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Abstract. This article discusses Windle and Carvalho’s (2014) state-space model
for observations and latent variables in the space of positive symmetric matrices.
The present discussion focuses on the model specification and on the contribution
to the positive-value time series literature. I apply the proposed model to financial
data with a view to shedding light on some modeling issues.

Keywords: Exponential Smoothing, Positive-Valued Processes,State-Space Mod-
els, Stochastic Volatility.

1 Introduction

The authors are to be congratulated on their excellent intuition, which has culminated
in the development of a tractable solution of the filtering and estimation problems for
a state-space model on the manifold of symmetric positive-definite matrices. Their
Bayesian approach to state-space modeling is in the spirit of the seminal papers of
Quintana (1985), Quintana and West (1987) and Quintana et al. (1995) (see also West
and Harrison. (1997) ch. 14-16, and Prado and West (2010)). The proposed model pro-
vides a pragmatic alternative to some multivariate stochastic volatility models recently
proposed in the literature, and the ease and speed of implementation of the inference
procedure are appealing in many applied statistics contexts, especially in economics and
finance.

Serving as a discussant for the Windle and Carvalho’s article gives me the oppor-
tunity to welcome the authors’ contribution. Such enthusiasm is also motivated by the
difficulties that many of us - including myself first - have often been experiencing in
Bayesian analysis of multivariate time series. Thus, some parts of this note emphasize
the advantages of the proposed model and discuss its possible applications to econo-
metrics. Suggestions will also be given on further references to include and points will
be made in relation to unsatisfactory model properties for financial data and to missing
investigation of the properties of the multi-step-ahead forecast distribution.

2 An exponential family state-space model

Tractability is the strength of the proposed state-space model, and the authors pro-
vide, in the introduction, and in the background section, a discussion on the inferential
difficulties that one might encounter in multivariate stochastic volatility modeling. In
order to avoid these inferential difficulties, the authors consider a new stochastic volatil-
ity model, which is the extended Uhlig’s type model in equations (UE). This model is
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simpler in terms of dynamics, and more parsimonious, in terms of number of param-
eters, than many existing multivariate stochastic volatility models. The proposed UE
model allows the authors to exploit the conjugacy property of the Wishart distribu-
tion family to find the optimal filter and design a backward sampling procedure for the
hidden states (see proof of Propositions 1-3). Section 3 presents the UE model and
the main contributions. The results in Propositions 1 and 3 represent a new extension
to the matrix-variate context, of the exact filter and prediction formulas for univariate
state-space models in the exponential family given in West and Harrison (1997), ch.
14. Previous articles on tractable, matrix-variate exponential family state-space models
focused mainly on the Gaussian family of distributions, with the exceptions of Soyer and
Tanyeri (2006), Prado and West (2010), Triantafyllopoulos (2012), and Fox and West
(2011), whereas the UE model presented by the author is in the Wishart family. The
authors focused on the relationship between the UE and the Prado and West (2010)
model. T would suggest to complete the literature review by discussing the relationship
of the UE model with the Wishart autoregressive models of Triantafyllopoulos (2012)
and Fox and West (2011).

2.1 A model for positive-valued observations

The univariate UE model itself represents a contribution to the literature, since it spe-
cializes the West and Harrison (1997) results to an exponential family model for positive-
valued observations. Previous attempts to provide filtering and prediction rules for ex-
ponential family state-space models with gamma distribution for the observations have
been carried out by Smith and Miller (1986),Grunwald et al. (1993), Grunwald et al.
(1997), and Hyndman et al. (2008), ch. 15. Let y; be the observable variable, then the
univariate UE model (i.e., m = 1) can be written as

yelze ~ Ga(k/2,kxy/2) (1)
Tylrir ~ w1/, b~ Be(n/2,k/2) (2)
for t = 1,...,T, with 9 = x, where Ga(a,b) denotes the gamma distribution with

probability density function
f(z) =T(a) 'b* exp{—ba}a®?

and Be(a,b) the beta distribution. By applying propositions 1 and 2, one gets the
following filtering and prediction distributions:

wlDi ~ Gal(n+k)/2,ko?/2) (3)
realDy ~ Galn/2,\ko?/2) (4)

where 02 = y; + Ao?_;, and the backward sampling distribution
Te|Tis1, Dy ~ ALoy1 + 2e01,  2Zepr ~ Ga(k/2,ko?/2). (5)

Note that the univariate UE model, defined in (1)-(2), is a special case of the exponential
family state-space model in equations (14.1) and (14.5)-(14.7) of West and Harrison.
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(1997), ch. 14; that is

p(elne, ve) = exp{v;  (y(ye)me — alme)) o(ye, ve)

for the observational distribution, where 1, = 1/xy, a(n;) = k?log(m:), y(y:) = v,
vr = 2k, and blye,vr) = g, "2 /T (=0 /) (—0) /4, and

P(1e|Di—1) = exp{(rene — sea(ne)) ye(re, st)

for the state posterior predictive distribution, where r;, = Ak?02_,/4, s; = n/2 and
C(’I"t, St) = ’]"ft—‘rl/l—‘(st + 1)

On one hand, this representation shows that the proposed model is in the spirit of
West and Harrison’s (1997). On the other hand, it tells us that the authors did not
fully exploit the generality of West and Harrison’s (1997) approach. More specifically,
possible extensions of the UE model include not only the time-varying scale parameter,
mentioned by the authors in Section 6, but also the use of exogenous or predetermined
variables, time-varying A\, n, and k. Later on in this note, I will discuss the interest in
considering time-variations in all these parameters.

2.2 Potential applications

In Sections 5 and 6, the authors mainly focus on the one-step-ahead forecasting of the
realized volatility series. The deficient rank case (k = 1) is motivated primarily by the
application to the squared normal returns and the full rank case by the application to
the realized volatility, which is obtained from the aggregation of the intra-day squared
returns. Nevertheless, the normality assumption is usually violated in many financial
series. Moreover, many financial quantities, such as financial indexes, are weighted sums
of series with different features. From my empirical experience (see later on in this note)
there is strong evidence of £ > 1 or k£ < 1 in many squared-return series. Thus, in my
opinion, the UE model with unknown & can be used as a model for the squared returns,
or for the latent volatility process of the returns.

Moreover, I would not limit the potential use of the UE model to realized volatil-
ity only. As said earlier in this note, the UE model provides a tractable state-space
model for positive-valued data; therefore, it is well suited for statistical applications
to business, industry, and economics, where positive time series (e.g., sale volumes,
demand level, insurance claims, weather derivatives, etc.) are very common (see Hyn-
dman et al. (2008), ch. 15). For illustrative purposes, I consider here a database on
the historical liquidity conditions in the euro area (i.e. the Eurosystem’s supply of and
the credit institution’s demand for liquidity, publicly available from the ECB (website:
https://www.ecb.europa.eu/mopo/liq/html/index.en.html). I focus on the daily
volumes (in millions of euros) of recourse to the marginal lending facility and on the
current accounts, from January 1999 to July 21, 2014. I assume a uniform prior on
[0,1] for A and a flat prior on RT for k and n. The results are given in Figure 1. The
exponential smoothing is quite good at describing the dynamics of the two variables.
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Figure 1: Observable variable y;, which are daily volumes, in millions of euros, of
recourse to the marginal lending facility (black line, panel (a)) and current accounts
(black line, panel (b)), from January 1999 to July 21, 2014; y;’s marginal posterior
predictive mean (red line in each panel); and the 95% highest posterior density interval
(gray area in each panel), given Dr = {y1,...,yr}.

Shifts and jumps in the level belong to the 95% highest posterior density region of the
model.

I find rather surprising that the authors do not mention Bayesian vector autore-
gressive (BVAR) models with stochastic volatility as a possible application of their UE
model. These kinds of applications are in the spirit of Uhlig (1997) and are very useful
in economics. The advantages in forecasting with stochastic volatility BVAR models
have been confirmed empirically by many parties (e.g., see Clark (2011)). The applica-
tion to panel BVAR models represents another challenging issue that calls for the use of
hierarchical structures, blocking, and sparsity constraints within a Wishart framework.
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2.3 Multi-step-ahead forecasting

In economics and business, researchers and practitioners are usually interested in multi-
step-ahead forecasting. Thus, having some tractable formulas for forecasting both the
latent and observable variables is an advantage of the forecast approach used. Unfor-
tunately, and as stated by the authors in Section 8, the predictive distribution of z;
given D; is available only one-step-ahead, i.e., k = 1. Nevertheless, I shall remark that,
following Smith and Miller (1986), Section 2, Hyndman et al. (2008), ch. 15, one can
focus on the moments of the predictive distribution.

For the univariate UE model, by applying the properties of the harmonic mean for
the beta distribution and the inverted gamma distribution, I find that the r-th order
moment, m, , = E(z,[;|D;) of the h-step-ahead forecast distribution, r = 1,2,3,...,
h=1,23,..., H, satisfies the following difference equation

L(n/2—7r)T((n+k)/2—7)
L(n/2)  T((n+k)/2)

AT (6)

My h = My h—1

with the initial condition

. _(zmg>’“r((n+k)/2—r)
mh =\ 7o T((n+k)/2)

Using this set of recursions, one can find the predictive mean and variance

(7)

)

_ n+k—2\" ko
Bechio) = (M) i 0
= (1-\o?

h
(n—4)(n—2) ) (n+k—-2)(n+k—4) )

(?Zf;f>%<n+i—2>j
= o} ((Anﬁf)h <n+k)<i2+k—4) - _w)

where the last step in the two equations is obtained by assuming A = (n—2)/(n+k—2).
One can see that the h-step-ahead forecast mean is increasing, decreasing, or constant
depending on the value of A. If one assumes the constraint in Equation 3 of the paper
is satisfied, then the prediction mean is constant in h. This feature may be appealing
in short-term forecasts, but may be not realistic in long-term forecasts where one would
expect an increase or decrease in x, ! (or y¢). See, for example, the second application
in Figure 1.

_ n+k—4Hn+k—2 k2
V(xt-s-lh|pt) = U?A% <<( X )

Moreover, in the parametrization chosen by the authors, the constraints k& > m — 1
and n > m — 1 (for m = 1) discussed in Section 3 are not sufficient to have well-
defined forecasting variances. For this case, one should consider n > 4. A discussion
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Figure 2: Forecasting variance V(z,, jh|Dt) (vertical axis) at different forecast horizons
h =1,...,7 (horizontal axis) for A = 0.7, and for different values of k (different lines)
and n (different plots).

on the behavior of the variance as a function of the parameters A\, n and k, would
be appreciated. Figure 2 shows the behaviour of the forecast variance for different
parameter settings and forecast horizons. I assumed A = 0.7, which does not satisfy the
constraint in Equation (3) of the paper. The left chart (n = 4.2) shows an increasing
profile, whereas the right chart (n = 0.7) exhibits a decreasing behaviour of the variance,
which may be less appealing for applications to economics.

In conclusion, the properties of the predictive distribution generated by the UE
model are not explored by the authors. Moreover, following the recent literature by
Patton and Timmermann (2011) and in order to have a fair comparison between the UE
model and alternative models, such as the stochastic volatility factor models, different
forecast horizons, and not only a one-period horizon should be considered.

3 Financial modeling issues

3.1 Heterogeneity in large panel

I will consider the daily log-returns of the financial sector constituents of the Eu-
rostoxx600 index sampled from May 27, 2013 to May 12, 2014 (about one year). This is
a panel dataset of 199 series and 250 daily log-returns. The analysis shows evidence of
substantial differences in the A, k, and n across assets (left plot in Figure 3), confirming
a strong cross-sectional heterogeneity. I would expect to find heterogeneity also across
sectors and countries. Taking into account this feature seems necessary particularly in
strategic and global asset allocation contexts. In Section 5 of their paper, the authors
conclude that the model in Section 4 is equivalent to the restricted UE model with
R = \/\,,,. I suspect that the validity of the result is limited to the empirical applica-



R. Casarin 799

1 T T 1

— -
- A
0.8} A 0.8}
0.6} {1 ok
0.4}
02
0/’ T
15 0 5 10 15

Figure 3: Cross-section estimates (smoothed histograms) for the unconstrained rank
(k > 0, left) and the deficient rank (k = 1, right) UE model.

tion considered in their paper. The performance of the UE model on large dimensions
(hundreds or thousands of assets) has not yet been explored, and more realistic mod-
eling strategies, such as blocking or hierarchical modeling, are needed in order to have
interesting models for large portfolios.

3.2 Structural breaks

I consider S&P500 daily percent log-returns data from January 3, 1972 to September 9,
2013, an updated version of the dataset used in Geweke and Amisano (2010, 2011) and
Fawcett et al. (2014). In relation to this dataset it has been recognized that in some
sub-samples heavy-tail GARCH models have a better predictive ability than Gaussian
GARCH models. T focus on the period of the great financial crisis and consider data
from June 12, 2008 to September 9, 2013, for a total of 1260 observations. I estimate
the univariate UE using rolling samples of 60 observations (about three months) and
produce Bayesian estimates for the unknown parameters k, n, and A. The results show
that many of the spikes (or jumps) in the squared return are out of the 95% highest
posterior density region (gray area in Figure 4, which may suggest that for some return
series with large kurtosis the model should be extended to account for heavy tails.
The dotted blue line in Figure 4 shows the rolling estimates of the degrees of freedom
parameter of the Student-t GARCH(1,1) model on the return series, with a window size
of 90 observations. This provides evidence of heavy tails in the conditional distribution
of the observations and may motivate the extension proposed by the authors in Section
6.

The results in Figure 5 support a strong evidence of breaks in the parameters, which
calls for the use of time-varying parameter models. Using constant n or A leads to over-
and under-estimation of the volatility. For certain assets, the model should allow for
time-varying A, k, and n. Time variations may be due to changes in the tail behaviour
of the return distribution. I shall remark that the pattern of the degrees of freedom
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Figure 4: Daily squared returns (solid black line) on S&P500 index from January 12,
2008 to September 9, 2013, volatility posterior mean (dashed red line) and the 95%
highest posterior density region (gray area), given Dy = {y1,...,yr}. Rolling estimates
of the degrees of freedom parameter of the Student-t GARCH(1,1) model (dotted blue
line), with a window size of 90 observations, on the original return series.

estimates in Figure 4 is similar to the one of the k and n rolling estimates in Figure 5.

From my empirical analysis, I shall conclude that the parameter dynamics exhibits
persistence and is subjected to rapid changes. These facts call for the use of Markov-
switching (MS) models, such as the following MS-UE model

YilXt,2e ~ Wn (k'ta(ktXt)_1> (10)
Xe|Xi—1,20 ~ Tt__lll\l’t/Tt__lﬁ\t, Wilzp ~ B (n/2, ke /2) (11)

where k;, ny and \; are driven by a MS process, 2z, t =1,...,T,ie. k=", Eill(z =

J
) M . M 3 . . .

3)y ke =22 nyl(ze = j) and Ay = 377, Az = j), where P(z = jlzi—1 = i) = pij
and k;, nj, and \; are regime-specific parameters.

In conclusion, for many financial series, there is a strong empirical evidence of time-
variations and cross-section heterogeneity in the UE model parameters, which can un-
dermine the goodness of fit and the forecasting abilities of the proposed model. Tractable
extensions of the model, particularly in large dimension, would be very useful.

4 Conclusion

In their paper, the authors sketch a number of possible extensions. I would suggest
as further research lines the inclusion of graphical structures in the UE model, and/or
sparsity constraints, following Carvalho and West (2007) and Wang and West (2009).
It is clear that this is an exciting and stimulating work. I am therefore very pleased to
be able to propose the vote of thanks to the authors for their work.
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Figure 5: k, n and A rolling posterior mean (solid lines) given the observation set
D7 = {yt—r+1,--.,ys} for the unconstrained (black line) and constrained (blue line) UE
model. Horizontal dashed lines represent the parameter posterior means given Dy .
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