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Local-Mass Preserving Prior Distributions for
Nonparametric Bayesian Models

Juhee Lee ∗ Steven N. MacEachern † Yiling Lu ‡ Gordon B. Mills ‡

Abstract. We address the problem of prior specification for models involving the
two-parameter Poisson-Dirichlet process. These models are sometimes partially
subjectively specified and are always partially (or fully) specified by a rule. We
develop prior distributions based on local mass preservation. The robustness of
posterior inference to an arbitrary choice of overdispersion under the proposed
and current priors is investigated. Two examples are provided to demonstrate the
properties of the proposed priors. We focus on the three major types of inference:
clustering of the parameters of interest, estimation and prediction. The new priors
are found to provide more stable inference about clustering than traditional priors
while showing few drawbacks. Furthermore, it is shown that more stable clustering
results in more stable inference for estimation and prediction. We recommend the
local-mass preserving priors as a replacement for the traditional priors.

Keywords: nonparametric Bayes, Dirichlet process, two-parameter Poisson-Dirichlet
process, local mass, prior misspecification, clustering

1 Introduction

Two main schools of thought lead to the use of Bayesian methods. The first is the
subjective school which focuses on the elicitation of personal probabilities and is driven
by the axioms of rational behavior, as described by Savage (1972). The second is the
objective school which is driven by the complete class theorems of decision theory. While
the former encourages careful elicitation of prior distributions, as in Lindley (1965) and
De Finetti (1975), the latter opens the door to rule-based specification of the prior
distribution, whether through the time-tested methods of Jeffreys (1998) or the more
recent development of reference priors (Berger and Bernardo 1992) and the subsequent
development of objective Bayesian methods.

Both schools are Bayesian, but they emphasize different aspects of inference. Subjective
methods emphasize “knowledge” while objective methods emphasize “performance”.
When focused on performance, the user must specify a target of inference as well as
desired properties for inference – thus the choice of the relative importance of sets of
parameters when determining a reference prior (Bernardo 1979; Berger et al. 2009), the
emphasis on consistency of estimators (e.g. Salinetti (2003); Kleijn and van der Vaart
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(2006)), and the investigation of rates of convergence (e.g. Ghosal and van der Vaart
(2001); Rousseau (2010)). These considerations, along with a reluctance to inject strong
subjective beliefs into the prior distribution, lead to relatively diffuse priors. A generally
agreed upon aspect of good performance is stability of inference as minor details of the
rule used to specify the prior are varied.

Nonparametric Bayesian models are based on infinite dimensional objects, and so are
inevitably specified, at least in part, with rule-based prior distributions. The most
popular methods are those based on the Dirichlet process (Ferguson 1973) which is
a special case of the two-parameter Poisson-Dirichlet process (Pitman 1996; Pitman
and Yor 1997) and the many more recent directions, including Pólya trees, alternative
mixture forms, and “dependent” nonparametric processes. These basic forms are used
as components in sophisticated hierarchical models; for example, an extension of the
Dirichlet process to the mixture of Dirichlet processes (Antoniak 1974). The methods
have proven enormously successful for a wide range of problems. Three main features of
inference are often present in examples: (i) use of the methods to control for variation,
as when one allows an arbitrary error distribution (e.g., MacEachern and Guha (2011)),
(ii) estimation of parameters in a number of component problems (e.g., Escobar (1994)),
and (iii) attention to the clustering of observations (e.g., Quintana and Iglesias (2003);
Quintana (2006)). Hjort et al. (2010) provide an introduction to the techniques, many
applications, and a recent introduction to the literature.

The technical means by which diffuse nonparametric Bayesian prior distributions have
been created has been to extend methods developed for the low-dimensional parametric
setting to the nonparametric setting, often with some compromise to facilitate computa-
tion. Thus, in the parametric case, the thick-tailed prior distributions recommended for
the robust inference they bring to the normal means problem (Berger 1993) are replaced
by an overdispersed conjugate form, weakening the strength of the prior distribution
and allowing the data’s likelihood to dominate the prior. The traditional extension to
the nonparametric setting for Dirichlet-based models is to replace the base measure
(which specifies the prior distribution) with an overdispersed base measure, while leav-
ing the mass of the base measure or the distribution on the mass parameter unchanged.
Examples with lucid arguments supporting this practice include Escobar (1994) who
suggested a uniform prior with support much larger than the range of the data, Escobar
and West (1995) who place a prior on the mass of the base measure, and Ishwaran and
James (2002) who suggested use of a base measure with four times the dispersion of the
data.

Bush et al. (2010) show that the dispersion of the base measure cannot be increased
indefinitely without producing an improper posterior distribution. With this in mind,
a specific choice of overdispersion must be made. An open question is what impact
a relatively arbitrary choice of overdispersion has on posterior inference. A second
question is whether, by replacing the traditional structure of the prior distribution with
an alternative structure, we can produce posterior inference that is less sensitive to
the choice of overdispersion. In this paper, we investigate these questions, focusing on
the robustness, or stability, of posterior inference as the prior distribution is weakened.
We compare two forms of prior distribution in the context of the mixture of Dirichlet
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processes model–the traditional form that takes the dispersion of the base measure to be
independent of the mass of the base measure, and a novel form in which the dispersion
is independent of the “local mass”. We then extend the proposed modeling strategy to
more general two-parameter Poisson-Dirichlet processes. We find that the stability of
inference depends both on the form of the prior distribution and on the inference being
considered. The new prior distributions show more stability for inference on clustering
of observations, while the traditional and new forms are roughly equivalent for certain
estimation problems.

The remainder of the paper is organized as follows: Section 2 describes the new class of
local-mass preserving prior distributions and presents technical details with an applica-
tion to the two-parameter Poisson-Dirichlet process model. Section 3 presents analyses
of two data sets: a data set from a functional proteomics profiling experiment and an
allometric data set, and contrasts inference under similar models with the two forms of
prior distribution. The final section contains conclusions.

2 Models

2.1 Dirichlet Process

Let Xn = {X1, . . . , Xn} be a collection of n objects. We consider a distribution for
clustering the objects in Xn. We introduce an n-dimensional cluster membership in-
dicator vector sn = (s1, . . . , sn) to denote a partition of Xi’s into Kn (≤ n) clusters.
The vector sn is defined by the relation si = j if and only if Xi is in cluster j. In other
words, any two Xi and Xi′ (i 6= i′) are in a cluster if si = si′ . For partition sn, we let cj
be the size of cluster j and represent the sizes of the Kn clusters as a Kn-dimensional
vector, c = (c1, . . . , cKn). The Dirichlet process (DP) provides a distribution on the set
of partitions:

G |α ∼ DP(α),

Xi |G
iid∼ G,

(1)

where α is the base measure of the DP (Ferguson 1973). The parameter of the DP, α,
is a measure which may be split into two parts, the total mass of the measure, M and
the marginal distribution for Xi, G0(· |ν) where ν is the hyperparameter vector for G0.
Thus α is often written as MG0.

G in (1) is almost surely a discrete distribution function and it yields positive probability
for ties in Xi’s. The ties among Xi’s can be utilized to cluster the Xi’s. We let X?

j ,
1 ≤ j ≤ Kn represent the location of cluster j and Xi = X?

j for all Xi’s in cluster j

The DP implies much about the distribution of (Kn,X
?). The prior distribution of

partition sn with Kn clusters and cluster sizes c is

p(sn |M) = MKn

∏Kn
j=1 Γ(cj)∏n

i=1(M + i− 1)
(2)
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(Antoniak 1974). The DP also implies that given sn, the X?
j ’s form a random sample

of size Kn from G0, that is, X?
j | sn

iid∼ G0(· |ν). (2) shows that the distribution of the
number and sizes of the clusters is determined by M and n. G0 determines features of G
such as shape, location and dispersion. G0 may be characterized with hyperparameters
ν; for example, ν = (µ, τ2) where µ and τ2 are location and scale parameters.

The division of Xi’s into clusters under the DP is closely tied to the description of Xi’s
arising from a Pólya urn scheme (Blackwell and MacQueen 1973);

P(sn+1 = j | sn) =


cj

M + n
, 1 ≤ j ≤ Kn

M

M + n
, j = Kn + 1.

2.2 Independence Prior

The mixture of Dirichlet processes (MDP) model uses the DP as a prior on a latent
mixing distribution (Antoniak 1974);

G |α ∼ DP(α),

Xi |G
iid∼ G, (3)

Yi |Xi
ind∼ F(· |Xi), i = 1, . . . , n,

where α = MG0 and G0 is a distribution function with hyperparameters ν. For exam-
ple, Escobar and West (1995) used an MDP model for density estimation assuming the
normal likelihood. We now extend the model in (3) by placing prior distributions on
M and ν due to uncertainty about their values. The traditional approach is to declare
M and ν to be independent (Escobar 1994; Escobar and West 1995). We refer to this
prior structure as the “independence prior structure” in the subsequent discussion. The
independence prior structure leads to conditional (on the partition) posterior indepen-
dence of M and ν. This independence structure is popular in applications of the DP,
and almost all papers that place a distribution on M and ν use it.

The calibration of M and ν (or the priors for them) can be obtained using prior in-
formation from diverse sources, such as expert knowledge or previous studies. A prior
for M can be specified by focusing on the number of clusters. For a given data set
of size n, the expectation and variance of the number of clusters under the DP are
E(Kn |M) =

∑n
i=1M/(i−1+M) and Var(Kn |M) =

∑n
i=1M(i−1)/(M + i−1)2 (Liu

1996). A popular prior for M is a gamma distribution,

M ∼ Ga(a, b), (4)

where a and b are shape and scale parameters, respectively (hence, M has mean ab)
(Escobar and West 1995). a and b are calibrated using the prior expected number of
clusters and its variance (Kottas et al. 2005).
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The specification of G0 is trickier. The distribution G0 generates locations of clusters
induced by the DP and, jointly with M , controls the smoothness of estimates of G.
Specification of G0 follows patterns set out for parametric models. One common way to
express weak prior information while maintaining conjugacy in a parametric model is to
use a conjugate prior and inflate its dispersion. An advantage of using a conjugate prior
with large dispersion is to circumvent mathematical or computational problems involved
with non-conjugate priors and improper priors. For example, assuming a normal likeli-
hood we let G0 be a normal distribution with parameter vector ν = (µ, τ2) and consider
priors for the mean µ and the variance τ2; µ ∼ N(µ0, τ

2
0 ) and τ2 ∼ IG(a0, b0) where a0

and b0 are the shape and scale parameters of an inverse-gamma distribution (hence, τ2

has mean b0/(a0−1) provided a0 > 1). The dispersion of G0 is then inflated through its
scale parameter τ2 to reflect vague prior information, although explicit description of
this inflation is rarely stated. In addition to papers already mentioned, Hirano (2002)
and Ji et al. (2009) contain examples of overdispersed priors in nonparametric models.

In this standard example which we have described, M is independent of the dispersion
parameter of G0. Under this independence prior structure negligent inflation of the base
distribution’s dispersion can result in unreasonable inference on clustering due to the
interplay between shrinkage of Xi toward µ (driven by τ2) and clustering of Xi (driven
by M): For any fixed M , α spreads its mass more widely with a diffuse G0 than with
a less-diffuse G0. Consequently the diffuse G0 pushes more mass into the tails, and so
extreme observations tend to fall in smaller clusters. Furthermore, under the diffuse
G0, α assigns smaller mass to the central portion of the parameter space. The impact
of less mass is that the model puts any two Xi’s in the central region into the same
cluster with larger probability. Taken together, these effects yield poor (and unintended)
inference on the clustering structure of the Xi’s. The impact appears greatest in the
central region. To alleviate this problem, we introduce dependence between M and the
dispersion of G0. This leads to the concept of local mass and a different structure for
the prior distribution.

2.3 Local-Mass Preserving Prior

Bush et al. (2010) defined local mass as the mass assigned by a measure to a small
measurable set, confined to some region of the parameter space. They showed that
preserving local mass allows one to develop a limiting improper version of the DP which
leads to effective inference. We apply the concept of local mass and construct proper
local-mass preserving prior distributions. We first define the middle region as a region
of interest in the parameter space prior to analysis. Let L = (`1, `2) ⊂ R, `1 < `2 denote
the middle region.
Remark 1. Let L = (`1, `2) ⊂ R, `1 < `2 be the middle region. We assume the model
in (1) for clustering Xn. Conditional on the event that Xi ∈ L for all i (i = 1, . . . , n),
the distribution over partitions of Xn is

p(sn |M,X1, . . . , Xn ∈ L) ∝M?Kn

Kn∏
j=1

Γ(cj), (5)
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where M? = α(L) = MG0(L |ν) represents the mass assigned to L under α.

Proof. Let si and Ki represent the cluster configuration of Xi′ ∈ L for i′ = 1, . . . , i(< n)
and its number of clusters, respectively. Following the Pólya urn scheme, P(s1 = 1 |X1 ∈
L) = 1. Given si (i > 1), the distribution of the cluster membership of Xi+1 is

P(si+1 = j |M, si, X1, . . . , Xi+1 ∈ L) ∝ P(si+1 = j,Xi+1 ∈ L |M, si, X1, . . . , Xi ∈ L)

= P(si+1 = j |M, si, X1, . . . , Xi ∈ L)

×P(Xi+1 ∈ L |M, si, si+1 = j,X1, . . . , Xi ∈ L)

∝

{
cj , 1 ≤ j ≤ Ki

MP(Xn+1 ∈ L), j = Ki + 1.

Thus,

p(sn |M,X1, . . . , Xn ∈ L) ∝ (MP(X ∈ L))Kn
Kn∏
j=1

Γ(cj)

= (α(L))Kn
Kn∏
j=1

Γ(cj).

Remark 1 states that clustering of Xn conditional on all Xi’s lying in L depends on the
local mass assigned to L, not on the total mass, M . In Definition 1, we describe a prior
for M? instead of M to preserve the local mass in L regardless of the specification of
G0.
Definition 1. Let L = (`1, `2) ⊂ R, `1 < `2 be the middle region. We let M? = α(L).
A prior of M?,

M? ∼ Ga(a?, b?), (6)

is termed a local-mass preserving prior for the MDP model.

From the definition, M? under the local-mass preserving prior does not depend on ν.
Combining this with the result in Remark 1, the distribution on clustering components
of Xn given that they all lie in L does not depend on ν under the local-mass preserving
prior.
Remark 2. Assume the local-mass preserving prior structure in Definition 1. (6) im-
plies M ∼ Ga(a?, 1/p0(ν)b?) where p0(ν) = G0(L |ν). M and the dispersion of G0

are positively associated under the local-mass preserving prior structure. In particular,
as the dispersion of G0 increases, M increases at a rate which keeps the mass in L
constant.
Remark 3. Assume the independence prior structure of M and ν in (4). The mass
assigned by the independence prior to L depends on ν. Furthermore, conditional on the
event that Xi ∈ L for all i (i = 1, . . . , n), the distribution over partitions of Xn depends
on ν.
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Proof. Assume (4) as a prior for M , p(M). The mass assigned to L is:

M? =

∫ `2

`1

∫ ∞
0

Mg0(x |ν)p(M)dMdx

= ab

∫ `2

`1

g0(x |ν)dx

= abG0(L |ν),

where g0 is the density function of G0. Thus, M? under the independence prior depends
on ν. Combining this with the result in Remark 1, the distribution on clustering of Xi’s
in L depends on ν under the independence prior.
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(a) Expected number of clusters in L (b) TV of distributions on Kn in L

Figure 1: Dirichlet process: (a) the expected number of clusters in the middle region
where the black solid line and the red dashed line represent the expected number of
clusters in L under a baseline prior distribution and an overdispersed prior distribution,
respectively; (b) the total variation distance (TV) of the distributions of the number of
clusters in the middle region under the independence prior.

Note that for any two clustering configurations with the sameKn, sn and s′n, P(sn |M,X1, . . . , Xn ∈
L)/P(s′n |M,X1, . . . , Xn ∈ L) does not depend on M? from (5). Thus, if any two distri-
butions on Kn are identical, the distributions on sn implied by them under the DP are
identical. We examine distributions on Kn to compare the two prior structures instead
of the more complicated distributions on sn.

Figure 1(a) and (b) illustrate the expected number of clusters and the total variation
distance between distributions on Kn. The distributions on Kn come from a baseline
prior distribution and an overdispersed prior distribution and are conditional on the
event that Xi ∈ L (1 ≤ i ≤ n). For the baseline prior, let G0 = N(0, 1) and M = 1.
For the overdispersed prior, let the variance of G0 be inflated by a factor of 9 to express
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weak prior information, i.e. G′0 = N(0, 32). Define L = (−1, 1) as the middle. As in
Remark 3, conditional on the event that all Xi’s lie in L, the probability of starting
a new singleton cluster under the independence prior structure is lessened when the
base measure is overdispersed. Therefore, the independence prior structure induces
larger clusters in the middle (equivalently, fewer clusters in the middle). As a result,
in Figure 1(a) E(Kn|M,X1, . . . , Xn ∈ L) with G0 (the solid line) is greater than that
with G′0 (the dashed line). The black solid line in Figure 1(b) shows the total variation
distance in P(Kn|M,X1, . . . , Xn ∈ L) under the independence prior structure, one with
M and G0 and the other with M and G′0. The total variation distance is TV =∑n
Kn=1|P(Kn)− P′(Kn)| and P and P′ are distributions of Kn.

On the other hand, following Definition 1, we focus on local mass M? under the local-
mass preserving prior structure. G0 and G′0 are N(0, 1) and N(0, 32) but now the mass
in the middle, M?, is held fixed. Note that M? = M(Φ(1) − Φ(−1)) where Φ is
the standard normal distribution function, so M ′ = M?/(Φ(1/3) − Φ(−1/3)). Then
α′ = M ′G′0 assigns the same amount of mass to L as α = MG0 does. The conditional
distribution of Kn with α′ is identical with that with α and so the total variation
distance between the two is 0 for all n in contrast to the substantial difference under the
independence prior (Figure 1(b)). Additionally, the baseline and overdispersed expected
number of clusters are identical as well (both follow the solid line in Figure 1(a)). Thus
that preserves the clustering pattern in Xi’s lying in the middle, irrespective of any
arbitrary overdispersion of the base measure.

We also note that the local-mass preserving prior structure requires only minor mod-
ifications in the Markov chain Monte Carlo (MCMC) posterior simulation. The full
conditional for τ2 is not in a closed form and so we use other sampling techniques such
as the Metropolis-Hastings algorithm. Escobar and West (1995)’s sampling technique
can be used to sample M by replacing b with 1/p0(ν)b? as defined in Definition 1.

2.4 Extension to the Two-Parameter Poisson-Dirichlet Process

The two-parameter Poisson-Dirichlet process, denoted by PD(σ, θ), for 0 < σ < 1 and
θ > 0 (often called the Pitman-Yor process) (Pitman 1996; Pitman and Yor 1997) gen-
eralizes the DP and provides more modeling flexibility. The DP in (3) can be replaced
by the two-parameter Poisson Dirichlet process, and a gamma distribution Ga(a, b) is
often considered as a prior of θ. The two-parameter Poisson-Dirichlet process can be
characterized by means of the predictive probability function and the baseline distribu-
tion:

P(sn+1 = j |σ, θ, sn) =


cj − σ
n+ θ

, 1 ≤ j ≤ Kn

θ +Knσ

n+ θ
, j = Kn + 1,

and given sn, X?
j ’s are i.i.d. from G0(· |ν). This model includes the DP as a special

case when σ = 0. Similar to the DP, it can be shown that p(sn | θ, σ,X1, . . . , Xn ∈ L) ∝
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(p0(ν))Knp(sn | θ, σ) where

p(sn |σ, θ) =

∏Kn
j=1(θ + jσ)

(θ + 1)n−1↑

Kn∏
j=1

(1− σ)cj−1↑,

and (x)n↑ = x(x + 1) · · · (x + n − 1) denotes the Pochhammer symbol, with (x)0↑ = 1.
The distribution of sn conditional on Xi ∈ L for all i changes with p0(ν). This will be
illustrated through a small simulation later in this section.

For σ 6= 0, θ and G0 cannot be collected into a meaningful measure as in the DP.
We cannot preserve the entire conditional distribution on sn as the dispersion of G0 is
increased. Instead, we settle for preserving E(Kn |X1, . . . , Xn ∈ L). To do so, we keep
p0(ν) independent of E(Kn |X1, . . . , Xn ∈ L). We propose the following distribution as
a prior for θ in the two-parameter Poisson-Dirichlet process.
Definition 2. Let L = (`1, `2) ⊂ R, `1 < `2 be the middle region. A prior for θ,

θ ∼ Ga(a?, b?), (7)

where a? is fixed and b? is a function of ν by matching E(Kn | b?, X1, . . . , Xn ∈ L) to
the assumed prior expected number of clusters in L is termed a local-mass preserving
prior for the two-parameter Poisson-Dirichlet process.

Note that the distribution of sn conditional on Xi ∈ L for all i remains identical
regardless of the dispersion of G0 under the DP. Here, we match the first moment under
the baseline and overdispersed two-parameter Poisson-Dirichlet process priors.

Figure 2(a) and (b) show the expected number of clusters and the total variation distance
of distributions of Kn conditional on the event that Xi ∈ L for all i (i ≤ n) under
the two-parameter Poisson-Dirichlet process. This lets us examine the stability of the
distribution of sn conditional on Xi ∈ L for all i. For Figure 2, let G0 = N(0, 1) and
G′0 = N(0, 32) be a well-calibrated base measure and an overdispersed base measure.
Define L = (−1, 1) as the middle. With overdispersion, the expectation of Kn in the
middle drops dramatically as shown in Figure 2(a). The solid and dashed lines are the
expected Kn in the middle with G0 and G′0, respectively. The change in expected Kn

in the middle results in a large total variation distance between the distributions of Kn

indicated by the black solid line in Figure 2(b).

Following the strategy proposed in Definition 2, we search for θ′ such that E(Kn |σ, θ′, X1, . . . , Xn ∈
L) with G′0 is the same as E(Kn |σ, θ,X1, . . . , Xn ∈ L) with G0. The search for such
a θ′ can be done numerically. By matching the expected Kn in the middle, the total
variation distance of the distributions of Kn in the middle decreases (shown with the
dashed line in Figure 2(b)), leading to a smaller change in the distribution of sn. This
shows that θ (or a prior for θ) needs to be recalibrated according to G0 to yield stable
inference on clustering in the middle.
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(a) Expected number of clusters in L (b) TV of distributions of Kn in L

Figure 2: Two-parameter Poisson-Dirichlet process: (a) the expected number of clusters
in the middle region where the black solid line and the red dashed line represent the
expected number of clusters in L under a baseline prior distribution and an overdispersed
prior distribution, respectively; (b) the total variation distance (TV) of the distributions
of the number of clusters in the middle region under the independence prior.

3 Examples

3.1 RPPA Data

We compared the performance of the two prior structures for the MDP model with data
from an experiment using reverse phase protein arrays (RPPA) (Tibes et al. 2006). The
data set is introduced in Nieto-Barajas et al. (2012). The investigators treated an
ovarian cancer cell line with the epidermal growth factor receptor (EGFR) inhibitor,
Lapatinib, at the commencement of the experiment. The cell line was stimulated with
EGFR over time. Expression intensities of 30 proteins in the ovarian cancer cell line
were recorded with three replicates at eight different time points, t = 0, 5, 15, 30, 60,
90, 120 and 240 minutes after the initial intervention. For an analysis, the intensities
were first normalized so that each protein had a median expression intensity of 1,000,
and were then log-transformed. To make a comparison across proteins, difference scores
developed in Tusher et al. (2001) were computed. See Nieto-Barajas et al. (2012) for
details on the data. Figure 3 shows the histograms of the difference scores from the
30 proteins at the eight time points. The figure shows that the distributions are right
skewed except at t = 0 and the skewness is different across the time points.

We applied the hierarchical MDP model with a reasonably calibrated base measure
at each time point. We then reanalyzed the data with an intentionally inflated base
measure and then compared the results with those from the well-calibrated base measure
for each of the two prior structures. We compared the two prior structures under the
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Figure 3: Histograms of difference scores of protein intensities at each time point. Note
that the t = 0 histogram is qualitatively different from those at other time points.

two-parameter Poisson-Dirichlet model in a similar fashion.

We assumed the normal likelihood, Yi
indep∼ N(Xi, v

2), i = 1, . . . , 30. We calibrated the
priors as follows: We chose the normal distribution with mean µ and variance τ2 for a
base measure of a MDP model. We fixed µ at ȳ for simplicity. We placed inverse gamma
priors, IG(a0, b0) and IG(av, bv), on τ2 and v2, respectively. We set a0 = av = 10 and
chose a value of b0 and bv by matching their prior expectations with the sample variances.
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For an arbitrarily overdispersed base measure, we increased b0 by a factor of 25, where
25 is an arbitrary choice. We considered a gamma prior for M , Ga(a, b). The gamma
prior was elicited by setting the expected number of clusters and its variance. For this
data set, we set the expected number of clusters and its variance to be 3 and 2 for t = 0,
and 4 and 3 for the other time points. This results in Ga(9.385, 0.065) for t = 0, and
Ga(9.275, 0.108) for the other time points for the independence prior structure. For the
local-mass preserving prior structure, we defined the middle, (`1, `2) by finding `1 and `2
such that Φ(τ−1

0 (`2−µ))−Φ(τ−1
0 (`1−µ)) = 0.68 with |`2−µ|= |`1−µ| where τ2

0 = E(τ2)
and Φ is the cdf of the standard normal distribution. For M? ∼ Ga(a?, b?) let a? = a and
b? = {Φ(τ−1

0 (`2−µ))−Φ(τ−1
0 (`1−µ))}b, implying that E(Kn |X1, . . . , Xn ∈ L) = 2.43

and Var(Kn |X1, . . . , Xn ∈ L) = 1.44 for t = 0 and E(Kn |X1, . . . , Xn ∈ L) = 3.20 and
Var(Kn |X1, . . . , Xn ∈ L) = 2.20 for the other time points.

For the two-parameter Poisson-Dirichlet process, we assumed the same base measure.
We fixed σ = 0.1 and let θ ∼ Ga(a, b) where a is fixed at 15 and b is fixed at 0.278
and 0.05 for the independence prior structure assuming the expected number of clusters
to be 3 and 4 for t = 0 and the other time points, respectively. For the local-mass
preserving prior, we let a? = a and b? calibrated conditional on τ2 by matching the
expected number of clusters in L with 2.43 and 3.18 for t = 0 and the other time points,
respectively.

Tables 1 and 2 show the posterior means of parameters under the local-mass preserving
prior structure and the independence prior structure for the MDP model and the two-
parameter Poisson-Dirichlet process model, respectively. With the overdispersed base
measure, the posterior mean of τ2 increases, yet the posterior mean of M for the MDP
model (the posterior mean of θ for the two-parameter Poisson-Dirichlet process model)
does not change much under the independence prior structure (see Table 1(b) and
Table 2(b)). On the other hand, under the local-mass preserving prior structure the
posterior mean of τ2 increases and the posterior mean of M also increases to preserve
the mass in the middle for the MDP model as in Table 1(a). Similarly, in Table 2(a)
θ increases to preserve the prior expected number of clusters in the middle for the
two-parameter Poisson-Dirichlet process model.

We examined the stability of inference on the clustering of Xi’s as the dispersion of the
base measure increases. The difference of clustering was measured by 0.5

∑
i 6=j |P1(Xi =

Xj) − P2(Xi = Xj)|, where P1 and P2 are the posterior distributions with the well-
calibrated and overdispersed base measures, respectively. Table 3 shows differences in
the posterior probabilities that any two Xi’s are in the same cluster. From the table, we
observe larger changes in the clustering pattern of Xi’s under the independence prior
structure at all t for both models. Under the local-mass preserving prior structure,
clustering of Xi’s in the middle is better preserved and this leads to smaller changes in
the posterior pairwise co-clustering probabilities.

Next, we investigated how changes in the clustering of Xi’s affect estimation and predic-
tion of Xi’s. To study the impact on the estimation of Xi’s, we compared the posterior
means of Xi with the well-calibrated base measure to those with the overdispersed base
measure at each time point. Figure 4 illustrates the comparison for the MDP model at
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Well-Calibrated Overdispersed
M τ2 v2 M τ2 v2

t = 0 0.615 0.004 0.003 1.814 0.084 0.003
t = 5 1.013 0.093 0.065 2.599 1.779 0.058
t = 15 1.016 0.385 0.170 2.496 6.402 0.159
t = 30 1.019 0.091 0.059 2.590 1.711 0.053
t = 60 1.017 0.379 0.152 2.436 6.052 0.143
t = 90 1.016 0.427 0.173 2.450 6.845 0.163
t = 120 1.007 0.428 0.170 2.483 6.924 0.159
t = 240 1.025 0.088 0.050 2.576 1.591 0.046

(a) Local-Mass Preserving Prior

Well-Calibrated Overdispersed
M τ2 v2 M τ2 v2

t = 0 0.626 0.004 0.003 0.573 0.095 0.003
t = 5 1.016 0.092 0.065 0.900 2.082 0.058
t = 15 0.975 0.393 0.169 0.891 7.576 0.158
t = 30 1.010 0.091 0.059 0.901 2.010 0.054
t = 60 0.959 0.390 0.151 0.881 7.158 0.143
t = 90 0.961 0.435 0.173 0.882 8.103 0.162
t = 120 0.959 0.439 0.169 0.890 8.180 0.158
t = 240 1.006 0.087 0.050 0.892 1.864 0.046

(b) Independence Prior

Table 1: Posterior means of M , τ2 and v2 for the MDP model.

a selected time point, t = 240, under either the local-mass preserving prior structure
(panel (a)) or the independence prior structure (panel (b)). The smaller change in the
clustering pattern under the local-mass preserving prior structure leads to more robust
estimates of the Xi’s, especially for those lying in the middle as evidenced by those X̂i’s
near 0.1. Panel (a) shows that the X̂i’s in the middle move down almost equally due to
the separation of Xi’s in the far right tail and fall below the 45 degree line by about the
same distance (see insert in the panel). In contrast, panel (b) indicates that in addition
to the separation, larger clusters in the middle under the independence prior structure
lead to additional shrinkage of Xi’s in the middle with the overdispersed base mea-
sure. Results from the other time points as well as the results under the two-parameter
Poisson-Dirichlet model show the same pattern.

For prediction stability in a central region, we focused on the central 90% of the posterior
predictive distribution under the well-calibrated prior and compared the posterior pre-
dictive distributions conditional on the region implicitly defined by the central portion.
We measured the differences in the posterior predictive densities by the total variation
distance, 2 sup{|

∫
A
f1(x)dx−

∫
A
f2(x)dx|, A ⊆ B(R)} where B(R) denotes the Borel sets

on R, and by mean integrated squared error, E{(f1(x) − f2(x))2} where f1 and f2 are
the posterior predictive density estimates under the well-calibrated base measure and
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Well-Calibrated Overdispersed
θ τ2 v2 θ τ2 v2

t = 0 0.383 0.004 0.004 1.583 0.083 0.003
t = 5 0.619 0.093 0.065 2.156 1.802 0.058
t = 15 0.659 0.385 0.170 2.201 6.470 0.158
t = 30 0.617 0.092 0.059 2.100 1.741 0.053
t = 60 0.658 0.383 0.152 2.141 6.100 0.144
t = 90 0.649 0.434 0.172 2.108 6.918 0.163
t = 120 0.650 0.438 0.169 2.124 7.009 0.159
t = 240 0.613 0.089 0.049 2.077 1.612 0.046

(a) Local-Mass Preserving Prior

Well-Calibrated Overdispersed
θ τ2 v2 θ τ2 v2

t = 0 0.427 0.004 0.003 0.411 0.094 0.003
t = 5 0.757 0.092 0.065 0.710 2.080 0.059
t = 15 0.738 0.390 0.170 0.711 7.544 0.158
t = 30 0.758 0.090 0.059 0.713 2.031 0.054
t = 60 0.739 0.387 0.151 0.707 7.146 0.142
t = 90 0.737 0.436 0.173 0.704 8.078 0.162
t = 120 0.732 0.438 0.170 0.705 8.181 0.158
t = 240 0.755 0.088 0.050 0.708 1.860 0.046

(b) Independence Prior

Table 2: Posterior means of θ, τ2 and v2 for the two-parameter Poisson-Dirichlet
process.

Prior t = 0 t = 5 t = 15 t = 30 t = 60 t = 90 t = 120 t = 240
Local-mass 43.0 41.4 30.9 41.6 28.2 32.1 30.6 35.3

Indep. 83.5 92.7 77.8 95.1 69.0 69.7 68.4 88.5
(a) MDP Model

Local-mass 43.0 42.5 23.9 40.0 27.3 27.6 22.6 32.3
Indep. 84.3 96.3 71.4 99.9 65.1 69.9 66.7 88.8

(b) Two-parameter Poisson-Dirichlet Model

Table 3: Sum of the absolute differences in the posterior probabilities that each pair of
Xi’s is in the same cluster. Large numbers indicate instability of inference on clustering
as the prior dispersion is varied.

the overdispersed base measure, respectively. We evaluated both quantities numerically.
From Tables 4 and 5 the predictive density estimates in the middle change less under
the local-mass preserving prior structure for the both models, except for t = 0.

Note that a qualitative difference between t = 0 and the other time points explains why
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(a) Local-mass preserving prior at t = 240 (b) Independence prior at t = 240

Figure 4: Plots of the posterior means of Xi for a selected time point, t = 240. Panel
(a) plots the posterior mean of Xi with the well-calibrated base measure against the
overdispersed base measure under the local-mass preserving prior structure. Panel (b)
plots the posterior means of Xi under the independence prior structure.

Prior t = 0 t = 5 t = 15 t = 30 t = 60 t = 90 t = 120 t = 240

Local-mass 0.164 0.14 0.072 0.114 0.064 0.066 0.068 0.116
Indep. 0.134 0.17 0.114 0.136 0.106 0.112 0.108 0.150

(a) MDP Model

Local-mass 0.177 0.141 0.068 0.115 0.053 0.060 0.060 0.103
Indep. 0.135 0.164 0.116 0.139 0.105 0.111 0.111 0.153

(b) Two-parameter Poisson-Dirichlet Model

Table 4: Total variation distance under the well calibrated base measure and the overdis-
persed base measure. The differences are computed for middle areas having posterior
probability of 0.9 under the predictive density estimates with the well-calibrated base
measure.

the differences in prediction at t = 0 are not smaller under the local-mass preserving
prior structure (see Figure 3). In the case of t = 0, there are no aberrant outliers so that
τ2
0 in the prior calibration is small, the area of the pre-defined middle at t = 0 is small,

and so relatively many observations fall out of the pre-defined middle area. Therefore,
the pre-defined middle receives much less posterior probability than 0.9 even with the
well-calibrated base measure. Consequently, the difference in the predictive density
estimates for those areas remains relatively large under the local-mass preserving prior
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Prior t = 0 t = 5 t = 15 t = 30 t = 60 t = 90 t = 120 t = 240

L-M 8.1E-05 2.7E-05 7.7E-06 2.0E-05 9.4E-07 6.4E-06 7.0E-06 1.8E-05

Indep. 5.6E-05 4.3E-05 1.9E-05 2.9E-05 2.5E-06 1.8E-05 1.7E-05 3.2E-05

(a) MDP Model

L-M 9.7E-05 2.9E-05 7.0E-06 2.1E-05 6.4E-07 5.4E-06 5.6E-06 1.4E-05

Indep. 5.7E-05 4.0E-05 2.0E-05 3.0E-05 2.5E-06 1.8E-05 1.9E-05 3.4E-05

(b) Two-parameter Poisson-Dirichlet Model

Table 5: Mean integrated squared error of the predictive density estimates under the
well calibrated base measure and the overdispersed base measure. The differences are
computed for middle areas having posterior probability of 0.9 under the predictive
density estimates with the well-calibrated base measure.

structure at t = 0.

3.2 Allometric Data

We analyzed an allometric data set from Weisberg (1985). The data include the body
mass and brain mass of 62 species of mammals. A simple linear regression model
has been used to predict log brain mass from log body mass in previous analyses (for
example, see Weisberg (1985)). A logarithmic transformation of the variables suggested
by theoretical considerations yields approximate linearity and constant variance. For
our analysis we recentered the transformed covariate and placed independent priors on
the regression coefficients. See Figure 5 for a plot of the transformed and recentered
data with a simple linear regression line. MacEachern and Guha (2011) applied an MDP
model with the independence prior structure to this data set to show that allowing an
arbitrary distribution for errors through an MDP model achieves a better fit than does
a parametric model. Their model is shown below:

β ∼ N(µβ , σ
2
β); γ ∼ N(µγ , σ

2
γ); τ2 ∼ IG(a0, b0); v2 ∼ IG(av, bv)

G|τ2 ∼ DP(α) where M = 1 and G0 = N(0, τ2)

ψi|G
iid∼ G; ηi|σ2 iid∼ N(0, v2)

εi = γ + ψi + ηi

Yi = Xiβ + εi.

To illustrate the performance of the local-mass preserving prior, we extended the above
model by placing a prior on M .

We first calibrated the priors as follows: Peters (1983) presents empirical power laws of

the form Y ′i = eαX ′βi to explain the relation of the body mass (X ′) to some other phys-
iological characteristic of interest such as brain mass (Y ′). In an empirical allometric
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Figure 5: Plot of the allometric data. The line represents a simple linear regression line,
ŷi = 3.14 + 0.75xi where yi= log of brain mass and xi= centered log of body mass.

theory, β is stated to be approximately equal to 3/4 for our example. Following this, we
set µβ = 0.75 and σ2

β = 1/16. We let µγ = 3.14, σ2
γ = 100 and a0 = b0 = aσ = bσ = 2,

similar to MacEachern and Guha (2011). To make the base measure overdispersed,
we increased b0 by a factor of 25 where 25 was chosen arbitrarily. We chose a gamma
distribution as a prior for M . The hyperparameters for the gamma prior were found
by setting the expected number of clusters and its variance to be 4 and 3 as we did in
Section 3.1. The resulting prior for M is Ga(14.80, 0.05). The prior elicitation under the
local-mass preserving prior structure is the same except for the prior on M . To define
a prior on M? under the local-mass preserving prior structure, the middle, (−`, `) is
defined by finding ` such that Φ(`/τ0)−Φ(−`/τ0) = 0.68 with τ2

0 = Var(y− xµβ −µγ).
Assuming M? ∼ Ga(a?, b?) let a? = a and b? = {Φ(`/τ0) − Φ(−`/τ0)}b. This prior
implies that E(Kn |X1, . . . , Xn ∈ L) = 3.15 and Var(Kn |X1, . . . , Xn ∈ L) = 2.15.

We investigated changes in the clustering of ψi’s under the two prior structures as
the base measure becomes overdispersed. Figure 6 shows histograms of the number of
clusters of ψi’s, K. Note that the inferences with the well-calibrated base measure are
identical under the two prior structures. Histograms of K with the well-calibrated base
measure are shown in panels (a) and (c) under the local-mass preserving prior structure
and the independence prior structure, respectively. Panels (b) and (d) show histograms
of K with the overdispersed base measure. The number of clusters slightly decreases
under the local-mass preserving prior structure and yet it greatly decreases under the
independence prior structure. In the latter, the ψi’s are partitioned into one or two
clusters most of time. This shows that the clustering pattern of the ψi’s changes much
more under the independence prior structure than under the local mass prior structure.

The changes in the clustering of the ψi’s affects the estimation of γ+ψi. Figure 7 plots



324 Local-Mass Preserving Prior Distributions

number of clusters

D
en

si
ty

0 2 4 6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

number of clusters

D
en

si
ty

0 2 4 6 8 10 12 14

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(a) Local-mass with well calibrated G0 (b) Local-mass with overdispersed G0

number of clusters

D
en

si
ty

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of clusters

D
en

si
ty

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Indep. with well calibrated G0 (d) Indep. with overdispersed G0

Figure 6: Histograms of the number of clusters (K). Panels (a) and (b) are histograms of
K under the local-mass preserving prior structure with the well-calibrated base measure
and the overdispersed base measure, respectively. Panels (c) and (d) are histograms of
Kunder the independence prior structure.

the posterior mean of γ+ψi with the well-calibrated base measure against a similar value
under the overdispersed base measure. In Figure 7 (a), the posterior mean of γ + ψi in
the middle changes a little under the local mass preserving prior structure as the base
measure is overdispersed. In addition, since ψi’s in the tails are less frequently clustered
with the others, the estimate of γ + ψi increases (decreases) for those ψi’s in the right
(left) tail. However, Figure 7 (b) demonstrates a large change in the posterior mean of
γ + ψi under the independence prior structure. Assigning ψi’s to one or two clusters
with the overdispersed base measure under the independence prior structure results in
more shrinkage of γ + ψi toward their center, resulting in the lack of robustness in the
estimation of γ + ψi.

Figure 8 illustrates the posterior density estimates of β and v2 where the top panels
are from the local-mass preserving prior structure and the bottom panels from the
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(a) Local-mass preserving prior (b) Independence prior

Figure 7: Plots of the posterior mean of γ+ψi. The left panel plots the posterior mean
of γ +ψi with the well-calibrated base measure against the overdispersed base measure
under the local-mass preserving prior structure. The right panel plots the posterior
mean of γ + ψi under the independence prior structure.

independence prior structure. The figure shows how the change in the clustering of
the ψi’s affects estimation of the other parameters such as β and v2. In particular,
the posterior distribution of β changes very little under the two prior structures as
the base measure is overdispersed as shown in panels (a) and (c). Interestingly, the
posterior distributions of v2 in panels (b) and (d) behave differently under the two prior
structures as the base measure becomes overdispersed. Under the independence prior
structure, all of the ψ̂i shrink more toward their center, many of the εi become larger
and so the posterior distribution of v2 moves to the right as shown in (d). However,
under the local mass preserving prior structure, the posterior distribution of v2 stays
approximately the same as shown in (b).

We also applied the two-parameter Poisson-Dirichlet model with the two prior struc-
tures to the allometric data. Similar conclusions are obtained. The clustering of the
ψi is approximately preserved under the local-mass preserving prior structure as the
dispersion of the base measure increases and yet the clustering greatly changes under
the conventional model.



326 Local-Mass Preserving Prior Distributions

0.60 0.70 0.80 0.90

0
2

4
6

8
10

12
14

beta

D
en

si
ty

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
1

2
3

4

v^2

D
en

si
ty

(a) Posterior density estimates of β (b) Posterior density estimates of v2

under the local-mass under the local-mass

0.60 0.70 0.80 0.90

0
2

4
6

8
10

12
14

beta

D
en

si
ty

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
1

2
3

4

v^2

D
en

si
ty

(c) Posterior density estimates of β (d) Posterior density estimates of v2

under the indep. under the indep.

Figure 8: Plots of kernel density estimates of the posterior densities of β and v2. The
black solid lines and the red dashed lines represent density estimates with the well-
calibrated base measure and the overdispersed base measure, respectively.

4 Conclusions

The local-mass preserving prior robustifies the conventional hierarchical MDP model.
The concept of preserving local mass is extended to the two-parameter Dirichlet-Poisson
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process model. Through this modeling strategy, we can preserve local mass in regions
of interest under an overdispersed base measure. This leads to more stable inference for
clustering, and it leads to much more stable predictive inference in the central region,
arguably the region of greatest interest. If interest focuses on these issues, we recommend
use of this prior structure.

The essence in the development can be easily extended to other models and other
settings. Although illustrated most easily for real-valued Xi, the notion of a “middle”
and clustering can be generalized in straightfoward fashion. Remark 1 can be recast
with L representing a set into which Xi falls or does not fall. Definition 1 need not be
tied to a gamma distribution, and so on. As an example of another model, countable
mixture models whose distribution of mixing weights depends on a different rule than
the two-parameter Poisson-Dirichlet process (Navarrete et al. 2008) can be modified
appropriately. The key is to decrease the weights at an appropriate rate as the dispersion
of the base measure increases.

Finally, high dimensional problems are quite complex. The problem of specifying a
reasonable joint prior distribution over many parameters is often difficult, and the req-
uisite computations complicated and time consuming. In these cases, conjugacy is
helpful. The strategy developed here allows us to retain a conjugate structure, leading
to simplification of the calculation of the posterior distribution. Moreover, by focus-
ing on the local behavior of parameters of interest, the resulting posterior inference
is less sensitive to prior misspecification. This is especially valuable in settings where
prior elicitation is difficult. We would argue that in the infinite dimensional setting
of nonparametric Bayesian models the prior distribution is always misspecified. Here
again, we recommend use of a prior structure that lends stability to the most important
inferences.
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