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In this paper, the authors undertake to expose an encompassing principle to handle ob-
jective priors in competition, their difficulties, their contemners, and their multiplicity!
Great target, for which we congratulate them. However, it may be a doomed attempt if
they mean to achieve the ultimate reference prior, since this quest has been going on for
centuries, including the contributions of the French Polytechnicians Émile Lhoste and
Maurice Dumas in the 1920s (Broemeling and Broemeling, 2003), with no indication
that we are near reaching an agreement. The authors thus aim for a less ambitious
construction.

Let us point out why we think this is an important problem. That we would have
to change priors by changing parameters of interest is disturbing and somehow goes
against the use of Bayesian methodologies. Ideally, one would want a single prior and
various loss functions. Interestingly, this difficulty associated to the construction of
noninformative priors – in the sense that it needs to be targeted on the parameter
of interest – is amplified in large or infinite dimensional models. In finite dimensional
regular models, the prior has an impact – at least asymptotically – to second order only.
In infinite dimensional models, the influence of the prior does not completely vanish
asymptotically, although some aspects of the prior may have influence only to second
order. It has been noted recently that in a nonparametric problem, such as density or
regression function estimation, nonparametric prior models may lead to well behaved
posterior distributions under global loss functions such as the Hellinger distance for the
density or the L2-norm for the regression function while have pathological behaviour for
some specific functionals of the parameter; see, for instance, (Rivoirard and Rousseau,
2012; Castillo, 2012; Castillo and Rousseau, 2013). This means that one needs to target
the prior to specific parameters of interest, or that somehow it is asking too much of
a prior to be able to give satisfactory answers for every aspects of the parameter. The
larger the model, the more crucial the problem.

Obviously, it is of interest to derive priors which are well behaved for a large range
of parameters of interest. The problem is then to define what well behaved means. This
does not seem to be really defined in the present paper. Is it possible to derive a general
notion of well behaved in the case of multiple parameters of interest without referring to
a specific task or, in other words, to a specific loss function or family of loss functions?

The authors consider three possibilities: (1) a common reference prior existing for
various parameters of interest which then should be used, (2) choosing the prior belong-
ing to some parametric family of priors closest to the set of reference priors associated
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to the various parameters of interest, (3) using a hierarchical model based on a para-
metric family of the prior where the hyperparameter is itself given a reference prior. The
authors consider a series of examples and discuss the merits of the various approaches
on each of these examples.

With regards to (1), the authors propose conditions such that marginal references are
common for various parameters of interest; it is interesting but once again challenging.
First, it implies that there are not more parameters of interest than there are parameters
in the model, and second, even in that case it does not always exist. However, given that
all models are wrong but some are useful, would that indicate that we should change the
point of view entirely and, given a set of parameters of interest, define a model which
would allow for good (whatever that means) inference on them; for instance, that would
lead to a common reference prior for all of them? In particular, in this respect, how do
reference priors behave under model misspecification?

Given the limitations of the first case, the authors propose to relax the notion of
reference priors in methods (2) and (3).

We believe that the distance approach is a very interesting idea to obtain a global
consensus between the different reference priors, however, there are a number of issues
that they raise.

1 Some issues with the distance approach

One of the advantages of the idea behind the distance approach is that it can deal
with more parameters of interest than the actual dimension of the parameter and leads
to tractable posterior distributions. One of its disadvantages is that it depends on the
sample size.

• Dependence on the sample size The construction of the reference priors is
based on a limiting argument, assuming that infinite information (infinite sample size)
is available. Why cannot we use the same perspective here? For instance, in the case
of regular models using the Laplace approximation to second order, the integrated
Kullback–Leibler divergence between πθi(·|x) and πa(·|x) (or the directed logarithmic
divergence from πa(·|x) to πθi(·|x) as termed in the paper) is approximately

Ki =
1

n

∫
(∇ log πθi −∇ log πa)

t
I−1(θ) (∇ log πθi −∇ log πa)πθi(θ)dθ

where b3(θ) corresponds to the third order derivative of the log-likelihood and I is the
Fisher information matrix. Hence asymptotically minimizing the sums of the distances
corresponds to minimizing

∑
i

wi

∫
(∇ log πθi −∇ log πa)

t
I−1(θ) (∇ log πθi −∇ log πa)πθi(θ)dθ.

• An alternative idea with the same flavour On a general basis, and following
Simpson et al. (2014), the choice of minimising a distance in (2) could be replaced in a
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more Bayesian manner by a prior on the distance as, e.g.

π(a) = exp

{
−
∑
i

λidi(a)

}

where di(a) is derived as in the paper. This offers several advantages from dealing with
partial information settings to defining a baseline model.

In addition, a neophyte reader could also ask what is so essential with reference
priors that one has to seek recovering them at the marginal level.

2 On the hierarchical approach

Both the hierarchical and the distance approaches have been considered in the paper
with univariate hyperparameters. It is not clear if, in the case of the distance approach,
this is a key issue, but it certainly is in the hierarchical construction since a reference
prior needs to be constructed on this hyperparameter. This restricts the flexibility of
the prior.

In the immense variety of encompassing models where recovering the reference
marginals is the goal, what about copulas?! There are many varieties of copulas and a
prior could be set on any of those, with once again non-informative features.

Finally, although the authors have considered examples renown to be difficult for
constructing objective priors, such as the multinomial model, they do not cover the
more realistic framework of complex and partly-defined sampling models. In Simpson
et al. (2014), the authors advocate the construction of priors within sub-models of a
more complex model, without taking into account the larger model. This contradicts
the nature of the reference prior, at the same time these sub-models might be the only
ones where the reference prior construction may be feasible. Would the ideas considered
by the authors here be useful in combining the local construction (within a sub-model)
of the reference prior with the larger model?

Once again, I would like to thank the authors for a thought-provoking paper on an
important issue.

References
Broemeling, L. and Broemeling, A. (2003). “Studies in the history of probability and
statistics XLVIII The Bayesian contributions of Ernest Lhoste.” Biometrika, 90(3):
728–731. MR2006848. doi: http://dx.doi.org/10.1093/biomet/90.3.728. 233

Castillo, I. (2012). “Semiparametric Bernstein–von Mises theorem and bias, illus-
trated with Gaussian process priors.” Sankhya A, 74(2): 194–221. MR3021557.
doi: http://dx.doi.org/10.1007/s13171-012-0008-6. 233

Castillo, I. and Rousseau, J. (2013). “A General Bernstein–von Mises Theorem in
semiparametric models.” Technical report. 233

http://www.ams.org/mathscinet-getitem?mr=2006848
http://dx.doi.org/10.1093/biomet/90.3.728
http://www.ams.org/mathscinet-getitem?mr=3021557
http://dx.doi.org/10.1007/s13171-012-0008-6


236 Comment on Article by Berger, Bernardo, and Sun

Rivoirard, V. and Rousseau, J. (2012). “Bernstein–von Mises theorem for linear func-
tionals of the density.” The Annals of Statistics, 40: 1489–1523. MR3015033.
doi: http://dx.doi.org/10.1214/12-AOS1004. 233

Simpson, D. P., Martins, T. G., Riebler, A., Fuglstad, G.-A., Rue, H., and Sørbye, S. H.
(2014). “Penalising model component complexity: A principled, practical approach
to constructing priors.” arXiv:1403.4630v3. MR3277029. 234, 235

Acknowledgments

The author wishes to thank Christian Robert for fruitful discussions.

http://www.ams.org/mathscinet-getitem?mr=3015033
http://dx.doi.org/10.1214/12-AOS1004
http://arxiv.org/abs/1403.4630v3
http://www.ams.org/mathscinet-getitem?mr=3277029

	 Some issues with the distance approach
	On the hierarchical approach
	References

