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Clustered Bayesian Model Averaging

Qingzhao Yu ∗, Steven N. MacEachern † and Mario Peruggia ‡

Abstract. It is sometimes preferable to conduct statistical analyses based on the
combination of several models rather than on the selection of a single model, thus
taking into account the uncertainty about the true model. Models are usually
combined using constant weights that do not distinguish between different regions
of the covariate space. However, a procedure that performs well in a given situation
may not do so in another situation. In this paper, we propose the concept of local
Bayes factors, where we calculate the Bayes factors by restricting the models to
regions of the covariate space. The covariate space is split in such a way that
the relative model efficiencies of the various Bayesian models are about the same
in the same region while differing in different regions. An algorithm for clustered
Bayes averaging is then proposed for model combination, where local Bayes factors
are used to guide the weighting of the Bayesian models. Simulations and real
data studies show that clustered Bayesian averaging results in better predictive
performance compared to a single Bayesian model or Bayesian model averaging
where models are combined using the same weights over the entire covariate space.
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1 Introduction

The purpose of statistical analysis is usually two-fold: description and prediction
(Breiman, 2001). For a given quantity of interest, we use statistical methods to look
for “important” factors and to explore the relationship between these factors and the
quantity of interest. We then use the collected information for future prediction. A
traditional method in statistical data analysis is to choose or build one “best” model
or procedure to use for estimation and/or prediction. This process is called model
selection.

There is a large body of literature on model selection. In the field of linear regression,
model selection research has focused mainly on variable selection methods, which range
from the traditional approaches based on R-squared, cp, and other adjusted criteria, to
the information criteria such as the Akaike information criterion (AIC), the Bayesian
information criterion (BIC), etc., to regularization methods, such as the least absolute
shrinkage and selection operator (LASSO, Tibshirani, 1996), which penalize the loss
function for model complexity. Despite the theoretical and methodological developments
in the field, concerns about model selection are evident and growing. The major concern
is that selecting a single model does not take into account model uncertainty, thus
underestimating the variability associated with the estimation or prediction. Another
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concern is that selection methods are typically unstable—a small change in the data
may result in a big change in the selected model, in terms of both included variables
and estimated parameter values.

Methods have been developed to address the problems stemming from model selection,
mainly through the adoption of multiple models. Representative classical methods
include the bootstrap method (Rao and Tibshirani, 1996), “bagging” (Breiman, 1996),
frequentist model averaging using the focused information criterion (FIC, Hjort and
Claeskens, 2003), and adaptive regression by mixing (ARM, Yang, 2001).

The bootstrap method and bagging focus mainly on building different models based on
different sets of training data. The model building process for each set of training data
is usually the same and the models are combined with equal weights. The ARM algo-
rithm allows the candidate models to be very different and assigns weights to candidate
models by measuring relative model performance. In this algorithm, a training data
set is randomly split into two parts, one for model building and the other for model
performance assessment.

Bayesian model averaging (BMA, Raftery et al., 1997) is a Bayesian version of those
methods that averages over selected linear models. The linear models are combined
with weights proportional to their empirical marginal likelihood over the training data.
Let D denote the observed data set, and let p(`i|Mi) be the prior distribution for the
parameters `i of model Mi. The key component informing Bayesian model choice is the
marginal likelihood of the models, given by

p(Mi|D) =
p(D|Mi)p(Mi)∑
j p(D|Mj)p(Mj)

, (1)

where p(D|Mi) =
∫
p(D|Mi,`i)p(`i|Mi)d`i is the marginal likelihood of model Mi,

calculated by integrating the joint density of the data D and the parameters `i over
the parameter space of `i. In BMA, the various linear models under consideration are
weighted by their respective marginal likelihoods and are updated with newly collected
data. Asymptotically, the weights are governed by the Kullback-Leibler divergence
from the fitted model to the true model. BMA incorporates model uncertainty into the
posterior inferences. Under BMA, the posterior distribution of a specific quantity of
interest, ∆, is

p(∆|D) =
∑
i∈Γ

p(∆|Mi, D)p(Mi|D), (2)

where Γ is the set of models under consideration. BMA is exactly the application of
Bayes theorem to a “hyper-model” consisting of a distribution across models and a
distribution on the parameters within each model. Compared with the selection of a
single model, BMA has shown better predictive performance in practice and gives more
stable results in general.

With the backing of Bayes theorem, BMA appears to be the ultimate means of mak-
ing inference. One specifies the prior distribution both across and within models and
then performs the standard Bayesian update. However, there are reasons to turn to
alternative methods. Traditional departures have been driven by several issues.
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First, it can be difficult to specify a full Bayesian model, including the prior distribution
and the likelihood. As a consequence, many methods have been developed to minimize
the impact of the prior specification, notably objective Bayesian methods. Some of these
methods rely on improper prior distributions and use a training sample to pass from the
improper prior distribution to a proper partial posterior distribution before commencing
with model averaging (Berger and Pericchi, 1996) or they construct prior distributions
that are sufficiently proper for the computation of a Bayes factor (Casella and Moreno,
2006). Other methods attempt to remove the ‘bad parts’ of the prior distribution by
stepping beyond Bayes theorem, for example by restricting Γ in Equation (2) to include
only those models receiving relatively high marginal likelihood as in “Occam’s window”
(Madigan and Raftery, 1994). The robust Bayes literature (e.g., Berger 1994) formally
examines the sensitivity of posterior inference to changes in the prior distribution. We
do not directly address prior specification in this paper.

A second reason for departing from BMA is computational. When the number of models
to be investigated is large or fitting the models is difficult, the computational cost of
BMA can be prohibitive. Thus, many resort to Markov chain Monte Carlo methods
and rely on relatively simple prior distributions, often of conjugate or conditionally
conjugate form (e.g., George and McCulloch 1993, Madigan and York 1995, and Clyde
et al. 2011). When run forever, these strategies typically produce BMA, but for large
problems and relatively modest computational effort, they may be best viewed as model
search strategies (Hans et al. 2007). The impact of computation has been a longstanding
concern, and it is one motivation for techniques such as the pseudo-Bayes factor (Geisser
and Eddy 1979), an early approach to Bayesian model selection. We propose a set of
computationally convenient variations of our method in the following sections, with
particular attention given to techniques relying on the pseudo-Bayes factor.

The main focus of our work is a non-traditional departure from Bayesian methods
that focuses on a different shortcoming in their implementation: namely that the “true
model” will most often lie outside the support of the hyper-model that is to be used
for formal inference. When this happens, our Bayesian model cannot capture the “true
model”, even asymptotically. Standard calculations show that, under mild regularity
conditions, the posterior will assign probability tending to one to a single “closest”
model. However, it will typically be the case that different models will provide a better
approximation to the true model in different regions of the covariate space. BMA and
other global weighting methods do not take this different regional performance into
account. Instead, each model is given the same weight over the entire covariate space,
and this weight is driven as much by the distribution of covariates in the study as by
the responses. There is potential for improving the statistical analysis if we take the
regional differences into account.

The importance of accounting for differing regional model performance has been ad-
dressed in the literature on mixture-of-experts models (Jordan and Jacobs 1994, Xu et
al. 1995). These models place a mixing distribution over a collection of models. The
mixing distribution allows for local weights, and each observation is presumed to be
drawn from a “random” expert (or model). From a fully Bayesian point of view, mix-
ture of expert models have difficulty handling improper or vague expert-specific prior
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distributions.

In this article, we react to the non-regionality of standard Bayesian methods in a fashion
which still allows us to make strong use of Bayes theorem and to perform computations in
a feasible time-frame. We propose a method, clustered Bayesian averaging (CBA), that
combines different Bayesian analysis procedures using adaptive weights. The Bayesian
procedures could be parametric models and/or nonparametric procedures. For CBA,
the covariate space is split in such a way that the relative performances of the various
procedures are about the same in a given region but differ from one region to another.
Therefore, the procedures are assigned different weights in different covariate regions.
CBA is intended to be a theoretically-adjustable and practical algorithm for combining
Bayesian procedures that aims to improve prediction.

The article is organized as follows. In Section 2, we introduce the concept of the local
Bayes factor and in Section 3 we use this concept to develop the clustered Bayesian
averaging methodology, describing a basic algorithm and several variants on it. Illus-
trations with simulation and real data are provided in Section 4. Conclusions and a
discussion are given in Section 5.

2 Local Bayes Factor

The Bayes factor (BF) was mentioned by Wald (1947) in his work on sequential analysis
and developed by Jeffreys (1961) as a Bayesian approach to hypothesis testing. Many
since, including Kass and Raftery (1995), have used the BF to compare the performance
of Bayesian models. Assume that two models M1 and M2 are built to fit the data D.
Given prior probabilities p(M1) and p(M2) = 1 − p(M1) for the models, the data can
be used according to Equation (1) to calculate the posterior probabilities p(M1|D) and
p(M2|D) = 1− p(M1|D). Passing from probabilities to odds, the posterior odds for the
two models are given by

p(M1|D)

p(M2|D)
=

p(D|M1)

p(D|M2)

p(M1)

p(M2)
= B12

p(M1)

p(M2)
,

where the Bayes factor is defined as

B12 =
p(D|M1)

p(D|M2)
.

The posterior odds are used to guide Bayesian model averaging. If the prior belief is that
the two models are equally likely, the posterior odds equal the Bayes factor. To combine
the two models, it is natural to weight M1 by B12/(1 +B12) and M2 by 1/(1 +B12).

When calculating the Bayes factor, one should be concerned that improper prior dis-
tributions can sometimes result in an undefined Bayes factor. To solve this problem
without multiple use of the data, the fractional Bayes factor (O’Hagan 1995) and the
intrinsic Bayes factor (Berger and Pericchi 1996) were developed. Both methods are
most easily viewed as relying on a partial update, moving from the prior distribution
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to a partial posterior distribution, followed by the remaining update which is used to
compute the Bayes factor.

For the fractional Bayes factor, a fractional power of the likelihood is taken to update
the improper priors, resulting in proper partial posteriors. The remaining fraction of
the likelihood is used for computation of the Bayes factor. Specifically, for an update
based on a fraction f , the partial posterior distribution for Mi is given by

p(θi|Mi, D
f ) =

p(D|Mi, θi)
fp(θi|Mi)∫

p(D|Mi, θi)fp(θi|Mi)dθi
,

where f ∈ (0, 1) is assumed to be large enough that the denominator is finite and where
the apparent conditioning on Df is merely notation to represent the partial update.
The fractional Bayes factor for M1 over M2 then becomes

FBF12 =

∫
p(D|M1, θ1)

(1−f)p(θ1|M1, D
f )dθ1∫

p(D|M2, θ2)(1−f)p(θ2|M2, Df )dθ2
.

For the intrinsic Bayes factor, the data set is split into a training data set which is
used to produce a proper partial posterior and the remaining data which are used to
calculate the Bayes factor. The full methodology for the intrinsic Bayes factor makes
use of many repeated divisions of the data into training data and remaining data.
The common implementation uses minimal training data sets, in the sense that they
contain just enough data to produce proper partial posterior distributions for the models
under consideration. The intrinsic Bayes factor and various modifications to it are now
routinely used for Bayesian model selection and model averaging, although not without
controversy (Kadane and Lazar, 2004). In the sequel, we draw on ideas stemming from
both the fractional Bayes factor and the intrinsic Bayes factor. Details of these partial
updates, tailored to the setting of the local Bayes factor, appear shortly.

In keeping with our goal of allowing the final inference to react to differential local
performance, we create a means of obtaining regional, rather than global, weights for
the two models. For this purpose, we define a local Bayes factor.
Definition 1. Using the notation introduced previously, suppose that the covariate space
Λ can be partitioned into a finite number K of disjoint subregions such that Λ = Λ1 ∪
Λ2 ∪ . . . ∪ ΛK . The local Bayes factor of model M1 over model M2 in subregion Λk

is defined to be the Bayes factor calculated by restricting the covariate space to Λk:
B12k = p(Dk|M1)/p(Dk|M2), where Dk denotes the subset of the data D falling in Λk.
The local log Bayes factor is defined as log(B12k).

Note that p(Dk|Mi) would typically be
∫
p(Dk|Mi,`i)p(`i|Mi)d`i, where the prior dis-

tribution of `i, p(`i|Mi), is specified without regard to the region of the covariate space
under consideration. The updating would be purely local, leading to two problems.
First, for the linear model, restriction to a small region of covariate space limits the
leverage of cases, producing instability in the likelihood surface. For vague prior distri-
butions, this translates to unstable posterior means for the regression coefficients and so
to unstable (highly variable) predictions. A similar phenomenon occurs with non-linear
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models. Second, with the covariate space partitioned, there is less information within
each region for computation of the Bayes factor, leading to less ability to discriminate
between or appropriately weight rival models. A small effective sample size coupled
with vague prior distributions can generate unstable Bayes factors (Xu et al. 2011).

One way to address both of these sources of instability is through a substantial partial
global update. By making use of the entire covariate space, leverage is unconstrained
and the partial posterior is far more stable. Stability of the partial posterior also
leads to much more stable joint marginal likelihoods of the data, lending stability to
the local Bayes factors. As an added bonus, this stability considerably improves a
computationally convenient independence approximation. The global partial update
also allows us to use improper prior distributions for one or both of the models.

Formally, for the partial update, a portion of the data, D∗, is used to update the models
M1 and M2. These data are not included in the local Bayes factor calculation. The
updated distributions are then used as the starting point for the local Bayes factor
calculation. In this case, with D∗ representing the data used for the partial update
and Dk representing the data used to compute the local Bayes factor in region Λk, the
integral defining p(Dk|Mi) is to be interpreted as

∫
p(Dk|Mi, D

∗,`i)p(`i|Mi, D
∗)d`i.

That is, p(Mi) is replaced by p(Mi|D∗) and p(Dk|Mi) is replaced by p(Dk|Mi, D
∗),

resulting in the local Bayes factor

B12k =
p(Dk|M1, D

∗)

p(Dk|M2, D∗)
.

We have the following property for local Bayes factors under the strong assumption that
observations from different regions are independent under both model M1 and model
M2.
Lemma 2. If the data from different regions are independent (with respect to their
distributions under models M1 and M2), the log Bayes factor of M1 over M2 is the
summation of the local log Bayes factors. In other words, using the notation of Defini-
tion 1, log(B12) =

∑K
k=1 logB12k.

The proof of Lemma 2 is straightforward as

logB12 = log
p(D|M1)

p(D|M2)
= log

∏K
k=1 p(Dk|M1)∏K
k=1 p(Dk|M2)

=
K∑

k=1

log
p(Dk|M1)

p(Dk|M2)
,

with the latter two equalities justified by the independence assumption.

Of course, the data from different regions will not be independent under typical Bayesian
models, although it is common for all of the observations to be conditionally independent
(given parameters in the model). Under many measures, the dependence among obser-
vations is strongest when the prior distribution is vague. Under a more concentrated
prior, the dependence is weaker and, in the limiting case of a prior that concentrates at a
given parameter vector, conditional independence is independence. The partial update
serves to concentrate the partial posterior distribution near a parameter vector in each
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model, rendering the calculations done under independence a good approximation to the
full joint calculation. These partial updates have a long history in Bayesian statistics.
The size of the data set D∗ ranges from the bare minimum needed to obtain a proper
partial posterior (Berger and Pericchi 1996) to half of the data (Lempers 1971), to all
of the data except a single case (Geisser and Eddy 1979). As Geisser and Eddy note,
the independence approximation simplifies computation. In our search to split the co-
variate space into regions of differential performance, we investigate two versions of the
partial update, one based on a half-data update and the other based on an all-but-one
case update. When making use of this independence approximation for splitting the
covariate space and for computation of the local Bayes factor, we use the terminology
“local pseudo Bayes factor” paralleling the definition of pseudo-likelihood.

In the development of our technique, we will partition the covariate space. We ap-
proximate calculations by assuming that the observations in the data set D are inde-
pendent and write D = {d1, . . . ,dn}, where dj is the (scalar or) vector of data col-
lected for the j-th observation. Therefore, the marginal pseudo-likelihood is p(D|Mi) =∏n

j=1 p(dj |Mi) and the log marginal pseudo-likelihood is l(D|Mi) =
∑n

j=1 log[p(dj |Mi)].
We denote by lij the log marginal pseudo-likelihood for model i at the j-th obser-
vation, log[p(dj |Mi)]. When used with a partial update, these quantities become
p(D|Mi, D

∗) =
∏n

j=1 p(dj |Mi, D
∗) and l(D|Mi, D

∗) =
∑n

j=1 log[p(dj |Mi, D
∗)].

The relative performance of modelsM1 andM2 over the covariate space is determined by
the difference in expected log marginal likelihood of the response. The surface changes as
data accrue and the prior distributions are updated. Under mild regularity conditions,
the surface stabilizes, tending to a well-defined limit over compact sets as the sample
size grows. In subsequent sections, we focus on this surface after a substantial partial
update of the models. The data not used for the partial update give us insight into the
behavior of the surface, providing a noisy version of the surface, observed at (typically)
irregularly spaced locations. Examination of the surface often provides evidence of
differential model performance in different regions of the covariate space.

To compare and/or combine models, we must estimate the surface. This can be done in
many ways, ranging from fitting low-dimensional parametric models to fitting flexible
nonparametric models. In this work we pursue a path based on clustering techniques.
We would like to divide the covariate space into regions such that l1j−l2j is similar within
regions and differs substantially between regions. In this, we recognize the clustering
problem, and we find clusters such that the within cluster variances of l1j − l2j are
small compared to the between cluster variances. This goal can be easily fulfilled using
any standard clustering method. Here, we make use of the regression tree method to
perform the clustering. We set l1j−l2j as the response variable and use all the covariates
as explanatory variables. When a tree is fit, each leaf of the tree yields a cluster of
observations. In a typical regression application, a tree method averages the observed
responses which fall in each leaf to obtain an estimate of the mean response for the leaf.
For the purpose of model comparison, we need the summation of the contributions from
the observed responses falling in the leaf, which is the local log pseudo-Bayes factor.
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3 Clustered Bayesian Averaging

In this section, we propose to use the concept of a local Bayes factor to improve statistical
predictions. Consider the regression setting

yi = g(xi) + ϵi, i = 1, . . . , n,

where {xi}ni=1 are i.i.d. draws from the joint distribution of x, g is a deterministic
function, and {ϵi}ni=1 are i.i.d. noise terms, with mean 0, variance σ2, independent of
{xi}ni=1. The explanatory variables x can be multidimensional with unknown distribu-
tion. After observing a training data set Z = {(xi, yi)}ni=1, the goal is to predict {yj}Ti=1

on a test data set ZT = {xj}Tj=1.

Suppose that a finite collection of J Bayesian regression procedures has been proposed
to estimate g. Procedure j may involve preliminary work, such as traditional model
building and refinement, but ends up producing a model for the response, fj(y|x, θj),
based on a covariate vector x and a parameter vector θj . The parameter vector θj
follows a prior distribution pj(θj) and has posterior distribution pj(θj |Z).

No assumptions are made about the Bayesian regression procedures—both linear and
nonlinear models can be used. Examples of procedures that will be used in this article
include Bayesian additive regression trees (BART; Chipman et al. 2008); Bayesian
model averaging (BMA, Raftery et al., 1997); treed Gaussian processes (Gramacy and
Lee, 2008); Bayesian linear models where variables in the model are selected using AIC
or BIC and flat priors are adopted for the parameters (denoted by BAIC and BBIC in
this paper); and Bayesian combination of linear models where a few informative Bayesian
linear models (called human models in this paper) are averaged. In the human models,
variables are selected subjectively and possibly transformed, and informative priors are
specified. Furthermore, the prior weights of the various models are chosen subjectively
and updated using Bayes theorem if data not used for model building become available.

3.1 The Basic Algorithm

For combining the Bayesian regression procedures, we propose Algorithm 3, called clus-
tered Bayesian averaging (CBA), which assigns local weights to each procedure. For
simplicity, we only consider the combination of two Bayesian regression procedures in
this paper. The method can be easily extended to more than two procedures. We also
assume that n is even.
Algorithm 3. Clustered Bayesian Averaging for Two Models.

(i) Specify the Bayesian models fj(y|x,`j) and the prior distributions pj(`j), for
j = 1, 2.

(ii) Repeat the following steps for q = 1, 2, . . . , Q, where Q is a large pre-specified
number:

(a) Randomly permute the cases in the data set Z, and then split it into two parts

Z(1) = {(xi, yi)}n/2i=1 and Z(2) = {(xi, yi)}ni=n/2+1.
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(b) Obtain the posterior distribution, pj(`j |Z(1)), of the parameters `j of model
fj(y|x,`j) conditional on Z(1), for j = 1, 2.

(c) For each fj, use pj(`j |Z(1)) as the prior distribution and evaluate the marginal
likelihood of each observation in Z(2). Denote the marginal likelihood of the
observation with index k by Mjk.

(d) Calculate the log-Bayes factor evaluated at each observation in Z(2), obtaining

zk = logBFk = log
M1k

M2k
, for k = n/2 + 1, . . . , n.

(e) Run classification and regression trees (CART, Breiman et al., 1984) to con-
struct a regression tree using {zk}nk=n/2+1 as the response and the associ-

ated covariate values {xk}nk=n/2+1 as the predictors. This clusters the values

{zk}nk=n/2+1 and creates a partition of the covariate space.

(f) Approximate the local Bayes factor for each element of the partition by mak-
ing use of the independence approximation. For a given element of the par-
tition, use

∑
zk, with the sum running over observations in Z(2) that fall in

the element.

(g) For a covariate vector xt, let ẑtq denote the log local Bayes factor from Step 2f.

(iii) For j = 1, 2, obtain the posterior distribution, pj(`j |(xi, yi)
n
1 ), for the parameters

`j in fj(y|x,`j) based on all observations in Z. The updated models are used to
make predictions.

(iv) For j = 1, 2, denote by ŷjt the prediction from model j conditional on covariate xt,

and let πj represent the prior probability of model j. Define ẑ
′

tq = ẑtq + log(π1)−
log(π2) and let w1t = 1

Q

∑Q
q=1 [exp(ẑ

′

tq)]/[1 + exp(ẑ
′

tq)]. The final prediction for
observation t is calculated as

ŷt = w1t · ŷ1t + (1− w1t) · ŷ2t.

Comments on Algorithm 3

(i) In Step 2c, if the analytic form of the marginal likelihood cannot be obtained but
values of `ji can be simulated from pj(`j |Z(1)), for i = 1, . . . , N , then Mjk can
be estimated as

xMjk =
1

N

N∑
i=1

fj(yk|xk,`ji),

where k = n/2 + 1, . . . , n.

(ii) Because the training data are split repeatedly, the final weights (the means of
the weights from the different splits) for each procedure become smoother across
regions. As a consequence, the averaged model is more stable. Also, this method
is less likely than BMA to select a single model in a given region.
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(iii) The method can be easily extended to combine more than two procedures using
the geometric mean of the estimated Bayes factors (see Yu et al. 2011). The
extension requires replacement of Step 2e with a partitioning of covariate space
based on a multivariate summary of models in Step 2d. Possible summaries include
designation of a reference model M1 and use of Bayes factors for other models
with respect to this model, use of the average marginal likelihood or maximum
marginal likelihood in place of M1k in the equation in Step 2d, or simply setting
zk = log(Mik) for model i. A multivariate version of CART can be used to
partition the covariate space in Step 2e. The performance of these procedures has
been robust to differences in implementation in the examples we have examined.

3.2 Modified algorithms

The basic algorithm can be modified in various ways to address theoretical and compu-
tational concerns.

CBA.boot: Bootstrapped algorithm
A first modification is motivated by resampling considerations. The algorithm remains
exactly the same as the basic algorithm, except for the fact that the random split in
Step 2a does not cut the training data set into two halves. Instead, a bootstrap sample of

n observations Z
(1)
B is generated and used to fit the models (this set plays the same role

as Z(1) in the original algorithm). The observations not included in Z
(1)
B are included

in the set Z
(2)
B and are used to derive the weights for the models (this set plays the

same role as Z(2) in the original algorithm). The updating in Step 3 is based on the
original Z.

CBA.pll: Pseudo-loglikelihood algorithm
In this modification of the algorithm we pursue a different strategy to effect covariate
space clustering. Rather than dividing the training data set into two parts and using
the log-Bayes factors of Step 2d to obtain a partition using CART, we feed directly into
CART the pseudo-loglikelihood of each observation in the entire training data set. Note
that, in this implementation, no random splits of the training data set are involved and
therefore we set Q = 1 at the beginning of Step 2.

CBA.pll.loc: Pseudo-loglikelihood algorithm with local updating
Here we modify the pseudo-loglikelihood algorithm to incorporate local updating. First,
as in the original pseudo-loglikelihood algorithm, we perform covariate space clustering
based on the whole training data set. Next, we perform repeatedly the following two
steps: a) calculate the pseudo-loglikelihood conditional only on the training data in
each cluster, and b) use the newly calculated pseudo-loglikelihood to perform a new
clustering. Steps (a) and (b) are repeated until the calculated pseudo-loglikelihood
values converge to constants. The algorithm is terminated after a prespecified large
number of iterations if convergence is not attained. Because the local updating is
conditional only on the observations that fall in a given cluster, if we work with improper
priors, we need to enforce the condition that the size of a given cluster is large enough
to guarantee propriety of the posterior.
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CBA.pll.boot: Bootstrapped pseudo-loglikelihood algorithm
This and the following modification of the basic pseudo-loglikelihood algorithm are in-
tended to produce smooth weights. In the bootstrap method, the pseudo-loglikelihoods
of the training data are resampled with replacement and the bootstrap sample is used
for covariate space clustering. The process is repeated several times, and the prediction
weights are the average weights computed in the various iterations.

CBA.pll.sub(p): Subset pseudo-loglikelihood algorithm
An alternative to resampling with replacement is to perform the covariate space clus-
tering by using subsets of varying sizes (a fraction p of the size of the training data set)
sampled without replacement from the training data set. Similarly to the CBA.pll.boot
modification, for a given subset size, the process is repeated several times, and the
prediction weights are the average weights computed in the various iterations. (In the
examples, we considered subsets of size 0.5 to 0.95 times the size of the training data
set, in increments of 0.05.)

CBA.l.g(f): Mixed local and global updating algorithm
This modification is motivated by the desire to perform some amount of local updating
that is in agreement with the derived partitioning of the covariate space. First, we
perform a covariate space clustering based on the basic pseudo-loglikelihood algorithm.
The model updating in Step 3, motivated by the fractional Bayes factor, combines
elements of global and local updating. Specifically, a fractional power f of the likelihood
of all of the data is used for global updating and an additional fractional power (1− f)
of the likelihood of those data falling within a region is used for local updating.

CBA.med: CBA with median weighting
This and the following modifications are based on alternative ways of computing the
model weights. The weights given to the various procedures as calculated in Step 4 of
the basic algorithm are the means of the weights from the split training data. As for
the intrinsic Bayes factor (Berger and Pericchi 1998), when the training data are very
noisy, using the median of the weights may be a more robust choice.

CBA.thresh: CBA with threshold weighting
Another weighting strategy is based on thresholding the weights. For example, when the
final weight of a model is smaller than 0.25, we downweight that model to 0. Similarly,
if the weight is larger than 0.75, the model receives a weight of 1. In other words, we
choose a single model (rather than an average of the two models) for prediction in a
given region when that model is considerably better than the other model over that
region. The suggested thresholding value is loosely based on Kass and Raftery’s (1995)
rule of thumb for Bayes factors, in which odds of 3 to 1 are taken as the transition from
negligible to positive evidence in favor of a model.

4 Experiments

In this section, we illustrate the use of CBA with simulations and real data. Throughout,
we examine the performance of the method when the models are inadequate–that is,
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the models cannot match the “true” data-generating mechanism, even with the best
possible parameter values plugged in. We refer to such models as “biased” models.
All of the simulations involve biased models, and we strongly believe that the real
data analyses do as well. In Simulation 1, we show the effect of CBA when very
simple models are combined. The performance of CBA when combining similar models
(Bayesian linear regressions with predictive variables chosen by AIC or BIC) is explored
in Simulation 2. The performance of CBA when combining very different models is
explored in Simulation 3 (Bayesian linear models and Bayesian additive regression trees
(BART)) and Simulation 4 (Bayesian linear model and nonlinear model). Then, we
perform CBA on two real data sets. First, we present the results for a data set on daily
ozone concentrations where the models being combined were built by three different
analysts. Next, we present the results for a breast cancer data set where the two
survival models being combined are differently motivated.

The comparisons also involve a suite of competing techniques, including BART, BMA
based on all potential linear models resulting from the inclusion/exclusion of the avail-
able predictors, and those based on selection of a model by AIC or BIC. We also compare
CBA to two versions of treed Gaussian processes (Gramacy and Lee, 2008), which aver-
age over treed partitions of the covariate space. One version (which we denote by ‘tgp’)
fits separate Gaussian processes and one (which we denote by ‘tgpllm’) fits simpler linear
models within each component of a partition.

These methods have been implemented with freely available software at the default
settings. For each of the simulations, models are fit to a data set of 200 observations
and evaluated on a separate test set of 100 observations. Each simulation was replicated
100 times and the tables show averages of summaries across the 100 replicates.

4.1 Simulation 1: CBA for simple models

This simulation shows that, when the true model and the models to be combined are
all simple (and the truth can be represented as a linear combination of these models),
CBA can successfully reduce the bias of the combined set of models. Here, we consider
only linear regression models. The true regression function is given by:

yi = 0.9 + 1.6x1i + 1.6x2i + 1.7x3i + ϵi,

where the predictors x1, x2, and x3 are iid uniform random variables on [0, 1] and the
errors ϵi are iid normal random variables with mean 0. Various values of the error
variance are considered to obtain noise-to-signal (NTS) ratios ranging from 0.5 to 4.

Two biased Bayesian linear models are fit:

� Model 1: g(x) = α0 + α1x1 + α2x2;

� Model 2: g(x) = β0 + β1x1 + β2x3;

with flat noninformative priors for all the parameters. The two models are then com-
bined using CBA. In this example, the average of the two models’ mean functions is a
near match for the true mean function.
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Table 1 contains the means of the sum of squared errors (SSE) over the 100 repli-
cates in the simulation. As expected, model averaging via CBA and its variants al-
lows us to closely match the true mean function, leading to a substantial decrease
in SSE compared to either single model. We see that the effect of bias decreases
as the error variance (and hence NTS ratio) increases, following the decomposition
E(SSE) = Bias2 + Error V ariance. CBA outperforms treed Gaussian processes, ex-
cept for small NTS ratios. We attribute this to treed Gaussian processes chasing the
data more than our implementations of CBA.

The improvement in SSE does not carry over to improvement in log-likelihood, as shown
in Table 2. To understand this phenomenon, we note that the target g(x) is roughly
the mean of the two model-specific g(x). At this midpoint, the likelihood under the
two models will be approximately the same, and so we see no appreciable change in
out-of-sample log-likelihood.

NTS Model 1 Model 2 CBA CBA.pll

0.5 40.81 40.24 29.66 33.25
1.0 93.45 95.09 82.52 88.47
1.5 182.25 186.24 172.06 180.59
2.0 307.20 313.68 297.11 303.75
2.5 468.30 477.42 458.32 467.96
3.0 665.56 677.46 656.07 662.25
3.5 898.98 913.79 890.07 895.02
4.0 1168.55 1186.42 1160.22 1164.32

NTS CBA.pll.sub(.5/.75/.95) CBA.pll.boot tgp tgpllm

0.5 27.22/27.04/27.29 27.60 25.15 24.95
1.0 82.27/81.94/82.45 82.42 81.47 82.27
1.5 172.12/172.43/173.05 172.92 176.78 176.24
2.0 297.52/298.15/299.32 298.32 308.14 306.77
2.5 458.94/460.64/461.06 460.77 481.20 481.08
3.0 656.68/658.41/658.78 658.48 682.49 676.97
3.5 890.18/891.85/892.17 892.08 942.91 927.51
4.0 1160.26/1161.57/1161.57 1161.37 1206.88 1215.37

Table 1: CBA performance on simple models and comparisons with treed Gaussian
processes. Cells show the average SSE of each method over the 100 replicates of the
simulation.

4.2 Simulation 2: CBA on models built via AIC/BIC

We assess the effect of CBA when the models to be combined are similar. For this
illustration, we consider linear regression models where variables are selected according
to AIC or BIC. The true underlying regression function is one of the following functions
of the variables xj . The xj are independently drawn from the Uniform [0, 1] distribution:

� Case 1: g(x) = 0.9+1.5x1+1.6x2+1.7x3+1.5x4+0.4x5+0.3x6+0.2x7+0.1x8.
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NTS Model 1 Model 2 CBA
0.5 -97.55 -97.52 -97.54
1.0 -139.15 -139.10 -139.13
1.5 -172.53 -172.49 -172.51
2.0 -198.60 -198.58 -198.59
2.5 -219.68 -219.64 -219.66
3.0 -237.23 -237.21 -237.22
3.5 -252.24 -252.24 -252.24
4.0 -265.37 -265.35 -265.36

Table 2: CBA performance on simple models. Cells show the average log marginal
likelihood on the test data over the 100 replicates of the simulation.

� Case 2: g(x) = 1 + x1 + x2 + x3 + x4.

� Case 3: g(x) =


1 + x1 + x2 + x3 + x4, if x2 < u,

0.9 + 1.5x1 + 1.6x2 + 1.7x3 + 1.5x4 + 0.4x5 +
0.3x6 + 0.2x7 + 0.1x8, otherwise.

� Case 4: g(x) =


1 + x1 + x2 + x3 + x4, if x9 < u,

0.9 + 1.5x1 + 1.6x2 + 1.7x3 + 1.5x4 + 0.4x5 +
0.3x6 + 0.2x7 + 0.1x8, otherwise.

� Case 5: g(x) =


1 + x1 + x2 + x3 + x4, if x6 < u,

0.9 + 1.5x1 + 1.6x2 + 1.7x3 + 1.5x4 + 0.4x5 +
0.3x6 + 0.2x7 + 0.1x8, otherwise.

The NTS ratio is 2. In each replicate or the simulation, the variable u in cases 3 to 5 is
a fixed number drawn from a uniform distribution in [0, 1] and is neither used for model
building nor for weight calculation. Case 1 is a more complex linear model than Case 2
because it contains more variables with various coefficients. For Cases 3, 4, and 5, one
variable determines a binary split of the covariate space, so that different regression
models are specified in different regions. In Case 3 the splitting variable x2 is used for
building both models; in Case 4 the splitting variable x9 is not used in building either
model; in Case 5, the splitting variable x6 is used for building model 2 but not model 1.

The performance of CBA is compared with that of BMA, treed Gaussian processes,
and of the models chosen by BAIC or BBIC in Table 3, where the cells show the
average SSE from the 100 replicates of the simulation. Because the linear models chosen
by AIC or BIC are not very different, the improvement from use of CBA is also not
very large. However, CBA consistently performs better than BAIC, BBIC, BMA, and
treed Gaussian processes. This is especially true for Cases 3, 4, and 5, where the true
models differ in different regions of the covariate space. The values for CBA.l.g(0.6)
and CBA.l.g(0.2) indicate that performing a mix of local and global updating may be
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useful, provided the fraction of local updating is not too small.

Case BAIC BBIC CBA CBA.med CBA.l.g(.2)
1 345.91 348.77 344.39 344.35 348.6698
2 135.75 134.99 134.58 134.59 135.519
3 633.55 632.43 627.38 627.44 628.8996
4 516.49 516.90 510.70 510.19 519.6447
5 511.78 513.51 507.46 507.55 514.4719

Case CBA.l.g(0.6) CBA.pll BMA tgp tgpllm
1 343.85 346.21 345.30 358.78 359.41
2 134.7059 134.25 134.30 140.54 138.15
3 625.5657 622.48 628.76 652.99 643.97
4 512.6894 513.65 516.92 519.32 521.00
5 508.4137 506.27 513.83 528.22 521.11

Table 3: CBA performance on Bayesian linear models and comparisons with other
methods. Cells show the average SSE over the 100 replicates of the simulation.

Table 4 shows performance of CBA in terms of log marginal likelihoods. The per-
formance of CBA is essentially equivalent to that of BAIC and BBIC, although the
numbers do tilt slightly in favor of CBA.

Case BAIC BBIC CBA CBA.med
1 -205.53 -205.95 -205.36 -205.36
2 -158.52 -158.22 -158.02 -158.02
3 -233.47 -233.24 -232.86 -232.86
4 -223.83 -223.72 -223.13 -223.09
5 -223.04 -223.10 -222.50 -222.51

Table 4: CBA performance on Bayesian linear models. Cells show the average log
marginal likelihood over the 100 replicates of the simulation.

4.3 Simulation 3: CBA on models built via AIC/BIC and BART

In this simulation, we assess the performance of CBA when very different models are
combined. Specifically, we combine Bayesian linear models where covariates are chosen
by AIC/BIC with Bayesian Additive Regression Trees (BART) models. The underlying
true models are as follows:

� Case 1: g(x) = (x1 − 0.2)2.

� Case 2: g(x) = e(3x1−0.5).

� Case 3: g(x) = 10 sin(πx1x2 + 20x3 − 0.5)2 + 10x4 + 5x5.

� Case 4: g(x) = (x2
1 + (x2x3 − 1/(x2x4))

2)0.5.
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Case BART AIC BIC CBA:AIC CBA:BIC
1 2.60 2.93 2.96 2.54 2.55
2 720.88 780.49 786.59 698.29 701.80
3 2017.42 2315.60 2280.60 2022.40 2010.24
4 12392168 12763852 12660616.7 12048327 11994398
5 9.25 11.22 11.24 9.10 9.08

Case CBA.pll:AIC CBA.pll:BIC tgp tgpllm BMA
1 2.60 2.62 2.76 2.64 2.95
2 705.90 713.08 767.62 739.05 785.26
3 2103.13 2031.11 2418.47 2217.74 2269.81
4 12415111 12324536 11606904 11665620 12675323
5 9.35 9.35 9.86 10.60 11.37

Table 5: CBA performance when combining Bayesian linear models and BART models,
and comparisons with other methods. CBA:AIC and CBA:BIC refer to the methods
that use CBA to combine a BART model with a Bayesian linear model whose covariates
are chosen by AIC and BIC, respectively. The table entries show average SSE over the
100 replicates of the simulation.

� Case 5: g(x) = tan−1((x2x3 − 1/(x2x3))/x1).

The NTS ratio is 0.8. In Cases 1 and 2, x1 has a Uniform [0, 1] distribution. The func-
tions in Cases 3 to 5 were considered in the papers on multivariate adaptive regression
splines (MARS, Friedman, 1991) and bagging (Breiman, 1996). For Case 3, there are
10 independent predictors x1, . . . , x10, all of them uniformly distributed over [0, 1]. For
Cases 4 and 5, there are also 10 independent uniform predictors, but the supports of
their distributions vary. Specifically, x5, . . . , x10 are supported over [0, 1] and x1 to x4

are supported over these ranges:

0 ≤ x1 ≤ 100,

20 ≤ x2/2π ≤ 280,

0 ≤ x3 ≤ 1,

1 ≤ x4 ≤ 11.

Table 5 shows the average SSE for each case. We observe that BART outperforms the
linear models. BMA is competitive with choice of the linear model by AIC or by BIC.
CBA is consistently the top performer among all these methods and outperforms treed
Gaussian processes in all but one case.

In terms of log marginal likelihood, as shown in Table 6, CBA shows an overall modest
improvement. For both SSE and log marginal likelihood, the CBA half-sample update
provided better results than the all-but-one update of the pseudo-likelihood variant of
CBA.
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Case BART AIC BIC
1 40.05 34.50 34.03
2 -241.00 -244.88 -245.26
3 -292.09 -299.63 -298.72
4 -729.01 -730.46 -729.94
5 -24.95 -33.75 -33.79

Case CBA:AIC CBA:BIC CBA.pll:AIC CBA.pll:BIC
1 40.94 40.67 40.02 39.52
2 -239.76 -240.00 -239.95 -240.34
3 -292.57 -292.24 -294.24 -292.61
4 -727.42 -727.18 -729.29 -728.88
5 -23.42 -23.37 -25.08 -25.10

Table 6: CBA performance when combining Bayesian linear models and BART models.
CBA:AIC and CBA:BIC refer to the methods that use CBA to combine a BART model
with a Bayesian linear model whose covariates are chosen by AIC and BIC, respectively.
The table entries show the average log marginal likelihood over the 100 replicates of the
simulation.

4.4 Simulation 4: CBA on linear and non-linear models

In this simulation we evaluate the performance of several versions of CBA when a linear
model and a non-linear model are combined. The true model is designed so that there
are special local effects: g(x) = 2x0.8 sin[zπ(x−1 + 0.01x)]. The error term is normally
distributed with a standard deviation of 0.4. We fit two models:

� Model 1: g(x) = a+ bx.

� Model 2: g(x) = c+ d sin(2πx) + e sin(4πx).

Non-informative priors are used for all parameters. For prediction purposes, the pos-
terior mean is used to estimate the parameters. CBA is compared with the combined
model where each single model is assigned equal weight (convex synthesis or CS, Yu et
al. 2011).

The boxplots of Figure 1 show the performance of the methods on 100 replicates of
the simulation. We observe that, compared with the single models, the various types of
CBA, with the assignment of local weights, improve predictive performance as measured
by SSE. The performance of CS is comparable to that of the linear model. As shown in
Figure 2, similar conclusions can be drawn in terms of log marginal likelihoods, except
for the fact that the performance of CBA.boot is only slightly better than that of CS.

The top panel of Figure 3 shows the original data and the fitted values from the various
models. The bottom panel shows the weights assigned to Model 1 by the various versions
of CBA in one of the simulations. The figure shows that CBA works better. The
improvement comes from CBA’s ability to adaptively assign weights to the two models
according to individual model performance in a given covariate region.
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Figure 1: Comparison of various types of CBA with single models and convex synthesis
(CS) in terms of sum of squared errors of prediction.

4.5 CBA on ozone data

The ozone data set (contained and documented in the software package R) consists of
daily measurements of ozone concentration and eight meteorological quantities in the
Los Angeles basin for 330 days in the year 1976. A detailed description of the data set
can be found in Breiman (2001). Each of us analyzed one third of the data obtained
by random partitioning and constructed a Bayesian model for predicting ozone concen-
tration. Based on a set of ground rules that we had specified, each model produced
a distribution for ozone concentration supported on the non-negative integers. In this
way, we were able to consider three pairs of analysts, with one third of the data reserved
for evaluation of the pair’s combined analysis.

For details of the Bayesian models built, the readers are referred to Yu et. al (2011).
Tables 7 and 8 shows the results of the analyses. CBA is compared with convex synthesis
and mean human prediction (Yu et. al 2011). In convex synthesis analyses were updated
over the whole training data set and were equally weighted to predict the test data. In
mean human prediction, one of the models was selected with probability 0.5 to predict
the test data. In the SSE simulation, CBA is also compared with two versions of treed
Gaussian processes. We observe that, on average, CBA outperforms the other methods
(including CBA.pll) and can significantly improve the performance of any single model.
The improvement holds for both SSE and log-likelihood.
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Figure 2: Comparison of various types of CBA with single models and convex synthesis
(CS) in terms of log marginal likelihood.

4.6 CBA on SEER data

We evaluate the performance of CBA in classification problems by predicting the five-
year survival rate for female breast cancer patients. The primary data used in this
analysis are derived from individual patient information collected by the Surveillance,
Epidemiology, and End Results (SEER) Program. We used the SEER 1973-2009 re-
search data file from August 2012 through the SEER*stat software. More informa-
tion about the SEER program and SEER*stat can be found at the SEER website:
seer.cancer.gov

Patients included in the analysis are women aged 35 to 59 at diagnosis with malignant
breast cancer, who have at least six lymph nodes sampled, and have been actively
followed up. In addition, to be included in the analysis, the patients must have known
tumor size and number of nodes positive for tumor. The inclusion rules and the variables
chosen for building the models are similar to those used by the Adjuvant! Online
program (for details, see Ravdin et al., 2001). We used cases diagnosed between 2000
and 2002 as training data and cases diagnosed in 2003 as test data. There are a total
of 44,355 cases in the training data set and 11,877 cases in the test data set. There are
405 cases in the test data set that were lost to follow-up within 5 years.

To build the first model, we used the following variables:

(i) age group (5 levels: 35− 39, 40− 44, 45− 49, 50− 54, 55− 59)

(ii) tumor grade (4 levels: well-, moderately-, poorly- or un-differentiated, and unde-
fined)

(iii) tumor size (5 levels: 0− 10, 11− 20, 21− 30, 31− 50, > 50cm)
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Figure 3: Comparison of various types of CBA with single models. The original data
and the fitted values from the various models are plotted in the top panel. The bottom
panel shows the weights assigned to Model 1 by the various versions of CBA in one of
the simulations.

(iv) number of positive nodes (4 levels: 0, 1− 3, 4− 9, > 9)

(v) er (estrogen receptor - 3 levels: positive, negative, borderline or unknown)

The prior distributions for the survival rates were set as Beta(0.986, 0.014) for the
first year and Beta(0.97, 0.03) for the second to the fifth year, independently. The
data-driven priors were chosen so that their means are close to the mean survival rate
for the whole population in the same data sets. The sum of the parameters in the
beta distributions is 1, giving the prior an influence of about 1 case. For Model 1, the
covariate space is divided by the covariates into 1,200 (5×4×5×4×3) regions. Posterior
survival rates are updated in each region independently.

To build Model 2 we used the same covariates as in Model 1, but in the original format,
where age group, tumor size, and number of positive nodes are treated as continu-
ous. Logistic regression models were fit for each time period to predict the follow-up
probabilities, and the probabilities of death for the followed-up cases. The estimated
probabilities were then used for predicting 5-year survival rates.
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Test Data 1 2 3
Analyst 1 - 12.31 14.65
Analyst 2 17.96 - 15.66
Analyst 3 15.96 14.21 -
Mean Human 16.96 13.26 15.15
Convex Synthesis 15.98 11.93 13.39
CBA 15.67 11.89 13.52
CBA.pll 15.57 13.65 14.49
tgp 26.19 13.06 14.06
tgpllm 25.68 12.74 14.23

Table 7: Comparison of CBA with mean human prediction, convex synthesis, and treed
Gaussian processes by sum of squared errors for log ozone. The column labels Test Data
1, 2, and 3 indicate which third of the data was used as the test data (with the other
two thirds having been used for model building).

Test Data 1 2 3
Analyst 1 - -274.68 -300.05
Analyst 2 -291.10 - -300.07
Analyst 3 -286.06 -284.96 -
Mean Human -288.58 -279.82 -300.06
Convex Synthesis -284.55 -275.69 -293.36
CBA -283.54 -275.58 -293.94
CBA.pll -283.96 -280.11 -301.10

Table 8: Comparison of CBA with mean human prediction and convex synthesis by log
marginal likelihood for log ozone. The column labels Test Data 1, 2, and 3 indicate
which third of the data was used as the test data (with the other two thirds having
been used for model building).

We used the likelihood ratio evaluated at the MLEs for the two models to approximate
the likelihood ratios needed to calculate the CBA weights. In the weight calculation,
we included all variables used to build Models 1 and 2, and added the two variables
laterality and progesterone receptor (pr) status. These two variables were considered
in the model-building phase, but were found to be less important in predicting survival
than the other variables. Table 9 compares CBA’s performance with that of the two
individual models and that of convex synthesis with equal weights in terms of SSE,
misclassification, and log-likelihood. We find that CBA provides superior prediction
to any of the competitors that we considered in terms of misclassification and SSE.
CBA.med performs particularly well for log-likelihood.
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# of misclassifications SSE Log-likelihood
Model 1 1475 1149.58 -3889.39
Model 2 1502 1173.09 -3952.40
Convex Synthesis 1478 1138.48 -3826.73
CBA.med 1450 1125.48 -3802.92
CBA 1465 1135.74 -3869.61

Table 9: Predictive results on the SEER test data.

5 Discussion and Future Research

In this paper we developed the concept of a local Bayes factor and we propose to
use local Bayes factors to combine models for prediction in a way that accounts for
regionally-different performance across the covariate space. We proposed the clustered
Bayesian averaging algorithm where training data are used for both model updating and
evaluation. Given various models to be combined for prediction, we split the covariate
space into regions where the relative model efficiency is about the same. Then local
Bayes factors are approximated in a computationally efficient fashion in each region
to derive weights for model combination. We show through simulations and real data
examples that CBA can effectively improve prediction performance.

We considered several variants of the basic CBA algorithm to evaluate the impact of
certain implementation choices on the overall performance of the procedure, both in
terms of out-of-sample prediction accuracy and likelihood evaluation. The following
motivating questions were behind the modified CBA algorithms (either one at a time or
in various combinations). Can repeated random splits of the training data be avoided,
thus reducing the overall computational effort? Are there alternative, effective ways to
perform the splits of the training data? How best can we produce posterior weights
that are both smooth and robust to sampling variability? What mix of local and global
updating is most beneficial? On the one hand, with the procedure emphasizing local
features of the inferential problem, it is conceptually appealing to update the distri-
butions of the model parameters conditional only on local data. On the other hand,
empirical evidence has shown us that relying exclusively on local updating produces
unstable results. Not surprisingly, the relative merits of the different variants changed
from simulation to simulation, depending on the nature of the true underlying model
and of the models contributing to the locally weighted analysis. However, a few uni-
fying themes emerged. First, a substantial amount of global updating is needed for
stable and reliable performance. Second, smooth weights tend to produce better out-of-
sample performance, but, with our implementation, smoothness comes with additional
computational cost. (In many circumstances there is little or no deterioration in per-
formance associated with the use of discontinuous weights, and in some circumstances
discontinuity can improve performance.)

The next question becomes how to best formalize the notions that underlie CBA. There
is a natural path to further development of the local Bayes factor. The first step is to
create a set of diagnostics, both graphical and numerical, to aid in determination of
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whether there is a need to turn to local weights. The difficulty in this task lies in the
fact that relative regional performance varies systematically when models are compared,
and we seek evidence of variation that does not conform to these systematic patterns.
The patterns are easily identified for low-dimensional parametric models, but they are
more challenging to identify for more complex models.

The second step is to develop an array of techniques to capture the changes in the local
Bayes factor. Choice of a specific technique would ideally be motivated by diagnostics
on the log-surface. Tree-based techniques favor weights that are discontinuous and have
jumps; a Gaussian process for the log local Bayes factor induces continuity but must
account for the systematic trends inherent in the model comparison; particular forms
for the local Bayes factor relate to mixture of experts models. Ideally, the diagnostics
of the first step and problem specific knowledge would combine to determine the form
of these changes.

The third step is to create effective computational strategies to compute the local Bayes
factors. Ideally, further work would enable one to replace the independence approxima-
tions we have made with milder assumptions of conditional independence.

Fourth, an investigation of the theoretical properties of the algorithms would enhance
our understanding of their benefits. The methods, in any form, focus on a trade-off be-
tween fidelity to the expected log Bayes factor surface (with better fidelity following from
smaller regions) and quicker movement toward choice of a model (hastened by larger
regions and effectively greater amounts of data). Asymptotic results will establish con-
sistency for various implementations of the method. Realistic asymptotics are rendered
more difficult because the basic premise of the work is that the true data-generating
mechanism lies outside the class of models that are being fit.
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