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Bayesian Adaptive Smoothing Splines Using
Stochastic Differential Equations

Yu Ryan Yue ∗ , Daniel Simpson † , Finn Lindgren ‡ and H̊avard Rue §

Abstract. The smoothing spline is one of the most popular curve-fitting methods,
partly because of empirical evidence supporting its effectiveness and partly because
of its elegant mathematical formulation. However, there are two obstacles that
restrict the use of the smoothing spline in practical statistical work. Firstly, it
becomes computationally prohibitive for large data sets because the number of
basis functions roughly equals the sample size. Secondly, its global smoothing
parameter can only provide a constant amount of smoothing, which often results
in poor performances when estimating inhomogeneous functions. In this work, we
introduce a class of adaptive smoothing spline models that is derived by solving
certain stochastic differential equations with finite element methods. The solution
extends the smoothing parameter to a continuous data-driven function, which is
able to capture the change of the smoothness of the underlying process. The
new model is Markovian, which makes Bayesian computation fast. A simulation
study and real data example are presented to demonstrate the effectiveness of our
method.

Keywords: Adaptive smoothing, Markov chain Monte Carlo, Smoothing spline,
Stochastic differential equation

1 Introduction

The smoothing spline (e.g., Wahba 1990) has been one of the most popular curve-fitting
methods, partly because of empirical evidence supporting its effectiveness and partly
because of its elegant mathematical formulation. Consider a simple nonparametric
regression model:

yi = f(si) + εi, i = 1, . . . , n; si ∈ IR, (1)

where (yi, si) are n observations, f is an unknown “smooth” function, and εi
iid∼

N(0, τ−1) with precision (inverse of variance) τ . The smoothing spline estimator of
f can be defined as the solution to the following minimization problem:

f̂ = arg min
f

 n∑
i=1

(
yi − f(si)

)2

+ λ

∫
f (p)(s)2ds

 , (2)
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where λ > 0 is the smoothing parameter and f (p) is the pth derivative of f . The param-
eter λ controls the trade-off between fidelity to the data in terms of the residual sum
of squares against smoothness of the fit in terms of the integrated squared derivative.
The value of p is often taken to be 1 or 2, corresponding to linear and cubic smoothing
splines, respectively. From a frequentist point of view, the solution f̂ can be explic-
itly derived within a reproducing kernel Hilbert space and λ is usually estimated via
cross-validation or generalized cross-validation (see e.g., Wahba 1990; Gu 2002). From

a Bayesian point of view, f̂ is the mean of the posterior distribution of f yielded by
taking a partially improper Gaussian prior on the function space (Wahba 1990; Eubank
1999; Speckman and Sun 2003).

Despite its popularity, the smoothing spline is well known to perform badly when es-
timating highly varying functions that have peaks, jumps or frequent curvature transi-
tions (e.g., Eubank 1999). This significant drawback stems from its single smoothing
parameter λ, which applies a constant amount of smoothing to the mean function f(s).
Consequently, many authors have proposed to make smoothing splines adaptive. Typi-
cal methods include local bandwidth selection for the kernel estimator (Staniswalis 1989;
Staniswalis and Yandell 1992), local generalized cross-validation (Cummins et al. 2001),
adaptive L-splines (Abramovich and Steinberg 1996), hybrid adaptive splines (Luo and
Wahba 1997), and spatially adaptive smoothing spline (Pintore et al. 2006). Unfor-
tunately, those methods are computationally intensive and lack flexibility, preventing
their implementation in more complicated models (e.g., generalized additive models or
bivariate models).

There has been an extensive literature on the adaptive penalized regression spline (P-
spline). As an alternative to the smoothing spline, the P-spline uses the basis found by
solving the spline smoothing problem for a small representative data set to construct
a model for the full data set of interest. The model is typically fitted as a linear
mixed model with a roughness penalty on the basis. The covariate points used to
obtain the reduced basis are known as the ‘knots’ of the spline. To achieve spatial
adaptation in the P-spline, one may impose a functional structure on the variances
of random effects in the ordinary model. The choice of this smoothing function is
often another layer of P-spline functions with a set of subknots. Interestingly, there
are two versions of P-spline: Eilers and Marx (1996) introduced a P-spline with a
B-spline basis and differencing penalty, while Ruppert and Carroll (2000) proposed
another P-spline with truncated power basis and ridge penalty. The former was further
extended by Lang and Brezger (2004), Brezger and Lang (2006) and Scheipl and Kneib
(2009), and the latter was followed by Ruppert et al. (2003), Baladandayuthapani et al.
(2005), Crainiceanu et al. (2007) and Krivobokova et al. (2008). O’Sullivan (1986)
also introduced a P-spline based on the B-spline basis, but with a more complicated
penalty derived from the integrated squared derivative of the fitted curve. Wand and
Ormerod (2008) showed that the O’Sullivan spline possesses attractive features, and
Simpson et al. (2012) characterized the connection between O’Sullivan splines, classical
smoothing splines and the Markovian models considered in this paper. The P-spline
models have recently gained incredible popularity due to their easy implementation in
sophisticated models (e.g., semiparametric models) and straightforward extensions to
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adaptive and higher dimensional smoothing. Unfortunately, the number and location
of the knots (and subknots) have a marked effect on the performance of those methods.
Actually, choosing appropriate knots for P-spline models is still an open question (Eilers
and Marx 2010)

In this work, we propose a unified Bayesian approach to build adaptive smoothing
spline models. The method is based on finding Gaussian Markov random field (GMRF)
solutions to a class of stochastic differential equations for adaptive smoothing splines.
We here provide a brief introduction for GMRF. A random vector w = (w1, . . . , wn)′ is
a GMRF if its density is

[w | δ] ∝ |δQ|1/2+ exp

(
−δ

2
(w − µ)′Q(w − µ)

)
, (3)

where δ > 0 is scale parameter, µ is mean vector, and Q is a so-called precision ma-
trix. The notation |A|+ denotes the generalized determinant of matrix A, which is the
product of its nonzero eigenvalues. The full conditionals π(wi |w−i), i = 1, . . . , n, only
depend on a set of neighbors Ni to each site i. The computational gain comes from
the fact that the zero-pattern of matrix Q relates directly to the notion of neighbors:
Qij 6= 0 if and only if i ∈ Nj ∪ j (see e.g., Rue and Held 2005, Sec 2.2). The GMRFs
allow for fast direct numerical algorithms, as numerical factorization of Q can be done
using sparse matrix algorithms at a typical cost of O(n); see Rue and Held (2005) for
detailed algorithms. Such good computational properties are of major importance in
Bayesian inferential methods. This is further enhanced by the link to nested integrated
Laplace approximations (INLA) (Rue et al. 2009), which allows for fast and accurate
Bayesian inference for latent Gaussian field models.

The connection between GMRF and smoothing splines has been explored by several
authors. Speckman and Sun (2003) showed that the random walk (RW) models (a
subclass of GMRF) (e.g., Fahrmeir and Wagenpfeil 1996; Fahrmeir and Knorr-Held
2000; Fahrmeir and Lang 2001) can be used as priors to derive the discretized Bayesian
smoothing spline estimator. Lang et al. (2002) and Yue et al. (2012) made the RW
models spatially adaptive by introducing local smoothing parameters into the models.
However, all the RW models mentioned above are only appropriate for data observed
at regular locations. Lindgren and Rue (2008) considered a second-order RW (RW2)
model as a discretely-observed continuous time process, which is derived by solving a
stochastic differential equation (SDE) with the finite element method. The resulting
RW2 model offers a GMRF representation of the cubic smoothing spline, which has a
consistent resolution, equally good performance and more computational efficiency.

The aim of this paper is to extend Lindgren and Rue’s model in regard to its spatial
adaptation. More specifically, we enable their RW2 model to be spatially adaptive by
carefully adding a smoothing function to the SDE. The smoothing function provides a
varying amount of smoothing driven by the data. The solution of this modified SDE is
thus an adaptive smoothing spline, whose GMRF representation is explicitly available
for any collection of locations. Compared to the existing methods, the proposed adaptive
smoothing approach has the following advantages. First, it has a convenient compu-
tational form, which allows for fast computation and easy implementation in highly
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flexible models (e.g., generalized additive models). Second, it has a well-understood
continuous limit, providing the comfort that issues like knot choice only have a mini-
mal effect on the model (see Simpson et al. 2012, for a discussion). Third, it inherits
nice theoretical and numerical properties from the model in Lindgren and Rue (2008)
because it is an intuitive extension of their method to adaptive smoothing.

2 Bayesian smoothing splines using the SDE method

Kimeldorf and Wahba (1970) and Wahba (1978) showed that the smoothing spline f̂ in
(2) is equivalent to Bayesian estimation with a partially improper prior generated by
the following stochastic differential equation (SDE)

dpf(s)/dsp = δ−
1
2 dW (s)/ds, (4)

where δ > 0 is scale parameter, W (s) is a zero mean Wiener process with variance s,
and dW (s)/ds is “white noise”. Letting (s)+ = s for s ≥ 0 and (s)+ = 0 otherwise, the
exact solution of (4) is

f(s) = β0 + β1s+ · · ·+ βp−1s
p−1 + δ−

1
2Z(s), s ∈ IR, (5)

where β0, β1, . . . , βp−1 ∼ N(0, ξ) as ξ →∞, and Z(s) is a zero mean Gaussian stochastic
process with E[Z(s)Z(t)] = Σ(s, t) and

Σ(s, t) =

∫ 1

0

(s− u)+

(p− 1)!

(t− u)+

(p− 1)!
du.

From a Bayesian point of view, we take a partially improper prior on f , which is “diffuse”
on the coefficients of the polynomials of degree p − 1, and “proper” over the random
process Z(t). Given model (1), the solution f̂(s) = limξ→∞Eξ{f(s) |y, τ, δ}, that is
the expectation over the posterior distribution of f(s) with the prior defined in (5).
Note that the smoothing parameter λ = δ/τ now. After taking sensible priors on τ and

δ, fully Bayesian inference on f̂ can be straightforwardly carried out by Monte Carlo
Markov chain (MCMC) (see e.g., Speckman and Sun 2003; Yue et al. 2012)

Unfortunately, the solution (5) does not have any direct Markov properties because its
precision matrix Q is completely dense (Rue and Held 2005, chapter 2). It is worthy to
note that the solution, however, does have a Markov property on an augmented space,
where the derivatives at {si} are included. Wecker and Ansley (1983) showed how to
derive the GMRF of this vector with 2n elements, but the computations take about 9/2
the time as for the RW2 model for regular locations (see Rue and Held 2005, chapter
3.5 for details).

To derive a more computationally efficient solution, we solve SDE (4) using the finite
element method introduced in Lindgren and Rue (2008). Let s1 < s2 < · · · < sn be the
set of fixed points, which are often observation locations, but do not have to be. We
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then construct a finite element representation of f(s) as

f(s) ≈
n∑
i=1

ψi(s)wi, (6)

for some chosen basis functions ψi and random weights wi. Letting hi = si+1 − si for
i = 1, . . . , n− 1, a common choice of basis is the piecewise linear functions

ψi(s) =


0, s < si−1,

1
hi−1

(s− si−1), si−1 ≤ s < si,

1− 1
hi

(s− si), si ≤ s < si+1,

0, si+1 ≤ s.

An interpretation of (6) with these chosen basis functions is that the weights determine
the values of the field at the locations, and the values in the interior of the intervals
are decided by linear interpolation. The full distribution of the continuously indexed
solution is determined by the joint distribution of the weights w = (w1, . . . , wn)T .

Define the inner product 〈f, g〉 =
∫
f(s)g(s)ds, where the integral is over the region of

interest. We then seek a weak solution of (4) satisfying〈
φ, d2f/ds2

〉 d
= δ−

1
2 〈φ, dW/ds〉 (7)

for any sensible test function φ(s), where
d
= denotes equality in distribution (Walsh

1986). Note that we only consider the cubic smoothing spline (p = 2), which is well
known to provide the best overall performance (e.g., Green and Silverman 1994). Since
it is impossible to test (7) against every function φ(s), we choose a finite set {φi(s)}ni=1

instead. Moreover, we let the test functions be the same as our basis functions, which
is known as the Galerkin finite element method. Substituting (6) into (7) with this set
of test functions, we end up with a system of linear equations

n∑
i=1

wi
〈
ψj , d

2ψi/ds
2
〉 d

= δ−
1
2

〈
ψj , dW/ds

〉
, j = 1, . . . , n. (8)

It can be shown that the left hand side of (8) can be written as Hw, where H is an
n× n tridiagonal matrix whose non-zero entries are

H[i, i− 1] =
1

hi−1
, H[i, i] = −

(
1

hi−1
+

1

hi

)
, H[i, i+ 1] =

1

hi
(9)

for 2 ≤ i ≤ n− 1, because ψi only overlap for neighboring basis functions. The entries
of the first and last row in H are zeroes. Given the statistical properties of white noise,
the inner product on the right-hand side of (8) is a Gaussian distribution with zero
mean and covariance matrix B = [〈ψi, ψj〉]ni,j=1, whose nonzero entries are given by

B[i, i− 1] =
hi−1

6
, B[i, i] =

hi−1 + hi
3

, B[i, i+ 1] =
hi
6
,
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with modifications at the boundaries. To achieve distribution equality in (8), the random
vector w has the density of form (3) with µ = 0 and Q = H ′B−1H. However, this Q
is a dense matrix due to dense B−1, making the model computationally expensive. To
obtain a GMRF with sparse Q, we replace B by a diagonal matrix B̃ with B̃[i, i] =
〈ψi, 1〉, that is

B̃[1, 1] =
h1

2
, B̃[i, i] =

hi−1 + hi
2

, B̃[n, n] =
hn−1

2
. (10)

Lindgren and Rue (2008) showed that such a modification does not change the solution.
It is straightforward to verify that Q has rank n − 2, with the null space spanned by
vectors (1, . . . , 1)T and (s1, . . . , sn)T . It indicates that the resulting field is invariant to
the addition of a linear trend, coinciding with the result obtained by Wahba (1978) for
cubic smoothing splines.

As weights of the basis expansion in (6), the derived GMRF approximates the continuous
function f everywhere. Simpson et al. (2012) showed that the convergence of this
approximation depends solely on the basis functions. Given any set of enough si, using
the piecewise linear functions yields the best finite approximation regardless of their
locations. Also, the SDE method works for any set of test and basis functions when
all of the computations make sense. Actually, Simpson et al. showed that O’Sullivan
splines can be exactly derived by solving the SDE in (4) using cubic B-splines as basis
functions and their second derivatives as test functions. However, one should be aware
that the wrong choice of global basis functions will destroy the Markov structure, and
not all sets of basis functions will provide good approximations to f .

3 Bayesian adaptive smoothing splines

One big advantage of using the SDE method to model smoothing splines is its straight-
forward extension to adaptive smoothing. The basic idea is to replace the single smooth-
ing parameter by a smoothing function varying in space. This will make us control local
smoothing properties of the spline function. We here present two different adaptive SDE
formulations, from both of which we are able to derive the GMRF models that provide
appropriate adaptive smoothing.

3.1 Adaptive SDE I

One way to extend SDE (4) is as follows:

λ(s)d2f(s)/ds2 = dW (s)/ds, (11)

where the positive λ(s) can be viewed as an adaptive smoothing function, compared to
the global smoothing parameter λ in ordinary smoothing splines. A small λ(s) allows a
big second derivative of f(s) for roughness, while a large value diminishes the derivative
to increase smoothness. The solution to (11) is related to the spline model introduced
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in Pintore et al. (2006), minimizing

n∑
i=1

(
yi − f(si)

)2

+

∫
[λ(s)f ′′(s)]

2
ds. (12)

Using a piecewise-constant model for λ(s), Pintore et al. derived closed-form solutions
for the corresponding reproducing kernels of the Hilbert space. Their method, however,
is computationally intensive since the matrix of reproducing kernels is completely dense.

Following the non-adaptive case, we seek a weak solution of (11) by achieving〈
ψj , λd

2f/ds2
〉

d
=
〈
ψj , dW/ds

〉
, j = 1, . . . , n. (13)

Using the basis representation in (6) as well as Galerkin approximation, the left hand side
of (13) can be proved to be ΛHw, where Λ is a diagonal matrix with (λ(s1), . . . , λ(sn))
on the diagonal and H is the matrix as in (9) (see Appendix for the proof). Since the
right-hand side of (13) is the same as that of (8), the w is also a GMRF with zero mean
and precision matrix

Qλ = H ′ΛB̃−1ΛH.

It is easy to see that Qλ is symmetric and banded with non-zero entries of the ith row
given by

Qλ[i, i− 2] =
2λ2(si−1)

hi−2hi−1(hi−2 + hi−1)
, Qλ[i, i− 1] = − 2

h2
i−1

(
λ2(si−1)

hi−2
+
λ2(si)

hi

)
,

Qλ[i, i] =
2λ2(si−1)

h2
i−1(hi−2 + hi−1)

+
2λ2(si)

hi−1hi

(
1

hi−1
+

1

hi

)
+

2λ2(si+1)

h2
i (hi + hi+1)

.

At the discretization boundaries, we use the convention that terms with non-existing
components are ignored, that is h−1 = h0 = hn = hn+1 = ∞. This affects only the
upper left and lower right corner of Qλ as follows:

Qλ[1, 1] =
2λ2(s2)

h2
1(h1 + h2)

, Qλ[2, 1] = −2λ2(s2)

h2
1h2

,

Qλ[2, 2] =
2λ2(s3)

h2
2(h2 + h3)

+
2λ2(s2)

h1h2

(
1

h1
+

1

h2

)
,

Qλ[n− 1, n− 1] =
2λ2(sn−2)

h2
n−2(hn−3 + hn−2)

+
2λ2(sn−1)

hn−2hn−1

(
1

hn−2
+

1

hn−1

)
,

Qλ[n, n] =
2λ2(sn−1)

h2
n−1(hn−2 + hn−1)

, Qλ[n, n− 1] = −2λ2(sn−1)

hn−2h2
n−1

.

Note that Qλ does not involve λ(s1) or λ(sn) because the first and last rows of H are
zeroes.
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3.2 Adaptive SDE II

An alternative SDE that we can use for adaptive smoothing splines is

d2λ(s)f(s)/ds2 = dW (s)/ds, (14)

where λ(s) can be seen as an instantaneous variance or local scaling, which compresses
and stretches the function. A small λ(s) compresses the scale giving quick oscillations,
while a high value stretches f(s), decreasing the roughness. Adopting the notation
f̃(s) = λ(s)f(s), formulation (14) corresponds to minimizing

n∑
i=1

(
yi − f̃(si)

)2

+

∫
f̃ ′′(s)2ds.

The weak solution of (14) can also be found using the Galerkin method to satisfy〈
ψj , d

2λf/ds2
〉

d
=
〈
ψj , dW/ds

〉
, j = 1, . . . , n, (15)

whose left-hand side can be written as HΛw, where H and Λ are defined as above
(see Appendix for the proof). Again, the w is a GMRF with zero mean and precision
matrix

Qλ = ΛH ′B̃−1HΛ,

whose nonzero entries can be explicitly written out as

Qλ[i, i− 2] =
2λ(si−2)λ(si)

hi−2hi−1(hi−2 + hi−1)
, Qλ[i, i− 1] =

2λ(si−1)λ(si)

−h2
i−1

(
1

hi−2
+

1

hi

)
,

Qλ[i, i] =
2λ2(si)

h2
i−1(hi−2 + hi−1)

+
2λ2(si)

hi−1hi

(
1

hi−1
+

1

hi

)
+

2λ2(si)

h2
i (hi + hi+1)

,

with corrected boundary entries

Qλ[1, 1] =
2λ2(s1)

h2
1(h1 + h2)

, Qλ[2, 1] = −2λ(s1)λ(s2)

h2
1h2

,

Qλ[2, 2] =
2λ2(s2)

h2
2(h2 + h3)

+
2λ2(s2)

h1h2

(
1

h1
+

1

h2

)
,

Qλ[n− 1, n− 1] =
2λ2(sn−1)

h2
n−2(hn−3 + hn−2)

+
2λ2(sn−1)

hn−2hn−1

(
1

hn−2
+

1

hn−1

)
,

Qλ[n, n] =
2λ2(sn)

h2
n−1(hn−2 + hn−1)

, Qλ[n, n− 1] = −2λ(sn−1)λ(sn)

hn−2h2
n−1

.
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3.3 Modeling the adaptive smoothing function

To implement a fully Bayesian inference, we need a prior taken on the smoothing func-
tion λ(s), which is assumed to be continuous and differentiable. Yue and Speckman
(2010) and Yue et al. (2012) have proved that the prior on λ(s) must be proper in
order to guarantee a proper posterior for such adaptive smoothing models. Since it is
restricted to be positive, we model λ(s) on its log scale: ν(s) = log(λ(s)). There are
several ways to model ν(s) as a smooth function. One may follow the basis expansion
in (6) and let ν(s) =

∑m
k=1 ωk(s)γk, a weighted sum of B-spline basis functions ωk(s)

at knots s′1, s
′
2, . . . , s

′
m. The random weights γ = (γ1, . . . , γm)′ are assumed to follow a

multivariate normal distribution with mean zero and precision matrix R. To ensure the
propriety of the posterior distribution, R must be a positive definite matrix. One simple
choice is R = ηI, where η is a fixed small value. It is equivalent to taking independent
and diffuse Gaussian priors on γk’s. Unfortunately, this curve fitting method can be
sensitive to the number and locations of the knots. To relieve the issue, we present a
more sophisticated SDE approach as follows.

Lindgren et al. (2011) derived an explicit link between GMRF and Matérn Gaussian
fields by solving certain stochastic partial differential equations. We here apply their
idea to our univariate case by considering the SDE(

κ2 − d2/ds2
)
ν(s) = η−

1
2 dW (s)/ds, (16)

where κ > 0 is fixed and η > 0 is scale parameter. Again, we use the Galerkin method
to weakly solve (16) as a linear equation system,

m∑
k=1

γk
〈
ω`,
(
κ2 − d2ds2

)
ωk
〉 d

= η−
1
2 〈ω`, dW/ds〉 , ` = 1, . . . ,m. (17)

With a piecewise linear basis, it can be shown that the left hand side of (17) is (κB−H)γ
and the right hand side is the Gaussian random vector as in the previous SDEs. As a
result, the precision matrix of the corresponding GMRF is given by

R = (κ2B −H)′B−1(κ2B −H) = κ4B − κ2(H ′ +H) +H ′B−1H.

To make R sparse, we replace B by diagonal B̃ as before. Note that R is positive
definite and it gets singular as κ goes to zero. This GMRF is a proper prior with nice
computational properties. More importantly, it makes the fit of the adaptive smoothing
function robust to the knots as long as there are enough of them.

4 Bivariate adaptive smoothing

Two-dimensional thin-plate splines (TPS) (e.g., Duchon 1977; Gu 2002) are a natural
bivariate extension of cubic smoothing splines. The TPS estimator can be obtained by
solving

f̂ = arg min
f

 n∑
i=1

(
yi − f(si)

)2

+ λJ2(f)

 , si ∈ IR2
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where penalty function J2(f) is of form

J2(f) =

∫ ∫ 
∂2f(s)

∂s2
1


2

+ 2

∂2f(s)

∂s1∂s2


2

+

∂2f(s)

∂s2
2


2
 ds1 ds2. (18)

Assuming that the integrable derivatives of f vanish at infinity, the TPS penalty in (18)

can be shown to be J̃2(f) =
∫∫

[∆f(s)]
2
ds1 ds2, where ∆ =

(
∂2/∂s2

1 + ∂2/∂s2
2

)
is the

two-dimensional Laplacian operator (Wahba 1990; Yue and Speckman 2010). Such a
form of penalty inspires us to solve the following SDE

∆f(s) = dW (s)/ds, (19)

where dW (s)/ds is spatial Gaussian white noise, to obtain a TPS estimator. Yue and
Speckman (2010) constructed an efficient GMRF representation of the solution to (19)
on a regular grid. It is, however, not yet fully practical since one often wants to avoid
interpolating the locations of observations to the nearest grid-point, and to allow for
finer resolution where details are required. Following Lindgren et al. (2011), we use
the finite element method to find a weak solution to (19) on an irregular grid. It is a
direct generalization of the SDE approach in the univariate case. We briefly describe
the procedure and technical details can be found in Lindgren et al. (2011).

We first construct a triangulation by subdividing IR2 into a set of non-intersecting
triangles, where any two triangles meet in at most a common edge or corner. In most
cases we place initial vertices at the locations for the observations, and add additional
vertices to satisfy overall soft constraints of the triangles. Letting s1, . . . , sn be the
vertices of the triangulation Ω, we then represent a smooth bivariate function f(s)
using piecewise linear basis functions defined over Ω, i.e., f(s) =

∑n
i=1 ψi(s)wi. The

basis function ψi is equal to one at the ith vertex and is zero at all other vertices. As in
the univariate case, we solve a weak formulation of (19) using the finite element method
to obtain the distribution of weights w = (w1, . . . , wn)′. It turns out that w is Gaussian
with mean zero and precision matrix Q = G′C−1G, where

G[i, j] =

∫
Ω

∇ψi(s) · ∇ψj(s)ds and C[i, j] =

∫
Ω

ψi(s)ψj(s)ds.

Due to the local nature of basis functions, G andC are highly sparse matrices. However,
w is not a GMRF since C−1 is a dense matrix. Fortunately, we can replace C by a
diagonal matrix C̃ = diag

[∫
Ω
ψi(s)ds

]
, which gives essentially the same numerical

result and can be shown not to increase the rate of convergence of the approximation
(Appendix C.5 of Lindgren et al. 2011). Now w becomes a GMRF with precision matrix
Q = G′C̃−1G.

To extend the TPS estimator to be adaptive, we can simply modify (19) by adding the
adaptive function λ(s), i.e., ∆λ(s)f(s) = dW (s)/ds. It is a direct bivariate extension
of the adaptive SDE in (14). Similarly, this SDE can be solved using the finite element
method and the solution is another GMRF with mean zero and precision matrix Qλ =
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ΛG′C̃−1GΛ, where Λ is a diagonal matrix of the values of λ at vertices. Following
the univariate case, we model log λ(s) with a basis expansion and take independent
Gaussian priors on the basis weights.

5 Posterior Inference

Besides their intriguing adaptive smoothing and computational properties, one of the
most exciting aspects of the proposed SDE splines is their flexibility: they can be used
in a large class of models. In this section, we show how to implement our method in
simple nonparametric regression models and more flexible structured additive models.

5.1 Simple nonparametric regresson model

Given model (1), it is easy to build a fully Bayesian hierarchical model for smoothing
splines. We take the proposed SDE prior on f and diffuse gamma priors on the precision
parameters. Let Ψ = {ψj(si)}ni,j=1 and Ω = {ωk(t`)}mk,`=1 be matrices of basis functions
for f(s) and ν(s), respectively. Then, the hierarchical model has following structure:

y = Ψw + ε, ε ∼ N(0, τ−1I),

[w |λ] ∝ |Qλ|1/2+ exp

(
−1

2
w′Qλw

)
,

log(λi) = νi, ν = Ωγ,

[γ | η] ∝ |ηR|1/2exp
(
−η

2
γ′Rγ

)
,

τ, η ∼ Gamma(ε, ε),

where ξ is a small value, say 0.001. To make inference on this model, we propose a
Monte Carlo Markov chain (MCMC) simulation algorithm. We here focus on how to
sample γ from its full conditional because the remaining samples are straightforward
to acquire. The full conditional of γ is not a regular density, so we have to employ
Metropolis-Hastings sampling. We present an efficient algorithm to sample γ when
using the first adaptive SDE. Unfortunately, we have not found an equivalently efficient
method for the second adaptive SDE, which, however, can be taken care of by the
method described in the next section.

A good proposal distribution is the key to the successful Metropolis-Hastings algorithm.
It is helpful to see that the GMRF derived from the first adaptive SDE can be written
as

[w |γ] ∝ exp

(
n∑
i=1

(
γi − eγiw̃2

i

))
,

where w̃ = (0, w̃2, . . . , w̃n−1, 0)′ = Hw (note the first and last rows of H are zeroes).
The full conditional of γ is then given by F(γ |w, η) ∝ [w |γ][γ | η]. Following Rue and
Held (2005), we construct an accurate GMRF approximation for F(γ |w, η) as follows.
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First, we approximate [w |γ] by taking a second-order Taylor expansion on eγi at given
γ0i, that is

[w |γ] ≈ exp

(
n∑
i=1

(
ai + biγi −

1

2
ciγ

2
i

))
,

where ai is the nuisance parameter, bi = 1− δeγ0i(1− γ0i)w̃
2
i and ci = δeγ0iw̃2

i . Letting
b = (b1, . . . , bn)′ and c = (c1, . . . , cn)′, then

P(γ |γ0,w, η) ∝ exp

(
−η

2
γ′Rγ +

n∑
i=1

(
ai + biγi −

1

2
ciγ

2
i

))

∝ exp

(
−1

2
γ′

(
ηR+ diag(c)

)
γ + b′γ

)
,

is a GMRF with sparse precision matrix Q = ηR + diag(c). The P(γ |γ0,w, η) can
be used to approximate F(γ |w, η) and the accuracy of this approximation depends on
γ0. As suggested by Rue and Held (2005), we choose γ0 to be the mode of F(γ |w, η)
that can be obtained using, say Newton-Raphson. Using this GMRF approximation as
the proposal distribution, we can update the whole γ by accepting proposal γ∗ with
probability

min

(
1,

F(γ∗ |w, η)P(γ |γ0,w, η)

F(γ |w, η)P(γ∗ |γ0,w, η)

)
.

Other full conditionals are given by

(w |γ, τ) ∼ N(µw,Σw), µw = τΣwΨ′y and Σw = (τΨ′Ψ +Qλ)
−1

(τ |w) ∼ Gamma(n/2 + ε, ‖y −Ψw‖2/2 + ε)

(η |γ) ∼ Gamma(n/2− 1 + ε, γ′Rγ/2 + ε),

all of which can be easily sampled.

5.2 Structured additive model

We now consider a class of structured additive models, which are fairly flexible and
used in a wealth of applications (e.g., Fahrmeir and Tutz 2001). In these models, the
response variable yi is assumed to belong to an exponential family, where the mean µi
is linked to a structured additive predictor through a link function g(·),

g(µi) = β0 +

nβ∑
j=1

xjiβj +

nf∑
k=1

fk(ski) i = 1, . . . , n.

Here, the βj ’s represent the linear effect of covariates x and the fk’s are smooth functions
of the covariates s (univariate or bivariate). We then take diffuse Gaussian priors on β0
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and βj ’s, and SDE priors on fk’s, to build a latent Gaussian model. Let f denote the
vector of all the latent Gaussian variables, and θ the vector of hyper parameters, which
are not necessarily Gaussian. It is common to use MCMC sampling to make inference
for such models. However, it is well known that MCMC methods tend to exhibit poor
performance because first, the components of f are strongly dependent on each other;
second, θ and f are also strongly dependent, especially when n is large (Rue and Held
2005; Rue et al. 2009).

As an alternative to MCMC, Rue et al. (2009) introduced an innovative Bayesian in-
ference tool based on integrated nested Laplace approximations (INLAs). The INLA
approach can handle general Gaussian hierarchical models, including the models devel-
oped in this paper. It accurately approximates marginal posterior densities and com-
putes estimates much faster than general MCMC techniques. We now briefly review
the INLA method and refer readers to Rue et al. (2009) for details. With likelihood
π(y|f ,θ) and prior densities π(f |θ) and π(θ), the joint posterior of our model is given
by

π(f ,θ|y) ∝ π(y|f ,θ)π(f |θ)π(θ).

We need to find the posterior marginals π(fi|y) and π(θj |y). The INLA approach is
based on the following approximation for the posterior marginal of θ:

π̃(θ|y) ∝ π(f ,θ,y)

πG(f |θ,y)

∣∣∣∣
f=f?(θ)

,

where πG(f |θ,y) is the Gaussian approximation to the full conditional of f , and f?(θ) is
the mode of the full conditional of f . The approximated marginals are then constructed
as follows:

π̃(θj |y) =

∫
π̃(θ|y)dθ−j ,

π̃(fi|y) =

∫
π̃(fi|θ,y)π̃(θ|y)dθ,

where θ−j denotes a subvector of θ without element θj . The approximated marginal
of θj can be obtained by summing out the remaining variables θ−j from π̃(θ|y). The
approximated marginal of fi is obtained by, first, approximating the full conditional of
fi with another Laplace approximation:

π̃(fi|θ,y) ∝ π(f ,θ,y)

πGG(f−i|fi,θ,y)

∣∣∣∣
f−i=f?−i(f−i,θ)

,

where π̃GG is the Gaussian approximation to f−i|fi,θ,y and f?−i(f−i,θ) is the mode
configuration. Then, we numerically integrate out the parameters θ from π̃(fi|θ,y).
This nested approach makes the Laplace approximations very accurate. However, the
INLA method has a limitation: it only works efficiently when the number of hyper-
parameters in θ is small, say less than 15. The reason is that it becomes extremely
expensive to numerically integrate out θ as its dimension increases. As a result, we
have to model the adaptive smoothing function λ(s) using a B-spline basis with only a
few knots if we want to use INLA.
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(a) Example 1 (b) Example 2
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Figure 1: The three true functions used in the simulation study together with one sample.
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Example 1 Example 2 Example 3
SDE-v1 .0598 [.0432, .0834] .00487 [.00375, 0.0420] .00705 [.00617, .00844]
SDE-v2 .0597 [.0430, .0835] .00644 [.00530, .00801] .00548 [.00461, .00660]
FAPS .0575 [.0397, .0813] .00591 [.00449, .00720] .00875 [.00786, .00968]
OSS .0600 [.0401, .0853] .00889 [.00731, .01077] .00916 [0.0081, .01022]

Table 1: Simulation study. Median MSE with first and third quartiles in brackets from 200
simulated data sets using the SDE, FAPS and OSS procedures. SDE-v1 and SDE-v2 denote
the models derived from the first and second adaptive SDEs, respectively.

6 Simulated examples

In this section we consider three mean functions: a slowly-varying smooth function, a
function with a sharp peak, that is spatially inhomogeneously smooth, and a highly-
oscillating Doppler function. The functions together with simulated data are shown in
Figure 1. In Example 1, the true mean function is a B-spline with three internal knots at
(0.2, 0.6, 0.7) and coefficients (20, 4, 6, 11, 6). The function is evaluated on a regular grid
of n = 101 points, and zero-mean Gaussian noise is added to the function with standard
deviation 0.9. In Example 2, the true mean function is f(s) = sin(s) + 2 exp(−30s2) for
s ∈ [−2, 2], evaluated at n = 101 regularly spaced points, and the standard deviation
of the Gaussian noise is 0.5. In Example 3, the Doppler mean function is given by
f(s) =

√
s(1− s) sin(2π(1 + ε)/(s + ε)) for ε = 0.125, evaluated at n = 201 regularly

spaced points, and the standard deviation of the Gaussian noise is 0.2.

We simulate 200 data sets for each true mean function and compare our SDE smoothing
spline (SDE) estimates with ordinary smoothing spline (OSS) estimates and fast adap-
tive P-spline (FAPS) estimates (Krivobokova et al. 2008), using mean squared error

MSE =
1

n

n∑
i=1

[
f̂(si)− f(si)

]2
.

We use non-adaptive versions of the SDE and FAPS models in the first example and
their adaptive versions in the rest of the examples. The first adaptive SDE model (SDE-
v1) is fitted by MCMC while the second one (SDE-v2) is estimated by INLA. Note that
with MCMC we use the same number of knots as the data points, while with INLA we
use m = 5 knots. The median of the MSE, together with its first and third quartile,
are reported in Table 3. As we can see, the three methods perform similarly when
estimating the smooth function in Example 1. In particular, the two SDE models yield
very close MSE’s, which means INLA makes as accurate inference as MCMC does but
with much faster computation. (The two SDE models are identical in the non-adaptive
case.) Not surprisingly, the FAPS and SDE outperform OSS in estimating the highly-
varying functions in Example 2 and 3. Compared to FAPS, SDE-v1 outperforms in
Example 2 and both SDE models outperform in Example 3, indicating that our SDE
models provide appropriate adaptive smoothing. It is also interesting to see that the
two SDE models yield close but not equal performance. We thus suggest fitting both
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Figure 2: Computational times of INLA in simulation study.

models to a particular data set in practice.

To evaluate the computational performance of INLA method, we show how the compu-
tational times change with sample size n and number of knots m in Figure 2. Given a
small value of m, INLA is quite fast: it takes about 10 seconds to finish computation for
n = 2, 500. Also, the computational times increase almost linearly with sample sizes.
However, INLA significantly slows down as the value of m increases. Regarding the
MCMC approach, we run 12,000 iterations with 2,000 burn-in and save samples every
two iterations. A couple of trace plots are shown in Figure 3, in which there still exists
a little mixing issue. Furthermore, MCMC is much slower than INLA: it takes 16.204
seconds for MCMC to finish 12,000 iterations with n = 100 while INLA only needs
2.661 seconds. All the computations are implemented on a standard iMac with 3.06
GHz Intel CPU and 4 GB memory.

7 Mackerel egg survey example

Most commercially exploitable fish stocks in the world have been over exploited. Ef-
fective management of stocks rests on sound fish stock assessment, but counting the
number of catchable fish of any given species is almost impossible. One solution is to
assess the number of eggs produced by a stock, and then to work out the number (or
more often mass) of adult fish required to produce this number. Such egg data are
obtained by sending out scientific cruise ships to sample eggs at each station of some
predefined sampling grid over the area occupied by a stock. The number of eggs of the
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Figure 3: Examples of trace plots of MCMC method in simulation study.

Mean 2.5% quantile 97.5% quantile
p0 0.4026 0.3723 0.4380
β1 0.0106 0.0040 0.0173
β2 -0.5704 -0.9942 -0.1487

θf1

1 -0.1722 -1.2531 0.7215

θf1

2 -0.0053 -0.8922 0.6588

θf1

3 0.1780 -0.6773 1.0113

θf2

1 -1.8480 -2.1333 -1.5554

θf2

2 0.1351 0.1214 0.1481

Table 2: Posterior means and quantiles of the parameters of interest. Note that the θ’s are
the hyperparameters in the univariate and bivarate SDE priors.

target species in the sample is then counted.

The example in this section concerns data from a 1992 mackerel egg survey. Figure 4a
shows the locations where eggs were sampled, and the egg counts found there. Besides
longitude (lon) and latitude (lat), some other predictors of egg abundance are used,
e.g., salinity; water temperature at a depth of 20 meters, temp.20m; and distance
from the 200 meters seabed contour, c.dist. The latter predictor reflects the biologists’
belief that the fish like to spawn near the edge of the continental shelf, conventionally
considered to end at a seabed depth of 200 meters. The mackerel eggs caught in the
net at each sampling location were counted, to yield the response variable egg.count.
The whole data set is available in the gamair R package.

Wood (2006) assumed that the egg counts follow Poisson distributions and modeled
their mean functions using generalized additive models (GAMs). However, there are
many zero counts (more than 40%), suggesting that using a zero-inflated Poisson (ZIP)
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Figure 4: Panel (a) shows the mackerel egg counts of sea surface as assessed by net samples
in the 1992 Mackerel egg survey. Panel (b) shows the triangular mesh built for bivariate SDE
process.

model may be more appropriate here. The ZIP model has a mixture form as follows

Prob(Y = yi) = p01[yi=0] + (1− p0)× Poisson(yi | yi > 0), i = 1, . . . , n, (20)

where p0 is the unknown probability of yi being zero, and a Poisson distribution is
assumed when yi is positive. The mean function µi of the Poisson distribution is modeled
as

log(µi) = log(net.areai) + salinityi ∗ β1 + c.disti ∗ β2 + f1(temp.20mi) + f2(loni, lati)

where net.area (area of each net) is used as an offset, β1 and β2 respectively represent
the linear effects of salinity and c.dist, f1 is the nonlinear effect of temp.20m, and
f2 is the spatial effect. We take diffuse Gaussian priors on the linear effects, and
the proposed SDE priors on the nonlinear and spatial effects. More specifically, we
use a quadratic B-spline basis with m = 3 knots to model the adaptive smoothing
function in the univariate SDE prior. The bivariate SDE field is constructed on a fine
triangular mesh (Figure 4b) and we let its variance depend on the longitude to achieve
nonstationarity for the spatial effect. To estimate p0, we first let p0 = eθ/(1 + eθ) and
then take a Gaussian prior on θ. Table 2 shows the parameter estimates of interest. As
we can see, both linear effects are statistically significant and influence the egg densities
in opposite ways. None of the θ’s in the univariate SDE prior are significant, indicating
that adaptive smoothing may not be necessary for the nonlinear effect. It can also
be seen by the slowly-varying fitted curve shown in Figure 5a. However, the θ’s of
the bivariate SDE prior are both significant, meaning that the nonstationarity does
exist in the spatial effect. In Figure 5b we plot the variance at each location against
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its longitude, where an exponentially decreasing relationship is found. The posterior
mean and standard deviation to the spatial effect are presented in Figure 5c and 5d,
respectively. Notice that the densities are generally high on the western boundary of
the survey area, and the standard deviations are especially large around Latitude 52
and Longitude -14.

One purpose of this modeling is assessment of the total stock of eggs, which needs
predictions from the model. Therefore a simple map of predicted densities is useful.
The data frame mackp contains the model covariates on a regular grid over the survey
area, as well as an indexing column indicating which grid square the covariates belong to.
A naive prediction method is made by the projection of the sum of the linear predictor
components and applying exponentiation to it (because we use the log link). A better
alternative is the joint prediction with the estimation process, which can be efficiently
implemented with INLA. The predicted egg counts and their standard deviations are
shown in Figure 5e and 5f.
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Appendix

This section includes detailed proofs for the weak solutions of both adaptive SDEs.

Adaptive SDE I

Using basis expansion (6), the adaptive SDE (13) becomes a linear equation system,
whose left hand side can be written as Hλw. We here show how to derive the non-zero
entries of the matrix Hλ. Using integration-by-parts, we have the [i, j]th entry of Hλ

as

Hλ[i, j] =

〈
ψi(s), λ(s)ψ′′j (s)

〉

=

∫ sn

s1

λ(s)ψi(s)ψ
′′
j (s)ds

= λ(s)ψi(s)ψ
′
j(s)

∣∣sn
s1
−
∫ sn

s1

[λ(s)ψi(s)]
′ψ′j(s)ds

= λ(s)ψi(s)ψ
′
j(s)

∣∣sn
s1
−
∫ sn

s1

λ′(s)ψi(s)ψ
′
j(s)ds−

∫ sn

s1

λ(s)ψ′i(s)ψ
′
j(s)ds.

Since basis element ψi only overlaps for neighboring locations, the nonzero entries in the
ith row of Hλ are Hλ[i, i− 1], Hλ[i, i] and Hλ[i, i+ 1] for i = 2, . . . , n− 1. Specifically,
we have

H[i, i− 1] = −
∫ si

si−1

λ′(s)ψi(s)ψ
′
i−1(s)ds−

∫ si

si−1

λ(s)ψ′i(s)ψ
′
i−1(s)ds

= − λ(s)ψi(s)ψ
′
i−1(s)

∣∣si
si−1

+

∫ si

si−1

λ(s)[ψi(s)ψ
′
i−1(s)]′ds

−
∫ si

si−1

λ(s)ψ′i(s)ψ
′
i−1(s)ds

= − λ(s)ψi(s)ψ
′
i−1(s)

∣∣si
si−1

+

∫ si

si−1

λ(s)ψ′i(s)ψ
′
i−1(s)ds

−
∫ si

si−1

λ(s)ψ′i(s)ψ
′
i−1(s)ds

= −λ(si)ψi(si)ψ
′
i−1(si) + λ(si−1)ψi(si−1)ψ′i−1(si−1)

= λ(si)/hi−1.

Note that ψ′i−1(s) is constant between si−1 and si, and thus we have [ψi(s)ψ
′
i−1(s)]′ =
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ψ′i(s)ψ
′
i−1(s). Similarly, we have

Hλ[i, i] = −
∫ si+1

si−1

λ′(s)ψi(s)ψ
′
i(s)ds−

∫ si+1

si−1

λ(s)ψ′i(s)
2ds

= −
∫ si

si−1

λ′(s)ψi(s)ψ
′
i(s)ds−

∫ si

si−1

λ(s)ψ′i(s)
2ds

−
∫ si+1

si

λ′(s)ψi(s)ψ
′
i(s)ds−

∫ si+1

si

λ(s)ψ′i(s)
2ds

= − λ(s)ψi(s)ψ
′
i(s)|

si
si−1

+

∫ si

si−1

λ(s)ψ′i(s)
2ds−

∫ si

si−1

λ(s)ψ′i(s)
2ds

− λ(s)ψi(s)ψ
′
i(s)|

si+1

si
+

∫ si+1

si

λ(s)ψ′i(s)
2ds−

∫ si+1

si

λ(s)ψ′i(s)
2ds

= −λ(si)

(
1

hi−1
+

1

hi

)
,

Hλ[i, i+ 1] = −
∫ si+1

si

λ′(s)ψi(s)ψ
′
i+1(s)ds−

∫ si+1

si

λ(s)ψ′i(s)ψ
′
i+1(s)ds

= − λ(s)ψi(s)ψ
′
i+1(s)

∣∣si+1

si
+

∫ si+1

si

λ(s)ψ′i(s)ψ
′
i+1(s)ds

−
∫ si+1

si

λ(s)ψ′i(s)ψ
′
i+1(s)ds

= −λ(si+1)ψi(si+1)ψ′i+1(si+1) + λ(si)ψi(si)ψ
′
i+1(si)

= λ(si)/hi.

For the first and last row of Hλ, the (possible) nonzero entries are Hλ[1, 1], Hλ[1, 2],
Hλ[n, n − 1] and Hλ[n, n], which happen to be zeroes due to the intrinsic condition.
We here only show the derivation of Hλ[1, 1] and Hλ[1, 2], and the other entries can be
obtained similarly. We have

Hλ[1, 1] = λ(s)ψ1(s)ψ′1(s)|sns1 −
∫ s2

s1

λ′(s)ψ1(s)ψ′1(s)ds−
∫ s2

s1

λ(s)ψ′1(s)2ds

= −λ(s1)ψ1(s1)ψ′1(s1)− λ(s)ψ1(s)ψ′1(s)|s2s1
= −λ(s1)ψ1(s1)ψ′1(s1) + λ(s1)ψ1(s1)ψ′1(s1)

= 0,

Hλ[1, 2] = λ(s)ψ1(s)ψ′2(s)|sns1 −
∫ s2

s1

λ′(s)ψ1(s)ψ′2(s)ds−
∫ s2

s1

λ(s)ψ′1(s)ψ′2(s)ds

= −λ(s1)ψ1(s1)ψ′2(s1)− λ(s)ψ1(s)ψ′2(s)|s2s1
= −λ(s1)ψ1(s1)ψ′2(s1) + λ(s1)ψ1(s1)ψ′2(s1)

= 0.

Finally, we can easily see that Hλ = ΛH, where Λ is the diagonal matrix of λ(·)’s and
H is the tridiagonal matrix defined as in (9).
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Adaptive SDE II

Letting f̃ = λ(s)f(s), the left hand side of (15) can be written as

〈
ψi(s), f̃

′′(s)

〉
=

∫
ψi(s)f̃

′′(s)ds

= ψi(s)f̃
′(s)
∣∣∣sn
s1
−
∫
ψ′i(s)f̃

′(s)ds.

Using basis expansion (6), the adaptive SDE (15) becomes a linear equation system,
whose left hand side can be written as Hλw. We then have the [i, j]th entry of Hλ as

Hλ[i, j] = λ′(s)ψi(s)ψj(s)|
sn
s1

+ λ(s)ψi(s)ψ
′
j(s)

∣∣sn
s1

−
∫ sn

s1

λ′(s)ψ′i(s)ψj(s)ds−
∫ sn

s1

λ(s)ψ′i(s)ψ
′
j(s)ds.

Since basis element ψi only overlaps for neighboring locations, the nonzero entries in the
ith row of Hλ are Hλ[i, i− 1], Hλ[i, i] and Hλ[i, i+ 1] for i = 2, . . . , n− 1. Specifically,
we have

H[i, i− 1] = −
∫ si

si−1

λ′(s)ψ′i(s)ψi−1(s)ds−
∫ si

si−1

λ(s)ψ′i(s)ψ
′
i−1(s)ds

= − λ(s)ψ′i(s)ψi−1(s)|sisi−1
+

∫ si

si−1

λ(s)[ψ′i(s)ψi−1(s)]′ds

−
∫ si

si−1

λ(s)ψ′i(s)ψ
′
i−1(s)ds

= − λ(s)ψ′i(s)ψi−1(s)|sisi−1
+

∫ si

si−1

λ(s)ψ′i(s)ψ
′
i−1(s)ds

−
∫ si

si−1

λ(s)ψ′i(s)ψ
′
i−1(s)ds

= −λ(si)ψ
′
i(si)ψi−1(si) + λ(si−1)ψ′i(si−1)ψi−1(si−1)

= λ(si−1)/hi−1.

Note that ψ′i(s) is constant between si−1 and si, and thus we have [ψ′i(s)ψi−1(s)]′ =
ψ′i(s)ψ

′
i−1(s). Similarly, we have

Hλ[i, i] = −
∫ si+1

si−1

λ′(s)ψ′i(s)ψi(s)ds−
∫ si+1

si−1

λ(s)ψ′i(s)
2ds = −λ(si)

(
1

hi−1
+

1

hi

)
,
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which is the same as in the previous case, and

Hλ[i, i+ 1] = −
∫ si+1

si

λ′(s)ψ′i(s)ψi+1(s)ds−
∫ si+1

si

λ(s)ψ′i(s)ψ
′
i+1(s)ds

= − λ(s)ψ′i(s)ψi+1(s)|si+1

si
+

∫ si+1

si

λ(s)ψ′i(s)ψ
′
i+1(s)ds

−
∫ si+1

si

λ(s)ψ′i(s)ψ
′
i+1(s)ds

= −λ(si+1)ψ′i(si+1)ψi+1(si+1) + λ(si)ψ
′
i(si)ψi+1(si)

= λ(si+1)/hi.

For the first and last row of Hλ, the (possible) nonzero entries are Hλ[1, 1], Hλ[1, 2],
Hλ[n, n− 1] and Hλ[n, n], of which the first two entries can be derived as

Hλ[1, 1] = λ′(s)ψ2
1(s)

∣∣sn
s1

+ λ(s)ψ1(s)ψ′1(s)|sns1

−
∫ s2

s1

λ′(s)ψ′1(s)ψ1(s)ds−
∫ s2

s1

λ(s)ψ′1(s)2ds

= −λ′(s1)ψ2
1(s1)− λ(s1)ψ′1(s1)ψ1(s1)− λ(s1)ψ′1(s)ψ1(s)|s2s1

= −λ′(s1)ψ2
1(s1)− λ(s1)ψ′1(s1)ψ1(s1) + λ(s1)ψ′1(s1)ψ1(s1)

= −λ′(s1),

Hλ[1, 2] = λ′(s)ψ1(s)ψ2(s)|sns1 + λ(s)ψ1(s)ψ′2(s)|sns1

−
∫ s2

s1

λ′(s)ψ′1(s)ψ2(s)ds−
∫ s2

s1

λ(s)ψ′1(s)ψ′2(s)ds

= −λ′(s1)ψ1(s1)ψ2(s1)− λ(s1)ψ1(s1)ψ′2(s1)

−λ(s2)ψ′1(s2)ψ2(s2) + λ(s1)ψ′1(s1)ψ2(s1)

= −λ(s1)/h1 + λ(s2)/h1.

Similarly, the last two entries are given by

Hλ[n− 1, n] = λ(sn−1)/hn−1 − λ(sn)/hn−1 and Hλ[n, n] = λ′(sn).

These four entries can be viewed as (at least approximately) the derivatives of λ(s) at
the boundary points. To be consistent with the previous case, we assume the Neumann
boundary condition: λ′(s1) = λ′(sn) = 0, to make the entries be zeroes. Then, we can
easily see that Hλ = HΛ, where Λ is the diagonal matrix of λ(·)’s and H is the matrix
defined as in (9).
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