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Comment on Article by Rubio and Steel

Robert E. Weiss ∗ and Marc A. Suchard †

Abstract. We discuss Rubio and Steel (2014). We discuss whether Jeffreys priors
are worth the attention given to them, then move on to discuss the concepts of
valid Bayesian inference and benchmark Bayesian inference. We briefly investigate
the skew-normal and skew-t(4) models for variables in the Australian Institute of
Sport (AIS) data to investigate the range of estimates that occur for the skewness
parameter. The discussion closes by wondering whether we shouldn’t just use a
Dirichlet Process Mixture instead of a skew-normal or skew-t.

Keywords: Jeffreys prior, Valid Bayesian inference, Benchmark Bayesian inference,
Skew normal, Split normal

1 Jeffreys Prior

The Jeffreys prior is certainly model dependent, is definitely design dependent, may
depend on predictors, and is often horribly improper. The Jeffreys prior can lead to
improper posteriors; when producing a proper posterior, the posterior may not have any
finite moments (Ibrahim and Laud 1991), the resulting posterior mean can be inadmiss-
able. Eaton and Sudderth (1998) show that the predictive distribution in multivariate
normal regression based on a Jeffreys prior (Geisser 1965; Keyes and Levy 1996) is
strongly inconsistent where among other things, strongly inconsistent means that any
prediction based on the Jeffreys prior is ‘far away’ from predictions based on every
possible Bayesian analysis using a proper prior (Eaton and Sudderth 1998).

One has to wonder, other than the beauty of the invariance argument, why we con-
tinue to spend time with the Jeffreys prior. We start having problems in models with
two parameters. In the independent and identically distributed (iid) normal model,
yi|µ, σ2 ∼ N(µ, σ2), i = 1, . . . , n, already Jeffreys appeared to not like the Jeffreys prior
p(µ, σ2) ∝ 1/σ2. In multivariate parameter models, Jeffreys definitely didn’t like the
Jeffreys prior. His comments in Jeffreys (1998, page 182) about the one way analysis of
variance (ANOVA) model with more than two independent means make this clear.

The trivariate normal yi|µ ∼ N3(µ, I), i = 1, . . . , n with unknown mean µ and iden-
tity covariance matrix has Jeffreys prior p(µ) ∝ 1 but gives us µ|Y ∼ N(Ȳ , I/n),
whose posterior mean is not admissible (Stein 1956). Or the random intercept model,
yij |µ, βi, σ2 ∼ N(µ + βi, σ

2), i = 1, . . . , n, j = 1, . . . , Ji with βi|D ∼ N(0, D), where
Jeffreys as applied by Tiao and Tan (1965) gives a prior that is awkwardly dependent on
the experimental design. The Jeffreys prior for the negative binomial and the binomial
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give different priors for the probability parameter, hence the Jeffreys prior is dependent
on the investigator’s intentions prior to actually performing the experiment.

If funders of medical research required that we present our priors as part of the body
of the grant, long before data collection, would routine use of a Jeffreys prior even be
possible?

Rubio and Steel (2014)’s (hereafter RS14) nicely laid out and entertaining analysis of
the Jeffreys priors for the split/skew/two-piece/two-sided location scale model adds
further gist to our shill. We’re glad to be made aware of the problem here with Jeffreys,
and especially the explanation in section 3.3. This problem of 1/variance being non-
integrable on intervals with 0 as one endpoint is familiar to statisticians who have
studied the random intercept model with its two variances (for example, Hobert and
Casella 1996; Geyer 1992). RS14’s example demonstrates the same problem in a non-
hierarchical univariate sampling model.

2 Valid Bayesian Inferences

RS14 define “valid Bayesian inference” as do many others, that the resulting posterior
is proper. This definition suffers from lack of ambition. We would prefer a stronger
definition, perhaps that the resulting posterior leads to admissible estimators, or that
the resulting posterior actually approximates the posterior based on a vague proper prior
that might represent a naive analyst’s actual proper prior. Given that mathematical
statisticians need something to do to keep them out of trouble, this last option could
provide plenty of interesting projects to chew on, as in Edwards et al. (1963). By a
‘naive analyst’ we mean data-naive and subject-naive, not statistically-naive or data-
analytically-naive. A naive data analyst is one working on her first data analysis in the
particular subject area (but definitely not on her first analysis) and therefore having no
or at most minimal experience, (i.e. minimal prior information) in the particular subject
area.

A better definition of a “valid Bayesian inference” might be a practical analysis using
finite time and resources that approximates a hypothetical “true Bayesian analysis” that
a data analyst would perform given infinite time, infinite resources, infinite introspective
power and zero opportunity cost. We acknowledge that a “true Bayesian analysis” may
not exist, or if it does, it is likely a subjective concept, but it is an interesting concept
to contemplate.

3 Benchmark Bayesian Inferences

A claim by RS14:

The availability of a “benchmark” Bayesian analysis is thus of particular
importance for practitioners.
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We understand early statements like this are for quickly positioning a paper so that the
authors can get on to the fun and important material in the remainder of the paper. We
have those statements in our papers too. But what is the point of a discussion if not to
question obvious statements that on second thought are not so obvious? A benchmark
analysis sounds desirable in principle, but like a “true Bayesian analysis”, a claim that
an analysis (or model, likelihood or prior) is a benchmark analysis (or model, likelihood
or prior) is a deeply subjective claim.

In a world calling for a benchmark prior for the skewness parameter, the benchmark
prior should be used at most once. Having estimated the skewness parameter one time,
the information garnered in the first analysis can and should be used to help set the
prior in the second analysis.

An analysis we might consider as a candidate for benchmark analysis is to report “0” as
our estimate with standard deviation 0. This might seem a crappy benchmark analysis
if you think (subjectively!) there is an effect, but it is quick and cheap and therefore has
high utility, not to mention good reproducibility. Given current worries about published
research (Ioannidis 2005; Johnson 2013), perhaps it should be considered more often.
In the non-scientific sphere, when friends make claims about the latest health food fad,
that such and such (American) politician is a [insert favorite insult here], what some
celebrity did, or how good a diet is, we use the zero benchmark analysis as a better
description of the world: the fad doesn’t improve health, the politician isn’t a [favorite
insult here], the celebrity didn’t do what was reported, and the diet doesn’t work.

One assumption underlying statements about the need for a “benchmark prior” is that
the likelihood/sampling density has been agreed upon and all that remains is to select
a prior that can slip past readers without raising alarms. If the likelihood were in fact
agreed upon, would statisticians be writing papers on skew-normal distributions? Entire
disciplines engage in discussions on what covariates need to be mandatorily included
in regression analyses of particular outcomes; these discussions evolve as the science
develops. Many subject matter journals have roadblocks before accepting unfamiliar
analyses such as Bayesian or hierarchical models that are not well represented in their
archives. Likelihoods, sampling densities and statistical analyses are not agreed upon,
and analysts can not assume that a model, likelihood, or sampling density will be
acceptable to readers. And this applies to benchmark priors too.

More palatable as a benchmark prior is an informative hierarchical prior that could
be agreeable by many people as being sensible. This takes time and data to construct.
Suppose we have data sets and analyses indexed by h = 1, . . . , H with data/information
Yh, parameters θh and model f(Yh|θh) with capital H increasing steadily with time.
Interest lies in θH , the latest parameter. One can and should develop the hierarchical
prior p(θh|ϕ), a proper prior given hyperparameters ϕ with prior p(ϕ). When H is 1 or
small, the hierarchical model may be difficult to implement and the extra work may not
benefit the analysis or the analyst, (but see Liang et al. 2009). Instead one fits a model
f(Yh|θh)ph(θh), the prior ph(θh) will typically be a simple, often overly diffuse or even
improper prior, possibly even one of RS14’s priors. Overly diffuse might mean a prior
with prior variance much larger than a carefully elicited subjective prior.
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The analyst reports posterior MCMC samples {θℓh}Lℓ=1 from each analysis h. Even-
tually H becomes large enough to contemplate a more complex hierarchical model∏H

h=1[f(Yh|θh)p(θh|ϕ)]p(ϕ). Liang and Weiss (2007) propose a nonparametric model
for p(θh|ϕ) and explain how to compute p(θh|ϕ) given the posterior MCMC samples
{θℓh}Lℓ=1, and h = 1, . . . , H. Then the analyst can fit a model

f(YH+1|θH+1)p(θH+1|ϕ, Y1, . . . , YH)p(ϕ|Y1, . . . , YH).

Even in the situation where H = 1 and H can’t get larger, it can be possible to execute
this approach to provide a utile, proper and actively informative prior (Liang et al.
2009).

4 Data and Priors

In thinking about priors for our next analysis, it is helpful to have fit the model to pre-
vious data sets. How else can one develop intuition, understanding and prior knowledge
about what sorts of skewness parameters might be reasonable? This can be circular, and
having a quick prior to begin with certainly helps out. There has to be a first analysis
for there to be a second analysis. On the other hand, (1) we do not want to call this a
benchmark analysis; (2) in the next novel situation, we would rather not have to wait
for another in depth series of enlightening analyses from Rubio, Steel and colleagues
over a period of at least 15 years before we can start doing analyses, and (3) after we’ve
developed some expertise in the model, we would prefer to use an informative prior.

To build experience with the skew models, we looked at eleven diverse variables sepa-
rately for males and females from the Australian Institute of Sport (AIS) data (Cook
and Weisberg 2009). There are n = 100 females and n = 102 males in the data set.
Variables are Sex, Ht (Height in cm); Wt (Weight in kg); LBM (Lean body mass); RCC
(Red cell count); WCC (White cell count); Hc (Hematocrit); Hg (Hemoglobin); Ferr
(Plasma ferritin concentration); BMI (Body mass index = weight/height2); SSF (Sum
of skin folds); %Bfat (% body fat). Also included is the sport the person plays, which
we do not use here.

We fit a skew-normal and a skew-t(4) model using the epsilon-skew parameterization
and the AG-beta(1, 1) prior to the 11 variables, separately for males and females us-
ing BEAST (Drummond et al. 2012). Point estimates for the epsilon-skew parameter
(taking values from -1 to 1) are plotted in Figure 1 for the normal model on the x-axis
against the corresponding estimate from the t(4) model on the y-axis.

Table 1 gives summary statistics for all 11 variables × 2 sexes = 22 analyses for the
normal and the t(4) analyses. Variable/sex pairs are ordered by the posterior mean of
the skewness parameter in the normal model.

In Figure 1, the normal model estimates are generally closer to 1 than the t(4) model
estimates. Posterior standard deviations (PSD) range from .06 to .23 for the normal
and from .06 to .30 for the t(4) and are large enough that if error bars ±2∗PSD parallel
to the appropriate axis were added to the means, the error bars would cross the x = y
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Figure 1: Normal (x) and t(4) (y) point estimates for the epsilon-skew parameter for 22
data sets, 11 variables for males and females.
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Normal t(4)
HPD region HPD region

Variable sex mean SD lower upper mean SD lower upper

Ht female -0.19 0.11 -0.41 0.03 -0.18 0.13 -0.45 0.07
Wt female -0.12 0.13 -0.36 0.15 -0.21 0.15 -0.48 0.10

LBM female -0.12 0.12 -0.35 0.12 -0.08 0.13 -0.34 0.16
Ht male 0.02 0.15 -0.28 0.32 -0.05 0.18 -0.40 0.29

LBM male 0.12 0.13 -0.15 0.37 0.08 0.18 -0.25 0.42
RCC male 0.14 0.10 -0.05 0.34 0.02 0.12 -0.21 0.27
Hg female 0.18 0.24 -0.27 0.61 0.20 0.30 -0.35 0.70
Wt male 0.21 0.14 -0.06 0.48 0.19 0.18 -0.19 0.50
Hc male 0.27 0.12 0.06 0.52 0.03 0.13 -0.23 0.28

BMI female 0.29 0.13 0.04 0.53 0.23 0.14 -0.04 0.50
Hg male 0.31 0.11 0.08 0.51 0.20 0.15 -0.10 0.47

WCC female 0.35 0.12 0.11 0.59 0.35 0.14 0.07 0.61
WCC male 0.37 0.15 0.08 0.69 0.21 0.14 -0.07 0.46

Hc female 0.41 0.21 -0.02 0.79 0.37 0.23 -0.12 0.74
%Bfat female 0.41 0.22 -0.02 0.79 0.19 0.28 -0.25 0.75
RCC female 0.43 0.14 0.16 0.70 0.36 0.15 0.07 0.64
BMI male 0.56 0.15 0.27 0.86 0.35 0.14 0.07 0.63
Ferr male 0.65 0.10 0.46 0.82 0.70 0.11 0.49 0.88
Ferr female 0.71 0.11 0.48 0.90 0.63 0.13 0.38 0.88
SSF female 0.72 0.13 0.45 0.94 0.68 0.16 0.32 0.93
SSF male 0.88 0.07 0.75 1.00 0.86 0.07 0.71 0.98

%Bfat male 0.91 0.06 0.79 1.00 0.89 0.06 0.77 1.00

Table 1: Posterior means, posterior standard deviations (SD) and 95% Highest Posterior
Density (HPD) regions for the epsilon-skew parameter. Rows are sorted by the posterior
mean of the epsilon skew parameter.
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line in all 22 × 2 cases. We presume the normal model estimates are greater than the
t(4) because the long tails of the t(4) downweight outlying observations that contribute
to the normal model estimating greater skewness.

Using a skew-t model with unknown degrees of freedom such as in Fernández and Steel
(1998), we are curious how strongly correlated the skewness parameter and the t degrees
of freedom parameter would be in the posterior. Relatedly, we are curious how outliers
affect the posteriors of the skewness and the degrees of freedom parameters in the
general skew-t model. A data analytic issue is whether QQ plots, histograms, or kernel
density plots or something else entirely would best help the data analyst quickly identify
both that data is skewed and that the skew normal or skew t would be a good choice
for analyzing the data. We had assumed that QQ plots would be quite useful in this
regard, but limited experience with the AIS data, and RS14’s Figure 3 made us look
at histograms and density plots, and we found histograms/density plots to be easier to
interpret than QQ plots. It’s possible that QQ plots will become more informative with
some study.

The variables Ferr, BMI, SSF, and %BFat have rather large estimated skewness param-
eters to the point where for males, SSF and %BFat are better described as half-normal.
Briefly inspecting QQ plots (not shown), histograms (also not shown) and density plots
(figure 2) of these variables by sex, the data illustrate skewness and several high outliers.
Figure 2 shows kernel density estimates for Ferr, BMI, SSF and %BFAT variables for
both sexes. The variance differences between the sexes and the common scaling of the
x-axis make it hard to visualize both densities. The data have skewness, right outliers,
possible multi-modality or even an outlying cluster, and shoulders. Further experience,
such as (i) drawing random samples from skew-normals and skew-t’s and plotting, (ii)
trying a variety of other models such as Fernández and Steel (1998), will perhaps tell
us whether skew-normals or skew-ts are the best we could do to model this data.

Looking at Figure 1 and (a) taking the point estimates at face value and (b) pretending
these variables are representative, one might argue for a prior for the skew parameter
that was uniform on [−.2, 1]. This ignores the risk that occurs if the next analyses actu-
ally needed a skew parameter outside this range versus the minimal loss from extending
the uniform density full width to [−1, 1], which we prefer, and which is RS14’s figure
2(b). Slightly more informative, one might ask for a prior that had mode at .3 and
covered full range, perhaps a beta(13, 7) scaled to [−1, 1] which gives little prior mass
to values below −.2.

5 Discussion

We don’t dispute the need for skewed data models. We’re not so sanguine about the
need to explore and expand on Jeffreys priors, though many of our friends and colleagues
do spend time on this. But given that we didn’t yet investigate goodness of fit for the
AIS data, we’re left wondering if it would be easier to fit a Dirichlet process mixture
(DPM) model to skewed data. Issues and topics surrounding use of the DPM and its
generalizations for skewed data include (i) choice of mixture components; (ii) whether
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Figure 2: Density plots by sex for Ferr, BMI, SSF, and %BFAT
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to soften up the data by initially taking a log or other transformation; (iii) development
of measures to assess the posterior distribution of the skewness, particularly when there
isn’t an overt skewness parameter in the model; (iv) whether there is a variant of the
normal mixture model DPM that could do a better job of fitting skewed data (i.e. large
probability components need to be to the left of small probability components); and (v)
how to think about priors so as to set sensible priors for the DPM model. For skewed
variables, would there be any benefit to fitting DPM models that had skew-normal
components rather than the usual normal components? Would taking a log and using
normal mixture components be sufficient? Finally, prior specification is an important
topic that we do spend a fair amount of time on; setting priors for the DPM in different
settings is high on our target list of interesting, entertaining, enjoyable and important
problems.
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