++/CUDA)
GPU computation (Suchard et al., 2010; Lee et al., 2010) that is ideally suited to the
analysis. Univariate time series model updates and simulations are performed in paral-
lel at each time point, and then recoupled for coherent inference and forecasting before
decoupling again to move to the next time point and re-parallelization. The overall mod-
eling and computational strategy is scalable with time series dimension as a result. We
discuss computational demands with theoretical and empirical benchmarks, illustrate
the GPU implementation, and demonstrate how the implementation enables real-time
Bayesian analysis of a 400-dimensional daily stock return time series.

2 SGDLMs

2.1 Model Structure: Definitions and Notation

Series-Specific Form Consider the m-dimensional time series yt = (y1t, . . . , ymt)
′, t =

1, 2, . . .. Each univariate series yjt is represented via a linear, normal state-space model
with a traditional variance discount model of stochastic volatility (West and Harrison,
1997; Prado and West, 2010). With the convention that all vectors are columns, the
basic model form is:

yjt = F′
jtθjt + νjt = x′

jtφjt + y′
sp(j),tγjt + νjt, (1)

θjt = Gjtθj,t−1 + ωjt, (2)
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where the observation error νjt ∼ N(0, λ−1
jt ) and state evolution error ωjt ∼ N(0,Wjt)

are independent, zero mean normals and are independent of all past such terms and
across all series i �= j. Predictor vectors xjt and ysp(j),t are catenated to define F′

jt =

(x′
jt, y

′
sp(j),t); corresponding state vectors φjt and γjt similarly define θ′

jt = (φ′
jt, γ

′
jt).

Here xjt is a series-specific vector of exogenous predictors, while ysp(j),t is a vector of
contemporaneous values of some of the other series, indexed by sp(j) ⊆ {1:m}\{j} and
called the simultaneous parental set for series j. State vector φjt has dimension pjφ,
state vector γjt has dimension pjγ = |sp(j)|, so that θjt has dimension pj = pjφ + pjγ .
The model context assumes the parental sets, and hence their dimensions, are fixed
over time (at least, fixed over the period of time chosen for analysis) as part of the
model specification. Conditional on the state vector and exogenous predictors, write
μjt = x′

jtφjt. The state vector evolves according to the linear evolution with state
matrix Gjt. The states θjt and λjt are learned sequentially, while all other quantities
are specified through prior or model choices.

Equations (1) and (2) define a set of coupled, dynamic simultaneous equations that
cohere across j = 1:m, representing a set of dynamic structural equations for the mul-
tivariate model of yt (e.g., Palomo et al., 2007, and references therein).

Across-Series Form Define Θt = {θ1t, . . . ,θmt} and Λt = {λ1t, . . . , λmt}, the sets of
m state vectors and precisions, and

μt =

⎛
⎜⎜⎜⎜⎜⎝

μ1t

μ2t

...
μm−1,t

μmt

⎞
⎟⎟⎟⎟⎟⎠

and Γt =

⎛
⎜⎜⎜⎜⎜⎝

0 γ1,2,t γ1,3,t · · · γ1,m,t

γ2,1,t 0 γ2,3,t · · · γ2,m,t

...
...

. . .
...

...
γm−1,1,t . . . γm−1,m−2,t 0 γm−1,m,t

γm,1,t γm,2,t . . . γm,m−1,t 0

⎞
⎟⎟⎟⎟⎟⎠

where we extend the γ∗ notation so that γjht = 0 for each h �∈ sp(j), j = 1:m.

It follows that
yt ∼ N(Atμt,Σt) (3)

where
At = (I− Γt)

−1 and Ωt ≡ Σ−1
t = (I− Γt)

′Λt(I− Γt). (4)

Practical models will typically have small parental sets sp(j) so the resulting Γt matrix
will be sparse. That, coupled with the state evolution models for the γjt, defines a
flexible class of multivariate volatility models for the implied variance matrix Σt and
its inverse – the precision matrix – Ωt. Very sparse Γt can imply (albeit less) sparse
precision matrices; the correspondence of zeros in Ωt with conditional independencies
in the resulting Gaussian graphical models (Carvalho and West, 2007) underlie the
designation of this class of models as simultaneous graphical dynamic linear models.
With even modest m, practical models will have relatively small parental sets. If the
maximum parental set size is k, the model has mk nonzero elements in Γt so that
k < (m−1)/2 means Ωt is not over-parametrized. Our motivation for these models and
their expected utility is in problems with increasingly large m; our financial time series
example in Section 5 has m = 400, k = 10, so represents 79,800 precision parameters in
terms of just 4,000 simultaneous parental parameters.
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We note connections with the use of simultaneous/structural specifications in spa-
tial analysis on lattice data. Simultaneous autoregressive (SAR) models define joint
distributions of outcomes on a spatial lattice via univariate conditional models based
on sparse simultaneous parental (or neighboring) sets in a form similar to that adopted
here (e.g., Anselin, 1988; Oliveira and Song, 2008; Whittle, 1954). Part of the inspiration
for the work here derives from the utility of such models in spatial studies, especially
with regard to scalability to larger problems (Mukherjee et al., 2014).

2.2 Sequential Learning: Structure and Challenges

Sequential analysis moves over time t and updates summary posterior distributions
for model state vectors and precisions as new data is observed. At time t − 1, denote
historical data and information by Dt−1. Evolving to time t, this information set updates
to Dt = {yt, It, Dt−1} where It denotes any additional information or model changes
used between times t − 1 and t, for example, the specification of the state evolution
matrices Gjt, evolution variances Wjt, or changes in the simultaneous parental sets
sp(j) (West and Harrison, 1989, 1997, Chapter 11). Then, analysis over times t − 1 to
t involves: (i) using the time t − 1 posterior p(Θt−1,Λt−1|Dt−1) to infer the prior for
time t, namely p(Θt,Λt|It,Dt−1); (ii) using this prior to compute forecast distributions
for yt and future outcomes beyond time t, as desired; (iii) on moving to time t, updating
to the current posterior p(Θt,Λt|Dt).

The full multivariate model raises computational challenges due to the nonlinearities
in state vectors in (3) and (4). The time t likelihood function forΘt,Λt is directly derived
from the m-variate normal density of (3) as

p(yt|Θt,Λt) ∝ |I− Γt|
∏

j=1:m

p(yjt|θjt, λjt) (5)

where the product is of normal densities from the set of univariate models, namely
yjt ∼ N(F′

jtθjt, λ
−1
jt ) for j = 1:m. As a result, the time t updated posterior is

p(Θt,Λt|Dt) ∝ |I− Γt| p(Θt,Λt|It,Dt−1)
∏

j=1:m

p(yjt|θjt, λjt). (6)

The determinant factor here induces the computational challenges. Apart from the
special cases of compositional models (Nakajima and West, 2013a; Zhao and West, 2014)
in which Γt is triangular with a diagonal of zeros and so |I− Γt| = 1, this determinant
term contributes to the likelihood for the γjt vectors. In very sparse models, the de-
terminant term can tend to be quite diffuse as a function of Θt,Λt when compared
to the product of individual likelihood terms. However, it matters generally; it arises
theoretically to ensure positive definiteness and symmetry of Ωt. In our financial time
series example in Section 5, we demonstrate some of the negative practical consequences
of ignoring this term.
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3 Model Decoupling/Recoupling Strategy

3.1 Motivation and Summary

The forms of (5) and (6) suggest opportunity to exploit separate, parallel analyses of
each univariate series in order to define a sequential computational strategy for the
full multivariate model. Each univariate DLM of (1) and (2) is a linear, normal state-
space model for θjt that, when coupled with the traditional variance discount model for

stochastic volatilities
√

λ−1
jt , is amenable to standard forward filtering and forecasting

analysis in closed form (West and Harrison, 1997). Directly implemented for series j
without regard to the other univariate models, this analysis involves sequentially up-
dated normal/gamma priors p(θjt, λjt|Dt−1), and posteriors p(θjt, λjt|Dt), with simple,
closed-form updates. Were we to simply use these separate univariate DLMs in parallel
and assume independence across series j, then the implied joint priors and posteriors for
the {Θt,Λt} would factorize. Thus, the naive approximation of ignoring the determinant
factor in (5) and (6) is akin to running a univariate DLM on each series individually. We
use this idea to define a computational strategy that improves on this naive approach
while retaining the analytical tractability of the time evolution and update steps.

The steps involved in our decoupling/recoupling strategy are fully detailed in Sec-
tion 3.2. In summary here, standing at time t before observation of yt, the analysis
proceeds as follows:

A. At time t, adopt decoupled priors p(θjt, λjt|It,Dt−1) assumed independent over
j = 1:m.

B. To predict yt+k into the future k = 0, 1, . . ., simulate these independent priors and
use sampled values to evaluate aspects of full multivariate forecast distributions.

C. At time t on observing yt, perform parallel, independent updates to posteriors
in the m DLMs and take their product to yield a naive posterior approximation
p̃(Θjt,Λjt|Dt).

D. Recouple the analyses by evaluating the exact posterior using importance sam-
pling.

E. Decouple the series by emulating the exact posterior by a product of margins over
j = 1:m using variational Bayes.

F. Apply state evolutions independently over j = 1:m to move to time t+ 1.

Note that, in special cases when Γt is chosen to be – or just happens to be – diagonal,
we have a compositional (directed) graphical model specification, with |I−Γt| = 1. The
analysis is then closed-form: the naive posterior from C equals the exact posterior, and
steps D and E can be omitted. In the kinds of practical problems of focus – with more
than a few series – the compositional approach is typically a non-starter since it requires
that the modeler can define a strict ordering of the series. While this can be done based
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on substantive reasoning with relatively few series, choosing an ordering is otherwise
challenging and arbitrary, and results heavily dependent on its choice.

3.2 Model Emulation: Decoupling for Forward Filtering

A. Time t Prior The prior at time t for model states and volatilities is a product of a
decoupled set of m conjugate normal/gamma priors (see Appendix A), namely

p(Θt,Λt|It,Dt−1) =
∏

j=1:m

pjt(θjt, λjt|It,Dt−1) (7)

where pjt(·|·) denotes the density function of

(θjt, λjt|It,Dt−1) ∼ NG(ajt,Rjt, rjt, cjt). (8)

This uses standard notation (Prado and West, 2010) for the normal/gamma

(θjt|λjt, It,Dt−1) ∼ N(ajt,Rjt/(cjtλjt)),

(λjt|It,Dt−1) ∼ G(rjt/2, rjtcjt/2),

in which N(a,A) is multivariate normal with mean a and variance matrix A, and
G(r, rc) is gamma with shape r, scale rc, and mean r/(rc) = 1/c. The implied θjt

margin of (8) is multivariate T with rjt degrees of freedom, mode ajt and scale matrix
Rjt; the marginal variance matrix is Rjtrjt/(rjt − 2) in usual cases that rjt > 2.

B. Time t Predictions The one-step ahead predictive distribution is efficiently simu-
lated by drawing from the set ofm independent normal/gamma priors above, so defining
a simulation sample {Θr

t ,Λ
r
t} from this emulating prior, where the superscript r indexes

Monte Carlo samples for prediction, with r = 1:R for some (large) sample size R. Each
sampled value then defines Monte Carlo values of one-step forecast moments Ar

tμ
r
t ,Σ

r
t

in (3) and (4). Predictions more than one-step ahead follow similarly. Conditional on
sampled moments, the resulting conditionally normal predictive distributions can be
summarized or simulated for predictive inferences.

C. Naive Time t Posterior Updates Standard updating equations applied indepen-
dently and in parallel lead to

(θjt, λjt|Dt) ∼ NG(m̃jt, C̃jt, ñjt, s̃jt) (9)

with density functions denoted by p̃jt(·|·). See Appendix A for details and the explicit
updating formulæ. The resulting naive posterior approximation to p(Θt,Λt|Dt) is then

p̃(Θt,Λt|Dt) =
∏

j=1:m

p̃jt(θjt, λjt|Dt), (10)

which ignores the determinant term in (6).

D. Recoupling to Exact Time t Posterior We know that the exact posterior is

p(Θt,Λt|Dt) ∝ |I− Γt|
∏

j=1:m

p̃jt(θjt, λjt|Dt). (11)
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Now, draw N independent samples from the m-variate naive posterior approximation
in (10); the product form of the density can be exploited for independent and parallelized
sampling from the m within-series posteriors in (9); these are then combined to define
the full sample {Θi

t,Λ
i
t}. Compute and normalize sample weights αti ∝ |I − Γi

t|. Use
these samples and weights

{Θi
t, Λi

t, αti}, i = 1:N, (12)

as an importance sample to compute Monte Carlo estimates of features of the exact
joint posterior distribution in (11). Denote this importance sampling, Monte Carlo-
based approximation by pMC(·|·).

Note that the importance sample weights do not depend on the values of the simu-
lated φi

jt, λ
i
jt; they depend only on the simultaneous coefficients γjt. This reflects the

view that the parallel conjugate models will effectively emulate the full multivariate
model in inferring series-specific states and volatilities, while some “corrections” will be
needed for inferences on the parental states that explicitly define cross-series structure.
Importance sampling is the natural and elegant approach to making these corrections.
The univariate series/models are decoupled for updates and direct simulation, and then
recoupled for importance sampling targeting the exact posterior.

E. Decoupling of Time t Posterior To move ahead to the next time point, decouple
the posterior from part D into a product of conjugate forms across series j = 1:m.
A standard variational Bayes (VB) approach, or mean-field approximation (Jaakkola
and Jordan, 2000) emulates the exact posterior by an independent product of nor-
mal/gammas

p(Θt,Λt|Dt) ∝
∏

j=1:m

pjt(θjt, λjt|Dt) (13)

with components

(θjt, λjt|Dt) ∼ NG(mjt,Cjt, njt, sjt). (14)

The parameters of this variational Bayes posterior are chosen to minimize the Kullback–
Leibler divergence1 KLp|pMC

of p(·|·) from pMC(·|·). Using E[·] to denote expectations
under pMC(·|·), standard theory (e.g., West and Harrison, 1997, Section 12.3) implies
that:

• mjt = E[λjtθjt]/E[λjt],

• Vjt = E[λjt(θjt −mjt)(θjt −mjt)
′],

• djt = E[λjt(θjt −mjt)
′V−1

jt (θjt −mjt)],

1For any random quantity z, the KL divergence of a distribution with density g(z) from one with
density p(z) is KLg|p = −Ep

[
log{p(z)/g(z)}

]
. Here densities are continuous, discrete or mixed and

have common support, and Ep[·] is the expectation under p(·).
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• njt is the unique value that satisfies

log(njt + pj − djt)− ψ(njt/2)− (pj − djt)/njt − log(2E[λjt]) + E[log λjt] = 0,

• sjt = (njt + pj − djt)/(njtE[λjt]), and

• Cjt = sjtVjt.

These are easily computed, with njt requiring a (trivial) iterative numerical approach;
see Appendix B.4. Both the conceptual basis and technical aspects of mapping to sets
of conjugate forms has a long history in the Bayesian dynamic modeling and forecasting
literature (e.g., Harrison and Stevens, 1971; Alspach and Sorenson, 1972; Harrison and
Stevens, 1976; Smith and West, 1983; West and Harrison, 1997, Section 12.3.4).

F. Evolution to Time t+ 1 Moving ahead one time point, the states evolve via inde-
pendent models of (2). This results in evolved priors as given in (7) in part A above, but
with time index t updated to t+1. Formulæ are given in Appendix A, simply following
standard DLM theory and notation (West and Harrison, 1997).

3.3 KL Divergence and IS-VB Strategy

The VB-based posterior of (13) represents an improvement over the initial p̃(·|·) of
(10) as it minimizes KLg|pMC

over all g(Θt,Λt) that are products of m normal/gamma
forms for the (θjt, λjt), j = 1:m. It turns out that the importance sampling weights
αti in (12) provide a direct assessment of the value of the divergence KLp̃|pMC

. This
general but, apparently, not well-known result relating KL divergences to importance
sampling weights is of utility here as well as more broadly. Specifically, write HN =∑

i=1:N αti log(Nαti), the entropy of the importance sampling weights αti relative to
a set of N uniform weights – one measure of efficacy of importance samplers (e.g.,
West, 1993). It is easily shown that, as N → ∞, HN → KLp̃|pMC

; hence, the relative
entropy gives a direct estimate of the optimized KL divergence. It can also be shown
that HN ≤ N

∑
i=1:N α2

ti−1 = N/SN −1 where SN is effective sample size; for large N ,
the limiting value of SN/N is bounded above by 1/(1 +KLp̃|pMC

).

Hence HN gives an estimate of the upper bound of the minimized divergence; if
HN is already small – based on calibrating to effective sample size as above – then we
are assured of closeness of the revised VB-based posterior approximation. Furthermore,
the KL divergence of any subset of parameters (Θt,Λt) cannot exceed the divergence
on the full set. This makes the latter an operational upper bound on divergences of
the approximating marginal posteriors in any of the m individual models. If the overall
approximation is good, we do not have to monitor the margins on models j = 1:m.

A further positive theoretical feature relates to evolution from time t to t + 1. The
KL-optimized product of normal/gamma posteriors for (Θt,Λt|Dt) evolves to a similar
analytic form for the time t + 1 prior p(Θt+1,Λt+1|It+1,Dt). Now, we know that KL
divergence decreases through convolutions; hence, the divergence of this normal/gamma
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product for (Θt+1,Λt+1) is a better approximation of the exact time t + 1 prior than
was the case for the time t posterior. If we have a high-quality posterior approximation
at time t, then the situation only improves following evolution.

4 GPU-Accelerated Implementation

4.1 General Comments

The analysis strategy of Section 3 is ideally suited to distributed implementation on
computers with graphics processing units (GPUs). GPUs feature hundreds or thou-
sands of compute cores that can be used to execute single instruction, multiple data
(SIMD) operations in a massively parallel mode (currently common multi-core desktop
processors typically have no more than eight cores). Whenever the same set of numer-
ical operations has to be performed many times on different data, GPU-accelerated
implementations offer the potential to vastly outperform CPU equivalents, based on
distributing these computations to cores in parallel. Our model and computational de-
velopment, and accompanying code, contribute to the growing body of literature linked
to Bayesian statistical computations that are inherently enabled via GPU implementa-
tions (e.g., Suchard et al., 2010; Lee et al., 2010) due to being simply ideally suited to
the GPU hardware/software model; these references also discuss the relative speed-up
that can be achieved over CPU computation. We note some specifics related to each of
the steps in the analysis of Section 3.

4.2 Predictive Computations

Computations for predictive distributions (Section 3-B) are immediately parallelizable,
exploiting the decoupling/recoupling strategy. For one-step ahead predictions, Monte
Carlo draws {θr

t , λ
r
t}, r = 1:R, from the independent priors at time t in (7) are sim-

ulated in parallel. The sampled states and volatilities are then sent to the CPU to
combine and compute the implied Monte Carlo values of one-step forecast moments
Ar

tμ
r
t ,Σ

r
t in (3) and (4). It is then trivial to numerically summarize and/or simulate

the one-step ahead predictive distribution p(yt|It,Dt−1) from this Monte Carlo sample
of means and variance matrices. Predictions more than one-step ahead follow similarly,
and again exploit distributed computation as the series-specific states and volatilities
evolve independently in state (4).

4.3 Posterior Update Computations

Updates and simulations of naive posterior approximations in Section 3-C,D are each
immediately parallelizable. The analytic update computations of parameters of the naive
posterior approximations are trivially computed in parallel, and then fed into parallel
cores for simulation of the m posteriors in parallel; this is distributable over both m
and the Monte Carlo sample size N to maximally utilize the capacity of available GPU
cores. Following simulation, the Monte Carlo samples are recoupled, i.e., returned to
the CPU for evaluation and normalization of the importance sampling weights αti.



134 GPU-Accelerated Learning and Forecasting of SGDLMs

Based on the multivariate importance samples {Θi
t,Λ

i
t, αti}, we can then trivially

compute summaries of the weights to monitor Monte Carlo accuracy, including the
effective sample size and entropy measures SN , HN discussed in Section 3.3.

4.4 Computational Costs

Let M represent Monte Carlo sample size, whether M = R for forward sampling for
prediction, or M = N in importance sampling for posterior updates (often, we will
simply take R = N so that M is the common value). Scaling computations in M is then
a critical interest.

The lead complexity of sampling {Θt,Λt} isO
(
Mmp2max

)
where pmax = maxj=1:m pj .

Computing the determinant |I − Γ∗| is the most expensive operation, with a cost of
O
(
Mm3

)
. In k-step forecasting for k ≥ 1, simulation of states {Θt+k,Λt+k} uses previ-

ously sampled states {Θt+k−1,Λt+k−1} and incurs additional costs of O
(
Mmp3max

)
for

each k. Then inverting I − Γt+k costs O
(
Mm3

)
. So the overall computational cost of

forecasting at each of k-steps ahead is O
(
kM(m3 +mp2max)

)
as M → ∞. The order of

computational costs in M,m is the same for posterior decoupling/recoupling updates
and for forecasting, while the actually incurred costs will increase linearly with the
numbers of steps k that we choose to forecast.

5 Evaluation: Stock Return Study

5.1 Data and Study Set-Up

We analyze daily log-returns of m = 400 S&P stocks. In a simple class of SGDLMs,
we evaluate 1-step ahead forecasts for both selected individual series and across all se-
ries. We study of the effects of ignoring the coupling of the set of simultaneous model
equations, to bear out the utility of the decoupling/recoupling strategy. We also com-
pare the results with those from a benchmark analysis using the standard Wishart
discount model of multivariate stochastic volatility (WDLM; West and Harrison, 1997,
Chapter 16.4).

Our data represent m = 400 current members of the S&P 500 index, restricting to
those 400 that were continuously listed from October 2000 to October 2013, our study
period. The data are daily log-returns, which are differences in daily log-prices. We use
the first 845 daily observations, T1 = 1:845 (up to December 2003) as training data
for an initial exploratory analysis to define the simultaneous parental sets for each of
the m = 400 series. Based on these chosen parental sets, we then use the following
522 daily observations, T2 = 846:1,367 (from January 2004 through December 2005) as
further training data to evaluate and select suitable discount factors for the dynamic
models, and to provide priors for analysis of the following test data. The test data
are the remaining 2,044 observations, Ttest = 1,368:3,411 (from January 2006 through
October 2013). This provides an honest sequential forecasting analysis and evaluation
on this substantial series of hold-out/test data. In both training and test data analyses,
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the Monte Carlo sample sizes R, for forecasting, and N , for IS-based posterior updates,
were set at R = N = 10,000.

5.2 Model Structure and Specification via Training Data Analysis

SGDLM Form For each of the 400 univariate series, we use the local-level (random
walk) for a time-varying trend DLM (West and Harrison, 1997, Chapter 2) common in
studies of financial returns (e.g., Aguilar and West, 2000; Nakajima and West, 2013b).
This is coupled with a specified set of 10 simultaneous parents, whose coefficients also
evolve via random walks. In (1), we then have pjφ = 1, xjt = 1 and pjγ = 10. The
state evolution models of (2) have Gjt = I, the 11-dimensional identity matrix. We use
the standard block discounting approach to specify the variance matrices Wjt (West
and Harrison, 1997, Section 6.3.2). Specifically, each Wjt is defined using two discount
factors δφ, δγ , each in (0, 1), that determine evolution variance matrix block components
for level and simultaneous parental coefficients, respectively.

Simultaneous Parental Sets We used the initial 3 years of data, T1 = 1:845 over 2003,
for exploratory analysis to select the sp(j) for each j = 1:400. On this initial training
data set, we simply ran separate, univariate DLMs with a local level and with all the
remaining 399 series as simultaneous parents. We then chose pj = 10 series to define
each sp(j) by selecting those with the largest estimated effect sizes over the later part
of the training data.

The set of simultaneous parents obviously plays a key role in model fit and fore-
casting. Here, we emphasize that more formal model selection is not a theme in the
current paper. In practice, we operate with a chosen set of parental sets over given
periods of time, refreshing/modifying the parental sets periodically via off-line anal-
ysis, and/or using multiple such sets – a restricted number – and engaging in model
averaging. A future paper will address this question of model uncertainty. The cur-
rent paper takes the parental sets as given – based on detailed exploratory analysis of
training data – the focus and contributions involving the SGDLM modeling innovation
and the decoupling/recoupling computational strategy. We show in this example that
the enhancements under this strategy are not merely theoretical considerations, but
significantly improve forecasting in this m = 400-dimensional setting.

WDLM Form The benchmark model for comparison is a local-level DLM with Wishart
discount-based multivariate volatility (West and Harrison, 1997, Chapter 16.4) for the
full 400-dimensional time series. This uses a discount factor δ to define the evolution
variances of the local levels, and a discount factor β for the Wishart discount-based
evolution of the full 400 × 400 observation variance matrix. Initial priors are taken as
m0 = 0, C0 = 0.001, S0 = 0.1I and n0 = 5 in the notation of the above reference, and
the resulting forward filtering and forecasting equations are as detailed in Theorem 16.4
of West and Harrison (1997).

Discount Factor Specification We ran the SGDLM analysis on the second training
set of data, T2 = 846:1,367. This initialized at t = 846 with priors of (8) is based on:
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rj,846 = 5 and sj,845 = 0.001, aj,846 = 0 and Rj,846 = diag(0.0001, 0.01, . . . , 0.01). This
analysis was used to explore the impact of varying the state discount factors δφ, δγ and
the volatility discount βj = β, all assumed the same across series j. This settled on
chosen values βj = 0.98, δφ = 0.98, δγ = 0.99 based on standard evaluation of one-step
ahead forecasting accuracy.

We then reran the analysis but without the IS-VB step of the computations, i.e., sim-
ply using the parallel, independently updated set of models. This analysis led to choices
βj = 0.98 and δφ = 0.98 again, but we found improved 1-step ahead forecasting with an
appropriately higher discount factor δγ = 0.999 on the parental predictors. Below we
evaluate forecasting on the hold-out/test data using this incoherent/approximate set of
independent model as well using the full decoupled/recoupled analysis. This differential
choice of discount factors makes this an honest comparison as we begin the analysis of
test data with optimized parameter specification for each strategy.

A parallel analysis of the benchmark WDLM was similarly evaluated, and led to
optimal discount factors of δ = 0.98 and β = 0.9975.

5.3 Forecasts of Stock Returns: Test Data Analysis

We review sequential learning and forecasting in the test data period, Ttest =1,368:3,411,
with a number of summaries. This includes aspects of Monte Carlo accuracy, and fore-
cast assessments for individual time series as well as in the aggregate. Part of this in-
cludes analyzing coverage rates of 1-step ahead forecast intervals and validation against
observed values. The initial priors at time t = 1,368 are, in each analysis, simply those
evolved from the corresponding posteriors at time t − 1, the last day of the training
data period.

Analysis of the IS-VB Strategy

Figure 1 shows the effective sample size SN of the IS-VB step at each time point t. Based
on the N = 10,000 samples, SN exceeds 7,000 during approximately 98% of the test
time period Ttest. There is a short-lived drop to about 6,100 during a period of extreme
market stress following the collapse of Bear Sterns in September 2008. In the range
from 7,000 to 9,000, the typical effective sample size indicates excellent performance of
the importance sampler. Figure 1 also shows the corresponding IS-based estimate HN

of the KL divergence KLp̃|pMC
of p̃(·) from the Monte Carlo approximation pMC(·) at

each time. Bounding the KL of the variational Bayes posterior and the exact posterior
from above implies that the variational Bayes posterior will be very close to the exact
posterior.

Aggregate Analysis

Table 1 shows the average coverage rates of forecasts across all series and the entire test
data time period Ttest = 1,368:3,411. Forecast intervals from the benchmark WDLM
are broadly similar to those from the SGDLM without IS-VB decoupling/recoupling
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Figure 1: SN and KLp̃|p during the test data time period Ttest.

(steps D and E of Section 3; indicated as “no IS-VB” in the table). The full SGDLM
analysis using the importance sampling/variational Bayes strategy (indicated simply as
“IS-VB” in the table) is more accurate – across all coverage levels – than the analysis
that does not use the IS-VB strategy.

Forecast interval 99.0% 95.0% 90.0% 80.0% 50.0% 20.0% 10.0%
IS-VB 98.4% 95.6% 92.4% 85.5% 59.7% 27.2% 14.4%

no IS-VB 99.1% 97.6% 96.0% 92.4% 76.3% 41.8% 23.5%
WDLM 99.2% 98.2% 97.0% 94.4% 79.7% 43.4% 24.4%

Table 1: Coverage of centered forecast intervals across all series j = 1:m and the entire
test data time period Ttest.

Close-Up Analysis of Individual Stocks

We now focus on series-specific forecasting performance for stock returns of six well-
known companies: Apple, Bank of America, General Electric, McDonald’s, Pfizer and
Starbucks.

Trend Figure 2 shows the 60-day tracking moving average of the daily log-returns,
comparing empirical trends with those forecast under the SGDLM with IS-VB, the
SGDLM without IS-VB, and under the WDLM. The three models perform very simi-
larly. A more complex model with series-specific predictors xjt would lead to noticeable
performance improvement of the SGDLMs relative to the WDLM, as the latter requires
the same predictors across all series j = 1:m. We see no obvious advantage of using the
posterior decoupling/recoupling in this aspect of the analysis. This is to be expected:
the importance sampling weights are defined by |I − Γt|, and these values are not af-
fected by values of the trend parameters; as a result, the marginal posteriors will be
adequately estimated without the IS-VB steps.

Volatility We represent volatility via standard deviations of returns. Figure 2 overlays
the observed 60-day tracking moving average of volatility for the six selected stocks,
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Figure 2: Comparison of the realized 60 day moving average/volatility and forecast
returns/volatilities. The observed returns are in gray, the observed trend is in black, the
results from the WDLM analysis are in green, these from the full SGDLM analysis are
in red, and those from analysis without VB are in blue.
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with volatilities as estimated from our analyses. The volatility forecasts from SGDLM
analysis with and without IS-VB track each other closely until the onset of the financial
crisis in the fall of 2008. Thereafter, without IS-VB – i.e., ignoring the cross-series
constraints – the volatility forecasts skyrocket and never return to historically normal
levels. In stark contrast to the positive, the full SGDLM analysis generates forecast
volatilities in extremely good agreement with the empirically evaluated levels, before,
throughout and after the financial crisis and recessionary years. Volatility forecasts from
the 400-dimensional WDLM are comparatively unresponsive to changes over time, and
just do not reflect key aspects of the empirically estimated volatilities. The WDLM
consistently and significantly over-estimates the empirical volatility both before and
after the financial crisis; and, during the period of heightened market stress, the volatility
forecasts do not adequately reflect higher realized volatilities.

Coverage of Forecast Intervals Coverage rates of forecast intervals for the six se-
lected companies are reported in Table 2. The results confirm at these individual levels
the findings from the aggregate analysis. While forecast intervals up to 95% tend to

Forecast interval 99.0% 95.0% 90.0% 80.0% 50.0% 20.0% 10.0%
Apple Inc

IS-VB 98.4% 95.3% 92.4% 86.0% 59.4% 26.0% 13.6%
no IS-VB 99.0% 97.9% 95.8% 92.4% 74.3% 40.3% 20.4%
WDLM 99.6% 99.1% 98.1% 95.6% 79.4% 43.7% 23.1%

Bank of America Corp
IS-VB 98.2% 95.1% 91.9% 85.9% 60.9% 27.2% 14.6%

no IS-VB 98.2% 96.1% 94.5% 91.3% 79.1% 51.3% 30.9%
WDLM 97.8% 96.1% 94.6% 91.0% 80.0% 47.0% 26.3%

General Electric Co
IS-VB 98.2% 94.7% 91.1% 83.9% 58.6% 25.8% 12.9%

no IS-VB 98.9% 97.5% 95.2% 92.2% 77.4% 44.9% 25.6%
WDLM 98.7% 98.0% 96.8% 94.0% 80.9% 45.5% 24.9%

McDonald’s Corp
IS-VB 98.5% 96.1% 92.8% 86.4% 59.3% 26.5% 13.3%

no IS-VB 99.1% 98.4% 96.6% 92.9% 73.7% 38.6% 20.3%
WDLM 99.7% 99.2% 98.5% 97.1% 82.3% 44.2% 24.7%

Pfizer Inc
IS-VB 98.5% 95.5% 92.3% 85.4% 60.5% 27.0% 14.1%

no IS-VB 99.6% 98.0% 96.6% 93.0% 77.5% 40.7% 21.0%
WDLM 99.5% 98.8% 98.1% 95.4% 80.6% 43.5% 23.9%

Starbucks Corp
IS-VB 98.2% 95.5% 92.7% 86.0% 60.3% 27.4% 13.9%

no IS-VB 98.8% 97.0% 95.7% 92.0% 74.2% 39.7% 21.8%
WDLM 99.2% 98.0% 96.5% 94.0% 76.9% 40.4% 22.3%

Table 2: Coverage of centered forecast intervals of individual stock returns averaged
over the test data time period Ttest = 1,368:3,411.
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be over-estimated by either SGDLM, the IS-VB decoupling/recoupling analysis gener-
ally improves forecasting performance, while also yielding more precise forecast inter-
vals. Averaged across the test data period Ttest, the forecast intervals from the WDLM
analysis are similar to those from the analysis of the SGDLM without IS-VB decou-
pling/recoupling, again reflecting the aggregate results.

5.4 Realized Computation Time

Section 4.4 noted theoretical considerations concerning computational loads. That is
complemented here by an empirical assessment based on rerunning multiple analyses
using varying numbers of series m and sizes of the parental sets. Table 3 summarizes
the empirical run times across several values, in each case generating N = M = 10,000
posterior and 1-step forecast samples at each time point. The scaling of the run times is
roughly in line with our theoretical estimates, considering some fixed time for memory
transfers and communication overheads for coordinating four GPUs. The times were
measured on a 2012 computer with four NVidia Tesla C2050 GPUs with 448 CUDA
cores each.

pj = 5 pj = 10 pj = 20
Posterior Forecast Posterior Forecast Posterior Forecast

m = 50 0.07 0.07 0.11 0.08 0.20 0.10
m = 100 0.16 0.25 0.21 0.26 0.43 0.32
m = 200 0.50 1.17 0.61 1.20 1.04 1.31
m = 400 2.13 6.75 2.32 6.78 3.22 7.01

Table 3: Realized run times (seconds) of SGDLM analysis and forecasting with R =
N = 10,000.

6 Additional Comments

The multivariate dynamic model formulation via SGDLMs is persuasive in terms of
the theoretical ability to flexibly represent – in state-space forms – the dynamics of
individual series coupled with contemporaneous, cross-series multivariate dependencies.
The framework conceptually allows for scalability to higher dimensional series and com-
pletely frees the modeler from conceptual and technical constraints encountered in ex-
isting models. With that outlook, while also recognizing the inherent opportunities for
model decoupling as part of an overall analysis and with the insight that individual,
univariate model analyses can often come close to representing core aspects of the full
multivariate model, we defined the decoupling/recoupling strategy that builds on impor-
tance sampling and variational Bayes to define computationally efficient and practically
effective analyses. The computational efficacy arises from massively distributed com-
putation, for which GPU hardware is ideally suited; we have presented the ideas and
key details of GPU-enhanced computations, and provide freely available software for
interested researchers to follow-up. The practical effectiveness is demonstrated in the
400-dimensional time series study, and underpinned by the discussion of theoretical
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questions of importance sampling and variational Bayes/KL divergence-based approxi-
mation of unknowable exact posteriors.

Our analyses show that the SGDLM – with importance sampling and variational
Bayes or without – can significantly improve model adequacy and forecast accuracy
relative to the standard matrix-normal WDLM. Then, we also show substantial im-
provements in forecasting performance using SGDLMs with the overlay of the IS-VB
strategy. Importantly, this latter benefit is realized at reasonable computational costs:
the run-time is only increased by about a third in this case study. On a rather standard
2012 desktop (with four NVidia Tesla C2050 GPUs having 448 CUDA cores each), pos-
terior updating and forecasting with N = M = 10,000 Monte Carlo samples at each
time step for our 400-dimensional time series complete in less than 10 seconds per step.
This easily allows for real-time analysis in intervals less than one minute and will scale
to several hundreds and low thousands of series on current and emerging commodity
desktop/laptop machines.

Current and future work includes the refinement of our existing Matlab interface,
and development of an R interface to our GPU-accelerated implementation of Bayesian
learning and forecasting of SGDLMs. Current applied and methodological questions
under study are questions of parental set selection – which again must involve a focus
on practicalities and move away from a purely theoretical but practically unworkable
“global model averaging” perspective. Here again forecasting performance coupled with
innovations in computational strategies will likely be key to practical progress. A further
potential direction is to consider the development of methods of sequential Monte Carlo
(SMC), based on particle filtering and learning concepts, as mooted by a referee. This
seems a propitious direction for methodology development, especially in view of the
potential to alleviate some of the inherent degeneracy issues faced by SMC methods
through the key and central decoupling/recoupling approach we have introduced.

Appendix A: DLM Update and Evolution Equations

We give summary details of the equations defined by evolution and updating steps in
the set of m univariate DLMs.

Evolution Equations

Standing at time t− 1, we have series−j specific normal/gamma posteriors

(θj,t−1, λj,t−1|Dt−1) ∼ NG(mj,t−1,Cj,t−1, nj,t−1, sj,t−1)

as in (13). Evolving to time t, the state vector θj,t−1 undergoes a linear state evolution
and the precision λj,t−1 undergoes a coupled gamma discount evolution based on a
specified discount factor βj . The implied prior for the next time point is then

(θjt, λjt|It,Dt−1) ∼ NG(ajt,Rjt, rjt, cjt) (15)

as in (8), with parameters given by:

ajt = Gjtmj,t−1, Rjt = GjtCj,t−1G
′
jt +Wjt, cjt = sj,t−1 and rjt = βjnj,t−1.
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The models in our application specify evolution variance matrices using one single
discount factor δj for each series. In this case, the evolution variance matrices are set as
Wjt = GjtCj,t−1G

′
jt(1/δj−1) resulting in Rjt = GjtCj,t−1G

′
jt/δj . Here the δj ∈ (0, 1]

and, typically, take larger values on this range (West and Harrison, 1997, Chapter 6).

Updating Equations

With the normal/gamma prior of (15) above, the implied normal/gamma posterior is
that in (9). Specifically,

(θjt, λjt|Dt) ∼ NG(m̃jt, C̃jt, ñjt, s̃jt)

with defining parameters computed using standard updating equations (Prado and
West, 2010, Section 14.3), as follows:

First, compute the following:
1-step ahead forecast error, ejt = yjt − F′

jtajt,
1-step ahead forecast variance factor, qjt = cjt + F′

jtRjtFjt,
Adaptive coefficient vector, Ajt = RjtFjt/qjt,
Volatility update factor, zjt = (rjt + e2jt/qjt)/(rjt + 1).

Then, compute the posterior parameters:
Posterior mean vector, m̃jt = ajt +Ajtejt,

Posterior covariance matrix factor, C̃jt = (Rjt −AjtA
′
jtqjt)zjt,

Posterior degrees of freedom, ñjt = rjt + 1,
Posterior residual variance estimate, s̃jt = zjtcjt.

Appendix B: C++/CUDA Implementation Details

We provide an overview of the GPU implementation of the complete filtering/forecasting
analysis, noting a number of technical aspects and requirements as well as giving some
flavor of the structure of C++/CUDA programming.2

B.1 Key Features of CUDA Implementation

Wherever possible, our implementation uses batched functions from the CUBLAS li-
brary to perform the linear algebra operations for forward filtering and forecasting.
Batched functions are a recent innovation introduced into the CUBLAS library. They
accelerate operations on a large number of small matrices by bundling them into a sin-

2Our implementation and code is based on a computer with an NVidia CUDA-enabled GPU with
a compute capability of at least 2.0. Interested users may run the code, so long as CUDA runtime,
CUBLAS and CURAND libraries of Version 5.5 or newer are installed. We also have a user-friendly
Matlab interface compatible with Matlab versions as early as R2010a; though the C++/CUDA is
free-standing, some researchers may be interested in accessing GPU facilities via Matlab.
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gle function call. This reduces the overhead of initiating many small operations on the
GPU individually. In particular, we use:

• cublasDgemmBatched(...) for batched matrix-matrix multiplications,

• cublasDgetrfBatched(...) for batched LU factorization,

• cublasDgetriBatched(...) for batched matrix inversion.

We developed customized kernels to achieve maximum performance for operations that
fall outside the scope of current batched CUBLAS functions; see below for details.

B.2 Multiple Device Parallelization

This presents the key points regarding GPU parallelization using multiple GPU devices.
On top of massively parallel execution of SIMD operations in kernels, CUDA streams
can be used to organize sequences of operations. The operations within each stream
are executed sequentially, but different streams are executed concurrently on the GPU.
Furthermore, different streams can be assigned to different GPU devices, allowing mul-
tiple GPU computing. Concurrent execution and data transfers allow the most efficient
usage of GPU resources.

A call to the function cudaSetDevice(k) activates the kth GPU device. This means
all future GPU calls will be executed on this device until the current device is changed
by another call to cudaSetDevice(...). Our implementation sets up one CUDA stream
per GPU. In our importance sampling steps to generate a posterior sample of size N and
then forecast simulation of M samples, each of K GPUs will compute N/K importance
samples and then N/M direct samples; this is parallelization by particles.

The key functions from the CUDA API that organize asynchronous GPU execution
are:

• cudaStreamCreate(...) to create a stream,

• cudaMemcpyAsync(...) to asynchronously move data between computer and
GPU,

• cudaStreamSynchronize(...) to wait until a stream’s execution is completed,

• cudaStreamDestroy(...) to destroy a stream.

Calls to CUDA kernels, most API function calls, and asynchronous memory copy op-
erations return control to the host immediately. This allows us to send commands to
different GPUs in a for loop and still have them executed in parallel. However, it is
necessary to wait until the operations are completed before returning results; this is
where the function cudaStreamSynchronize(...) comes in. This operates after the
GPU operations that are to be executed in parallel are sent to their respective de-
vices.
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Below is an outline of a multiple device parallelized program.

Pseudo Code
1: for GPU device k = 1 : K do
2: Call cudaSetDevice(k) to activate the kth GPU.
3: Call cudaStreamCreate(stream k) to create a stream on the kth GPU.
4: Call cudaMemcpyAsync(..., stream k) to asynchronously copy input arguments onto

device memory.
5: end for
6: for GPU device k = 1 : K do
7: Call cudaSetDevice(k) to activate the kth GPU.
8: Call the Variational Bayes posterior estimation subroutine to generate N/K importance

samples, and then the forecasting simulation subroutine to generate M forecast samples.
9: end for

10: for GPU device k = 1 : K do
11: Call cudaSetDevice(k) to activate the kth GPU.
12: Call cudaMemcpyAsync(..., stream k) to asynchronously copy results to host memory.
13: end for
14: for GPU device k = 1 : K do
15: Call cudaSetDevice(k) to activate the kth GPU.
16: Call cudaStreamSynchronize(stream k) to wait until the computations and memory

transfers are completed.
17: Call cudaStreamDestroy(stream k) to destroy the stream on the kth GPU.
18: end for
19: Combine and post-process the results on the CPU, if applicable.

B.3 Generation of Gamma Variates

While the CUDA toolkit provides basic random number generators for the uniform
and normal distributions, it is up to the developer to implement other distributions.
Our implementation of a gamma random number generator uses a standard rejection
sampling algorithm (Marsaglia and Tsang, 2000), requiring one uniform and one normal
random number at each step. With expected acceptance probabilities over 90%, running
the scheme 2n times to generate n Gamma random numbers will almost certainly suffice.

We generate 2n uniforms and normals with just one call to curandGenerateUniform-
Double and curandGenerate NormalDouble, respectively. Bundled calls to these CUDA
toolkit functions are the most efficient way to generate random numbers on the GPU.
Generating enough random numbers for 2n proposals leads to highly efficient GPU
processing without unnecessary synchronization with the host device.

Specifically, a block of CUDA threads is tasked with generating a batch of k < n
gamma random numbers. The batch size is typically chosen as the maximum number
of parallel threads the GPU can evaluate, that is, k = 512 or k = 1024. That batch size
is large enough so that there is going to be at least one rejected proposal. This means
that at least one thread will have to try a second attempt for acceptance. On the other
hand, k is large enough that 2k proposals will yield at least k acceptances.

The architecture of a GPU is such that no thread of a block is available when at
least one thread is busy. The second attempt of at least one thread makes the entire
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block unavailable for other operations. Parallel processing of the threads means that
it does not cost additional time to let all threads of the same block generate a second
proposal. Furthermore, synchronization within a block is very fast. We will count the
number of acceptances and rejections of the first attempt and fill up the k-size vector
of gamma random variables in the second attempt.

B.4 Computing njt in Variational Bayes

In the VB optimization of Section 3.2, the degrees-of-freedom parameter njt is defined
implicitly by

log(njt + pj − djt)− ψ(njt/2)− (pj − djt)/njt − log(2E[λjt]) + E[log λjt] = 0. (16)

Our C++/CUDA program implements a CUDA kernel for the Newton–Raphson method
(Atkinson, 1989) to solve for njt, initialized at ñjt. This uses standard numerical ap-
proximations for the digamma and trigamma functions (Abramowitz and Stegun, 1972),
which we implemented for this problem as the CUDA toolkit does not provide imple-
mentations of these functions. These computations are parallelized over series j = 1:m.

B.5 Memory Management

C++/CUDA programming requires proper memory management to avoid segmentation
faults as well as memory leaks. Memory management on GPUs is very similar to memory
management on the host device/CPUs.

Memory is allocated using the malloc or cudaMalloc commands and freed using
free or cudaFree. This is a conceptually trivial task. However, keeping track of all
allocated memory poses a real challenge when more involved software projects branch
into different paths. To address this, we developed a universal and lightweight helper
class, memory manager, that automates memory management. This class keeps pointers
to allocated memory in a C++/boost list and provides methods to allocate, and keep
track of, memory as well as a clear method to free all memory it tracks.

Each function starts its own instance of our memory manager to manage memory
that is not to live beyond the lifetime of that function. At every branch that ends
a function, we simply invoke the clear method of the respective function’s memory

manager to free that memory.

Furthermore, there is a global instance of memory manager to manage the large
memory blocks needed for simulation of forecasting and variational Bayes approxima-
tion. Allocating and freeing that memory at every time step t would be prohibitively
time-consuming.

B.6 Matlab Interface

MathWorks provides a C library, mex.h, to allow the development of a Matlab interface
to C, C++ and CUDA software. This library provides functionality to read Matlab
input, write Matlab output and write Matlab messages.
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Recent versions of the Matlab Parallel Computing toolbox have another library for
Matlab GPU input/output, mxGPUArray.h, that also allows the allocation and freeing of
GPU memory. However, in contrast to our memory manager, Matlab’s memory tracking
only avoids memory leaks when Matlab ends, not while the function is active.

We decided against the use of the Matlab GPU library for three reasons. First, up
to Matlab R2013b, Matlab ships with an outdated version of the CUDA toolkit library
that does not yet provide the latest batch parallelism functionality that we use. Second,
by not relying on the Matlab GPU library, our functions can be compiled and run
by users that do not license the parallel computing toolbox. Third, we add backwards
compatibility to earlier versions of Matlab that do not come with GPU capabilities by
programming the GPU interface ourselves. This has been tested with Matlab versions
as early as R2010a without any problems. We will of course revisit the questions as new
versions of Matlab come along.
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