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The Evidentiary Credible Region

David Shalloway ∗

Abstract. Many disparate definitions of Bayesian credible intervals and regions
are in use, which can lead to ambiguous presentation of results. It is particu-
larly unsatisfactory when intervals are specified that do not match the one-sided
character of the evidence. We suggest that a sensible resolution is to use the
parameterization-independent region that maximizes the information gain between
the initial prior and posterior distributions, as assessed by their Kullback-Leibler
divergence, subject to the constraint on included posterior probability. This turns
out to be equivalent to the relative surprise region previously defined by Evans
(1997), and thus provides information theoretic support for its use. We also show
that this region is the constrained optimizer over the posterior measure of any
strictly monotonic function of the likelihood, which explains its many optimal
properties, and that it is guaranteed to be consistent with the sidedness of the ev-
idence. Because all of its equivalent derivations depend on the evidence as well as
on the posterior distribution, we suggest that it be called the evidentiary credible
region.

Keywords: credible region, credible interval, highest posterior density, parameter-
ization invariance, Kullback-Leibler, information gain, relative surprise region

1 Introduction

A Bayesian γ-credible region (CR) Ct,γ with credibility γ = 1−α is a subregion of the
probability space parameterized by vector t ∈ T , where∫

Ct,γ

p(t|E) dt = γ ; (1)

tmay either be a full or marginal parameter vector (see Appendix) and, correspondingly,
p(t|E) is the full or marginal posterior distribution given the evidence E . When t is a
scalar, the credible region is called a credible interval (CI). [To avoid unimportant
complications we assume that T is the intersection of the supports of p(t|E) and of the
prior distribution p(t) and that the distributions have no singularities.]

Equation (1) does not fix the placement and shape of the CR, which may vary
between different definitions. A popular definition (Casella and Berger 1990) is the
highest posterior density (HPD) CR CHPD

t,γ , which satisfies (1) using the region where
p(t|E) is highest:

CHPD

p(t,γ) = {t :

∫
p(t|E)≥c

p(t′|E) dt′ = γ} . (2)

Therefore,
p(t̄|E) < c ≤ p(t|E) (t ∈ CHPD

t,γ ; t̄ /∈ CHPD

t,γ ) , (3)
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where c is the largest value that permits (1) to be satisfied. The boundary of CHPD
t,γ

is a level set p(t|E) = c unless CHPD
t,γ is one-sided. In that case, CHPD

t,γ extends to the
boundary of t in at least one direction.

However, CHPD
t,γ is not parameterization invariant. A CR is invariant under the invert-

ible mapping t↔ u if Ct,γ and Cu,γ , the CR’s computed in the two parameterizations,
are equivalent:

u(Ct,γ) = Cu,γ and t(Cu,γ) = Ct,γ , (4)

where u(t) and t(u) are the mappings between the parameter spaces. In contrast, re-
expressing the HPD criterion (3) in terms of u may change the specified region, so (4)
may not be satisfied. This introduces a subjective element—the choice of parameteriza-
tion—that renders the HPD CR ambiguous and reduces its utility for summarizing
experiments.

Different solutions to this problem have been suggested: The symmetric CI, which
excludes 1− γ/2 posterior probability on either side of the interval is parameterization
invariant but may contain regions that are excluded by the evidence, cannot be one-sided
(even when the evidence is), and cannot be sensibly generalized to a CR. In the special
case when a reference prior (Bernardo 1979; Berger et al. 2009) is being used, Bernardo
(2005) has suggested using the intrinsic CR, which is defined using a symmetrized form of
the Kullback-Leibler divergence between the reference prior and posterior distributions.
When a non-informative “standard” prior is being used, Box and Tiao (1992) suggest
distinguishing the HPD CR computed in the parameterization where the prior is uniform
as the standardized HPD CR. However, they provide no mathematical justification for
this choice. A justification that can be extended to arbitrary priors has been provided
in a series of papers by Evans and coworkers (Evans 1997; Evans et al. 2006; Evans
and Shakhatreh 2008; Baskurt and Evans 2013) using the concept of relative surprise.
They follow a motivational trail in which the surprise of an observation is defined as
some measure of the deviation of the observation from prior expectation (Good 1988,
1989). By choosing a specific form for the surprise, they define the parameterization-
invariant relative surprise region, which they show is equivalent to the HPD CR in the
parameterization where the prior is uniform. They also show that it has the smallest
prior measure, maximizes the Bayes factor, and maximizes the relative belief ratio
among all γ-CR’s (Evans et al. 2006; Evans and Shakhatreh 2008; Baskurt and Evans
2013).

We find the generality of the solution of Evans et al. attractive and show here that
it is not necessary to invoke a definition of surprise to motivate it: it can be derived
directly from information theory as the γ-CR that maximizes the posterior expectation
of the Kullback-Leibler divergence. Furthermore, we show that optimizing the posterior
expectation of any strictly monotonic function of the likelihood over the CR gives the
same result; this simply explains the many optimal properties of this CR. To emphasize
that it is a hybrid between CRs that depend only on the posterior distribution and
frequentist confidence intervals, which depend only on the evidence as represented by
the likelihood, we suggest that it be called the evidentiary CR.
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Figure 1: Examples of ambiguities of HPD CIs. A: The prior, likelihood, and
posterior distributions as functions of f for the experiment measuring the fraction
of cells transformed from state A to B. The arrowed line indicates CHPD

f,0.95. The
shaded area contains 95% of the posterior density. B: The same functions as in
A but as functions of k. The lower arrowed line is CHPD

k,0.95 and corresponds to the
range of the shaded area. The upper arrowed line is k(CHPD

f,0.95), the map of CHPD

f,0.95

into the k-space. C: The prior, likelihood and posterior as functions of ρ for the
experiment measuring the subvolume of a cellular compartment. The arrowed line
indicates CHPD

ρ,0.95, which is double-sided. D: The same functions as in C as functions
of ν. The likelihood and posterior overlap completely. The lower arrowed line is
CHPD
ν,0.95 and corresponds to the range of the shaded area; it is one-sided since it

has its left boundary at ν = 0, the boundary of the parameter space. The upper
arrowed line is ν(CHPD

ρ,0.95), the map of the CHPD
ρ,0.95 into the ν-space. Like CHPD

ρ,0.95 it is
double-sided; its left boundary is at ν = 0.004. E: The evidentiary CI, CE0.95, for the
cell transformation example. The boundaries are a level set of the total likelihood
function p(E|k) (which is unnormalized in this case) and the shaded area within the
CI contains 95% of the posterior density. (The posterior distribution is the same as
that in panel B.)
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2 Results

We first present two examples showing that a subjective choice of “natural” parameteri-
zation can be ambiguous, particularly when the one suggested by the probabilistic model
differs from that provided by the data. The second example illustrates the inconsistency
between the evidence and an HPD CI that can arise when the data is one-sided.

2.1 Examples of HPD CI ambiguities

Parameterization dependence

Consider a stochastic process that transforms normal cells (state A) to cancer cells
(state B) with rate k so that

dNA(t)

dt
= −kNA(t) ;

dNB(t)

dt
= kNA(t) ,

whereNA(t) andNB(t) are the numbers of cells at time t. IfNA(0) = N0 andNB(0) = 0,
the solution for an experiment conducted over time interval τ is

NA(τ) = e−kτN0 ; NB(τ) = (1− e−kτ )N0 .

The experimentally measurable parameter is f , the fraction of cells transformed to
cancer cells. This is related to k by the invertible relations

NB(τ)

N0
≡ f(k) = (1− e−kτ ) ; k(f) = −(1/τ) log(1− f) .

Our goal is to estimate k from multiple experimental measurements of f .

We assume that measurements of f have yielded the likelihood p(E|f) shown in
panel A of Figure 1 and that, based on the original uninformative prior distribution and
earlier experiments, the prior distribution at the beginning of these experiments, p(k), is
lognormal (panel B). Bayes Theorem gives the posterior distributions p(f |E) and p(k|E),
and (1) and (3) give the corresponding HPD CIs, CHPD

f,0.95 and CHPD

k,0.95 (panels A and B,
respectively). Note that k(CHPD

f,0.95), the map of the CI computed in f into the k-space,
is different from the CI computed in k. It is troubling that the experimentalist must
make a subjective decision in presenting his results. Should he or she state that the
credible interval is 0.27 ≤ k ≤ 2.2, the interval computed in k-space, or 0.40 ≤ k ≤ 2.6,
the interval computed using the experimental variable f?

One- and two-sided HPD CIs

An HPD CI that is one-sided when computed in one parameter may be two-sided
when computed in another. Thus, even this qualitative feature can be ambiguous. For
example, consider the hypothetical experiment illustrated in Figure 1, C and D: A
roughly spherical type of cell has a roughly spherical subcompartment that occupies a
fraction ν of its volume. The uninformative prior distribution is p(ν) = 1 (0 < ν < 1)
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(panel D) and the experimental goal is to determine ν by microscopic measurements of
the ratio, ρ, between the subcompartment and cell radii. However, because of limited
resolution, it can only be determined that ρ . 0.5, as quantitatively described by the
experimental device-dependent likelihood function (panel C). If we compute the HPD CI
using ρ, the experimental parameter, we conclude that CHPD

ρ,0.95 = {ρ : 0.14 ≤ ρ ≤ 0.78}
(panel C), which maps to {ν : 0.003 < ν < 0.47} (panel D): the HPD CI is two-
sided. However, if we compute the HPD CI using ν, the parameter of scientific interest,
we conclude that CHPD

ν,0.95 = {ν : 0 < ν < 0.40} (panel D): the HPD CI is one-sided.
Intuitively, the latter choice makes more sense since the evidence is one-sided. How is
this to be objectively justified?

2.2 The relative surprise region

To get a parameterization invariant CR, Evans (1997) introduced the idea of least
relative surprise to order parameters: t′ is preferred to t as a posterior estimate if

p(t′|E)

p(t′)
>
p(t|E)

p(t)
. (5)

That is, the preferred parameter is that for which the evidence causes the greatest
increase in relative belief. Since the ratios are proportional to the likelihoods, p(E|t) ∝
p(t|E)/p(t), (5) implies that t is more surprising than t′ when it has lower likelihood.
[For convenience we use the notations p(t) and p(E|t) even when the prior and likelihood
are not normalizable. The results do not depend on their normalizability.] Evans defines
the observed relative surprise at t as the posterior probability that t is less preferred
than other values t′:

Π(t, E) =

∫
T

H

[
p(t′|E)

p(t′)
− p(t|E)

p(t)

]
p(t′|E) dt′ ,

where H(·) is the Heaviside step function, H(x) = 0 (x < 0); H(x) = 1 (x ≥ 0). A
γ-relative surprise region CRS

γ is then defined as the the set of t having observed relative
surprise no greater than γ:

CRS

γ = {t ∈ T : Π(t, E) ≤ γ} . (6)

The parameterization invariance of CRS
γ follows from the invariance of Π(t|E).

To show that CRS
γ contains posterior probability γ, we re-express (6) as

CRS

γ = {t ∈ T : ΦE [p(E|t)] ≤ γ} ,

where

ΦE(p) =

∫
T

H[p(E|t′)− p] p(t′|E) dt′ . (7)

Π(t, E) is a non-decreasing function of p(t|E)/p(t) and, postponing until Section 2.5
discussion of cases where p(E|t) has a finite-measure level set, it is also continuous.
Therefore, there will be a solution c to

ΦE(c) = γ . (8)
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[In the extremely unlikely case that p(E|t) is discontinuous on the entire boundary of
CRS

λ , there will be a range of solutions. This does not significantly affect the argument;
any solution can be used since they all yield the same CRS

λ .] Therefore, CRS
γ consists of

all points with

p(E|̄t) < c ≤ p(E|t) (t ∈ CRS

γ ; t̄ /∈ CRS

γ ) , (9)

and it follows that∫
CRS

t,γ

p(t|E) dt =

∫
T

H [p(E|t)− c] p(t|E) dt = ΦE(c) = γ .

[An alternative approach is presented by Baskurt and Evans (2013); there the relative
surprise region is defined by an equivalent of (9) with c determined by (7) and (8).]

Comparing (9) with (3) shows that the relative surprise region is the same as the
HPD CR computed in the parameterization where prior is constant; i.e., it is equal to
the standardized HPD CR when a uniform prior has been used.

2.3 The Kullback-Leibler CR

Information theory provides a different starting point for deriving a parameterization-
independent CR. Although the resulting Kullback-Leibler CR, CKL

γ , will turn out to be
the same as the relative surprise region, we derive it independently to demonstrate its
straightforward motivation.

The example presented in Section 2.1 provides an important clue: Intuitively we
expect that one-sided evidence should lead to a one-sided CR, which implies that our
analysis should focus on the information gain provided by the evidence to determine
the placement and shape of the HPD CR. The most commonly used measure of infor-
mation gain is the relative entropy or Kullback-Leibler divergence; therefore, we use it
to quantify the information gain provided by the evidence. Over subregion C this is∫

C
p(t|E) log

p(t|E)

p(t)
dt . (10)

Therefore, the subregion containing posterior probability γ that maximizes the Kullback-
Leibler divergence is

CKL

γ = argmax
C

∫
C
p(t|E) log

p(t|E)

p(t)
dt (11)

with γ =

∫
CKLγ

p(t|E) dt . (12)

Since both (11) and (12) are parameterization invariant, CKL
γ is also invariant.

Consider the change in (11) if CKL
γ is modified by simultaneously adding and sub-

tracting small regions with hypervolumes surrounding t̄ /∈ CKL
γ and t ∈ CKL

γ , where
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neither point is at a discontinuity of the prior or posterior distributions so that they
are well-defined. (Formally, this is an interior variation of a domain functional.) To
maintain the probability constraint to first order in an arbitrarily small constant ∆,
the variational region hypervolumes are set to ∆ p(t|E) and ∆ p(t̄|E), respectively. The
change induced in the Kullback-Leibler divergence is

δ

∫
CKLγ

p(t|E) log
p(t|E)

p(t)
dt = ∆ p(t̄|E) p(t|E)

[
log

p(t̄|E)

p(t̄)
− log

p(t|E)

p(t)

]
+O(∆2) ,

while the change in the included probabilty is O(∆2). The change in the divergence must
be non-positive in O(∆) if CKL

γ is to be a maximizer, which implies that p(E|̄t) ≤ p(E|t).
The equality can hold for a region of finite measure only if p(E|t) has a finite-measure
level set; a special case that we again defer to Section 2.5. We therefore must have

p(E|̄t) < c ≤ p(E|t) (t ∈ CEγ ; t̄ /∈ CEγ ) , (13)

where c is the smallest value of p(E|t) in CKL
γ . This is the same as (9); we conclude that

the Kullback-Leibler CR and the relative surprise region are identical.

2.4 Other optimization properties; the common role of the evidence

From the proof above, it is evident that CKL
γ is also the probability-constrained maxi-

mizer of the posterior expectation of any strictly increasing function f(·) of p(E|t). For
example, if f(x) = x,

CKL

γ = argmax
C

∫
C
p(E|t) p(t|E) dt (14)

along with the posterior probability constraint (12). That is, CKL
γ is the constrained

maximizer of the posterior expectation value of the likelihood. Since the Bayes factor
between γ-CRs Ca,γ and Cb,γ is ∫

Ca,γ p(E|t) p(t|E)dt∫
Cb,γ p(E|t) p(t|E) dt

,

(14) implies that CKL
γ maximizes the Bayes factor amongst all γ-CRs. This property has

already been proven for the relative surprise region by a different means (Evans et al.
2006; Evans and Shakhatreh 2008; Baskurt and Evans 2013).

Conversely, CKL
γ is the probability-constrained minimizer of the posterior expectation

of any strictly decreasing function of p(E|t). For example,

CKL

γ = argmin
C

∫
C

1

p(E|t)
p(t|E) dt = argmin

C

∫
C
p(t) dt . (15)

This shows that CKL
γ is the constrained minimizer, subject to (12), of the prior measure,

a property that has also been proven for the relative surprise region (Evans et al. 2006;
Evans and Shakhatreh 2008).
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These alternative definitions do not have the an information theoretic interpretation
as does (11), but emphasize that this CR can be defined in an infinite number of ways.
Since the common factor is that all involve a focus on the evidence via the likelihood
function, we suggest that the standardized HPD CR, the relative surprise region, and
the information-gain CR all be called the evidentiary CR, CEγ .

Collecting results, we have proven

Theorem. CEγ = argmax
C

∫
C f [p(E|t)] p(t|E) dt with γ =

∫
CEγ
p(t|E) dt, where f(·) is any

strictly increasing function, is a parameterization-invariant γ-CR that is equivalent to
the relative surprise region.

Corollary 9. An equivalent definition is CEγ = argmin
C

∫
C g[p(E|t)] p(t|E) dt with

γ =
∫
CEγ
p(t|E) dt, where g(·) is any strictly decreasing function.

Some specific instances are:

Corollary 10. CEγ is the probability-constrained maximizer of the Kullback-Leibler di-

vergence: CEγ = argmax
C

∫
C p(t|E) log p(t|E)

p(t) dt with γ =
∫
CEγ
p(t|E) dt.

Corollary 11. CEγ is the probability-constrained maximizer of the likelihood:
CEγ = argmax

C

∫
C p(E|t) p(t|E) dt with γ =

∫
CEγ
p(t|E) dt.

Corollary 12. CEγ maximizes the Bayes factor amongst all γ-CRs.

Corollary 13. CEγ is the probability-constrained minimizer of the prior measure:
CEγ = argmin

C

∫
C p(t) dt with γ =

∫
CEγ
p(t|E) dt.

Corollary 14. CEγ = CHPD
t,γ if p(t) is a constant.

2.5 Fine points

Evidentiary level sets and credible regions

The likelihood function in the cell measurement example of Section 2.1 has an approxi-
mate level set at p(E|ρ) ≈ 2 because of the limited resolution of the measurement device
(Figure 1C), and it is possible that other experimental devices could have exact finite-
measure level sets of p(E|t). These can potentially prevent the unique definition of CEγ
for specific values of γ. Referring to (7), we see that a level set of posterior measure
∆P at p(E|t) = pd will induce a discontinuity in ΦE(pd) of magnitude ∆P . If this
discontinuity spans γ, then (8) will not have a solution and there will not be a rela-
tive surprise region of posterior probability γ. There is a corresponding problem in the
Kullback-Leibler approach: In this case (11) will have a continuous range of solutions,
each including just enough of the level set to satisfy (12); the solution will not be unique.
In this case, the smallest value of γ for which (8) and (11) have a unique solution can
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be specified. When analyzing device measurements, special treatment may be necessary
even for an approximate level set if its variation is less than the experimental accuracy.
Such situations must be handled on a case-by-case basis.

The initial prior and total evidence

A Bayesian analysis begins with an initial assumptive prior p0, which is usually unin-
formative. This is then updated by one or more experiments, each contributing its own
evidence. When there are multiple sequential experiments, the final posterior distribu-
tion will be the same whether the analysis is performed sequentially, with each posterior
being used as the prior for the next step, or in parallel, with the combined total evidence,
ET , used to update p0. The CR must also be the same for both analyses. However, if the
evidentiary CR were to be defined using only the evidence from the final experiment,
it would depend on the order in which the experiments were conducted, which is not
appropriate. To avoid this, the evidentiary CR must be computed using p0 and ET so
that the total information gain is maximized. For example, the lognormal prior in the
cancer cell example is not the assumptive prior because it is based on evidence from
related cell types. In analyzing this experiment we must follow the chain of Bayesian
reasoning back to the assumptive prior, which we posit in this case to be a uniform
prior in log k. Correspondingly, in this case ET is the product of a lognormal likelihood
function over k from previous experiments and the likelihood function from the current
experiment, p(k|E) shown in Figure 1B. In the cell subcompartment example, the prior
distribution, which is an uninformative prior over v, is the assumptive prior and the
evidence from this experiment alone is the total evidence.

2.6 Resolution of ambiguities by the evidentiary CR

Computing the evidentiary CR for the examples presented above illustrates how it
resolves the ambiguities. The result for the first example is illustrated in Figure 1E. The
assumptive prior (dashed line) is the improper distribution p0(k) ∝ 1/k, corresponding
to a flat prior in log k. The total likelihood function (dotted line) is the product of the
(lognormal) likelihood function for the evidence collected before this experiment and the
likelihood function from this experiment (the dotted line in panel B). [The lognormal
prior shown in panels A and B is the product of c(k) and the earlier likelihood function.]
In this case the evidentiary CI, CE0.95, is intermediate between the HPD CIs computed
in k and t:

CHPD

k,0.95 : 0.26 ≤ k ≤ 2.17

CE0.95 : 0.39 ≤ k ≤ 2.50

k
(
CHPD

t,0.95

)
: 0.40 ≤ k ≤ 2.61 .

In the second example, the assumptive prior is uniform in v. Thus, CE0.95 = CHPD
v,0.95;

the evidentiary CI is just the one-sided interval that has already been computed and
illustrated in Figure 1D. This removes the ambiguity and gives, in agreement with
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the one-sided evidence, a one-sided CI. This agreement between the sidedness of the
evidence and CEγ is guaranteed in general: (13) implies that the CR must extend to the
boundary if there is a direction in which p(E|t) is an increasing function everywhere in
T .

3 Discussion

A variety of definitions of the credible region are available and, in some cases, any one
may be adequate as long as it is clearly specified. However, in other cases the CRs
differ so much that the need for an objective choice is compelling. This is illustrated by
the cell transformation example. The need for an objective choice is particularly strong
when the evidence is one-sided because different HPD CRs may be either one-sided
or not. This is illustrated by the cellular subcompartment example: the experimental
data is one-sided so a one-sided CR is appropriate, but there is no objective basis for
this choice in the HPD formulation. As illustrated, the HPD CI is one-sided when
parameterized in ν, the variable of scientific interest, but two-sided when parameterized
in ρ, the experimental variable. Other common definitions of the CI do not resolve
the problem: the symmetric CI ipso facto cannot represent a one-sided interval and
the mean-centered CI, like the HPD CI, can be one- or two-sided depending on the
parameterization.

An attractive resolution has been described in a series of papers by Evans and
coworkers (Evans 1997; Evans et al. 2006; Evans and Shakhatreh 2008; Baskurt and
Evans 2013), who introduce the concept of relative surprise and use it to derive a
parameterization-independent “relative surprise region” that maximizes the “relative
belief ratio,” maximizes the Bayes factor, and minimizes the prior measure among all
γ-CRs. It is equivalent to the HPD CR computed in the parameterization where the
prior is constant and, when a non-informative prior is used, is equivalent to the “stan-
dardized HPD” of Box and Tiao (1992). In support of the use of this CR, we showed
here that it can be directly derived without the introduction of surprise from basic in-
formation theory: it is the CR that maximizes the information gain provided by the
evidence as quantified by the Kullback-Leibler divergence. We also showed that it is the
constrained maximizer of any strictly increasing function of the likelihood (equivalently,
the constrained minimizer of any strictly decreasing function of the likelihood), which
explains its many properties and potential definitions. The common feature of all of
these is a focus on the evidence, so we suggest that it be called the “evidentiary CR.”
This emphasizes that it stands midway between CRs that depend only on the posterior
distribution and frequentist confidence intervals, which depend only on the evidence as
represented by the likelihood.

The dependence of the evidentiary CR on the likelihood ensures satisfaction of the
natural requirement that it be one-sided when the total evidence is one-sided. In that
case the CR boundary will extend to the boundary of the parameter space itself. When
the evidentiary CR is in the interior of the parameter space, its boundary will be a level
set of the likelihood.
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The “maximizing missing information property” used to define a reference prior by
Bernardo and Berger (Berger et al. 2009) also uses the Kullback-Leibler information gain
criterion. But it is the prior that is varied when determining a reference prior, while it
is the CR boundary that is varied when determining the evidentiary CR. Extending the
reference analysis approach, Bernardo (2005) has also suggested augmenting the use of a
reference prior with a parameterization-independent “intrinsic CR” that is defined using
a symmetrized modification of the Kullback-Leibler divergence between the reference
prior and posterior distributions. This has some similarities to the evidentiary CR,
at least in cases where a reference prior is being used, but the information theoretic
interpretation of using a symmetrized divergence is unclear because the information
gain is an intrinsically asymmetric concept. We have not investigated whether the
symmetrization has a significant effect in practice or whether it might be advantageous
to generalize the intrinsic CR to cases where a reference prior is not being used.

We have provided one-dimensional examples for simplicity, but the evidentiary CR
can also be defined over multi-dimensional spaces. When t is one-dimensional and the
full parameter space is multidimensional, Monte Carlo sampling methods that have
been used for computing HPD CIs [e.g., Chen and Shao (1999)] can be adapted (see
Appendix). A sampling method of this type has been developed by Evans et al. (2006)
in the context of the relative surprise region. When t is many-dimensional, the compu-
tation can be challenging. In the bivariate case it may be possible to adapt approaches
that have been used for HPD CR’s [e.g., Wei and Tanner (1990); Turkkan and Pham-
Gia (1997)]. Alternatively, a natural approximation would be to restrict the CR to a
convenient N -dimensional shape—e.g., an orthotope or ellipsoid—that is described by
a few parameters, and then to solve the information gain maximization condition in
terms of these parameters using Monte Carlo sampling over the full parameter space
and a standard constrained optimization method.
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Appendix: Bayes’ Theorem and the evidentiary CR for
marginal parameters

The components of a marginal parameter vector of interest, t, are often a subset of the
components of the full parameter vector θ ∈ Θ. In this case, θ = t ⊗ ψ is the outer
product of t ∈ T and a vector of nuisance parameters ψ ∈ Ψ, and the prior, likelihood



D. Shalloway 921

and posterior distributions over t are

p(t) =

∫
Ψ

p(t,ψ) dψ

p(E|t) =
p(E , t)
p(t)

=

∫
Ψ
p(E|t,ψ) p(t, ψ) dψ

p(t)

p(t|E) =

∫
Ψ

p(t,ψ|E) dψ .

These respect Bayes’ Theorem in t. More generally, if t is a projection t(θ) (e.g.,
projecting Cartesian coordinates to the radius) the marginal distributions are

p(t) =

∫
Θ

δ[t− t(θ)] p(θ) dθ

p(E|t) =

∫
Θ
δ[t− t(θ)] p(E|θ) p(θ) dθ

p(t)

p(t|E) =

∫
Θ

δ[t− t(θ)] p(θ|E) dθ ,

which also respect Bayes’ Theorem. Therefore, as long as the complete prior, p(t,ψ)
or p(θ), and the complete likelihood, p(E|t,ψ) or p(E|θ), is known, we can, at least in
principle, compute the marginal distributions needed to compute the evidentiary CR.

Computing the evidentiary CI (i.e., when t → t is a scalar) will usually not be
too difficult, even when t(θ) is nonlinear. If analytic forms of p(E|θ) and p(θ) are
available, any of the equivalent conditions that specify CEγ can be solved using standard
constrained minimization methods (Nocedal and Wright 2006). If they are not available,
we can determine them by numerically differentiating the prior and posterior cumulative
distributions

P (t) =

∫
Θ

H[t− t(θ)] p(θ) dθ

P (t|E) =

∫
Θ

H[t− t(θ)] p(θ|E) dθ ,

which can often be computed using Monte Carlo methods. [H(·) is the Heaviside step
function.] Rather than computing p(E|t) from the ratio p(t|E)/p(t), it can more stably
be computed as

p(E|t) ∝ dP [tprior(x)|E ]

dx

∣∣∣∣
x=P (t)

where tprior(·) is the inverse of P (·). [Applying the chain rule for differentiation shows
that the right-hand side equals p(t|E)/p(t).] tprior(·) can be simply computed from the
numerical specification of P (t), and CEγ can then be solved, as before, by constrained
minimization.
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In the most common case, where p(E|t) is unimodal, CEγ will be a connected interval
determined by the lower and upper bounds t` and tu,

CEγ = {t : t` ≤ t ≤ tu} ,

which can be determined directly from the cumulative distributions without differenti-
ation. In this case, (12) and (15) imply that the pair (t`, tu) satisfies

(t`, tu) = argmin
(t1,t2)

P (t)|t2t1

with γ = P (t|E)|tut` . (16)

The constraint is satisfied by setting

tu(t`) = t` + tpost[P (t`|E) + γ] , (17)

where tpost(·) is the numerical inverse of P (·|E). t` can then be determined by solving
the one-dimensional constrained minimization problem

t` = argmin
t

P (t)|tu(t)
t

t` ≤ tpost(1− γ) ,

where the inequality is required for (17) to have a solution.
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