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Bayesian Multiscale Smoothing of Gaussian
Noised Images

Meng Li ∗ and Subhashis Ghosal †

Abstract. We propose a multiscale model for Gaussian noised images under a
Bayesian framework for both 2-dimensional (2D) and 3-dimensional (3D) images.
We use a Chinese restaurant process prior to randomly generate ties among inten-
sity values at neighboring pixels in the image. The resulting Bayesian estimator
enjoys some desirable asymptotic properties for identifying precise structures in
the image. The proposed Bayesian denoising procedure is completely data-driven.
A conditional conjugacy property allows analytical computation of the posterior
distribution without involving Markov chain Monte Carlo (MCMC) methods, mak-
ing the method computationally efficient. Simulations on Shepp-Logan phantom
and Lena test images confirm that our smoothing method is comparable with the
best available methods for light noise and outperforms them for heavier noise both
visually and numerically. The proposed method is further extended for 3D im-
ages. A simulation study shows that the proposed method is numerically better
than most existing denoising approaches for 3D images. A 3D Shepp-Logan phan-
tom image is used to demonstrate the visual and numerical performance of the
proposed method, along with the computational time. MATLAB toolboxes are
made available online (both 2D and 3D) to implement the proposed method and
reproduce the numerical results.

Keywords: Chinese Restaurant Process, MCMC-free computation, 3-dimensional
image

1 Introduction

An observed 2-dimensional (2D) image can be viewed as a two-dimensional data ma-
trix X = ((X(j,k))), where j, k = 1, . . . , n, as the sum of the underlying mean µ and
some random noise. The objective of image smoothing or denoising is to recover the
underlying array of the means µ, so that the essential features in an image such as
background, foreground and objects present in the image are visible clearly. This paper
proposes using a Bayesian smoothing mechanism for Gaussian noised images based on
a multiscale framework, where the prior encourages structure formation essential for
image processing.

An obstacle in image processing is that the number of observations n2 is typically ex-
tremely large. Therefore decomposition and transformation are necessary for denoising.
Approaches based on wavelet-type transformations and thresholding to draw boundaries
have been commonly used (Donoho, 1999; Sanyal and Ferreira, 2012). Multiscale meth-
ods, which decompose the image in a sequence of refining blocks of pixels to factorize
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the likelihood function, are proved to be particularly useful; see Kolaczyk and Nowak
(2004), Willett and Nowak (2004) and Ferreira and Lee (2007). In addition, the mono-
graph by Lindeberg (1993) comprehensively discussed multiscale representations using
scale-space theory. A Bayesian approach enjoys the advantage of adjustability to multi-
scale structure, since the structural properties of an image such as local constancy and
contrast across boundaries can be controlled naturally by a prior distribution (Kolaczyk,
1999). White and Ghosal (2011) showed a successful application of a Bayesian multi-
scale denoising method to Poisson noised images. In that paper, the authors proposed
using a Chinese Restaurant Process (CRP) prior to probabilistically impose equality of
relative intensity among neighboring pixels, which turned out to be extremely effective
in detecting structures in an image.

The Gaussian distribution (assuming a known variance σ2) is the other member
amenable to the multiscale factorization among one-parameter exponential families (Ko-
laczyk and Nowak, 2004). While the Poisson distribution is a reasonable model for
photon-limited images, a Gaussian additive noise model seems to be a reasonable repre-
sentation of the stochastic variations ofX when observations are measured continuously.
Even for count observations, the model based on Poisson distributions involves calcula-
tion of large factorials, which is computationally intensive when the counts of photons
are large. In this case, the Gaussianity assumption can be regarded as a good approx-
imation. The Gaussianity assumption also allows the use of conditional conjugacy to
analytically compute the posterior distribution, reducing the estimation procedure to
elementary matrix operations without involving Markov chain Monte Carlo (MCMC)
iterations, thus speeding up the computation. In this paper, we consider images with
Gaussian noise and denoise these images using the multiscale framework and a prior
based on the CRP.

The proposed Bayesian denoising method with Gaussian noise will use the basic
ideas of White and Ghosal (2011) of assigning a prior distribution on relative intensi-
ties to randomly impose ties among neighboring pixels in each level of the multiscale
decomposition. In a multiscale analysis, we can decompose the likelihood of the entire
image into the product of conditional likelihoods appearing in various levels. At any
level, a block of pixels (called a parent) is split into four neighboring smaller blocks of
pixels (called children) to form a parent-child group. Starting from the image level, the
process is continued until the pixel level is reached.

The grouping structure of the underlying means of the children in a parent-child
group is modeled by a CRP to be described in details in Section 2.1. By the conjugacy
of Gaussian distributions, we can obtain the posterior mean for each pixel using only
simple matrix operations. The multiscale structure allows us to work with each level
independently and pool all the estimation together to obtain the final reconstruction
of the original image. The CRP and multiscale representation allow our method to
preserve features of images instead of oversmoothing noisy observations. All parameters
are estimated by the data, and thus the proposed procedure is completely data-driven.

Denoising of 3-dimensional (3D) images has important applications in magnetic res-
onance imaging (MRI). Colored images can also be considered as 3D images by consid-
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ering information on wavelength. Higher dimensionality makes the problem much more
challenging computationally. Benefiting from the flexibility of multivariate normal dis-
tributions and the CRP, the proposed method can easily handle 3D and colored image
reconstruction.

The rest of the paper is organized as follows. In Section 2, we define the statistical
model, along with the prior distribution. We also compute the posterior distribution,
and estimate the smoothing parameters from the data. In Section 3, extensive simulation
studies are conducted to demonstrate the performance of our model in various images.
Section 4 generalizes the model to 3D images and Section 5 conducts a simulation study
in this situation. Proofs of Theorem 1 and another two lemmas used in the main body
of the paper are presented in the Appendix.

2 Bayesian multiscale model for 2D images

A Gaussian model for a noisy image assumes the observed image X ∼ N(µ,Σ) with
the mean vector µ and covariance matrix Σ. For simplicity, we consider the image with
the same row length and column length, in the form of n = 2L. This is generally for
convenience of notation, and it is possible to relax the setting. Starting with the pixel
level, we can combine a group of four neighboring pixels into one block by summing
them together, resulting in a coarse level of image with row (column) length 2L−1. In
this process, the block is known as the parent. The four neighboring pixels forming
the group are called children, and the formed structure in this way is called a parent-
child group. Continuing this grouping process until the whole image is obtained, we
get a multiscale representation consisting of levels l = L,L − 1, . . . , 1, 0. Formally, the
different scales of an image X = ((X(j,k))) are defined as follows. In the lth scale of
the image, the parent (j, k)th block pixel is split into 4 children of block-pixels at the
(l + 1)th scale, which can be formulated as

Xl,(j,k) =

2j∑
j′=2j−1

2k∑
k′=2k−1

Xl+1,(j′,k′) (1)

where l = 0, 1, 2, . . . , L − 1 and j, k = 1, . . . , 2l. Here XL,(j,k) = X(j,k) and when l = 0,
X0,(1,1) is the summation of the entire image.

While Xl,(j,k) is the observation of the pixel (j, k) at level l, we use X∗l,(j,k) to denote
the vector of its children group

(Xl+1,(2j−1,2k−1), Xl+1,(2j−1,2k), Xl+1,(2j,2k−1), Xl+1,(2j,2k)).

The similar convention of notation to distinguish a parent from the corresponding 4-
children is followed consistently by denoting parameters such as µ∗l,(j,k) and Σ∗l,(j,k) in the

following context. The model X ∼ N(µ,Σ) implies that Xl,(j,k) ∼ N(µl,(j,k), σ
2
l,(j,k)),

l = 0, 1, . . . , L, where N stands for a univariate or multivariate normal distribution. A
multiscale statistical model is then given by the factorization of the statistical model
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for the entire image into the following:

P(X|µ,Σ) = N (X0,(1,1);µ0,(1,1), σ
2
0,(1,1))×

L−1∏
l=0

2l∏
j=1

2l∏
k=1

N (X∗l,(j,k);µ
∗
l,(j,k),Σ

∗
l,(j,k)), (2)

where N is the probability density function of the (multivariate) Gaussian distribution,
and µ∗ and Σ∗ are the mean vector and covariance matrix of the conditional distribu-
tion of the observation corresponding to the four children given their parent, and are
computed by (4) and (3) below. We assume homogenous variance among a fixed level
of images, which means σ2

l,(j,k) = σ2
l for all j, k and l = 0, 1, . . . , L, and thus

Σ∗l,(j,k) = σ2
l Σ0. (3)

Further, when we go from a higher level to lower, the group of four children merges to
one parent pixel, therefore the variance of all the children pixels will be absorbed to
one parent level, resulting in σ2

l = 1
4σ

2
l−1 for l = 1, . . . , L. Consequently, it leads to the

relationship that σ2
l = 1

4l
σ2
0 for l = 0, 1, . . . , L. In addition, we reparameterize µ by ξ:

µ∗l,(j,k) =
1

4
µl,(j,k)14 + ξ∗l,(j,k), (4)

where 14 = (1, 1, 1, 1)T . The reparameterization of the means emphasizes that we shall
re-assign the weights of four children by ξl,(j,k) based on differences with 1

4µl,(j,k).

For the covariance matrix, instead of the identity covariance I, which means that ob-
servations at all four children pixels are independent and identically distributed (i.i.d.),
we force their sum to be that of their parent, so that we can preserve the total exposure
of the original image. With this condition and Lemma 1 in the Appendix, we obtain
that

Σ0 = I − 14(1′414)−11′4 = I − 1

4
141

′
4. (5)

In summary, the likelihood can be factorized as follows:

P(X|µ,Σ) = N (X0,(1,1);µ0,(1,1), σ
2
0)

×
L−1∏
l=0

2l∏
j=1

2l∏
k=1

N (X∗l,(j,k);
1

4
Xl,(j,k)14 + ξ∗l,(j,k),

σ2
0

4l
Σ0). (6)

For each level l, we estimate ξl of each pixel by the posterior mean E(ξl|X l). The
estimation of ξ can be obtained by pooling all the estimation of ξ’s at all levels of the
image together, which is

ξ̂(j,k) =

L∑
l=1

1

4L−l
E(ξl,(jl,kl)|X l), (7)
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where X l is the entire image at level l, l = 1, 2, . . . , L, and jl = dj/2L−le, kl = dk/2L−le;
here dxe is the ceiling function meaning the smallest integer not less than x. The final
estimation of the pixel (j, k) in the original image is

µ̂(j,k) = ξ̂(j,k) +
1

4L
X0,(1,1), j, k = 1, . . . , n. (8)

2.1 Prior distributions

While the multiscale structure allows to consider each parent-child group independently,
it is important to induce local constancy in parameters through a prior distribution.
The CRP is a one-parameter family of distributions on partitions that helps create ties
between ξ’s in each parent-child group.

When splitting the parent into four children pixels, we use the one-step quad split-
ting (White and Ghosal, 2011), rather than a two-step procedure (Kolaczyk, 1999) of
first vertical and then horizontal, because the former is rotationally invariant. We use
the 4-person CRP model to specify the prior probabilities for quad splits, which cor-
responds to the tie of ξ’s. The configuration of ξ’s formed by subgrouping the four
children is denoted by C, and let C be the collection of all 15 possible configurations.
These possibilities are given by a CRP with parameter M . For example, the configura-
tion C = (123)4 means ξ1 = ξ2 = ξ3, where the order of (1,2,3,4) is given below:

1 2
3 4

Given a smoothing parameter M in the CRP, the prior probability of each configuration
P(C|M) is given by a modified version of CRP(M), the CRP with parameter M . A
possible modification is to remove 3 of the total 15 configurations: (14)23, (23)14 and
(14)(23), which are only diagonally tied and unlikely to appear in a real image especially
in the finest level of images. In this case, we re-scale the probabilities of other configu-
rations of the same type to ensure that the total probability is 1. Table 1 displays the
distribution under the modified CRP(M). The simulation results given later in Table 4
show that the removal of diagonal ties generally improves the accuracy slightly, but it
can save substantial computation time, especially for 3D images (see Section 4) where
computation is a major concern.

Conditionally on the grouping, a prior for ξ is given by a normal distribution. For
notational convenience, we focus the discussion for one particular parent-child group.
LetX = (X1, X2, X3, X4) be the observation of four children andX = X1+X2+X3+X4

be the observation corresponding to the parent. The prior distribution of the parameters
ξ = (ξ1, ξ2, ξ3, ξ4) can start with N(0, τ2I). One natural constraint is that ξ should be
summed to zero. Further, each configuration C corresponds to some linear constraints
for ξ, which can be uniquely represented by a constraint matrix A such that Aξ = 0.
See Table 1 for all the constraint matrices associated with given configurations.

By Lemma 1, presented in the appendix, the prior distribution of ξ given each
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configuration C which is equivalent to the condition Aξ = 0, is given by:

ξ|C ∼ N(0, (I −A′(AA′)−1A)τ2), (9)

where A is the constraint matrix corresponding to each configuration.

Table 1: Illustration of the corresponding constraint matrix A and prior probability
P(C|M) for given configuration C. The column of C contains all possible configurations
belonging to the same tie structures, while the diagonally tied ones are crossed out.
The constraint matrix A is for the first C, while the other constraint matrices can be
obtained by permuting the columns of A according to the tieing structures. The last
column is the prior probability P(C|M), which is shared by all configurations in the
same category.

C A P (C|M)

{1234}
[

1 1 1 1
]

M
M

M
M+1

M
M+2

M
M+3

{(123)4},
{(234)1}, {(134)2}, {(124)3}

 1 1 1 1
1 −1 0 0
1 0 −1 0

 M
M

1
M+1

2
M+2

M
M+3

{(12)(34)} ,
{(13)(24)} , {(14)(23)}

 1 1 1 1
1 −1 0 0
0 0 1 −1

 3
2
M
M

1
M+1

M
M+2

1
M+3

{12(34)}, {(12)34},{(13)24},
{(24)13}, {(14)23}, {(23)14}

[
1 1 1 1
0 0 1 −1

]
3
2
M
M

M
M+1

M
M+2

1
M+3

{(1234)}


1 1 1 1
1 −1 0 0
1 0 −1 0
1 0 0 −1

 M
M

1
M+1

2
M+2

3
M+3

2.2 Posterior distributions

We shall derive the posterior distribution of C given (M, τ) and the observation X as-
suming the model parameter σ2

0 = σ2 is known. The estimation of the model parameter
σ2
0 and smoothing parameters (M, τ) will be discussed in the Section 2.3. By the Bayes

rule, we obtain the posterior probability of the configuration C:

P(C|M, τ,X) ∝ P(C|M)P(X|C, τ,X), (10)

where X is the observation vector for the four children, and X is that of the parent,
i.e., X is the summation of all elements in X.
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This is a discrete probability distribution with 12 distinct values, so they need to
be scaled to sum to one. The first factor, P(C|M), is given by the modified CRP. The
second factor, P(X|C, τ,X) can be obtained from ξ|C and X|ξ by applying Lemma 2,
presented in the appendix. From the discussion about the model assumptions and prior
distributions, we have

X|ξ ∼ N(
1

4
X14 + ξ,Σ1),

ξ|C ∼ N(0,Σ2),

where
Σ1 = σ2Σ0, Σ2 = τ2(I −A′(AA′)−1A),

and Σ0 = I − 1′4(141′4)−11′4; here A is the constraint matrix corresponding to the
configuration C. Applying Lemma 2, we can obtain

X|(C, τ,X) ∼ N(
1

4
X14,Σ1 + Σ2). (11)

The enforced constraint X1 +X2 +X3 +X4 = X makes the joint distribution rank de-
ficient, which can be reduced to a lower 3-dimensional multivariate normal by dropping
one of the co-ordinates. We shall drop the last one X4 to make the covariance matrix
nonsingular in the computation. However, we shall keep all of them in the formulas
to make them symmetric, and just remind the reader of the singularity issue when
necessary.

Given (M, τ), we now have the discrete distribution P(C|M, τ,X) for a parent-child
group. The other posterior distribution P(ξ|C, X) is another multivariate normal dis-
tribution by conjugacy, namely,

ξ|C,X ∼ N(Σ2(Σ1 + Σ2)−1(X − 1

4
X14),Σ2(Σ1 + Σ2)−1Σ1); (12)

here the vector ξ is summed to be 0, thus is lower dimensional as is the case in (11).
Similarly we can drop the last one ξ4 to address the singularity issue. The final estimate
of each pixel in one parent-child group can be obtained by

ξ̂ =
∑
C∈C

P(C|M, τ,X)E(ξ|C,X) =
∑
C∈C

P(C|M, τ,X)Σ2(Σ1 +Σ2)−1(X− 1

4
X14). (13)

Similarly,

Ê(ξξ′|X) =
∑
C∈C

P(C|M, τ,X)[ξ̂ξ̂
′
+ Σ2(Σ1 + Σ2)−1Σ1]. (14)

Adding (13) across levels gives the estimate of the posterior mean of µj,k (see equa-
tion (7) and (8)). Note that ξ’s over different levels l are a priori independent and their
likelihood factorizes, so they are a posteriori independent too. This allows to obtain the
estimate of Var(µ2

j,k|X) by adding variances of the appropriate ξ variables which add
to µj,k in view of their posterior independence.
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2.3 Estimation of parameters

When the variance σ2 is known, we have two smoothing parameters: M and τ for
each level, which determine the tieing structure via the CRP probability allocation and
the prior distribution of distinct values in a parent-child group. In general, smaller
M or τ encourages more ties and less variation respectively, thus resulting in smoother
estimation. For a higher level, where the image is split in more pixels, the true intensities
of the neighboring pixels are more likely to be equal or close, since smoothness in an
image is formed by some neighboring pixels with similar intensities. Therefore, it makes
sense to let (M, τ) decrease along with increasing level size. We shall use all the data
at each level to determine the common (M, τ) for that level separately among different
levels of the image. We obtain their values by maximizing the marginal likelihood. The
nice structure of multiscale analysis makes it possible to estimate (M, τ) independently
for each level. We shall also apply the decreasing constraint, which actually makes the
estimated values more stable in the finer levels.

For each parent-child group, the marginal likelihood of the sample given (M, τ) and
the group sum is

P(X|M, τ,X) =
∑
C∈C

P(C|M)P(X|C, τ,X). (15)

Before maximizing (15), we pass to the logarithmic scale to make the algorithm more
stable. Since the optimization is conducted for the entire level, we need to formulate the
target function pooling all the parent-child groups together. For level l = 1, 2, . . . , L,
the length of a row or column is 2l, and thus the number of such groups is 4l−1. Using
z as the index for the children groups, we can derive the target function as:

4l−1∑
z=1

log

{∑
Cz∈C

P(C|M)P(X|C, τ,X)

}
. (16)

The Newton-Raphson algorithm or grid search type algorithms can be applied with the
decreasing constraint in (M, τ). We use a simplex search algorithm (Lagarias et al.,
1998) which gives stable estimates. The selection of parameters is more critical for
finer scales of the image. In practice, we use multiple starting points to ensure global
maximization.

For real image data, the variance σ2 at each pixel is unknown. The parameter σ2

can also be estimated by maximizing the marginal likelihood similar to the estimation
of (M, τ). However, unlike (M, τ), which are estimated separately for each level of
data, σ2 is fixed across different levels. Thus the optimization of the log-likelihood
is much more computationally intensive, especially for images with large sizes. The
method of moments estimation has a computational advantage and will be used here.
For the (j, k)th children group in the (L − 1)th level of the image, denote the indexes
corresponding to the (j, k)th block as C(j, k) = {(j′, k′) : j′ = 2j−1, 2j, k′ = 2k−1, 2k}.
Let s2j,k be the sample variance for the data Xj′,k′ , where (j′, k′) ∈ C(j, k), then s2j,k is

an unbiased estimate for σ2 if µj′,k′(j
′ = 2j − 1, 2j; k′ = 2k − 1, 2k) are all the same.
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Then an estimate of σ2 can be obtained by averaging all the sample variances:

σ̂2 =
1

4L−1

2L−1∑
j=1

2L−1∑
k=1

s2j,k. (17)

Obviously, not all four children pixels have intensities coming from the Gaussian distri-
bution with the same means, such as if the children block contains a part of a boundary
in the image. In that case, s2j,k will be inflated, since the difference among the means is
added to the overall variation. But the effect will be not significant if the non-boundary
pixels dominate the whole image, as showed by the following theorem. The proof of
Theorem 1 is deferred to the appendix.

Theorem 1. Suppose that we observe an image X of size n = 2L in each direction.
Let the true image arise from the realization of a function g : (s, t) 7→ µ(s, t) on the
domain D = [0, 1]× [0, 1] and be corrupted by independent Gaussian noise with mean 0
and variance σ2 at each pixel.

Assume that the true surface g(·, ·) is bounded by a constant m. Further assume
that D = D1 ∪ · · · ∪ Dk, k < ∞, where D0

i = Di \ ∂Di is a convex set such that g(·, ·)
is Lipschitz continuous on D0

i , i = 1, . . . , k. Then σ̂2 defined in (17) is asymptotically
unbiased and is consistent for σ2 as n→∞.

We can improve the finite sample performance of σ̂2 by the following modifications.
Consider the sample variances s2i,j , i, j = 1, . . . , 2L−1, as the new scalar responses, and

denote them as zt, t = 1, . . . , 4L−1. We know that the majority of zt have mean σ2 but
the others have means larger than σ2, for example the blocks containing boundaries.
Therefore we could classify all s2j,k’s into two groups via commonly used clustering
methods such as K-means (Hartigan and Wong, 1979) with K = 2. The two clusters
are boundary-containing or boundary-free groups and we can use the mean of s2j,k’s in

the boundary-free group to estimate σ2. As a more sophisticated alternative, a Gaussian
mixture model can be used to classify zt’s to the various groups:

zt = p1f1 + p2f2 + · · ·+ pKfK (18)

where p1 + · · · + pK = 1, and f1, . . . , fK , are densities for normal distributions. An
Expectation Maximization (EM) algorithm is used to estimate parameters (McLachlan
and Peel, 2000) and has already been implemented in MATLAB. The number of com-
ponents K can be selected by the Bayesian information criterion (BIC) using data. A
simpler alternative could be to use just the fixed value K = 2, where the mean of the
component with larger proportion is used as the estimate of σ2. All the modifications
improve the performance of σ̂2 by accounting for the inflation effect. The K-means with
K = 2 and the Gaussian mixture model with two components lead to straightforward
computation, which is important for large image data.
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2.4 Asymptotic properties

The proposed Bayesian denoising method enjoys some good convergence properties.
Let µ = (µj,k : j, k = 1, . . . , 2L) be the mean parameter of the image in the Bayesian
model, and µ0 = (µ0

j,k : j, k = 1, . . . , 2L) be the true value of the underlying mean of the
observed image. Define a structureM by equality among neighboring values of the split
parameters at any level. For example, the full model for the observed image is that the
components of the underlying mean (µj,k : j, k = 1, . . . , 2L) are not at all tied among
intensities. With more specifications of ties, a structure becomes more restricted. Let
the true structure be M0, and call any model that is broader than M0 a compatible
model; otherwise call it incompatible. A compatible model has fewer assumptions of ties
than the true model, and thus will never contain any incorrect specification of ties but
it may miss some correct ties. White and Ghosal (2011) showed that under the Poisson
model for the image, as the total intensity tends to infinity, the posterior distribution of
relative intensities is consistent and the posterior probability of the true model converges
to one. A similar result holds in our setting of Gaussian noised images.

Theorem 2. For the Bayesian smoothing method with modified CRP, we have that

(a) the posterior distribution of µ is consistent at µ0 as σ → 0;

(b) for any incompatible model M∗, the posterior model probability Π(M∗|X) ≤
exp(−c/σ2) for some constant c > 0 almost surely for all sufficiently small σ;

(c) for any compatible model M∗ that is different from the true model, the posterior
model probability Π(M|X) = Op(σd), where d is a constant standing for the redundancy
of M∗.

Note that the asymptotic regime here is σ → 0, which is different from that in
Theorem 1. The setting σ → 0 can be interpreted as taking repeated independent
observations on the same image, therefore the resulting mean image can be thought of
as a noisy image with standard deviation approaching zero. The proof of Theorem 2
relies on the same arguments given by White and Ghosal (2011), which only use the
finite dimensionality and the regularity of the Poisson family, and non singularity of
the prior distribution. As the Gaussian model meets these general conditions, their
arguments go verbatim.

3 Simulation results for 2D images

In this section, we conduct a simulation study to judge the practical performance of the
proposed Bayesian smoothing method using the Chinese restaurant process (Bayesian
CRP). We compare with five other existing approaches, which are translation-invariant
Haar (TI-Haar) estimation (Willett and Nowak, 2004), coarse-to-fine wedgelet (Castro
et al., 2004), platelet (Willett and Nowak, 2003), nonparametric Bayesian dictionary
learning (BPFA) proposed by Zhou et al. (2012) and the conventional running median
method. All the implementations are completed in MATLAB.
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The Gaussian model can be applied to a wide range of images, regardless of the
quantity being measured for each pixel. They are much more applicable to the large
photon images, or images based on a continuous quantity like intensity. The essential
differences can be summarized according to the number of unique values of intensities in
the image. Call them discrete images when there are a limited number of unique values
and continuous when there are a large number of unique values. In our simulations,
typical images from both discrete and continuous cases will be used. The image of
the Shepp-Logan phantom (Jain, 1989) is discrete, while the Lena image is continuous.
The Shepp-Logan phantom image contains ellipses with various absorption properties
to mimic the outline of a head, which is widely used to test reconstruction algorithms.
The Lena image is a real image typically used to measure the performance of smoothing
algorithms. True intensity values in both images are within the range 0 to 1.

Cycle spinning is a common technique to remove visual artifacts in image reconstruc-
tion (Coifman and Donoho, 1995; Willett and Nowak, 2004) and can be completed by
averaging random or local shifts. We average 121 local shifts (11 × 11, which means a
step size up to 5 in each possible direction) for the methods of Bayesian CRP, wedgelet,
platelet and running median. The TI-Haar is translation invariant and hence it is not
necessary to apply local shifts any more, while the BPFA method already includes cycle
spinning in terms of patches automatically. The tuning parameter for platelet is hard
to specify. We use the value 0.1, which is the best in terms of the mean squared errors
(MSE) for the Lena image when σ = 0.5. The length of the window for the running
median method is fixed at 5. We estimate σ2 by equation (17) with 2-means or Gaussian
mixture models since the results are similar. All simulations are run by MATLAB on
Dual Processor Xeon Twelve Core 3.6 GHz machines with 80GB RAM running 64Bit
CentOS Linux 5.0. The method of wedgelet is the only one to use compiled code (Castro
et al., 2004), which speeds up the computation.

The performance of various methods are compared both visually and numerically.
The visual performances to the two images are shown in Figure 1 and Figure 2 for
observations with light noise (σ = 0.1). We can see that the smoothed images obtained
by the proposed Bayesian approach are able to identify most of the features present
in the true image. For example, the small ellipses are still visible after smoothing by
the Bayesian CRP method, as well as Bayesian dictionary learning (BPFA) and running
median. Both the Shepp-Logan phantom and Lena images show that TI-Haar, wedgelet
and platelet tend to over-smooth, which miss features present in the true images. The
platelet method depends on the selection of a tuning parameter, which may have caused
its problematic performance. Figure 3 demonstrates the performance of all six methods
for the Lena image with heavier noise (σ = 0.6). We can see that the Bayesian CRP
method reconstructs the key features such as the nose and the mouth, while achieving
smoothing even though the observed image is heavily noised. TI-Haar and wedgelet
tend to oversmooth and miss some features such as the boundary between the face and
the arm. The platelet, BPFA and running median methods capture features but tend
to overfit since the smoothed images are still grainy.

Numerical comparisons confirm our visual observations. Two common criteria are
used: the mean absolute errors (MAD) and the mean squared errors (MSE). In addi-
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Figure 1: Comparison of the Bayesian smoothing method with other approaches for the
256 × 256 Shepp-Logan phantom shown in (a). The noisy observation with standard
deviation σ = 0.1 and a constant background noise 0.01 is shown in (b). The six
denoising methods (c)–(h) are respectively Bayesian CRP, TI-Haar, wedgelet, platelet,
Bayesian dictionary learning and running median. All methods except TI-Haar and
Bayesian dictionary learning use 121 = 11× 11 local shifts to remove artifacts.

(a) Original (b) Observation (c) CRP (d) TI-Haar

(e) Wedgelet (f) Platelet (g) BPFA (h) RM

Table 2: Numerical comparison of smoothing methods for the phantom image when
noise standard deviation σ = 0.1. The mean MSE (×10−2), MAD (×10−2) and HD
(×10−2) of 100 simulations are reported. The maximum standard error for each criterion
is given by the last row. All methods except TI-Haar and Bayesian dictionary learning
use 121 local shifts to remove artifacts. The running time for each local shift and the
total time are reported in the last two columns.

Methods MSE MAD HD Time (sec)
Observation 1.01 8.02 181.21 per shift total
Bayesian CRP 0.04 1.42 48.53 0.27 32.55
TI-Haar 0.05 1.51 56.08 0.28 0.28
Wedgelet 0.04 1.38 47.15 4.21 509.01
Platelet 0.46 3.27 187.49 36.46 4411.19
BPFA 0.04 1.38 46.75 1042.13 1042.13
Running Median 0.13 2.55 89.27 0.03 3.78
SE (max) 0.00 0.00 0.54 – –
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Figure 2: Comparison of the Bayesian smoothing method with other approaches for the
512 × 512 Lena image shown in (a). The noisy observation with standard deviation
σ = 0.1 is shown in (b). The six denoising methods (c)–(h) are respectively Bayesian
CRP, TI-Haar, wedgelet, platelet, Bayesian dictionary learning and running median.
All methods except TI-Haar and Bayesian dictionary learning use 121 = 11 × 11 local
shifts to remove artifacts.

(a) Original (b) Observation (c) CRP (d) TI-Haar

(e) Wedgelet (f) Platelet (g) BPFA (h) RM

Figure 3: Comparison of the Bayesian smoothing method with other approaches for the
512 × 512 Lena image shown in (a). The noisy observation with standard deviation
σ = 0.6 is shown in (b). The six denoising methods (c)–(h) are respectively Bayesian
CRP, TI-Haar, wedgelet, platelet, Bayesian dictionary learning and running median.
All methods except TI-Haar and Bayesian dictionary learning use 121 = 11 × 11 local
shifts to remove artifacts.

(a) Original (b) Observation (c) CRP (d) TI-Haar

(e) Wedgelet (f) Platelet (g) BPFA (h) RM
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tion, the Hausdorff distance (HD) (Huttenlocher et al., 1993) is used to measure the
similarity between smoothed images and the true images. For A = {a1, . . . , ap}, and
B = {b1, . . . , bp}, the Hausdorff distance is defined as

H(A,B) = max

{
max
a∈A

min
b∈B
‖a− b‖,min

b∈B
max
a∈A
‖a− b‖

}
, (19)

where ‖·‖ can be taken to be the usual Euclidean norm. Distance-based metrics such as
the Hausdorff distance and Baddeley’s delta metric (Baddeley, 1992; Wilson et al., 1997)
can often measure the similarity between two images in a more intelligent way. The
Hausdorff distance is relatively easier to compute and hence is used here. In addition to
the accuracy, the computing time for each method is noted. Table 2 shows the numerical
performance of all six methods for the phantom image when σ = 0.1. We can see that
our method has comparable performances with wedgelet and BPFA, but uses much less
time to compute the estimates. This advantage in computation is due to the avoidance
of the MCMC algorithm by exploiting the conditional conjugacy structure of Gaussian
distributions given the partitions. Table 3 shows the MSEs for the Lena image with
various noise levels. We observe that the Bayesian CRP method tends to outperform
all the other approaches when σ increases. For smaller σ’s, the Bayesian CRP method
is still comparable with the best ones, but incurs much less computational cost. The
platelet is the best when σ = 0.5, but may suffer a lot at the other noise levels. This
indicates that the platelet is sensitive to the tuning parameter and has the potential
to perform well, when the tuning parameter is selected appropriately. Unfortunately,
the platelet algorithm does not provide a data-driven selection of its tuning parameters,
which must be subjectively chosen by the user without knowing the true image. The
TI-Haar is the most computationally efficient approach among the six methods but the
Bayesian CRP method outperforms it in terms of all other criteria in both Table 2 and
Table 3. BPFA is another well-performing method for light noise, but it suffers from
heavy noise and it is the one of the most computationally intensive methods.

In addition, we compare the modified CRP prior and the original CRP prior using
the phantom images in terms of MSEs and computational time (Table 4). We can see
that the two priors lead to estimates with similar accuracy. Typically the modified
CRP prior is more computationally efficient, because fewer configurations lead to fewer
operations.

We use various sizes of phantom images to demonstrate the scalability of the pro-
posed method (Table 5). Figure 4 shows that the computational time is approximately
linear in the total number of pixels n2. In fact, the number of operations in expres-
sion (16) is 12× 4l−1 where l is the scale of the image, thus linear in the total number
of pixels at lth scale; similarly the estimation procedure described by equation (13) is
also linear in 4l−1. As a result, the entire procedure requires O(n2) operations, where
n2 is the total number of pixels.

The proposed approach can address colored images as well. For example, a colored
image in MATLAB can be represented using (red, green, blue) (RGB) representation
(the so-called Truecolor images in MATLAB). Therefore, for noisy observations, we
can apply the Bayesian CRP method to each slice of the color representation and then
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Table 3: Numerical comparison of smoothing methods for the Lena image at various
noise levels in terms of MSE (×10−2). 100 simulations are run and the maximum
standard errors are given by the last row. All methods except TI-Haar and Bayesian
dictionary learning use 121 local shifts to remove artifacts. The running time for each
local shift and the total time when σ = 0.2 are reported; the running time is similar for
the other noise levels.

Method
Noise level σ Time (sec)

0.2 0.3 0.4 0.5 0.6 0.7 per shift total
Bayesian CRP 0.15 0.21 0.27 0.32 0.37 0.42 0.99 119.97
TI-Haar 0.16 0.22 0.30 0.36 0.42 0.49 2.46 2.46
Wedgelet 0.15 0.21 0.29 0.35 0.40 0.47 54.77 6627.11
Platelet 0.27 0.26 0.27 0.30 1.85 6.55 150.03 18153.47
BPFA 0.12 0.19 0.27 0.34 0.43 0.54 9993.91 9993.91
Running Median 0.22 0.32 0.46 0.63 0.86 1.13 0.17 21.11
SE (max) 0.00 0.00 0.00 0.00 0.00 0.00 – –

Figure 4: Scalability of the Bayesian CRP. We plot the total time with the number of
levels L = log2(n), and fit a straight line when the number of pixels n2 = 4L is the
predictor. The fitted line is: Total Time = 0.00 + 10.45 n2 thus linear in the total
number of pixels.
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Table 4: Comparison of the modified CRP prior and the CRP prior using noisy phantom
images with the standard deviation σ = 0.1 and a constant background noise 0.01 for
various image sizes. We report the MSE(×10−4) for each of them, the differences
(modified CRP − CRP) and the standard errors of the differences. The time taken by
each prior is reported by the last two rows. The results are based on 121 local shifts
and 100 simulations.

Summary Priors 128 256 512 1024 2048

MSE (×10−4)

Modified CRP 7.20 3.94 2.46 1.76 1.38
CRP 7.22 3.97 2.46 1.77 1.39
Difference -0.02 -0.02 -0.01 -0.01 -0.01
SE 0.04 0.02 0.01 0.01 0.01

Time (sec)
Modified CRP 15.98 19.12 68.63 167.18 715.66
CRP 14.21 28.64 86.05 255.39 1111.25

Table 5: Scalability of the Bayesian CRP using noisy phantom images with the standard
deviation σ = 0.1 and a constant background noise 0.01. The result is based on 121
local shifts and 100 simulations.

Time (sec) 128 256 512 1024 2048
Optimization 7.12 8.9031 31.39 76.65 335.43
Estimation 8.86 10.21 37.22 90.49 380.10
Total 15.98 19.12 68.63 167.18 715.66

combine the three smoothed slices together. In Figure 5, we apply the Bayesian CRP
to a 512 × 512 colored Lena image with Gaussian noise (σ = 0.2). The Bayesian CRP
method appears to give a better smoothed image compared with the running median
approach both visually and numerically (smaller MSE).

In some situations, the observed image consists of counts of photons hitting the
pixels along with their energy levels. In this case, colors can be represented by energy
levels of photons hitting pixels, which essentially lead to another dimension standing
for the color; see White and Ghosal (2013). Then we can treat the observation as a 3D
input and use the 3D Bayesian CRP in Section 4 to denoise the image.

4 Extension to 3D images

Due to the adjustability of the CRP and multivariate Gaussian distributions to higher
dimensions, our method can be extended to data structures with higher dimensions
such as 3-dimensional images. A colored image can sometimes be viewed as a 3D
image. For a 3D image, our method can be extended using the following modification.
The multiscale levels of the data are obtained by grouping 8 = (2 × 2 × 2) children
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Figure 5: Denoising for the colored Lena image with size 512 × 512 shown in (a). The
noisy observation with standard deviation 0.2 is shown in (b). The denoised images are
shown in (c) and (d) using the proposed Bayesian CRP method and the running median
approach with the window length 5. When plotting the colored image, we truncate both
the noisy and smoothed images by [0,1] as required by MATLAB. Both methods use
121 local shifts to remove artifacts.

(a) True (b) Observation (MSE = 0.0399)

(c) Bayesian CRP (MSE = 0.0020) (d) Running Median (MSE = 0.0038)

pixels into 1 parent block and the corresponding Gaussian assumptions are made on a
vectorized array of means with length 8 instead of 4 as in the 2D case. An eight person
CRP will be used instead of a four person CRP to create ties. We modify the CRP
prior by removing the diagonally tied configurations as in the 2D case, which reduces
the number of configurations from 4140 to 958. The posterior distributions and the final
estimates are calculated by the same procedure as in the 2D case with minor changes.
We shall summarize the modeling and estimation procedures for the 3D case as follows.
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Let the observed data be X = ((X(j,k,p))) where j, k, p = 1, . . . , 2n. It is only for
notational convenience that we assume the three dimensions have the same length. The
different scales of an image X are defined as follows. In the lth scale of the image, the
parent (j, k, p)th block pixel is split into 8 children of block-pixels at the (l+ 1)th scale,
which can be formulated as

Xl,(j,k,p) =

2j∑
j′=2j−1

2k∑
k′=2k−1

2p∑
p′=2p−1

Xl+1,(j′,k′,p′), (20)

where l = 0, 1, 2, · · · , L− 1, and j, k, p = 1, · · · , 2l. Here XL,(j,k,p) = X(j,k,p) and when
l = 0, X0,(1,1,1) is the summation of all the entire image.

We use X∗l,(j,k,l) to denote the vector of its children group

(Xl+1,(2j−1,2k−1,2p−1), Xl+1,(2j−1,2k,2p−1), Xl+1,(2j,2k−1,2p−1), Xl+1,(2j,2k,2p−1),

Xl+1,(2j−1,2k−1,2p), Xl+1,(2j−1,2k,2p), Xl+1,(2j,2k−1,2p), Xl+1,(2j,2k,2p)),

and similarly for the µ and Σ parameters. Similar analysis as in the 2D case, we can
establish the following multiscale statistical model given by:

P(X|µ,Σ) = N (X0,(1,1,1);µ0,(1,1,1), σ
2
0)

×
L−1∏
l=0

2l∏
j=1

2l∏
k=1

2l∏
p=1

N (X∗l,(j,k,p);
1

8
Xl,(j,k,p)18 + ξ∗l,(j,k,p),

σ2
0

8l
Σ0) (21)

where Σ0 = I − 18(1′818)−11′8 = I − 1
8181

′
8 and 18 = (1, 1, 1, 1, 1, 1, 1, 1)′.

The prior distribution is a modified 8-person CRP. We remove all the configurations
that have only diagonal ties and thus end up with 958 admissible configurations out of
4140. We rescale the probability for each configuration to make them sum to one. The
constraint matrix A is obtained the same way as in the 2D case, and the estimation
procedure is the same except that we need to replace 1

4 by 1
8 and 14 by 18 wherever

they show up.

The 3D case uses 8-dimensional Gaussian vectors instead of 4-dimensional as used
in the 2D case. This generalization makes computations much more challenging. How-
ever, the asymptotic convergence property of the posterior distribution established in
Theorem 2 continues to hold by the same arguments, since the resulting model still
belongs to a finite dimensional regular parametric family and the prior distribution is
non-singular.

5 Simulation results for 3D images

The methods of TI-Haar, wedgelet, platelet, and BPFA are not yet developed for 3D
images. Therefore we compare our method with some other approaches in this sim-
ulation. Mukherjee and Qiu (2011) proposed a 3D image denoising method via local
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smoothing and nonparametric regression (LSNR), and compared with other approaches
through an extensive simulation. We follow the same simulation settings and compare
the Bayesian CRP method with the simulation results presented in Mukherjee and Qiu
(2011). Particularly, we use two artificial 3D images as follows. The two true image
intensity functions are:

f1(x, y, z) = −(x− 1

2
)2 − (y − 1

2
)2 − (z − 1

2
)2 + 1l{(x, y, z) ∈ R1 ∪R2}, (22)

where R1 = {(x, y, z) : |x − 1
2 | ≤

1
4 , |y −

1
2 | ≤

1
4 , |z −

1
2 | ≤

1
4} and R2 = {(x, y, z) :

(x− 1
2 )2 + (y − 1

2 )2 ≤ 0.152, |z − 1
2 | ≤ 0.35};

f2(x, y, z) =
1

4
sin(2π(x+ y + z) + 1) +

1

4
+ 1l{(x, y, z) ∈ S1 ∪ S2}, (23)

where S1 = {(x, y, z) : (x − 1
2 )2 + (y − 1

2 )2 ≤ 1
4 (z − 1

2 )2, 0.2 ≤ z ≤ 0.5} and S2 =
{(x, y, z) : 0.22 ≤ (x− 1

2 )2 +(y− 1
2 )2 +(z− 1

2 )2 ≤ 0.42, z < 0.45}; here 1l is the indicator
function.

We shall compare our method with LSNR (Mukherjee and Qiu, 2011), anisotropic
diffusion (AD) in Perona and Malik (1990), total variation minimization (TV) in Rudin
et al. (1992), optimized non-local means (ONLM) method Coupé et al. (2008) and the
conventional running median (RM) method. The TV method is modified by Mukherjee
and Qiu (2011) by minimizing a 3D-version of the TV criterion. The estimation of σ2

in the Bayesian CRP method is conducted by the 2-means modification described in
section 2.3. For all three cases, we consider two cases when noise ε ∼ N(0, σ2) is added
with σ = 0.1 and 0.2. We consider two image sizes with n = 64 and n = 128. We use
100 replications for each setting.

From Table 6, we see that the proposed Bayesian CRP method is one of the best
approaches among all six methods for both settings in terms of MSE. In fact, when
n = 64 (both f = f1 and f = f2) and n = 128 (f = f2), the Bayesian CRP method
is significantly better than all the other methods presented here; for the scenario that
f = f1 and n = 128, the LSNR method has the same MSE as the Bayesian CRP
method. The LSNR method is the second best performing approach here, but it is
based on the vectorization of the 3D image thus probably destroys the spatial structure
of a 3D image. In contrast, the Bayesian CRP method is based on 8-person blocks to
take into account the spatial association, and is also invariant under rotations in each
dimension.

In addition to the two functions f1 and f2, we apply the Bayesian CRP method to
a 3D Shepp-Logan phantom image. It is simulated as a 3D version of the commonly
used 2D Shepp-Logan phantom, for which a MATLAB code is available (Schabel, 2005).
This code creates an arbitrary number of ellipsoids in a 3D image, and is particularly
useful as a standard 3D test image. We shall use the 3D Shepp-Logan phantom image
to demonstrate both the visual and numerical performance of the proposed Bayesian
CRP method, along with its computational efficiency.

Figure 6 shows five selected cross-sections of the 3D Shepp-Logan image. We can
see that the Bayesian CRP method successfully recovers most of the key features of the
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Table 6: 3D denoising for two images f1, f2 in terms of MSE (×10−2). Bayesian CRP
(the first row) uses 5× 5× 5 local shifts and is based on 100 replications. The mean of
100 MSEs is reported. The maximum standard error for each column is reported in the
last row. The numerical records for the other five methods to estimate f1 and f2 are
from Mukherjee and Qiu (2011).

n = 64 n = 128
Method f = f1 f = f2 f = f1 f = f2

σ = 0.1 0.2 σ = 0.1 0.2 σ = 0.1 0.2 σ = 0.1 0.2
Bayesian CRP 0.01 0.05 0.02 0.09 0.01 0.03 0.01 0.04
LSNR 0.03 0.08 0.06 0.13 0.01 0.03 0.02 0.06
TV 0.03 0.09 0.06 0.15 0.01 0.04 0.03 0.06
AD 0.06 0.35 0.07 0.38 0.03 0.20 0.04 0.22
ONLM 0.03 0.12 0.06 0.14 0.01 0.06 0.03 0.06
RM 0.22 0.33 0.11 0.26 0.08 0.19 0.06 0.14
SE (max) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

phantom; see the 3rd row for example. The Bayesian CRP method appears to recover
boundaries since the CRP ties in the prior do not let it oversmooth. Some of the small
ellipsoids are also recovered clearly, for example, the 5th row when σ = 0.1. When the
noise becomes heavier such that features in the noisy observations are not clearly visible,
the method cannot reconstruct all of them and may miss some of the small features (5th
row when σ = 0.2). We also observe that when the feature is close to the background
and with small size, then even light noise can make it difficult to be recognized (the top
ellipsoids in the 4th row).

The numerical performance is presented in Table 7, with both the MSEs and com-
putational time listed. It is clear that the Bayesian CRP method decreases the MSEs
dramatically when applied to noisy phantoms. The computational cost is important for
a method when addressing 3D images, because of the large size of the data. We can see
that given smoothing parameters, the estimation for one local shift takes less than 50
seconds when the size n = 64, and about 4 minutes when n = 128. The optimization
step is computationally intensive, which is typical for most methods to select tuning
parameters. We use a simplex search to select M and τ in a wide range to make the
algorithm completely data-driven and flexible for various data types. There are several
variants we can use to improve the computational efficiency. For example, in practice
we can specify a large value of M and τ for the first level of the image, and decrease
the values by a factor 1/4 or 1/8 for each level. Another alternative could be adjusting
the range to search in and making sure that the optimal values are not achieved at the
boundary. In addition, at least two different parallel computing techniques are applica-
ble to make it more computationally efficient benefiting from the characteristics of the
Bayesian CRP method. First, given smoothing parameters, all local shifts are parallel
to each other, therefore the parfor loops in MATLAB can be used to parallelize different
shifts with very minor change in the original code. Second, the method is based on a
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Figure 6: Performance of the Bayesian CRP approach for a 3D Shepp-Logan phantom
image (n = 128). Each row corresponds to a cross-section of the image; the five rows are
the 40th, 50th, 60th, 65th and 80th slice, and are selected to represent various features
of a typical phantom image. The first column is the original image. Then 2nd column is
the noisy observation with noise level 0.1, followed by the smoothed version in the 3rd
column. The 4th and 5th column are the noisy observation and the smoothed image
when the noise level is 0.2. Here the Bayesian CRP approach uses 5× 5× 5 local shifts.

(a) Original (b) Obs. (σ = 0.1) (c) Bayesian CRP (d) Obs. (σ = 0.2 ) (e) Bayesian CRP
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Table 7: Numerical performance of the Bayesian CRP on the 3D Shepp-Logan phan-
toms. The mean MSEs and average computational times are reported. The average
computational time includes the Optimization time to select the smoothing parameters
M and τ , Estimation time per shift given the selected smoothing parameters, and the
Total time when using 5 × 5 × 5 local shifts. The total time = the optimization time
+ the estimation time per shift × the number of shifts. 100 simulations are run and
the standard errors of MSEs are given in the parentheses. Results are obtained without
using any parallel computing techniques.

n = 64 n = 128
σ = 0.1 σ = 0.2 σ = 0.1 σ = 0.2

MSE
Observation

0.0100 0.0400 0.0100 0.0400
(0.0000) (0.0000) (0.0000) (0.0000)

Bayesian CRP
0.0002 0.0025 0.0001 0.0013

(0.0000) (0.0000) (0.0000) (0.0000)

Time
Optimization (h) 2.24 1.98 12.12 13.12
Estimation/shift (s) 49.53 42.50 245.46 259.03
Total (h) 3.96 3.46 20.64 22.11

large number of independent 4-person (2D) or 8-person (3D) blocks, which makes graph-
ics processing unit (GPU) computing possible. GPU computing is applicable for both
the optimization and estimation step. We report the results without exploiting paral-
lel computing techniques, mainly for the convenience of the readers to make straight
comparison, and also because parallel computing facilities may not be available to all.
Our online MATLAB toolboxes have an option to incorporate the parfor loops to take
advantage of parallel computing when available.
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Appendix

Proof of Theorem 1.

Proof. Denote the mean intensity at the (j, k)th pixel by µj,k = g(j/n, k/n). Note
that the total number of blocks is B = n2/4. By the definition, s2j,k is the sample
variance of {Xj′,k′}, where (j′, k′) ∈ C(j, k) = {j′ = 2j − 1, 2j; k′ = 2k − 1, 2k}.
Denote X̄j,k as the sample mean of Xj′,k′ , where j′, k′ ∈ C(j, k), then Xj′,k′ − X̄j,k

is distributed as N(µj′,k′ − µ̄j,k, 3σ
2/4), leading to the equation that E(s2i,j) = σ2 +

1
3

∑2j
j′=2j−1

∑2k
k′=2k−1(µj′,k′ − µ̄j,k)2, where µ̄j,k is the mean of µj′,k′(j

′, k′ ∈ C(j, k)).

Notice that all the parent-child blocks can be categorized as two types: contained
by one of the D0

i ’s (type 1) or contained by more than one Di (type 2). For any
(j, k)th block belonging to type 1, the distance in a block is always less than or equal
to the distance between the two diagonal elements, which is 2

√
2/n. Because of the

Lipschitz continuity on each D0
i and the existence of only finitely many Di’s, there

exists a constant c such that |µj′,k′ − µ̄j,k| ≤ c/n, where j′, k′ ∈ C(j, k) . Therefore,
|E(s2i,j)− σ2| ≤ 4/3× c2/n2 = O(n−2). For each (j, k)th block that belongs to type 2,

|µj′,k′−µ̄j,k| ≤ 2m for j′, k′ ∈ C(j, k), therefore |E(s2i,j)−σ2| ≤ 16m2/3 = O(1). Because
Di is convex, we have at most k × 4 × n/2 = 2kn blocks to contain the boundaries of
the Di’s, corresponding to a proportion of 2kn/B = O(n−1). Therefore, |E(σ̂2)− σ2| ≤
B−1

∑n/2
j=1

∑n/2
k=1 |E(s2j,k)− σ2| ≤ 1 ·O(n−2) +O(n−1) ·O(1) = O(n−1), indicating that

σ̂2 is an asymptotically unbiased estimator of σ2.

We shall show that the variance of σ̂2 converges to 0 to obtain consistency. It is
sufficient to show that Var(s2i,j) is bounded since σ̂2 is the average of all s2i,j ’s, which are

independent. Recall that Xj′,k′ − X̄j,k is normally distributed with uniformly bounded
mean and constant variance 3σ2/4 for all blocks. Consequently E(Xj′,k′ − X̄j,k)4 is
bounded uniformly for all blocks. Notice that

32s4i,j =

 2j∑
j′=2j−1

2k∑
k′=2k−1

(Xj′,k′ − X̄j,k)2

2

≤
2j∑

j′=2j−1

2k∑
k′=2k−1

(Xj′,k′ − X̄j,k)4,

according to the Cauchy-Schwarz inequality. Hence it follows that Var(s2i,j) ≤ E(s4i,j) is

bounded uniformly for all blocks, and thus Var(σ̂2) = B−1Var(s2i,j) = O(n−2). Combin-

ing the facts that E(σ̂2)− σ2 = O(n−1) and Var(σ̂2) = O(n−2), we obtain consistency
of σ̂2.

The following two lemmas were used in the paper:

Lemma 1. Let X be an n-dimensional random vector, A is an m× n matrix and
c ∈ Rn. If X ∼ N(µ, σ2I), then X|{AX = c} ∼ N(µ∗,Σ∗), where

µ∗ = A′(AA′)−1c+ (I −A′(AA′)−1A)µ

Σ∗ = (I −A′(AA′)−1A)σ2.
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Lemma 2. Let X and Y be two n-dimensional multivariate normal random vectors
such that X|Y ∼ N(c + Y ,Σ1), and Y ∼ N(0,Σ2), where c ∈ Rn and Σ1,Σ2 are
both n× n nonnegative definite matrices such that Σ1 + Σ2 is positive definite. Then
the marginal distribution of X is N(c,Σ1 + Σ2), and the conditional distribution of Y
given X is N(µ∗,Σ∗), where

µ∗ = Σ2(Σ1 + Σ2)
−1

(X − c)
Σ∗ = Σ2 − Σ2(Σ1 + Σ2)

−1
Σ2 = Σ2(Σ1 + Σ2)

−1
Σ1.

Proofs. It is well known that if

(
X1

X2

)
∼ N

((
µ1

µ2

)
,

[
Σ11 Σ12

Σ21 Σ22

])
and Σ22 is

nonsingular, then

X1|X2 ∼ N(µ1 + Σ12Σ
−1
22 (X2 − µ2),Σ11 −Σ12Σ

−1
22 Σ21). (24)

Lemma 1 can be obtained by first deriving the joint distribution of

(
X

AX

)
and then

applying (24). For Lemma 2, the joint distribution of

(
X

Y

)
can be obtained by the

multiplication of the conditional density of X|Y and the density of the marginal dis-
tribution of Y . When Σ2 is singular, we can just drop the dependent variable to make
the covariance matrix nonsingular and apply the same argument. An alternative ap-
proach for a singular covariance matrix is to consider the density function with respect
to the Lebesgue measure on the column space of Σ2, rather than the full n-dimensional
Lebesgue measure. �
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