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Incorporating Grouping Information in Bayesian
Variable Selection with Applications in

Genomics

Veronika Rockova ∗ and Emmanuel Lesaffre †

Abstract. In many applications it is of interest to determine a limited number
of important explanatory factors (representing groups of potentially overlapping
predictors) rather than original predictor variables. The often imposed require-
ment that the clustered predictors should enter the model simultaneously may be
limiting as not all the variables within a group need to be associated with the out-
come. Within-group sparsity is often desirable as well. Here we propose a Bayesian
variable selection method, which uses the grouping information as a means of in-
troducing more equal competition to enter the model within the groups rather
than as a source of strict regularization constraints. This is achieved within the
context of Bayesian LASSO (least absolute shrinkage and selection operator) by
allowing each regression coefficient to be penalized differentially and by considering
an additional regression layer to relate individual penalty parameters to a group
identification matrix. The proposed hierarchical model therefore enables inference
simultaneously on two levels: (1) the regression layer for the continuous outcome
in relation to the predictors and (2) the regression layer for the penalty param-
eters in relation to the grouping information. Both situations with overlapping
and non-overlapping groups are applicable. The method does not assume within-
group homogeneity across the regression coefficients, which is implicit in many
structured penalized likelihood approaches. The smoothness here is enforced at
the penalty level rather than within the regression coefficients. To enhance the
potential of the proposed method we develop two rapid computational procedures
based on the expectation maximization (EM) algorithm, which offer substantial
time savings in applications where the high-dimensionality renders Markov chain
Monte Carlo (MCMC) approaches less practical. We demonstrate the usefulness
of our method in predicting time to death in glioblastoma patients using pathways
of genes.

Keywords: Bayesian shrinkage estimation, EM algorithm, Bayesian LASSO, Minorization-
maximization

1 Introduction

Rapid advances in the development of biomedical technologies have facilitated the avail-
ability of complex genomic data, which have continued posing significant challenges for
statistical practitioners particularly because of their high dimensionality. Simultaneous
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selection of genomic features associated with a clinical outcome as well as development
of an interpretable prediction rule are commonplace in routine analysis of genomic data.
Current statistical toolkits rely heavily on methodological developments in variable se-
lection, among which the regularization approaches (Tibshirani 1994; Zou and Hastie
2005; Fan and Li 2001) have enjoyed particular attention. Despite the practical value
of these approaches, one of their limitations is the inability to effectively utilize existing
structural information about the predictors.

Modern genomic applications often deal with complicated covariate structures such
as gene network topologies or partitions into groups, which may overlap. In cancer
genomics, for example, DNA mutations are detected along the DNA sequence, where
the location in the chromosome provides a linear ordering of the observations. It is
reasonable to assume that adjacent measurements measure the same genetic effect and
therefore should be grouped (Li and Zhang 2010). Gene expression data yield another
example of a highly structured covariate space. Biologically related genes are known
to form groups called pathways. Functional interactions between genes within/between
pathways give rise to a gene interaction network, another type of structural information
which has proven beneficial to incorporate in variable selection (Li and Li 2008).

Nowadays, many databases are available which store biological information from experi-
mental research. These databases are continuously being updated with newly emerging
information, providing a compendium of existing knowledge on how genes and gene
products interact with each other. These interactions can be represented either as a
network, where vertices represent genes/gene products and edges indicate a regulatory
relationship, or as a list of pathway memberships. Existing databases of gene networks
include among others the KEGG gene regulatory network (Kanehisa et al. 2002).

It is recognized that incorporation of the supplementary covariate information in the
analysis of genomic data is key to more accurate prediction and improved interpretability
of the results (Stingo et al. 2011; Pan et al. 2010). Several methods have been proposed
that account for the gene network topology structures. Li and Li (2008) and Pan et al.
(2010) proposed network-based penalties in linear regression, which induce both sparsity
as well as smoothness of estimated effects within the pathways. These penalties have
a Bayesian interpretation in that the prior on regression coefficients corresponds to the
Gaussian conditional autoregressive model (Gelfand and Vounatsou 2003). Structural
information among the predictors has been considered in the context of Bayesian variable
selection by multiple authors including Li and Zhang (2010), Stingo and Vannucci (2011)
and Stingo et al. (2011), who consider a Markov random field (MRF) prior on variable
selection indicators with a neighboring structure defined by the network.

The limitation of MRF prior specification is that the effects of individual pathways
cannot be separated from each other. The MRF network consists of multiple overlay-
ing pathways, where the overlap makes it difficult to quantify the respective pathway
contributions. It is often of interest to evaluate importance of pathways and simulta-
neously perform within-pathway gene selection. Recently, Stingo et al. (2011) proposed
a partial least squares approach for pathway and gene selection using variable selec-
tion priors and Markov chain Monte Carlo (MCMC) for computation. In this paper
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we consider an alternative approach, which utilizes pathway membership information
as a source of group-driven shrinkage. This is achieved within the context of Bayesian
LASSO (least absolute shrinkage selection operator) (Park and Casella 2008), where in-
dividual penalty parameters are considered for each regression coefficient. An additional
regression layer is then specified to relate these penalties to the grouping information.
The motivation there is that penalties for coefficients within a group should share a
common hyper-regression parameter, which puts the within-group coefficients on more
equal footing in terms of penalization. These hyper-regression coefficients can be in-
terpreted as “pathway effects”, which explain how the overall amount of penalization
is distributed across the groups. The model extends the normal-exponential-gamma
(NEG) prior of Griffin and Brown (2012) by embedding the grouping information in the
prior distribution on the penalties to induce structured shrinkage. As opposed to the
overlapping group LASSO approaches (Jacob et al. 2009), where either a whole group
of predictors enters the model or is left out, here we rather introduce a more equal
competition for genes within the same pathways to enter the model. As such, we let the
likelihood of a variable to be selected be dependent on the pathway effects rather than
its neighbors in the undirected graph. The estimated pathway effects then quantify re-
spective pathway importance, adding to the biological interpretability. Group sparsity
can be enforced through priors on the pathway weights, where the posterior serves a
prerequisite for performing variable selection in a hierarchical manner by first selecting
pathways and then selecting genes within the pathways.

An important point of contrast between our method and the penalized regression ap-
proaches for structured variable selection such as group LASSO (Yuan and Lin 2006) or
Markov random field models on regression coefficients (Pan et al. 2010; Li and Li 2008)
is that the latter two enforce smoothness in the regression coefficients rather than in
the penalty parameters. This discrepancy may have important practical implications
in situations where there is no reason to assume homogeneity in regression coefficients
within groups or between neighbors in the graph.

We also investigate asymptotic implications of rescaling the NEG shrinkage prior by
a factor dependent on the sample size and consider an alternative formulation of the
model, which guarantees a non-vanishing penalization effect. We show that the maxi-
mum a posteriori (MAP) estimator in the rescaled model possesses the oracle property
(Fan and Li 2001) and demonstrate its satisfactory finite sample size performance on
simulated examples.

The implementations of Bayesian methods for shrinkage estimation have relied heavily
on the developments of MCMC strategies, which may suffer from high computational
time requirements when the cardinality of the predictor space is large. In this paper we
consider an alternative computational strategy, the maximum a posteriori estimation
based on the expectation maximization (EM) algorithm. We build on work done previ-
ously by Griffin and Brown (2012) and we extend their algorithm by including structural
grouping information. Similar to Armagan et al. (2012) we present two versions of the
algorithm, the first one based on iteratively solving ridge regression, while the other
one is based on LASSO (Tibshirani 1994). The two algorithms are seen to converge
rapidly even in situations where the number of predictors p greatly exceeds the number
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of observations n.

The outline of the paper is as follows. Section 2 describes the background notation
and motivation for our method. Sections 3 and 4 deal with model formulation and
computation. Section 5 is devoted to a brief discussion on the properties of the NEG
prior and selection of tuning parameters. In Section 6, a simple implementation is
demonstrated on simulated data. Application to the data is presented in Section 7.
Finally, Section 8 concludes the paper with a brief discussion.

2 The Method

Consider the canonical multiple linear regression setting, where the (n × 1) vector of
centered responses Y is linked to the (n×p) matrix X of standardized regressors (mean
zero and variance one) through the relation Y ∼ Nn(Xβ, σ2In), where β denotes the
(p × 1) vector of regression coefficients and σ2 is an unknown scalar. We focus on
the “large p small n” situation arising often in genomic and proteomic studies, where
the number of predictors greatly exceeds the number of observations. The regression
vector β is believed to be sparse in that only a small subset of predictors contributes to
explaining the variability of the response. Apart from the sparsity requirement, we wish
to impose additional regularization constraints as dictated by available prior knowledge
about the structure among predictors.

The key ingredient in the model formulation is the introduction of a design/loading
matrix Z (p× q) consisting of q columns of dummy variables coding for group member-
ship. Given that the predictors form a network structure attributable to the existence
of few shared underlying factors, the involvement of genes within each of the q fac-
tors/pathways can be encoded through a pattern of zeroes in the loading matrix Z.
Here we assume that the number of the latent factors as well as patterns of zeros in the
loading matrix can be retrieved from external scientific knowledge.

An illustrative example for 10 genes and 4 pathways is depicted in Figure 1(a), where
colored fields indicate functional gene-pathway relationships. Assuming that two genes
are related if and only if they share at least one underlying pathway, we obtain an
undirected graphical structure characterized as a set of edges E = {(i, j) : 1 ≤ i <
j ≤ p}, where (i, j) ∈ E whenever Xi is a neighbor of Xj . Such a structure can be
represented by a symmetric p × p matrix M = (mij)

p,p
i,j=1, where mij 6= 0 whenever

(i, j) ∈ E . The zero patterns in matrix M are depicted for our simple example in Figure
1(b). It is easy to see that the off-diagonal elements in M copy the pattern of zeroes
in the matrix ZZ ′. This undirected graph however assumes that all the genes within
the pathway are connected. In reality, the genes within pathways are far more sparsely
connected and it is the union of these small network components that gives rise to a
gene association network.

Assume that the k-th pathway is assigned a weight coefficient bk, which summarizes its
activity. In order to induce simultaneous shrinkage of coefficients sharing the same un-
derlying pathways we let the likelihood of a gene to be selected depend on a combination
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Figure 1: Loading matrix and undirected graph representations of gene interactions

of the active pathway effects. In our simple example, for instance, Gene 2 is involved
in the activity of Pathway 2 and Pathway 3 and therefore the degree of shrinkage of β2
towards zero is affected by the combination of the pathway weights b2 and b3. In case
there are singletons, which do not belong to any pathway, such as Gene 5 in our exam-
ple, we consider an additional shared parameter b0, which controls the overall sparsity
for all genes. In the following paragraph we put down a mathematical formulation for
this mechanism.

3 Model Formulation

We consider the problem of Bayesian shrinkage estimation in structured high-dimensional
covariate spaces. Our proposal extends the Normal-Exponential-Gamma (NEG) prior
of Griffin and Brown (2012) by embedding the structural covariate information (encoded
in Z) within the sparsity inducing regularization. The model formulation is as follows:

Y |X,β, σ2 ∼ Nn(Xβ, σ2In),

βj |σ2, τj
ind∼ N(0, σ2τ2j ),

τ21 , . . . , τ
2
p |λ21, . . . , λ2p ∼

p∏
j=1

λ2j exp(−λ2jτ2j )I(τj > 0),

λ2j |b
ind∼ Γ

[
a, h(Z ′jb)

]
,

bl
ind∼ π(θ), l = 0, . . . , q,

σ2 ∼ IGamma(c, d),
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where Zj denotes the j-th row of the p × (q + 1) matrix (1p,Z) and Γ(a, b) (resp.
IGamma(a, b)) denotes the gamma (resp. inverse gamma) distribution with shape a and
scale b. The regression coefficients arise from the conditional Laplace distribution (ex-
pressed as a scale mixture of normals), given the variance σ2 and a vector of penalty
parameters λ = (λ1, . . . , λp)

′. An important ingredient in this formulation is the con-
jugacy, where including the variance σ2 in the prior for regression coefficients yields
nice analytical simplifications in the derivation of the EM algorithm. Furthermore, it
guarantees the unimodality of the joint conditional posterior distribution π(β, σ2|y,λ)
(as shown by Park and Casella (2008)), which may better mitigate the local mode prob-
lems associated with the EM algorithm. As opposed to the Bayesian LASSO model
(Park and Casella 2008), where only one common penalty is used to regularize all the
coefficients, we allow unique parameters for each individual coefficient by analogy with
the adaptive LASSO (Zou 2006). Griffin and Brown (2012) further suggest imposing
a gamma hyper-prior distribution on the coefficient-specific penalties with fixed shape
and scale. Here we go a step further and assume that the scale parameter is random
and varies from coefficient to coefficient.

More specifically, we assume an additional regression layer in the hierarchy to relate
the penalty parameters to the matrix Z. Each λj is independently assigned a gamma
distribution with expected value Eλj = a h(Z ′jb), where coefficients b = (b0, . . . , bq)

′

are unknown and subject to estimation. The intercept b0 can be regarded as a global
shrinkage hyper-parameter determining the baseline level of shrinkage. The individual
regression coefficients are then locally influenced by the remaining coefficients in the
linear predictor Z ′jb.

Assume for a moment that Z encodes for q non-overlapping groups, i.e. {1, . . . , p} =⋃q
k=1Qk, where Qk ∩ Ql = ∅ for k 6= l. Then, ∀j ∈ Qk we have Eλj = ah(b0 + bk).

The parameter bk hence quantifies the additional amount of shrinkage attributable to
the k-th group and puts the within-group coefficients on more equal footing in terms of
penalization. For overlapping groups, the shape parameter is an additive summary of
the weights for all active pathways, i.e. Eλj = a h(b0 +

∑q
k=1 I[j ∈ Qk]bk).

Various link functions h(·) can be considered in the hierarchical formulation. However,
in order to interpret the higher values bk as more evidence for pathway importance,
we need to consider a link function decreasing in b, such as an inverse or an inverse
exponential link function. The choice of the link function has implications for the
selection of appropriate prior distributions π(θ). We are not necessarily restricted to
the conjugate class of priors, which would be a natural candidate for posterior sampling
in the generalized linear model (GLM) setting (Chen and Ibrahim 2003). The (inverse)
exponential link functions slow down the convergence of the EM algorithm, therefore we
consider only inverse and identity links with pathway weights restricted to be positive.
Since for a fixed shape parameter a, the gamma distribution is conjugate for the rate
parameter 1/s in Γ(a, s), we opt for independent gamma priors Γ(α, 1/γ) on the elements
of b in the inverse link and for inverse gamma priors IGamma(α, 1/γ) in the identity link.
The hyper-parameters α and γ can be tuned according to the expected degree of group
“sparsity”. In the inverse link, we might want to assure sufficient spread over a wider
range of values in situations when many groups are assumed predictive. Other choices
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for α and γ would be more appropriate if the solution is expected to be group “sparse”,
in which case the prior Γ(α, 1/γ) should accumulate more density on pathway weights
close to zero.

Finally, the weights bk summarize the relevance of the respective groups/pathways, when
related to clinical outcomes. In gene networks, predictive disease co-regulation patterns
can be found by locating high-evidence pathways, as determined by the magnitude of
these pathway weights.

A similar prior construction was considered by Stingo et al. (2010), who proposed a
hierarchical Bayesian graphical model for microRNA targets, where the prior probability
of variable inclusion is related to a linear combination of external association scores
through a logistic regression formulation.

4 EM Algorithm for NEG Prior with External Covariate
Information

The practicality of implementation is one of the most important aspects when analyzing
high-dimensional data. In this regard, MCMC algorithms for Bayesian shrinkage estima-
tion have become increasingly computationally cumbersome as the number of covariates
has escalated. Several authors have considered alternative strategies based on the EM
algorithm (Figueiredo 2003; Kiiveri 2003; Griffin and Brown 2012). To adapt these to
our situation, we have the additional difficulty of estimating the pathway weights b,
which requires extensions of existing approaches.

In the EM algorithm, modified for Bayesian modal estimation, the logarithm of the
incomplete data likelihood is augmented by the logarithm of the prior density (McLach-
lan and Krishnan 1996, p. 26). The incompleteness here refers to unobserved latent
variables rather than missing observations. The MAP estimates are then values that
maximize the so called log-incomplete data posterior density, here log p(β, b, σ2 | y).
These values are obtained by iteratively maximizing the conditional expectation of the
log complete posterior log p(β, b, σ2,w | y) with respect to the conditional distribution
of the latent variables w given the current parameter estimates and the observed data.

Since the parameters β, b and σ are of interest, the candidates for the latent unobserved
data are either τ 2 and λ2. Instead of assuming that both τ 2 and λ2 are missing, we
integrate out either one of the two sets of parameters from the model. This leads to
nice simplifications, as will become clearer later on. Similarly as in Armagan et al.
(2012), we consider two variants. First, we integrate over the penalty parameters λ2

and treat the latent variances τ 2 as missing. This formulation exploits the normal-scale
mixture representation of the NEG prior. In the second version, we integrate over τ 2

and treat the penalty parameters λ as missing, which corresponds to the Laplace prior
formulation. We will see that the latter possesses many convenient properties, such as a
naturally sparse representation and flexibility in the selection of the link function h(·).
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4.1 EM Algorithm Using the Normal Mixture Representation

The E-step of the algorithm entails the computation of the conditional expectation
of the log complete posterior distribution given the observed data and current values
β(k), b(k), σ(k) at the k-th iteration. This objective function, which is to be maximized
in the subsequent M-step, takes the following form:

Q
(
β, b, σ | β(k), b(k), σ(k)

)
= Eτ2

[
log p(β, b, σ, τ 2 | y) | β(k), b(k), σ(k),y

]
= C +Q1

(
β, σ | β(k), b(k), σ(k)

)
+Q2

(
b | β(k), b(k), σ(k)

)
,

where

Q1

(
β, σ | β(k), b(k), σ(k)

)
=− (Y −Xβ)′(Y −Xβ)

2σ2
− 1

2σ2

p∑
j=1

β2
j Eτ2 | ·

(
1

τ2j

)

− n+ p+ 2c+ 2

2
log(σ2)− d

σ2
,

Q2

(
b | β(k), b(k), σ(k)

)
=

p∑
j=1

{
log[a h(Z ′jb)]− (a+ 1)Eτ2 | · log[1 + τ2j h(Z ′jb)]

}
+

q∑
l=0

log π(bl)

and Eτ2 | ·(·) denotes the conditional expectation Eτ2

(
· | β(k), b(k), σ(k),y

)
.

As a result of our hierarchical prior formulation, where coefficients β depend on the
coefficients b only through the penalty parameters λ, the objective function Q(·) is
separable with respect to b and (β, σ)′. This implies that the M-step can be per-
formed by separately maximizing each of the functions Q1(·) and Q2(·). It is worth
noting that Q1(·) corresponds to the log-posterior distribution resulting from a Bayesian
ridge regression, whose maximum can be expressed analytically. The maximization of
Q2(·) with respect b is complicated by the unavailability of the conditional expecta-
tion Eτ2 | · log[1 + τ2j h(Z ′jb)] in closed form. This problem could be circumvented by
approximating the integral either analytically or using MCMC methods. However, this
would impose an additional computational burden and we do not elaborate on such
alternatives further. In the following paragraph we show how to maximize this function
without approximations, assuming the identity link function h(Z ′b) = Z ′b. Recall that
for the identity link we use independent inverse gamma priors on the elements of b, i.e.
log π(b) = −(α+ 1) log b− γ/b+ const.

In the spirit of a generalized EM algorithm (Dempster et al. 1977), instead of finding

the value that globally maximizes the function Q2

(
b | β(k), b(k), σ(k)

)
we choose b(k+1)

such that

Q2

(
b(k+1) | β(k), b(k), σ(k)

)
≥ Q2

(
b(k) | β(k), b(k), σ(k)

)
. (1)
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Such a condition on b(k+1) is sufficient to guarantee the monotonicity property, i.e.
the incomplete data log posterior distribution is not decreased after the k-th iteration.
The update b(k+1) that satisfies property (1) can be found by maximizing a surrogate
minorizing function, the definition of which is given below.
Definition 4.1. Let b(k) ∈ D ⊂ Rq+1 represent a fixed value of the parameter vector b
and let f(b; b(k)) denote a real-valued function. Then f(b; b(k)) is said to be minorizing

a real valued function g(b) at b(k) in domain D if and only if

f(b; b(k)) ≤ g(b), ∀b ∈ D,

f(b(k); b(k)) = g(b(k)).

From the definition of the minorizing function, it easily follows that g(b(k+1)) ≥ g(b(k)),

where b(k+1) maximizes the surrogate function f(b; b(k)). The question remains how

to construct a suitable minorizing function for Q2

(
b | β(k), b(k), σ(k)

)
. The answer is

given by the following theorem.

Theorem 4.1. Let b(k) ∈ Rq+1
+ represent a fixed value of the parameter vector b.

Denote

M2

(
b | β(k), b(k), σ(k)

)
=

p∑
j=1

[
log(aZ′jb)− (a+ 1)Eτ2 | ·

(
τ2
j

1 + τ2
jZ
′
jb

(k)

)
Z′j(b− b(k))

]

−
p∑
j=1

(a+ 1)Eτ2 | · log[1 + τ2
jZ
′
jb

(k)] +

q∑
l=0

[−(α+ 1) log bl − γ/bl].

Then the function M2

(
b | β(k), b(k), σ(k)

)
minorizes Q2

(
b | β(k), b(k), σ(k)

)
at b(k) in

Rq+1
+ .

Proof. For j ∈ {1, . . . , p} denote gj(b) = −(a+ 1) log(1 + τ2jZ
′
jb). Each of the functions

gj(b) is convex in Rq+1
+ (i.e. the function g∗j (t) = gj(b+ tc) is convex ∀b, c ∈ Rq+1

+ and
∀t ∈ R such that b+ tc is in the domain of gj(·)). The convexity implies that the first

order Taylor approximation at the point b(k) is a global underestimator of the function
gj(·). The fact that Eτ2|·X ≥ Eτ2|· Y , whenever X ≥ Y a.s. completes the proof.

Several observations can be made based on the result of Theorem 4.1. First, the mi-

norizing function M2

(
b | β(k), b(k), σ(k)

)
no longer entails the evaluation of an integral

which depends on the unknown parameter values b. All the integrals in the minorizing
functions depend only on the current parameter values b(k). Furthermore, the cum-
bersome expectation Eτ2 | · log(1 + τ2jZ

′
jb

(k)) does not need to be computed, as the
summand involving this term does not depend on b. Second, the values maximizing the
minorizing function can be regarded as MAP estimates in a Bayesian regression with ex-

ponentially distributed responses (a+ 1)/aEτ2 | ·

(
τ2
j

1+τ2
jZ
′
jb

(k)

)
, which are related to the

regression matrix aZ via an inverse link function, and where the regression coefficients
b are assumed to be independently gamma distributed. Third and most importantly,
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the expectations Eτ2 | ·

(
τ2
j

1+τ2
jZ
′
jb

(k)

)
can be expressed analytically using hypergeometric

cofluent functions (Gradshteyn and Ryzhik 2000, p. 278).

The graphical representation of the “minorization-maximization” (MM) algorithm is
given in Figure 2. The black curve corresponds to the function g(b) = − log(b)−2 log(1+
b) − 1/b, which depicts the behavior of the function Q2(·) for p = q = a = α = γ = 1
assuming that τ1 = 1 almost surely and Z1 = 1. We have the initial estimate b(0) = 4, at
which we construct the minorizing function f(b; b(0)) according to Theorem 4.1 (depicted
by the red curve). This function has its maximum at the value b(1) = 0.76. Repeating
the minorization-maximization at the new point b(1) (Figure 2(b)), we obtain a surrogate
function f(b; b(1)), whose maximum b(2) = 0.59 lies in the close vicinity of the true global

maximum b̂ = 0.57 of the function g(b).
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Figure 2: Graphical representation of the minorization-maximization algorithm

Unfortunately, this convenient computation can be only applied for the identity link
function. Considering either inverse, exponential, or inverse exponential link functions,
we lose the convexity property of the function log[1 + τ2j h(Z ′b)], which is necessary to
assure the monotonicity of the update based on the Taylor expanded surrogate function.

Summary of the EM Algorithm Using the Normal Mixture Representation

The parameters are initialized with starting values β(0), b(0), σ(0). The steps described
below are then repeated until a convergence criterion is satisfied (e.g. |β(k+1)−β(k)|l1+|b(k+1)−
b(k)|l1< ε).
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E-step

In the E-step, we first evaluate the conditional expectations Eτ2 | ·

(
1
τ2
j

)
. Following

Griffin and Brown (2012), we obtain (proof in Appendix A)

Eτ2|·

(
1

τ2
j

)
=

2(a+ 0.5)σ(k)
√
Z′jb

(k)

|βj |(k)

D−2(a+1)

(
|β(k)
j
|
√
Z′
j
b(k)

σ(k)

)

D−2(a+0.5)

(
|β(k)
j
|
√
Z′
j
b(k)

σ(k)

) , (2)

where Dη(x) denotes the parabolic cylinder function (Gradshteyn and Ryzhik 2000,

p. 256). We then denote Ω(k) = diag
[
Eτ2|·

(
1/τ2j

)]p
j=1

the diagonal matrix with the

entries (2) on the diagonal. Next, we compute Eτ2|·

(
τ2
j

1+τ2
jZ
′
jb

(k)

)
for j = 1, . . . , p and

we stack the values in a p× 1 vector Λ(k). We obtain (proof in Appendix B)

Eτ2|·

[
τ2
j

1 + τ2
jZ
′
jb

(k)

]
=

aΓ (a+ 0.5)

σ(k)

√
2πZ′jb

(k)
Ψ

(
a+ 0.5,−1

2
;
β

(k)2
j Z′jb

(k)

2σ(k)2

)
1

p(β
(k)
j |b

(k), σ(k))
,

(3)

where Ψ(a, b;x) denotes the hypergeometric cofluent function (Gradshteyn and Ryzhik
2000, p. 543).

M-step

The value β(k+1) which globally maximizes Q1

(
β, σ | β(k), b(k), σ(k)

)
can be regarded

as a solution to the ridge regression problem

β(k+1) = argminβ∈Rp{|Y −Xβ|l2+|Ω(k)1/2β|l2}, (4)

where Ω(k)1/2 denotes the square root of the matrix Ω(k). The computation of the
closed form solution (X ′X + Ω(k))−1X ′Y can be, for p > n, facilitated by utilizing
the Sherman-Morrison-Woodbury formula (Golub and van Loan 1996), which requires
the inversion of only an n × n matrix. The variance is updated as σ2(k+1) = (|Y −
Xβ(k+1)|l2+|Ω(k)1/2β(k+1)|l2+2d)/(n+p+2c+2). Finally, the pathway weights are up-

dated according to Theorem (4.1) as values maximizing the functionM2(b|β(k), b(k), σ(k)).

Keeping only the summands in M2(·), which depend on b, we obtain b(k+1) as

b(k+1) = argmaxb∈Rq+1
+

p∑
j=1

[
log(aZ ′jb)− (a+ 1)Λ

(k)
j Z ′jb

]
+

q∑
l=0

[−(α+ 1) log bl − γ/bl],

(5)
which is a box-constrained optimization problem solvable using optimization routines
implemented in standard packages (optimize function in R).
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This EM algorithm corresponds to the algorithm of Zou and Li (2008) for the com-
putation of penalized likelihood estimates with nonconvex penalties, using the local
quadratic approximation to the penalty function.

4.2 EM Algorithm Using the Laplace Representation

The ease of the computation of the normal-mixture-based algorithm applies only for the
identity link function. The difficulty in using the identity link is the interpretability of
the pathway weights b, where small values indicate more evidence for the importance
of the pathway. Another limitation is the inability to estimate the coefficients directly

at zero, due to the ridge regression updates. Fan and Li (2001) suggested that if β
(k)
j

is very close to zero, say |β(k)
j |< ε, then the MAP estimate is set β̂j = 0 and the j-

th component is removed from the next iteration. The drawback of this approach is
that once deleted, the covariate is ultimately excluded from the model. Moreover, the
selection threshold ε, which determines the sparsity of the solution, can be regarded as
an additional parameter, which requires tuning. Similarly to Armagan et al. (2012), we
consider an alternative version of the EM algorithm, which benefits from the LASSO
rather than ridge regression solutions and therefore produces a naturally sparse solution
without unnecessary thresholding. Furthermore, it allows for richer choices of the link
functions.

In the previous version of the EM algorithm, we integrated over the penalty parameters
λ2 and treated the latent variances τ 2 as missing data. Now we do exactly the opposite,
we integrate over τ 2 and treat the penalties λ2 as missing.

The objective function, i.e. the conditional expectation of the complete log posterior
distribution given the observed data and current values β(k), b(k) and σ(k) at the k-th
iteration now corresponds to:

Q̃
(
β, b, σ | β(k), b(k), σ(k)

)
= Eλ2

[
log p(β, b, σ,λ2 | y) | β(k), b(k), σ(k),y

]
= C + Q̃1

(
β, σ | β(k), b(k), σ(k)

)
+ Q̃2

(
b | β(k), b(k), σ(k)

)
,

where

Q̃1

(
β, σ | β(k), b(k), σ(k)

)
=− (Y −Xβ)′(Y −Xβ)

2σ2
−
√

2

σ

p∑
j=1

|βj |Eλ2|·λj

− n+ p+ 2c+ 2

2
log(σ2)− d

σ2
,

Q̃2

(
b | β(k), b(k), σ(k)

)
=

p∑
j=1

[
−a log h(Z ′jb)−

Eλ2|·λ
2
j

h(Z ′jb)

]
+

q∑
l=0

[(α− 1) log bl − γbl]

and Eλ2|·(·) denotes the conditional expectation Eλ2

(
· | β(k), b(k), σ(k),y

)
.

The expected log complete posterior distribution is again separable with respect to b
and (β, σ)′. In contrast to the previous version of the EM algorithm, the coefficients
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β(k+1) at the k-th iteration solve the “adaptive” LASSO problem, where differential
penalties are considered for each regression coefficient. This algorithm relates to the
algorithm of Zou and Li (2008) for the computation of nonconcave penalized likelihood
problems using the local linear approximation to the penalty function.

Summary of the EM Algorithm Using the Laplace Representation

The parameters are initialized with starting values β(0), b(0), σ(0). The steps described
below are then repeated until a convergence criterion is satisfied (e.g. |β(k+1)−β(k)|l1+|b(k+1)−
b(k)|l1< ε).

E-step

The E-step entails the calculation of Eλ2|·λj and Eλ2|·λ
2
j , which can be evaluated using

known functions (proof in Appendix C). For s = 1, 2, we have

Eλ2|·λ
s
j =

[h(Z ′jb
(k))](s+1)/2

σ(k)Γ(a)2a+s/2
exp

(
β
(k)2
j h(Z ′jb

(k))

4σ(k)2

)
D−(2a+1+s)

 |βj |
√
h(Z ′jb

(k))

σ(k)

 .

(6)

M-step

In the M-step, we begin with the update β(k+1), a solution to the problem

β(k+1) = argminβ∈Rp{|Y −Xβ|l2+2
√

2σ(k)|D(k)β|l1},

where D(k) = diag
[
Eλ2|·λ1, . . . ,Eλ2|·λp

]
. The solution can be obtained easily after

reweighing the regression matrix and applying standard LASSO computation (Zou
2006). The M-step continues by updating σ(k+1) according to

σ(k+1) =

√
2|D(k)β(k+1)|l1+

√
2(|D(k)β(k+1)|l1)2 + 4(|Y −Xβ(k+1)|l2+2d)(n+ p+ 2c+ 2)

n+ p+ 2c+ 2
.

Finally, the updates b(k+1) = argmaxb∈Rq+1Q̃2

(
b | β(k), b(k), σ(k)

)
can be computed

using box-constrained optimization routines. Assuming a = 1, this function corresponds
to the log posterior for Bayesian regression with exponentially distributed variables
Eλ|·λj , which are related to the regression matrix Z through the h(·) link function,
assuming independent gamma distributed priors on the regression coefficients b.
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5 Hierarchical Variable Selection

A natural strategy for variable selection based on the posterior output (β̂, b̂, σ̂) is by

screening out variables with a zero estimated (or negligible) regression coefficient β̂. As
an alternative practical guidance for selecting variables, we suggest proceeding hierar-
chically from the top of the hierarchical model to the bottom. In the first step, we select
relevant pathways. This is achieved by disregarding groups with pathway weights b̂ that
are estimated at the zero boundary of the parameter space (or are negligibly small).
Given that the weights correlate with the proportion of relevant genes within each path-
way (simulated study in Appendix D) it will often be sensible to ignore all the genes
within the non-predictive pathways. The second step then proceeds by selecting only
from variables that are located in the predictive groups. This selection can be anchored
by either thresholding or identification of zeroes in the vector of posterior estimates β̂,
depending on which version of the EM algorithm has been used. This recommended
strategy in our simulated examples leads to a dramatic reduction of false discoveries.

6 Some Properties of the NEG Prior

The hierarchical prior construction introduced in Section 2.1 differs from the original
formulation of the NEG prior (Griffin and Brown 2012) in the assumption that the scale
parameter (further denoted as s) in the gamma prior density Γ(a, s) is unknown and
subject to estimation. In this section, we discuss some of the properties of the NEG
prior in relation to the choice of the shape and scale hyper-parameters. Recall that the
NEG distribution has the following density function (Griffin and Brown (2012)):

pa,s,σ(β) =
a 2a
√
s√

πσ2
Γ (a+ 0.5) exp

(
β2
j s

4σ2

)
D−2(a+0.5)

(
|βj |
√
s

σ

)
. (7)

The shape parameter a controls the heaviness of the tails, where the prior density
becomes more peaked and lighter tailed with increased a, which may cause unwanted
bias in estimation of large effects. Decreasing the scale parameter, the density (7)
becomes flatter, losing the ability to shrink noise signals due to a less pronounced peak
at zero. With both a and 1/s approaching zero, we obtain the Normal-Jeffreys limiting
case (Griffin and Brown 2012). With both a and 1/s approaching infinity at the same
rate, the density converges to the Laplace prior. This property is formally summarized
by the following theorem.

Theorem 6.1. Let pa,s,σ(β) denote the density function in (7). Then for 0 < s/a =

λ′ <∞ we have lima→∞ pa,s,σ(β) =
√
λ′

2σ exp(−
√
λ′|β|/σ).

Proof. Let us consider the characteristic function of the Γ(a, s) distribution ψ(t) =

(1− its)−a, where i2 = −1. Since s = λ′

a , we have ∀t ∈ R

lim
a→∞

[
1− itλ′

a

]−a
= lim
a→∞

exp

[
a log

(
1 +

itλ′

a− itλ′

)]
= exp(itλ′),
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which follows from l’Hospital rule. The limit is the characteristic function of a Dirac
distribution concentrated at λ′. Denote by pa,s(λ

2) the gamma density function with
shape a and scale s. Then lima→∞ pa,λ′/a(λ2) = δλ′(λ

2). This altogether gives

lim
a→∞

∫
λ2

∫
τ2

p(β | σ, τ2)p(τ2 | λ2)pa,λ′/a(λ2)d τ2dλ2 =

∫
τ2

p(β | σ, τ2)p(τ2 | λ′)d τ2

=

√
λ′

2σ
exp(−

√
λ′|βj |/σ),

which is the density of the Laplace distribution. Switching the limit and integral signs
is justified by the bounded convergence theorem and noting that pa,λ′/a(λ2) < λ′ for all
a > 1.

Remark 6.1. A similar bridging property between the Laplace and Normal-Jeffreys
priors has been observed for the Generalized Double Pareto distribution (Armagan et al.
2012).

To gain more insights about the properties of the NEG prior, we consider for a moment
a simple normal mean situation, i.e. Y |β, σ2 ∼ N(β,œ2) and βj |τ2j , σ ∼ N(0, σ2τ2j ), j =
1, . . . , n. According to Fan and Li (2001), a sufficient condition for the unbiasedness
of the MAP estimator is that πa,s,σ(|βj |) = 0 for large |βj |, where πa,s,σ(|βj |) =
∂ log pa,s,σ(|βj |)

∂|βj | and pa,s,σ(·) denotes the marginal prior distribution (7). As given in

Griffin and Brown (2012),

πa,s,σ(|βj |) =
(2a+ 1)

√
s

σ

D−2(a+1)

(
|βj |
√
s

σ

)
D−2(a+0.5)

(
|βj |
√
s

σ

) . (8)

It is desirable that πa,s,σ(|βk|) approaches zero rapidly as |βk|→ ∞ to avoid unnecessary
modeling bias. The asymptotic properties of the bias term are summarized by the
following theorem.

Theorem 6.2. For πa,s,σ(|β|) in (8), πa,s,σ(|β|) = O
(

1
|β|

)
as |β|→ ∞.

Proof. The limiting behavior of the term π′a,s,σ(|β|) can be better understood using the
Poincare expansion of the Parabolic cylinder function for large |β| (Gradshteyn and
Ryzhik 2000, p. 1016), namely

Dη(x) ∼ exp(−x2/4)xη
(

1− η(η − 1)

2x2
+
η(η − 1)(η − 2)(η − 3)

2.4x4
− . . .

)
(9)

where the symbol ∼ indicates that the Parabolic cylinder function is equal to the series
in the limit as |x|→ ∞. As a consequence, we have

lim
|x|→∞

Dη(x)

exp
(
−x2

4

)
xη

= 1.
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This altogether enables us to rewrite lim|β|→∞ π′a,s,σ(|β|) as

lim
|β|→∞

(2a+ 1)
√
s

σ

exp
(
−β

2
i s

4σ2

)(
|βj |
√
s

σ

)−2(a+1)

exp
(
−β

2
i s

4σ2

)(
|βj |
√
s

σ

)−2(a+0.5)
= lim
|β|→∞

2a+ 1

|β|
,

which was to be demonstrated.

Remark 6.2. The bias hence decreases less rapidly for higher values of the shape pa-
rameter a, which is expected since a determines the heaviness of the tails.

In order to better understand how the choice of a and s affects the shrinkage properties
of the NEG prior, we investigated the behavior of the “shrinkage factor” κj = 1

1+τ2
j

.

In the conjugate normal means model, this random coefficient determines how much
shrinkage towards zero is put on the regression coefficient βj once we have observed
the data (Carvalho and Polson 2010). The interpretation follows from the identity
E(βj |yj , τ2j ) = (1−κj)yj , which marginally becomes E(βj |yj , σ2) = [1−E(κj |yj , σ2)]yj .
The shape of the prior distribution p(κj) indicates how much shrinkage is to be expected
a priori. Inspecting the prior density of the NEG shrinkage factor

pa,s(κj) =
as

κ2j

[
1 + s

(
1− κj
κj

)]−a−1
for various choices of shape and scale parameters (Figure 3(a)) gives us an idea how the
two parameters affect the ability of the NEG prior to distinguish between signal and
noise. Increasing the shape parameter a for fixed s, the distribution p(κj) concentrates
more densely around one, implying that the NEG prior is more aggressive in shrinking
small noise-like signals towards zero. A similar effect can be achieved by increasing the
scale parameter s for fixed a. Decreasing the shape parameter a, more probability mass
is accumulated near zero, which in turn induces heavier tails of the NEG prior. It is
possible to select a configuration of the two parameters, which induces a“horseshoe-like”
shape, where both tail robustness and ability to shrink noise are retained simultane-
ously (Carvalho and Polson 2010). The corresponding prior densities for the regression
coefficients assuming σ2 = 1 are depicted on Figure 3(b).

The delicate interplay between the hyper-parameters a and s in determining the shrink-
age characteristics of the NEG prior is further complicated by the presence of the un-
known global variance parameter σ2. This parameter affects the posterior distribution
of the shrinkage factor

p(κj | yj , σ2) =

√
κj

σ
exp

(
−
y2jκj

2σ2

)
pa,s(κj),

where small values σ2 distribute more posterior mass on κj ’s near zero. The consequence
is that small σ2 may cause under-shrinkage of noise.
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Figure 3: Prior distribution of shrinkage factor and regression coefficients

In the context of multiple linear regression, the small fixed values of σ2 may increase the
number of false positives. In our EM algorithm, small values σ(k) at the k-th iteration
imply smaller penalties on the regression coefficients (as seen from equation (2)) and
thereby increased likelihood of false discoveries. This may be problematic in high-
dimensional settings (p > n), where variance estimates at each iteration are typically
very small. Possible remedies for this problem are: (a) to consider higher values of the
shape parameter a, (b) to specify an informative prior on the variance, such as a flat
prior within an interval bounded away from zero, (c) to add a fixed multiplying factor
g to the prior variance Var (βj |σ2, τj) = g τ2j σ

2. The parameter g resembles the hyper-
parameter in the g-prior (Liang et al. 2008), but its role is fundamentally different.
Zellner (1986) and other authors have recommended treating g as a function of sample
size to prevent the g-prior from asymptotically dominating the likelihood. Whereas in
the g-prior context it is desirable for g to grow with n, we will see that the NEG prior
benefits from letting g decrease with n in order to achieve a non-vanishing penalization
effect.

Multiplying the prior variance of the regression coefficient by the factor g is equivalent
to imposing the NEG prior with shape a and scale s/g. In the following theorem we
show that considering g = 1/n2 guarantees, for suitably chosen scale parameters s,
variable selection consistency and asymptotic normality of the MAP estimator under
mild regularity conditions for multiple regression with fixed p. For simplicity we will
assume that σ is fixed to one and let the scale parameter s vary according to the sample
size.

Theorem 6.3. Assume the regularity conditions (A)-(C) in Fan and Li (2001) and de-

note by β̂n the MAP estimator arising from the hierarchical model under the NEG(a, n2sn)
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prior. Let An = {j : β̂j 6= 0} and A = {j : βj 6= 0}, where β is the true coefficient

vector. Then for sn → 0 and
√
nsn →∞ as n→∞ the MAP estimator β̂n satisfies:

(a) Consistency in variable selection: limn→∞ P(An = A) = 1,

(b) Asymptotic normality:
√
n(β̂An − βA) → N(0, IA−1), where βA denotes the

nonzero elements in β and IA is the Fisher information knowing βj = 0 for
j /∈ A.

Proof. The MAP estimate β̂n under the NEG(a, n2sn) prior can be regarded as the
coefficient vector minimizing the penalized least squares

1

2
||y −Xβ||2+n

p∑
j=1

pena,sn(|βj |),

where the penalty term consists of the summands in negative NEG(a, n2sn) density,
which depend on |β|, divided by n. According to (7), the penalty term for σ2 = 1 takes
the following form:

pena,sn(|β|) = −|β|
2nsn
4

− 1

n
logD−2(a+0.5) (|β|n

√
sn) . (10)

Denote by pen′a,sn(|β|) and pen′′a,sn(|β|) the first and second derivatives of (10) with
respect to |β|. In order to demonstrate asymptotical normality and consistency, it
suffices to show that the penalty function satisfies the following three conditions (Fan
and Li 2001):

(a) limn→∞ pen′a,sn(|β|) = 0 for all β 6= 0,

(b) limn→∞ pen′′a,sn(|β|) = 0 for all β 6= 0,

(c) lim infn→∞ lim infβ→0+ pen
′
a,sn(|β|)/sn > 0.

The property (a) follows from the asymptotic expansion of the Parabolic cylinder func-
tion, which gives that ∀β 6= 0 and for n

√
sn → ∞ as n → ∞ (which follows from the

assumption
√
nsn →∞)

lim
n→∞

pen′a,sn(|β|) = lim
n→∞

(2a+ 1)
√
sn

D−2(a+1)

(
|β|n√sn

)
D−2(a+0.5)

(
|β|n√sn

) = lim
n→∞

2a+ 1

n|β|
= 0.

In order to show the validity of condition (b) it is helpful to reexpress the derivatives of
the Parabolic cylinder function using the recursion formulas (Abramowitz and Stegun
1972, p.688). After some algebra we obtain the following expression for the second
derivative of the penalty function:

pen′′a,sn(|β|) =n2sn
√
sn(2a+ 1)|β|

D−2(a+1)

(
|β|n√sn

)
D−2(a+0.5)

(
|β|n√sn

)
− nsn(2a+ 1) + nsn(2a+ 1)2

(
D−2(a+1)

(
|β|n√sn

)
D−2(a+0.5)

(
|β|n√sn

))2

.
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Applying again the Poincare asymptotic expansion we conclude that as n → ∞: (a)
the third summand in pen′′a,sn(|β|) is asymptotically o(n), and (b) the first summand
is asymptotically equivalent to nsn(2a + 1). This altogether implies that the limit of
pen′′a,sn(|β|) is zero as n grows to infinity.

In order to verify the last condition it is helpful to note that D−η−1/2(0) =
√
π 2−η/2−1/4

Γ(3/4+η/2)

(Abramowitz and Stegun 1972, p.687). Then for sn → 0 as n→∞ we have

lim inf
n→∞

lim inf
β→0+

pen′a,sn(|β|)/sn = lim inf
n→∞

(2a+ 1)Γ(a+ 1)
√

2

Γ(a+ 1.5)
√
sn

> 0.

Remark 6.3. In the penalized likelihood setting with a diverging number of parameters
the “oracle” properties of the NEG penalty (without scaling) were shown in Griffin
and Brown (2012). Here we considered a modified penalized likelihood function, which
corresponds to an actual posterior distribution in the hierarchical Bayesian context.

Remark 6.4. Instead of tuning the prior as a function of sample size, Ishwaran and
Rao (2005) suggest an alternative way to avoid vanishing effect of the prior in spike and
slab models by rescaling the responses by a factor

√
n and adding a variance inflation

factor.

Remark 6.5. Fan and Li (2001) suggest a sandwich standard error formula for the non-
zero penalized likelihood estimates, which can be applied also for the MAP coefficients
arising from the rescaled NEG prior in Theorem 6.3.

7 Simulated Examples

The purpose of this section is to illustrate the application of the proposed method on
two simulated examples and to demonstrate its potential as a variable selection tool. In
the first example, the predictors are assumed to cluster within known non-overlapping
groups, whereas the second example deals with the overlapping case. Throughout the
section we assume that the number of predictors p is much larger than the number of
observations n, whereas the number of informative predictors is smaller than n. The
estimation is in both examples conducted using the Laplace version of the EM algorithm
with an inverse link function. The threshold for convergence ε is set to 10−5.

7.1 Non-overlapping Groups

In the first example, we assume p = 1 000 and n = 100. The matrix of predictors
X has been generated with rows drawn independently from Np(0,Σ), where Σ =
(σij)

p
i,j=1 and σij = ρ|i−j| with ρ = 0.5. We assume throughout that the regres-

sion vector consists of two blocks of informative coefficients with all remaining val-
ues set to zero. Namely, we consider the following set of regression coefficients β =
(1, 2, 3, 4, 5,0′15, 1, 2, 3, 4, 5,0

′
975)′, where 0m is an m × 1 vector of zeroes, and we con-

struct the responses according to the generating linear model Nn(Xβ, 3× In).
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Grouping 1 Grouping 2 NEG
Size 5 15 5 975 10 20 30 940 1000

Sparsity 1 0 1 0 1/2 1/4 0 0 1/100

FD FDH b̂0 b̂1 b̂2 b̂3 b̂4 FD1 FD2 FDH b̂0 b̂1 b̂2 b̂3 b̂4 FD b̂0
No scaling g = 1

a=0.5 51 0 0.001 2.399 0 2.388 0 40 8 8 0.001 1.235 0.016 0 0 52 0.001
a=1 42 0 0.001 4.828 0 4.780 0 40 17 17 0.001 3.133 1.349 0 0 45 0.001
a=3 34 0 0.002 13.138 0 12.805 0 31 17 19 0.002 11.590 9.332 0.002 0 33 0.002

Rescaled prior g = 1/n2

a=0.5 49 0 0.001 2.412 0.002 2.412 0 45 4 4 0.001 1.012 0.050 0 0 49 0.001
a=1 45 0 0.054 4.850 0.004 4.850 0 43 2 4 0.053 2.333 1.408 0.007 0 45 0.06
a=3 35 0 2.122 12.613 0 12.613 0 34 1 3 2.111 10.389 8.976 0.035 0 35 2.609

Table 1: Analysis summary of the simulated data, FD/FD1/FD2/FDH refer to num-
ber of false positives overall/in non-predictive groups/in predictive groups/overall after
hierarchical selection. The size and sparsity relate to the number of predictors within
each group and proportion of predictive explanators.

Two non-overlapping grouping patterns were considered, where either the whole groups
of predictors should enter the model (Grouping 1) or only a subset of variables within
each predictive group is relevant (Grouping 2). Our first grouping scenario perfectly
separates informative from uninformative predictors by clustering them into four groups

identified by the following sets of indices: Q(1)
1 = {1, . . . , 5}, Q(1)

2 = {6, . . . , 20}, Q(1)
3 =

{21, . . . , 25} and Q(1)
4 = {26, . . . , 1 000}. The second clustering mechanism is charac-

terized by the following four sets of indices Q(2)
1 = {1, . . . , 10}, Q(2)

2 = {11, . . . , 30},
Q(2)

3 = {31, . . . , 60} and Q(2)
4 = {61, . . . , 1 000}, which differ not only in size but also in

the proportion of relevant predictors within each group (1/2, 1/4, 0 and 0). Lastly, we
conduct the analysis assuming no grouping is available, i.e. all p predictors belong to
only one group. This model corresponds to an extended NEG prior with an estimable
scale parameter. We compare our method to LASSO (R package lars) and group
LASSO (R package grpreg).

We consider the following values for the hyper-parameters c = d = α = γ = 1 and three
choices of the shape parameter a = 0.5, 1, 3. The EM algorithm is initiated with the
following starting values: β(0) = 1p, b

(0) = 15 and σ(0) = 1.

In all considered settings, the 10 relevant predictors were correctly identified. Table
1 summarizes the number of false discoveries (FD), which are in the second grouping
scenario divided into within non-predictive group false discoveries (FD1) and within
predictive group false discoveries (FD2).

Focusing on the estimates of the pathway weights, several observations can be made
based on the reported estimates in Table 1. First, the estimates corresponding to
the non-relevant groups are typically at the zero boundary of the parameter space
(0 ≈ 10−10), which illustrates the method’s ability to correctly identify the predictive

groups. Second, we observe that the magnitude of the estimated weights b̂1 and b̂2 in the
second grouping scenario reflects the proportion of important within group variables,
which is a desirable property. Third, the estimated nonzero group weights increase with
the increased shape parameter a. This is expected since higher weights together with
the inverse link function compensate for the large amount of penalization induced by
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the larger shape parameter.

It is interesting to note in Table 1 how the shape parameter a affects the within-group
and overall sparsity. Assuming that all predictors within an important group are relevant
(Grouping 1), increasing a gradually decreases the number of false discoveries (FD). In
the presence of within-group sparsity (Grouping 2) there are noticeable differences before
and after rescaling the prior. In the first case, increasing the shape parameter forces
all grouped predictors to enter the model simultaneously (FD2 increases), while the
number of false discoveries in non-predictive groups goes down (FD1 decreases). This
suggests that larger a would be advisable in situations where we have a strong belief
that the predictive groups are not sparse. For small a, we obtain sparsity within groups
but might include unnecessarily many irrelevant coefficients. This is not the case after
rescaling the prior distribution by the factor g = 1/n2, where the within group sparsity
is well preserved.

It is instructive to see how the performance can be improved by performing the hi-
erarchical variable selection (as explained in Section 5). In the first step, we screen
out pathways with a zero/small estimated weight. In the second step we select vari-
ables with nonzero estimated regression coefficients within the selected groups. This
strategy in our simulated example leads to a dramatic reduction of false discoveries as
compared to the plain NEG prior (FDH values in Table 1). By not performing the
hierarchical selection, the NEG prior may gain in reduction of false discoveries but lose
the interpretability of the group predictive pattern of the covariates.

Leave-one-out cross-validation for LASSO variable selection leads to a model with 77
false positives. The group LASSO after cross-validation selected a null model (Grouping
2) and a model with 11 false positives (Grouping 1). The group LASSO in the latter case
may have benefitted from the sign consistency of the nonzero within group coefficients.

In the current case of non-overlapping groups with a “complete partition” (each variable
is in one and only one group), we might not need the intercept shrinkage parameter.
However, in our experience deleting this coefficient does not substantially influence the
variable selection performance. The main difference is that the non-informative group
weights are typically not at the boundary of the parameter space, although they are
very small. Truncating these small estimates would then serve the purpose of selecting
groups in the hierarchical selection scenario.

Turning to the perfect grouping scenario (Grouping 1), the majority of false discoveries
has occurred in the last group consisting of 975 variables. Due to the zero estimated
pathway weight, all regression coefficients in this group are penalized by the intercept
weight. An estimate of this parameter is in our simulated example and is very similar
to the overall shrinkage parameter in the NEG prior without the grouping, yielding a
comparable number of false discoveries in this very large group. More marked differences
in terms of false discoveries and non-discoveries between the plain and group versions
of the NEG prior can be observed in less sparse situations, such as the ones presented
in Appendix E.

As a consequence of an asymptotically vanishing effect of the prior on the posterior in
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Grouping 1 NEG
Size 10 10 22 21 15 15 14 13 12 12

Sparsity 1 1 0.091 0 0.33 0 0.143 0 0 0

FD FDH b̂0 b̂1 b̂2 b̂3 b̂4 b̂5 b̂6 b̂7 b̂8 b̂9 b̂10 FD b̂0
No scaling g = 1

a=0.5 45 8 0.001 4.696 4.776 0.001 0 0.008 0 0.001 0 0 0 45 0.001
a=1 36 6 0.001 9.361 9.497 0.001 0 0.008 0 0.002 0.001 0 0.004 38 0.001
a=3 43 19 0.002 25.348 25.526 0.011 0 2.017 0 0 0 0 0.417 31 0.002

Rescaled prior g = 1/n2

a=0.5 42 7 0.001 4.905 4.933 0.001 0 0.002 0 0.001 0 0 0 42 0.001
a=1 40 6 0.001 9.624 9.754 0 0 0.008 0 0.003 0 0.001 0.004 40 0.001
a=3 23 2 1.290 28.297 28.530 0.017 0 0.495 0 0 0 0 0 23 3.935

Table 2: Analysis summary of the simulated data, FD/FDH refer to number of false
positives without hierarchical selection/after hierarchical selection, size and sparsity
relate to the group size and proportion of predictive explanators.

the unscaled model, the pathway coefficients in the inverse link decrease with growing
sample size, where the whole linear predictor asymptotically approaches a value bounded
away from zero. In order to preserve the shrinkage effect in the limit, we have considered
a rescaled NEG prior, where the scale parameter is multiplied by a factor n2. According
to Theorem 6.3, the scale parameter (inverted linear predictor) in the modified model
should ideally approach zero and its root-nmultiple grow to infinity as n→∞. Evidence
for this behavior was observed in a simulated experiment described in Appendix D. It
is interesting to note the relationship of the pathway weights to the group size, where
the estimated coefficients represent the proportion of predictive coefficients within each
pathway. Larger pathways have typically smaller estimated coefficients as compared
to smaller pathways with the same (number of) predictive variables. This behavior
was also evident in the results of the simulation study in Appendix D. It is worth
mentioning that the regression on the scale parameter is less influential in the rescaled
version of the model (g = 1/n2). The overall performance in terms of false discoveries
and non-discoveries there is very similar for the grouped NEG and the plain NEG priors.
We speculate that rescaling the prior, the regression on the scale parameter has little
influence on the model search and rather helps to effectively discriminate between the
predictive and the non-predictive groups. The pathway weights are seen to correctly
represent the grouping structure and serve as a useful prerequisite for group selection
that isolates discoveries in non-predictive groups.

7.2 Overlapping Groups

In our second simulated example we assume that the predictors correspond to known
genes and cluster within known pathways. The list of gene/pathway interactions was
generated from the KEGG database using the R Bioconductor library hgu133plus2. A
subset of size p = 1 000 was randomly selected from a set of genes analyzed in the next
section. Focusing only on known pathways consisting of at least 10 genes, we selected
at random q = 10 pathways for the construction of the grouping structure.

Two of these pathways were randomly selected to be predictive. Similarly as in the
previous example we consider two possible scenarios: (1) all genes within the predic-
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Grouping 2
Size 27 25 22 21 15 15 14 13 12 12

Sparsity 0.37 0.4 0.091 0 0.33 0 0.143 0 0 0

FD1 FD2 FDH b̂0 b̂1 b̂2 b̂3 b̂4 b̂5 b̂6 b̂7 b̂8 b̂9 b̂10
No scaling g = 1

a=0.5 31 25 33 0.001 0.781 1.229 0.001 0 0.011 0.001 0.002 0.001 0.001 0
a=1 30 25 33 0.001 3.782 4.971 0.007 0 0.188 0.003 0.008 0.001 0 0.003
a=3 30 30 48 0.002 19.169 21.811 0.183 0.483 2.521 0 0.698 0 0 0

Rescaled prior g = 1/n2

a=0.5 38 4 4 0.001 0.175 0.246 0.001 0 0.007 0 0.001 0 0 0
a=1 36 4 4 0.001 4.430 5.440 0 0 0.003 0 0.001 0 0 0
a=3 23 0 0 3.198 18.049 19.272 0 0 0.729 0 0 0 0 0

Table 3: Analysis summary of the simulated data, FD/FD1/FD2/FDH refer to num-
ber of false positives overall/in non-predictive groups/in predictive groups/overall after
hierarchical selection. The size and sparsity relate to the number of predictors within
each group and proportion of predictive explanators.

tive pathways are assumed to contribute in explaining the variability of the response
(Grouping 1), (2) predictive pathways are sparse (Grouping 2). We assume that in each
of the two predictive pathways (sized 27 and 25), there are only 10 relevant predictors.
The second grouping pattern corresponds to the pathway loading matrix generated from
the KEGG database. Limiting the size of the predictive pathways to 10, we obtain a
modified grouping pattern that we associate with the first grouping scenario.

Given the binary pathway loading matrix Z (associated with Grouping 2), we first gen-

erate the covariance matrix Σ̃ = (σ̃ij)
p
i,j=1, where Σ̃ = Zdiag{ρ1, . . . , ρq}Z ′ + Ip, which

is positive definite and symmetric. Note that genes that do not share any underlying
pathway have zero pairwise correlations. The values ρi > 0 (not bounded to lie within
an interval [0, 1]) regulate the magnitude of the within-pathway correlations. The cor-
relation matrix Σ = (σij)

p
i,j=1 is obtained by setting σij = σ̃ij/

√
σ̃iiσ̃jj . The predictor

matrix X is then generated according to Nn(0,Σ). The observations on the response
variable are created according to the relation Nn(Xβ, σ2In). We keep σ2 = 1, n = 100
and we assume (a) a relatively high signal to noise ratio, (b) medium correlation within
non-predictive pathways, and (c) high correlation within predictive pathways. Namely,
the nonzero entries in the regression vector β equal 2. In order to obtain an average
correlation of 0.8 and 0.3 within the predictive and non-predictive pathways, we assume

ρj = 0.1× I
(
j /∈

⋃3
k=1Qk

)
+ 2× I

(
j ∈

⋃3
k=1Qk

)
.

The values of hyper-parameters were considered to be the same as in the previous
example. The starting values for the algorithm are again β(0) = 1p, b

(0) = 1q and
σ(0) = 1.

The summary of the analysis for the non-sparse clusters (Grouping 1) is in Table 2.
Due to the overlap between the groups, some of the “non-predictive” pathways contain
important coefficients as well. The magnitude of the estimated pathway weights again
reflects the degree of predictiveness of each group, typically leaving the unimportant
pathways with a zero weight. The numbers of false discoveries (without applying the
hierarchical selection) are comparable to the plain NEG prior. Under the hierarchical
selection after removing pathways with a zero estimated weight, the respective numbers
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of false discoveries without rescaling are 8, 6 and 19 for a = 0.5, 1, 3 (FDH values in
Table 2). Again, no false-nondiscoveries were observed.

In the second grouping scenario (Table 3) we again observe higher within group false
positives for larger values a, a consequence of strongly enforced smoothness in within-
group penalties. The hierarchical selection reduces the false positives in this simulated
example to 33, 33 and 48 for a = 0.5, 1, 3.

It is interesting to compare the results before and after rescaling the model with the fac-
tor g = 1/n2. The results in Tables 2 and 3 again show the superiority of the rescaled
model, both in the accuracy of determining important pathways, and in controlling
within group false discoveries. The hierarchical selection performs superbly in identify-
ing the underlying sparsity. In contrast, applying leave-one-out cross-validated LASSO
variable selection, we obtain 75 false positives. We also implemented the overlapping
group LASSO of Jacob et al. (2009) by duplicating the columns in the regression matrix,
which appear in more than one group, and applying the standard group LASSO compu-
tation (R-package grpreg). Selecting the optimal penalty parameter using the Bayesian
information criterion (BIC), we obtain a model with 28 false positives for Grouping 1
and 32 false positives for Grouping 2, which is more than for the rescaled grouped NEG
model with an appropriately chosen shape parameter a.

8 Application

We demonstrate the practical usefulness of the proposed method on a microarray gene
expression data set with glioblastoma patients (Horvath et al. (2006)). Glioblastoma
is a primary malignant brain tumor, which classifies as one of the most lethal tumors
in adults. Diagnosed patients have a median survival of 15 months despite various
treatments. The data consists of two sets of measurements coming from two independent
studies. Similarly as in Pan et al. (2010) and Li and Li (2008), we shall use only the first
set, which appears to carry more information related to time to death from glioblastoma.
We select a subset of 50 patients (out of 55) with the observed clinical outcome. The
logarithm of time to death (in days) is treated as the response. Gene expression profiles
were obtained using the Affymetrix platform and further normalized using the RMA
methods (Irizarry et al. 2003). Li and Li (2008) focused on a subset of 1 533 genes,
which were involved in gene pathways. Using the R Bioconductor library hgu133plus2

we retrieved the functional gene/pathway interactions from the KEGG database. For
each gene, a list of active pathways was generated and translated into a pattern of
zeros in the p× q matrix Z, where rows correspond to p = 1 533 genes and columns to
q = 103 pathways (only pathways consisting of at least 20 genes were considered for the
analysis).

In order to determine genes predictive of time to death we first run the LASSO method
(R library lars), selecting the optimal penalty parameter as the value which minimizes
the leave-one-out cross-validated prediction mean-squared error. As a result, we obtain
21 genes reported in Table 4 together with information on their pathway involvement
(the top 10 represented pathways with at least 3 genes).
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Table 4: LASSO selected genes together with 10 top represented pathways.

We then repeat the analysis using the Laplace version of the EM algorithm with an
inverse link function to incorporate the gene-pathway membership information. Based
on the experience from the simulated examples we choose a = 5 and apply the rescaled
version of the model with the scaling factor g = 1/n2. In order to mitigate the problem
of finding a locally suboptimal solution, we run the algorithm for multiple choices of
starting values and select the solution which corresponds to the highest log posterior
mode (which can be evaluated up to an additive constant). Considering the following
values of hyper-parameters c = d = α = γ = 1 and setting the convergence threshold
ε to 10−5, we consider a unit starting vector β(0) = 1p and 10 initial values randomly
sampled from from Np(0, I). The starting values for the pathway weights and variance
parameter are b(0) = 1 and σ(0) = 1.

The highest located log-posterior mode (10 595.72 plus a common additive constant) is
associated with a model consisting of 21 predictors, of which 13 overlap with the LASSO
analysis (marked with blue in Table 5). We identified 21 predictive pathways with a
nonzero estimated weight, where each of the selected genes is involved in at least one of
these pathways. Table 5 reports a subset of 10 pathways with the highest numbers of
identified genes together with the estimated weights b̂, which represent the proportion
of within group predictive genes. The complete list of gene-pathway interactions for all
the 21 pathways is in Appendix F.

Both LASSO and our method identified genes previously associated with malignant
brain tumors such as FOXO1A, which is a transcription factor linked to glioblastoma
(Choe et al. 2003), or PRKCG and CAMK2D, which are members of the glioma pathway.
Other genes were found to be related to various brain molecular processes such as
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Table 5: Analysis using the NEG prior with grouping, selected genes together with top
10 identified pathways.

CX3CL1, controlling neuronal survival and neuron transmission (Scium et al. 2010), and
CTNNB1, found to be differentially expressed in brain tumors (Nikuseva-Martic et al.
2010).

Focusing on the genes that were missed by LASSO: DFFB is an apoptosis regulator,
identified as a contributing factor in development of a specific type of glioma (McDonald
et al. 2005), FRAP1 is a member of the glioma pathway, SLIT1 is an axon guidance gene
whose epigenetic changes were associated with glioma (Dickinson et al. 2004).

Several of the 10 pathways reported in Table 9 in Appendix F were recognized to be
linked with brain molecular processes underlying malignant tumors. Tight junctions,
which mediate blood-brain barriers and whose impairment may cause brain edema, have
been reported defective in glioblastoma (Schneider et al. 2004). The ECM (extracellular
matrix) pathway has a confirmed role in cellular processes associated with neuronal
survival, axon guidance and synapse formation. Impaired activity of the ECM receptors
may create a molecular basis for malignant gliomas (Paulus and Tonn 1995). Expression
of cell adhesion molecules (binding proteins) has been shown consistently to be
altered in glioblastoma as compared to the normal brain tissue (Gingras et al. 1995).
The full list of the 21 identified pathways is deferred to Appendix F.

Whereas the post hoc pathway analysis for the LASSO selected genes revealed MAPK

signaling pathway, which is an important glioblastoma related pathway (Nakada et al.
2011), it did not appear in the 21 pathways selected by our method. Since the estimated
pathway weights corresponds to the proportion of predictive genes, perhaps smaller
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pathways involving a similar set of genes may have had a selective advantage.

The plain rescaled NEG prior (without grouping structure) led to a lower log posterior
mode (9 428.231 plus the common additive constant) associated with 22 genes, of which
12 overlap with the model including the grouping. We implemented the overlapping
group LASSO by augmenting the regression matrix with duplicates of columns, which
occur in more than one group. This leads to a new regression matrix with 6 780 columns.
Applying the group LASSO computation (R-package grpreg) we identified 17 pathways
consisting of 608 different genes after selecting the optimal penalty parameter based
on the BIC. The list of these pathways is in Appendix F. Since group LASSO does
not assume within group sparsity, many of the identified genes are likely to be false
positives.

Regarding the computational time, the most expensive operations are the updates of co-
efficients β and b. The update of β is in the Laplace EM algorithm based on solving the
LASSO problem, which using the lars package took 0.41 seconds in the glioblastoma
dataset on a 2.533GHz server. For the multiple selected starting values, the EM algo-
rithm converged in 20− 40 iterations with an average of 26. This time would compare
to performing 20− 40 fold cross-validation in the LASSO analysis. The time needed to
update b will barely matter for a small number of pathways (< 10). In the glioblas-
toma data with 104 pathways, one update took on average 5 seconds per iteration using
routine R optimization techniques. In contrast with the MCMC implementation of the
Bayesian LASSO (R-package monomvn), drawing 100 samples from the posterior took
around 20 seconds.

9 Discussion

In this paper we proposed a method for Bayesian shrinkage estimation in linear re-
gression, which incorporates grouping information within the sparsity inducing regular-
ization. We demonstrated on two simulated examples that the method is capable of
retrieving groups of informative predictors through the identification of nonzero group
weights. However, we expect that the performance will be influenced by the level of
agreement between the external structural information and actual “group predictive be-
havior”. In case no such information is available, the pathway loading matrix could be
obtained from e.g. a sparse factor analytic model (Carvalho et al. 2008), where nonzero
entries in the loading matrix indicate functional interaction with latent factor/ pathway
activity.

We have opted for the EM algorithm as our computational strategy, which offers sub-
stantial time savings. Moreover, the Laplace version of the algorithm provides a nat-
urally sparse solution, which identifies sets of active predictors that correspond to a
particular model. As such, this EM algorithm can be regarded as a deterministic model
search machine, which during the iterative process drives the search towards more in-
teresting models. However, due to the multimodality of the posterior finding the global
mode is not guaranteed. The choice of an initial value is likely to influence the results
and the speed of the convergence. Running the procedure for multiple choices of starting
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values and selecting the mode associated with the highest posterior value (which can be
computed up to a constant) may increase our chances of finding the global mode. An al-
ternative solution based on deterministic annealing was suggested by Ueda and Nakano
(1998) in the context of normal mixtures. The authors suggest performing the E-step
with respect to a perturbed version of the posterior distribution, which is proportional
to the log-complete data posterior raised to the power of an inverse temperature. Such
an E-step can be still obtained in a closed form.

By using the EM algorithm we are trading the benefits of the Bayesian inference based
on the full posterior (in particular confidence assessment) for computational efficiency.
Similarly as in sparse penalized likelihood techniques, our method outputs merely a
sparse point estimate of the coefficient vector. One possibility to perform (frequen-
tist) uncertainty assessment for our method is through asymptotics borrowed from the
established theory on penalized likelihood estimators. Fan and Li (2001) and Peng
and Fan (2004) developed asymptotic theory showing model selection consistency and
asymptotic normality of specific sparse penalized likelihood estimators, both for fixed
p as well as for a diverging number of parameters. These results can be transferred
to the Bayesian MAP estimation framework directly in instances where the marginal
prior on the regression coefficients takes the form exp(−n penλ(|β|)). The penalty func-
tion penλ(|β|) then needs to fulfill certain conditions in order for the oracle property
of the MAP estimator to be guaranteed. Although the plain NEG(a, s) prior does not
meet these requirements, multiplying the scale parameter s by a factor depending on
the sample size warrants the desired properties. We showed that the penalty function
implied by the rescaled prior NEG(a, n2s) satisfies the conditions in Fan and Li (2001)
for root-n consistency and asymptotic normality of the Bayesian MAP estimator, which
creates a basis of sandwich-like standard errors. One disadvantage of this approach is
that it disregards the uncertainty around the zero estimates by setting their standard
errors to zero. Moreover, the finite sample distributions for some penalized likelihood
estimators have been shown to be severely deviated from the approximating normal
distribution (Leeb and Potscher 2005). An alternative way to compute the standard
errors, not only for the regression coefficients but also for the pathway weights b, is
through bootstrapping. However, this can lead to inconsistent standard errors if the
true regression coefficient values are zero, as shown in the LASSO context by Kyung
et al. (2010).

Our proposed model selection procedure outputs a sparse point estimate of the regres-
sion vector, which forms the basis for a potential prediction rule. In practical imple-
mentations, the sparse model-selectors/predictors such as LASSO are typically tuned to
achieve optimal prediction accuracy. Whereas tuning parameters in some hierarchical
models can be directly related to Akaike information criterion (AIC) and BIC penalties
(George and Foster 1997), the tradeoff between prediction and model selection accuracy
is more difficult to control in our model. The scale penalty parameter is adaptively de-
termined from the data, where appropriate limiting behavior guarantees identification
of the true model with probability converging to one. We believe that the main prac-
tical value of our method rests in improved interpretation of the collective behavior of
the predictors in the effort of finding a sparse representation of the data rather than in
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accurate prediction.
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Appendix A: Proof of Equation (2)

Denote by a and s the shape and scale of the NEG distribution. As shown in Griffin

and Brown (2012), in order to evaluate the conditional expectation Eτ2|·

(
1
τ2
j

)
it suffices

to note the connection to the derivative of the logarithm of the NEG prior density. We
have
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.

The marginal prior distribution pa,s,σ(|βj |) can be obtained in a closed form (using
Gradshteyn and Ryznik (2000), page 334, equation 7) as follows:
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The derivative of the marginal distribution can be again obtained analytically (Grad-
shteyn and Ryznik (2000), page 334, equation 6) according to

−∂pa,s,σ(|βj |)
∂|βj |

=

∫ ∞
0

s√
2πσ2

|βj |
σ2

xa+1/2 exp

(
−
β2
j

2σ2
x

)
a

(x+ s)a+1
dx

=
a 2a+1s√
πσ2

Γ (a+ 1.5) exp

(
β2
j s

4σ2

)
D−2(a+1)

(
|βj |
√
s

σ

)
.

Combining these expressions for the NEG prior and its derivative, we obtain
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Appendix B: Proof of Equation (3)

Denote by a and s the shape and scale of the NEG distribution. The computation of the
conditional expectation follows from Gradshteyn and Ryznik (2000), page 334, equation
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5. More precisely, it holds that
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Appendix C: Proof of Equation (5)

Denote by a and s the shape and scale of the NEG distribution and pa,s,σ(β) the
marginal NEG distribution. According to Gradshteyn and Ryznik (2000), page 360,
equation 1 we have
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Appendix D: Effects of sample size and pathway size on estimated
pathway weights

To illustrate the effects of increasing sample size as well as pathway size for the fixed
number of predictors we designed a small simulated experiment. We consider p = 100
predictors which cluster within groups that differ not only in the number of elements
but also in the proportion of predictive variables. The assumed true coefficient vector
is

β = (1, 2, 3, 4, 5, 0, . . . . . . , 0︸ ︷︷ ︸
15

, 1, 2, 3, 4, 5, 0, . . . . . . , 0︸ ︷︷ ︸
15

, 1, 2, 3, 4, 5, 0, . . . . . . , 0)′.

The grouping structure divides the 100 predictors into 6 non-overlapping groups con-
sisting of 5, 10, 15, 20, 25 and 25 predictors with predictive proportions 1, 0, 1/3, 1/4, 0
and 0. For each of the three considered sample sizes n = 50, 500, 1 000, we generate the
regression matrix with rows drawn independently from Np(0, Ip). Ten response vectors
were generated according to Y ∼ N(Xβ, 3 × In) for each sample size. The average
estimated group weights are in Table 6 below.

We observe a decreasing trend in the estimated weights as the sample size grows in the
unscaled model. After rescaling, the weights are seen to increase as the scale parameter
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Grouping
Size 5 10 15 20 25 25

Sparsity 1 0 1/3 1/4 0 0

b̂1 b̂2 b̂3 b̂4 b̂5 b̂6
No scaling g = 1

n = 50 3.968 0.018 1.813 1.266 0.026 0.004
(0.136) (0.032) (1.059) (0.718) (0.052) (0.005)

n = 500 1.406 0.001 0.072 0.039 0.001 0.001
(0.039) (<0.001) (0.008) (0.007) (<0.001) (<0.001)

n = 1 000 1.346 0.001 0.068 0.036 0.001 0.001
(0.017) (<0.001) (0.005) (0.005) (<0.001) (<0.001)

Rescaled model g = 1/n2

n = 50 4.231 0.007 0.397 0.303 0.016 0.018
(0.746) (0.009) (0.275) (0.303) (0.023) (0.024)

n = 500 4.958 0.032 1.154 0.707 0.079 0.078
(0.004) (0.020) (0.159) (0.192) (0.055) (0.053)

n = 1 000 4.952 0.079 1.472 1.072 0.194 0.197
(0.003) (0.034) (0.163) (0.203) (0.084) (0.090)

Table 6: Results from a simulation study to evaluate effects of sample size and group
size. Table reports average estimated pathway weights with standard deviations in
brackets.

(inverted linear predictor) goes down, which is according to Theorem 5 a desirable prop-
erty. In both models, the size of pathway weights reflects the proportion of important
coefficients.

Appendix E: Simulated examples with different degrees of sparsity

In order to investigate the practical gains in more realistic scenarios, we considered a
set of simulation experiments with three different degrees of sparsity and a lower signal
to noise ratio. We assume a = 1, p = 1 000, σ2 = 5 and three sparsity settings for the
unscaled version of the model:

β1 = (1, . . . . . . , 1︸ ︷︷ ︸
30

, 0, . . . . . . , 0︸ ︷︷ ︸
470

, 1, . . . . . . , 1︸ ︷︷ ︸
30

, 0, . . . . . . , 0︸ ︷︷ ︸
470

)′,

β2 = (1, . . . . . . , 1︸ ︷︷ ︸
20

, 0, . . . . . . , 0︸ ︷︷ ︸
480

, 1, . . . . . . , 1︸ ︷︷ ︸
20

, 0, . . . . . . , 0︸ ︷︷ ︸
480

)′,

β3 = (1, . . . . . . , 1︸ ︷︷ ︸
10

, 0, . . . . . . , 0︸ ︷︷ ︸
490

, 1, . . . . . . , 1︸ ︷︷ ︸
10

, 0, . . . . . . , 0︸ ︷︷ ︸
490

)′.

For each scenario we consider (a) the NEG prior without the grouping, (b) the correct
grouping (the perfect separation of predictive blocks), and (c) the imperfect group-
ing according to Q1 = {1, . . . , 40}, Q2 = {41, . . . , 500}, Q3 = {501, . . . , 540}, Q4 =
{541, . . . , 1 000}. We consider a covariance matrix Σ =

{
σij = 0.5|i−j|

}p
i,j=1

to generate

predictors from Np(0,Σ).
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Perfect Grouping Imperfect Grouping NEG
Sparsity FD FN FDH FD FN FDH FD FN
β1 44.2 10.6 0 52.8 20.9 9 53.5 34.6
β2 49.9 4.4 0 60.6 17.8 11.4 57.1 21.2
β3 52.6 0.2 0 60.9 2.9 19.8 53.1 3.7

Table 7: Simulation study with different degrees of sparsity. FD/FN/FDH stand for
false discoveries/false non-discoveries/false discoveries after the hierarchical variable se-
lection

Results are summarized in Table 7, where the average numbers of false discoveries,
false non-discoveries and false discoveries after applying the hierarchical selection are
reported from 10 simulated repetitions. The number of false non-discoveries remains
the same after the hierarchical selection.

We clearly see the benefit of including the grouping in the reduction of false non-
discoveries. The lowest number is seen for the correct grouping, followed by the imper-
fect grouping and then by the plain NEG prior. The model with the correct grouping
has consistently the lowest number of false discoveries, which even drop down to zero
after the hierarchical selection. Regarding the false discoveries, the NEG prior benefits
from the incorrect grouping only after the hierarchical selection. The exception was the
least sparse model associated with β1 in Table 7. As explained in the manuscript, the
model without the scaling tends to increase the number of within group false discover-
ies in the sparse groups. It is worth noting that the NEG prior without the grouping
performs well in very sparse situations (viz. the sparsity pattern associated with β3 in
Table 7 and also simulated examples in our manuscript).

Appendix F: Complete description of gene/pathway information

Glycerophospholipid metabolism Phosphatidylinositol signaling system
Protein processing in endoplasmic reticulum mTOR signaling pathway
ECM-receptor interaction Adherens junction
Complement and coagulation cascades RIG-I-like receptor signaling pathway
Intestinal immune network for IgA production Insulin signaling pathway
Aldosterone-regulated sodium reabsorption Salivary secretion
Gastric acid secretion Prion diseases
Prostate cancer Systemic lupus erythematosus
Hypertrophic cardiomyopathy (HCM)

Table 8: Pathways identified by the overlapping group LASSO
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Table 9: Results obtained from NEG grouping model. Table reports the involvement of
21 identified genes within 21 identified pathways.
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