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Feature Allocations, Probability Functions, and
Paintboxes

Tamara Broderick∗, Jim Pitman†and Michael I. Jordan‡

Abstract. The problem of inferring a clustering of a data set has been the
subject of much research in Bayesian analysis, and there currently exists a solid
mathematical foundation for Bayesian approaches to clustering. In particular, the
class of probability distributions over partitions of a data set has been characterized
in a number of ways, including via exchangeable partition probability functions
(EPPFs) and the Kingman paintbox. Here, we develop a generalization of the
clustering problem, called feature allocation, where we allow each data point to
belong to an arbitrary, non-negative integer number of groups, now called features
or topics. We define and study an “exchangeable feature probability function”
(EFPF)—analogous to the EPPF in the clustering setting—for certain types of
feature models. Moreover, we introduce a “feature paintbox” characterization—
analogous to the Kingman paintbox for clustering—of the class of exchangeable
feature models. We provide a further characterization of the subclass of feature
allocations that have EFPF representations.

Keywords: feature, feature allocation, paintbox, EFPF, feature frequency model,
Indian buffet process, beta process

1 Introduction

Exchangeability has played a key role in the development of Bayesian analysis in general
and Bayesian nonparametric analysis in particular. Exchangeability can be viewed as
asserting that the indices used to label the data points are irrelevant for inference, and
as such is often a natural modeling assumption. Under such an assumption, one is li-
censed by de Finetti’s theorem (De Finetti 1931; Hewitt and Savage 1955) to propose the
existence of an underlying parameter that renders the data conditionally independent
and identically distributed (iid) and to place a prior distribution on that parameter.
Moreover, the theory of infinitely exchangeable sequences has advantages of simplicity
over the theory of finite exchangeability, encouraging modelers to take a nonparametric
stance in which the underlying “parameter” is infinite dimensional. Finally, the develop-
ment of algorithms for posterior inference is often greatly simplified by the assumption
of exchangeability, most notably in the case of Bayesian nonparametrics, where models
based on the Dirichlet process and other combinatorial priors became useful tools in
practice only when it was realized how to exploit exchangeability to develop inference
procedures (Escobar 1994).
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The connection of exchangeability to Bayesian nonparametric modeling is well estab-
lished in the case of models for clustering. The goal of a clustering procedure is to infer
a partition of the data points. In the Bayesian setting, one works with random parti-
tions, and, under an exchangeability assumption, the distribution on partitions should
be invariant to a relabeling of the data points. The notion of an exchangeable random
partition has been formalized by Kingman, Aldous, and others (Kingman 1978; Aldous
1985), and has led to the definition of an exchangeable partition probability function
(EPPF) (Pitman 1995). The EPPF is a mathematical function of the cardinalities of
the groups in a partition. Exchangeability of the random partition is captured by the re-
quirement that the EPPF be a symmetric function of these cardinalities. Furthermore,
the exchangeability of a partition can be related to the exchangeability of a sequence
of random variables representing the assignments of data points to clusters, for which a
de Finetti mixing measure necessarily exists. This de Finetti measure is known as the
Kingman paintbox (Kingman 1978). The relationships among this circle of ideas are
well understood: it is known that there is an equivalence among the class of exchange-
able random partitions, the class of random partitions that possess an EPPF, and the
class of random partitions generated by a Kingman paintbox; see Pitman (2006) for an
overview of these relations. A specific example of these relationships is given by the
Chinese restaurant process and the Dirichlet process, but several other examples are
known and have proven useful in Bayesian nonparametrics.

Our focus in the current paper is on an alternative to clustering models that we refer to as
feature allocation models. While in a clustering model each data point is assigned to one
and only one class, in a feature allocation model each data point can belong to multiple
groups. It is often natural to view the groups as corresponding to traits or features, such
that the notion that a data point belongs to multiple groups corresponds to the point
exhibiting multiple traits or features. A Bayesian feature allocation model treats the
feature assignments for a given data point as random and subject to posterior inference.
A nonparametric Bayesian feature allocation model takes the number of features to also
be random and subject to inference.

Research on nonparametric Bayesian feature allocation has been based around a single
prior distribution, the Indian buffet process of Griffiths and Ghahramani (2006), which
is known to have the beta process as its underlying de Finetti measure (Thibaux and
Jordan 2007). There does not yet exist a general definition of exchangeability for feature
allocation models, nor counterparts of the EPPF or the Kingman paintbox.

In this paper we supply these missing constructions. We provide a rigorous treatment
of exchangeable feature allocations (in Section 2 and Section 3). In Section 4 we define
a notion of exchangeable feature probability function (EFPF) that is the analogue for
feature allocations of the EPPF for clustering. We then proceed to define a feature
paintbox in Section 5. Finally, in Section 6 we discuss a class of models that we refer
to as feature frequency models for which the construction of the feature paintbox is
particularly straightforward, and we discuss the important role that feature frequency
models play in the general theory of feature allocations.

The Venn diagram shown in Figure 1 is a useful guide for understanding our results, and
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= Feature paintbox models
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Figure 1: A summary of the relations described in this paper. Rounded rectangles
represent classes with the following abbreviations: RP for random partition, FA for
random feature allocation, EPPF for exchangeable partition probability function, EFPF
for exchangeable feature probability function. The large black dots represent particular
models with the following abbreviations: CRP for Chinese restaurant process, IBP for
Indian buffet process. The two-feature example refers to Example 9 with the choice
p11p00 ̸= p10p01.

the reader may wish to consult this diagram in working through the paper. As shown in
the diagram, random partitions (RPs) are a special case of random feature allocations
(FAs), and previous work on random partitions can be placed within our framework.
Thus, in the diagram, we have depicted the equivalence already noted of exchangeable
RPs, RPs that possess an EPPF, and Kingman paintboxes. We also see that random
feature allocations have a somewhat richer structure: the class of FAs with EFPFs is
not the same as those having an underlying feature paintbox. But the class of EFPFs
is characterized in a different way; we will see that the class of feature allocations with
EFPFs is equivalent to the class of FAs obtained from feature frequency models together
with singletons of a certain distribution. Indeed, we will find that the class of clusterings
with EPPFs is, in this way, analogous to the class of feature allocations with EFPFs
when both are considered as subclasses of the general class of feature allocations. The
diagram also shows several examples that we use to illustrate and develop our theory.

2 Feature allocations

We consider data sets with N points and let the points be indexed by the integers
[N ] := {1, 2, . . . , N}. We also explicitly allow N = ∞, in which case the index set is
N = {1, 2, 3, . . .}. For our discussion of feature allocations and partitioning it is sufficient
to focus on the indices rather than the data points; thus, we will be discussing models
for collections of subsets of [N ] and N.

Our introduction to feature allocations follows Broderick et al. (2012b). We define
a feature allocation fN of [N ] to be a multiset of non-empty subsets of [N ] called
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features, such that no index n belongs to infinitely many features. We write fN =
{A1, . . . , AK}, where K is the number of features. An example feature allocation of
[6] is f6 = {{2, 3}, {2, 4, 6}, {3}, {3}, {3}}. Similarly, a feature allocation f∞ of N is
a multiset of non-empty subsets of N such that no index n belongs to infinitely many
features. The total number of features in this case may be infinite, in which case we write
f∞ = {A1, A2, . . .}. An example feature allocation of N is f∞ = {{n : n is prime}, {n :
n is not divisible by two}}. Finally, we may have K = 0, and f∞ = ∅ is a valid feature
allocation.

A partition is a special case of a feature allocation for which the features are restricted
to be mutually exclusive and exhaustive. The features of a partition are often referred
to as blocks or clusters. We note that a partition is always a feature allocation, but the
converse statement does not hold in general; neither of the examples given above (f6
and f∞) are partitions.

We now turn to the problem of defining exchangeable feature allocations, extending
previous work on exchangeable random partitions (Aldous 1985). Let FN be the space
of all feature allocations of [N ]. A random feature allocation FN of [N ] is a random
element of FN . Let σ : N → N be a finite permutation. That is, for some finite value
Nσ, we have σ(n) = n for all n > Nσ. Further, for any feature A ⊂ N, denote the
permutation applied to the feature as follows: σ(A) := {σ(n) : n ∈ A}. For any feature
allocation FN , denote the permutation applied to the feature allocation as follows:
σ(FN ) := {σ(A) : A ∈ FN}. Finally, let FN be a random feature allocation of [N ].

Then we say that a random feature allocation FN is exchangeable if FN
d
= σ(FN ) for

every permutation of [N ].

In addition to exchangeability, we also require our distributions on feature allocations to
exhibit a notion of coherence across different ranges of the index. Intuitively, we often
imagine the indices as denoting time, and it is natural to suppose that the randomness
at time n is coherent with the randomness at time n + 1. More formally, we say that
a feature allocation fM of [M ] is the restriction of a feature allocation fN of [N ] for
M < N if

fM = {A ∩ [M ] : A ∈ fN , A ∩ [M ] ̸= ∅}.
Let RN (fM ) be the set of all feature allocations of [N ] whose restriction to [M ] is fM .

Let P denote a probability measure on some probability space supporting (Fn). We say
that the sequence of random feature allocations (Fn) is consistent in distribution if for
all M and N such that M < N , we have

P(FM = fM ) =
∑

fN∈RN (fM )

P(FN = fN ).

We say that the sequence (Fn) is strongly consistent if for all M and N such that
M < N , we have

FN

a.s.
∈ RN (FM ).

Given any (Fn) that is consistent in distribution, the Kolmogorov extension theorem
implies that we can construct a sequence of random feature allocations that is strongly
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consistent and has the same finite dimensional distributions. So henceforth we simply
use the term “consistency” to refer to strong consistency.

With this consistency condition, we can define a random feature allocation F∞ of N
as a consistent sequence of finite feature allocations. Thus F∞ may be thought of as
a random element of the space of such sequences: F∞ = (Fn)

∞
n=1. We say that FN

is a restriction of F∞ to [N ] when it is the Nth element in this sequence. We let F∞
denote the space of consistent feature allocation sequences, of which each random feature
allocation is a random element. The sigma field associated with this space is generated
by the finite-dimensional sigma fields of the restricted random feature allocations Fn.

We say that F∞ is exchangeable if F∞
d
= σ(F∞) for every finite permutation σ. That is,

for every permutation σ that changes no indices above N for some N < ∞, we require

FN
d
= σ(FN ), where FN is the restriction of F∞ to [N ].

3 Labeling features

Now that we have defined consistent, exchangeable random feature allocations, we want
to characterize the class of all distributions on these allocations. We begin by considering
some alternative representations of the feature allocation that are not merely useful, but
indeed key to some of our later results.

A number of authors have made use of matrices as a way of representing feature allo-
cations (Griffiths and Ghahramani 2006; Thibaux and Jordan 2007; Doshi et al. 2009).
This representation, while a boon for intuition in some regards, requires care because a
matrix presupposes an order on the features, which is not a part of the feature allocation
a priori. We cover this distinction in some detail next.

We start by defining an a priori labeled feature allocation. Let F̂N,1 be the collection

of indices in [N ] with feature 1, let F̂N,2 be the collection of indices in [N ] with feature
2, etc. Here, we think of a priori labels as being the ordered, positive natural numbers.
This specification is different from (a priori unlabeled) feature allocations as defined
above since there is nothing to distinguish the features in a feature allocation other
than, potentially, the members of a feature. Consider the following analogy: an a priori
labeled feature allocation is to a feature allocation as a classification is to a clustering.
Indeed, when each index n belongs to exactly one feature in an a priori feature allocation,
feature 1 is just class 1, feature 2 is class 2, and so on.

Another way to think of an a priori labeled feature allocation of [N ] is as a matrix
of N rows filled with zeros and ones. Each column is associated with a feature. The
(n, k) entry in the matrix is one if index n is in feature k and zero otherwise. However,
just as—contrary to the classification case—we do not know the ordering of clusters
in a clustering a priori, we do not a priori know the ordering of features in a feature
allocation. To make use of a matrix representation for a feature allocation, we will need
to introduce or find such an order.

The reasoning above suggests that introducing an order for features in a feature allo-



806 Feature Allocations

cation would be useful. The next example illustrates that the probability P(FN = fN )
in some sense undercounts features when they contain exactly the same indices: e.g.,
Aj = Ak for some j ̸= k. This fact will suggest to us that it is not merely useful, but
indeed a key point of our theoretical development, to introduce an ordering on features.

Example 3 (A Bernoulli, two-feature allocation). Given qA, qB ∈ (0, 1), draw Zn,A
iid∼

Bern(qA) and Zn,B
iid∼ Bern(qB), independently, and construct the random feature allo-

cation by collecting those indices with successful draws:

FN := {{n : n ≤ N,Zn,A = 1}, {n : n ≤ N,Zn,B = 1}}.

One caveat here is that if either of the two sets in the multiset FN is empty, we do not
include it in the allocation. Note that calling the features A and B was merely for the
purposes of construction, and in defining FN , we have lost all feature labels. So FN is
a feature allocation, not an a priori labeled feature allocation.

Then the probability of the feature allocation F5 = f5 := {{2, 3}, {2, 3}} is

q2A(1− qA)
3q2B(1− qB)

3,

but the probability of the feature allocation F5 = f ′
5 := {{2, 3}, {2, 5}} is

2q2A(1− qA)
3q2B(1− qB)

3.

The difference is that in the latter case the features can be distinguished, and so we must
account for the two possible pairings of features to frequencies {qA, qB}.

Now, instead, let F̃N be FN with the features ordered uniformly at random amongst all
possible feature orderings. There is just a single possible ordering of f5, so the probability
of F̃5 = f̃5 := ({2, 3}, {2, 3}) is again

q2A(1− qA)
3q2B(1− qB)

3.

However, there are two orderings of f ′
5, each of which is equally likely. The probability

of F̃N = f̃ ′
5 := ({2, 5}, {2, 3}) is

q2A(1− qA)
3q2B(1− qB)

3.

The same holds for the other ordering. �
This example suggests that there are combinatorial factors that must be taken into
account when working with the distribution of FN directly. The example also suggests
that we can avoid the need to specify such factors by instead working with a suitable
randomized ordering of the random feature allocation FN . We achieve this ordering in
two steps.

The first step involves ordering the features via a procedure that we refer to as order-
of-appearance labeling. The basic idea is that we consider data indices n = 1, 2, 3, and
so on in order. Each time a new data point arrives, we examine the features associated
with that data point. Each time we see a new feature, we label it with the lowest
available feature label from k = 1, 2, . . ..
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In practice, the order-of-appearance scheme requires some auxiliary randomness since
each index n may belong to zero, one, or many different features (though the number
must be finite). When multiple features first appear for index n, we order them uni-
formly at random. That simple idea is explained in full detail as follows. Recursively
suppose that there are K features among the indices [N − 1]. Trivially there are zero
features when no indices have been seen yet. Moreover, we suppose that we have fea-
tures with labels 1 through K if K ≥ 1, and if K = 0, we have no features. If features
remain without labels, there exists some minimum index n in the data indices such that
n /∈

∪K
k=1 Ak, where the union is ∅ if K = 0. It is possible that no features contain n.

So we further note that there exists some minimum index m such that m /∈
∪K

j=1 Aj

but m is contained in some feature of the allocation. By construction, we must have
m ≥ N . Let Km be the number of features containing m; Km is finite by definition
of a feature allocation. Let (Uk) denote a sequence of iid uniform random variables,
independent of the random feature allocation. Assign UK+1, . . . , UK+Km to these new
features and determine their order of appearance by the order of these random variables.
While features remain to be labeled, continue the recursion with N now equal to m and
K now equal to K +Km.
Example 4 (Feature labeling schemes). Consider the feature allocation

f6 = {{2, 5, 4}, {3, 4}, {6, 4}, {3}, {3}}. (1)

And consider the random variables

U1, U2, U3, U4, U5
iid∼ Unif[0, 1].

We see from f6 that index 1 has no features. Index 2 has exactly one feature, so we
assign this feature, {2, 5, 4}, to have order-of-appearance label 1. While U1 is associated
with this feature, we do not need to break any ties at this point, so it has no effect.

Index 3 is associated with three features. We associate each feature with exactly one of
U2, U3, and U4 (the next three available Uk). For instance, pair {3, 4} with U2, {3} with
U3, and the other {3} with U4. Suppose it happens that U3 < U2 < U4. Then the feature
{3} paired with U3 receives label 2 (the next available order-of-appearance label). The
feature {3, 4} receives label 3. And the feature {3} paired with U4 receives label 4.

Index 4 has three features, but {2, 5, 4} and {3, 4} are already labeled. So the only
remaining feature, {6, 4}, receives the next available order-of-appearance label: 5. U5 is
associated with this feature, but since we do not need to break ties here, it has no effect.
Indices 5 and 6 belong to already-labeled features.

So the features can be listed with order-of-appearance indices as

A1 = {2, 5, 4}, A2 = {3}, A3 = {3, 4}, A4 = {3}, A5 = {6, 4}. (2)

Let Y ◦
n indicate the set of order-of-appearance feature labels for the features to which

index n belongs; i.e., if the features are labeled according to order of appearance as in
Eq. (2), then Y ◦

n = {k : n ∈ Ak}. By definition of a feature allocation, Y ◦
n must

have finite cardinality. The order-of-appearance labeling gives Y ◦
1 = ∅, Y ◦

2 = {1}, Y ◦
3 =

{2, 3, 4}, Y ◦
4 = {1, 3, 5}, Y ◦

5 = {1}, Y ◦
6 = {5}.
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Figure 2: Order-of-appearance binary matrix representations of the sequence of fea-
ture allocations on [2], [3], [4], [5], and [6] found by restricting f6 in Example 4. Rows
correspond to indices n, and columns correspond to order-of-appearance feature labels
k. A gray square indicates a 1 entry, and a white square indicates a 0 entry. Y ◦

n , the set
of order-of-appearance feature assignments of index n, is easily read off from the matrix
as the set of columns with entry in row n equal to 1.

Order-of-appearance labeling is well-suited for matrix representations of feature alloca-
tions. The rows of the matrix correspond to indices n and the columns correspond to
features with order-of-appearance labels k. The matrix representation of the order-of-
appearance labeling and resulting feature assignments (Y ◦

n ) for n ∈ [6] is depicted in
Figure 2. �

Note that when the feature allocation is a partition, there is exactly one feature con-
taining any m, so this scheme reduces to the order-of-appearance scheme for cluster
labeling.

Consider an exchangeable feature allocation F∞. Give order-of-appearance labels to the
features of this allocation, and let Y ◦

n be the set of feature labels for features containing
n. So Y ◦

n is a random finite subset of N. It can be thought of as a simple point process
on N; a discussion of measurability of such processes may be found in Kallenberg (2002,
p. 178). Our process is even simpler than a simple point process as it is globally finite
rather than merely locally finite.

Note that (Y ◦
n )

∞
n=1 is not necessarily exchangeable. For instance, consider again Exam-

ple 3. If Y ◦
1 is non-empty, 1 ∈ Y ◦

1 with probability one. If Y ◦
2 is non-empty, with positive

probability it may not contain 1. To restore exchangeability we extend an idea due to
Aldous (1985) in the setting of random partitions; in our feature allocation extension,
we associate to each feature a draw from a uniform random variable on [0, 1]. Drawing
these random variables independently we maintain consistency across different values
of N . We refer to these random variables as uniform random feature labels.

Note that the use of a uniform distribution is for convenience; we simply require that
features receive distinct labels with probability one, so any other continuous distribu-
tion would suffice. We also note that in a full-fledged model based on random feature
allocations these labels often play the role of parameters and are used in defining the
likelihood. For further discussion of such constructions, see Broderick et al. (2012b).
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ϕ5 ϕ2 ϕ1 ϕ3ϕ4

Figure 3: An illustration of the uniform random feature labeling in Example 5. The
top rectangle is the unit interval. The uniform random labels are depicted along the
interval with vertical dotted lines at their locations. The indices [6] are shown to the
left. A black circle shows appears when an index occurs in the feature with a given
label. The matrix representations of this feature allocation in Figure 4 can be recovered
from this plot.

Thus, let (ϕk) be a sequence of iid uniform random variables, independent of both (Uk)
and F∞. Construct a new feature labeling by taking the feature labeled k in the order-
of-appearance labeling and now label it ϕk. In this case, let Y †

n denote the set of feature
labels for features to which n belongs. Call this a uniform random labeling. Y †

n can
be thought of as a (globally finite) simple point process on [0, 1]. Again, we refer the
reader to Kallenberg (2002, p. 178) for a discussion of measurability.
Example 5 (Feature labeling schemes (continued)). Again consider the feature alloca-
tion

f6 = {{2, 5, 4}, {3, 4}, {6, 4}, {3}, {3}}.
Now consider the random variables

U1, U2, U3, U4, U5, ϕ1, ϕ2, ϕ3, ϕ4, ϕ5
iid∼ Unif[0, 1].

Recall from Example 4 that U1, . . . , U5 gave us the order-of-appearance labeling of the
features. This labeling allowed us to index the features as in Eq. (2), copied here:

A1 = {2, 5, 4}, A2 = {3}, A3 = {3, 4}, A4 = {3}, A5 = {6, 4}.

With this order-of-appearance labeling in hand, we can assign a uniform random label
to each feature. In particular, we assign the uniform random label ϕk to the feature
with order-of-appearance label k: A1 = {2, 5, 4} gets label ϕ1, A2 = {3} gets label ϕ2,
A3 = {3, 4} gets label ϕ3, A4 = {3} gets label ϕ4, and A5 = {6, 4} gets label ϕ5. Let
Y †
n indicate the set of uniform random feature labels for the features to which index n

belongs. The uniform random labeling gives

Y †
1 = ∅, Y †

2 = {ϕ1}, Y †
3 = {ϕ2, ϕ3, ϕ4}, Y †

4 = {ϕ1, ϕ3, ϕ5}, Y †
5 = {ϕ1}, Y †

6 = {ϕ5}. (3)

�
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Lemma 1. Give the features of an exchangeable feature allocation F∞ uniform random
labels, and let Y †

n be the set of feature labels for features containing n. So Y †
n is a random

finite subset of [0, 1]. Then the sequence (Y †
n )

∞
n=1 is exchangeable.

Proof. Note that (Y †
n )

∞
n=1 = g((ϕk)k, (Uk)k, F∞) for some measurable function g. Con-

sider any finite permutation σ that does not change any index n with n > N for some
fixed, finite N . Let K represent the (potentially random but finite) number of fea-
tures in FN . If we construct order-of-appearance labels using the same (Uk)k as above
and now σ(F∞) instead of F∞, the labels will not differ from the original order-of-
appearance labels after the first K features. Therefore, there exists some finite permu-
tation τ—which may be a function of (Uk)

K
k=1, σ, and FN and hence random—such

that (Y †
σ(n))n = g((ϕτ(k))k, (Uk)k, σ(F∞)).

Now

((ϕτ(k))k, (Uk)k, σ(F∞))
d
= ((ϕk)k, (Uk)k, σ(F∞))

since the iid sequence (ϕk)k, the iid sequence (Uk)k, and F∞ are independent by con-
struction and

((ϕk)k, (Uk)k, σ(F∞))
d
= ((ϕk)k, (Uk)k, F∞)

since the feature allocation is exchangeable and the independence used above still holds.
So

g((ϕτ(k))k, (Uk)k, σ(F∞))
d
= g((ϕk)k, (Uk)k, F∞).

It follows that the sequence (Y †
n )n is exchangeable.

We can recover the full feature allocation F∞ from the sequence Y †
1 , Y

†
2 , . . .. In par-

ticular, if {x1, x2, . . .} are the unique values in {Y †
1 , Y

†
2 , . . .}, then the features are

{{n : xk ∈ Y †
n} : k = 1, 2, . . .}. The feature allocation can similarly be recovered

from the order-of-appearance label collections (Y ◦
n ).

We can also recover a new random ordered feature allocation F̃N from the sequence
(Y †

n ). In particular, F̃N is the sequence—rather than the collection—of features {n :
xk ∈ Y †

n} such that the feature with smallest label ϕk occurs first, and so on. This
construction achieves our goal of avoiding the combinatorial factors needed to work
with the distribution of FN , while retaining exchangeability and consistency.
Example 6 (Feature labeling schemes (continued)). Once more, consider the feature
allocation

f6 = {{2, 5, 4}, {3, 4}, {6, 4}, {3}, {3}}.

and the uniform random labeling in Eq. (3). If it happens that ϕ4 < ϕ5 < ϕ2 < ϕ1 < ϕ3,
then the random ordered feature allocation is

f̃6 = ({3}, {6, 4}, {3}, {2, 5, 4}, {3, 4}).

�
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Figure 4: The same consistent sequence of feature allocations in Figure 2 but now with
the uniform random order of Example 6 instead of the order of appearance illustrated
in Figure 2.

Recall that we were motivated by Example 3 to produce such a random ordering scheme
to avoid obfuscating combinatorial factors in the probability of a feature allocation.
From another perspective, these factors arise because the random labeling is in some
sense more natural than alternative labelings; again, consider random labels as iid
parameters for each feature. While order-of-appearance labeling is common due to its
pleasant aesthetic representation in matrix form (compare Figures 2 and 4), one must be
careful to remember that the order-of-appearance label sets (Y ◦

n ) are not exchangeable.
We will use random labeling extensively below since, among other nice properties, it
preserves exchangeability of the sets of feature labels associated with the indices.

4 Exchangeable feature probability function

In general, given a probability of a random feature allocation, P(FN = fN ), we can find
the probability of a random ordered feature allocation P(F̃N = f̃N ) as follows. Let H
be the number of distinct features of FN , and let (K̃1, . . . , K̃H) be the multiplicities of
these distinct features in decreasing order. Then

P(F̃N = f̃N ) =

ˆ

K

K̃1, . . . , K̃H

˙−1

P(FN = fN ), (4)

where
ˆ

K

K̃1, . . . , K̃H

˙

:=
K!

K̃1! · · · K̃H !
.

For partitions, the effect of this multiplicative factor is the same across all partitions
with the same number of clusters; for some number of clusters K, it is just 1/K!. In
the general feature case, the multiplicative factor may be different for different feature
configurations with the same number of features.
Example 7 (A Bernoulli, two-feature allocation (continued)). Consider FN constructed
as in Example 3. Denote the sizes of the two features by MN,1 and MN,2. Then

P(F̃N = f̃N ) =
1

2
q
MN,1

A (1− qA)
N−MN,1q

MN,2

B (1− qB)
N−MN,2
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+
1

2
q
MN,2

A (1− qA)
N−MN,2q

MN,1

B (1− qB)
N−MN,1

= p(N,MN,1,MN,2). (5)

Here, p is some function of the number of indices N and the feature sizes (MN,1,MN,2)
that we note is symmetric in (MN,1,MN,2); i.e., p(N,MN,1,MN,2) = p(N,MN,2,MN,1).
�

When the feature allocation probability admits the representation

P(F̃N = f̃N ) = p(N, |A1|, . . . , |AK |) (6)

for every ordered feature allocation f̃N = (A1, . . . , AK) and some function p that is
symmetric in all arguments after the first, we call p the exchangeable feature probability
function (EFPF). We take care to note that the exchangeable partition probability
function (EPPF), which always exists for partitions, is not a special case of the EFPF.
Indeed, the EPPF assigns zero probability to any multiset in which an index occurs
in more than one feature of the multiset; e.g., {{1}, {2}} is a valid partition and a
valid feature allocation of [2], but {{1}, {1}} is a valid feature allocation but not a valid
partition of [2]. Thus, the EPPF must examine the feature indices of a feature allocation
to judge their exclusivity and thereby assign a probability. By contrast, the indices in
the multiset provide no such information to the EFPF; only the sizes of the multiset
features are relevant in the EFPF case.
Proposition 2. The class of exchangeable feature allocations with EFPFs is a strict
but non-empty subclass of the class of exchangeable feature allocations.

Proof. Example 8 below shows that the class of feature allocations with EFPFs is non-
empty, and Example 9 below establishes that there exist simple exchangeable feature
allocations without EFPFs.

Example 8 (Three-parameter Indian buffet process). The Indian buffet process (IBP)
(Griffiths and Ghahramani 2006) is a generative model for a random feature allocation
that is specified recursively in a manner akin to the Chinese restaurant process (Aldous
1985) in the case of partitions. The metaphor involves a set of “customers” that enter
a restaurant and sample a set of “dishes.” Order the customers by placing them in one-
to-one correspondence with the indices n ∈ N. The dishes in the restaurant correspond
to feature labels. Customers in the Indian buffet can sample any non-negative integer
number of dishes. The set of dishes chosen by a customer n is just Y ◦

n , the collection
of feature labels for the features to which n belongs, and the procedure described below
provides a way to construct Y ◦

n recursively.

We describe an extended version (Teh and Görür 2009; Broderick et al. 2012a) of the
Indian buffet that includes two extra parameters beyond the single mass parameter γ
(γ > 0) originally specified by Griffiths and Ghahramani (2006); in particular, we in-
clude a concentration parameter θ (θ > 0) and a discount parameter α (α ∈ [0, 1)).
We abbreviate this three-parameter IBP as “3IBP.” The single-parameter IBP may be
recovered by setting θ = 1 and α = 0.
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Buffet dishes

Plates

Customers

· · ·1 2 3 4 5 6 7

1
2

3 4

2
4

5

3
4

6
7

n = 3

n = 2

n = 1

5 /∈ Y3

4 ∈ Y2

Figure 5: Illustration of an Indian buffet process in the order-of-appearance represen-
tation of Figure 2. The buffet (top) consists of a vector of dishes, corresponding to
features. Each customer—corresponding to a data point—who enters the restaurant
first decides whether or not to choose dishes that the other customers have already
sampled. The customer then selects a random number of new dishes, not previously
sampled by any customer. A gray box in position (n, k) indicates customer n has sam-
pled dish k, and a white box indicates the customer has not sampled the dish. In the
example, the second customer has sampled exactly those dishes indexed by 2, 4, and 5:
Y ◦
2 = {2, 4, 5}.

We start with a single customer, who enters the buffet and chooses K+
1 ∼ Poisson(γ)

dishes. None of the dishes have been sampled by any other customers since no other
customers have yet entered the restaurant. An order-of-appearance labeling gives the
dishes labels 1, . . . ,K+

1 if K+
1 > 0.

Recursively, the nth customer chooses which dishes to sample in two phases. First, for
each dish k that has previously been sampled by any customer in 1, . . . , n− 1, customer
n samples dish k with probability

Mn−1,k − α

θ + n− 1
,

for Mn,k equal to the number of customers indexed 1, . . . , n who have tried dish k. As
each dish represents a feature, sampling a dish represents that the customer index n
belongs to that feature. And Mn,k is the size of the feature labeled k in the feature
allocation of [n].

Next, customer n chooses

K+
n ∼ Poisson

ˆ

γ
Γ(θ + 1)

Γ(θ + n)
· Γ(θ + α− 1 + n)

Γ(θ + α)

˙

new dishes to try. If K+
n > 0, then the dishes receive unique order-of-appearance labels



814 Feature Allocations

Kn−1+1, . . . ,Kn. Here, Kn represents the number of sampled dishes after n customers:
Kn = Kn−1 +K+

n (with base case K0 = 0).

With this generative model in hand, we can find the probability of a particular feature
allocation. We discover its form by enumeration. At each round n, we have a Poisson
number of new features, K+

n , represented. The probability factor associated with these
choices is a product of Poisson densities:

N∏
n=1

1

K+
n !

[C(n, γ, θ, α)]K
+
n exp p−C(n, γ, θ, α)q ,

where

C(n, γ, θ, α) := γ
Γ(θ + 1)

Γ(θ + n)
· Γ(θ + α− 1 + n)

Γ(θ + α)
.

Let Rk be the round on which the kth dish, in order of appearance, is first chosen.
Then the denominators for future dish choice probabilities are the factors in the product
(θ + Rk) · (θ + Rk + 1) · · · (θ +N − 1). The numerators for the times when the dish is
chosen are the factors in the product (1−α) · (2−α) · · · (MN,k−1−α). The numerators
for the times when the dish is not chosen yield (θ+Rk−1+α) · · · (θ+N−1−MN,k+α).
Let An,k represent the collection of indices in the feature with label k after n customers
have entered the restaurant. Then Mn,k = |An,k|.

Finally, let K̃1, . . . , K̃H be the multiplicities of distinct features formed by this model.
We note that there are

«

N∏
n=1

K+
n !

ff

/

«

H∏
h=1

K̃h!

ff

rearrangements of the features generated by this process that all yield the same feature
allocation. Since they all have the same generating probability, we simply multiply by
this factor to find the feature allocation probability.

Multiplying all factors together1 and taking fn = {AN,1, . . . , AN,KN } yields

P(FN = fN )

=

˜

H∏
h=1

K̃h!

¸−1
ˆ

γ
Γ(θ + 1)

Γ(θ + α)

˙KN

exp

˜

−
N∑

n=1

γ
Γ(θ + 1)

Γ(θ + n)
· Γ(θ + α− 1 + n)

Γ(θ + α)

¸

·

«

KN∏
k=1

Γ(MN,k − α)

Γ(1− α)
· Γ(θ +N −MN,k + α)

Γ(θ +N)

ff

.

1Readers curious about how the Rk terms disappear may observe that

KN∏
k=1

Γ(θ +Rk)

Γ(θ +Rk + α− 1)
=

N∏
n=1

ˆ

Γ(θ + n)

Γ(θ + n+ α− 1)

˙K+
N

.
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It follows from Eq. (4) that the probability of a uniform random ordering of the feature
allocation is

P(F̃N = f̃N )

=
1

KN !

ˆ

γ
Γ(θ + 1)

Γ(θ + α)

˙KN

exp

˜

−
N∑

n=1

γ
Γ(θ + 1)

Γ(θ + n)
· Γ(θ + α− 1 + n)

Γ(θ + α)

¸

·

«

KN∏
k=1

Γ(MN,k − α)

Γ(1− α)
· Γ(θ +N −MN,k + α)

Γ(θ +N)

ff

. (7)

The distribution of F̃N has no dependence on the ordering of the indices in [N ]. Hence,
the distribution of FN depends only on the same quantities—the number of indices and
the feature sizes—and the feature multiplicities. So we see that the 3IBP construction
yields an exchangeable random feature allocation. Consistency follows from the recursive
construction and exchangeability. Therefore, Eq. (7) is seen to be in EFPF form given
by Eq. (6). �
The three-parameter Indian buffet process has an EFPF representation, but the follow-
ing simple model does not.
Example 9 (A general two-feature allocation). We here describe an exchangeable,
consistent random feature allocation whose (randomly ordered) distribution does not
depend only on the number of indices N and the sizes of the features of the allocation.

Let p10, p01, p11, p00 be fixed frequencies that sum to one. Let Yn represent the collection
of features to which index n belongs. For n ∈ {1, 2}, choose Yn independently and
identically according to:

Yn =


{1} with probability p10
{2} with probability p01
{1, 2} with probability p11
∅ with probability p00.

We form a feature allocation from these labels as follows. For each label (1 or 2), collect
those indices n with the given label appearing in Yn to form a feature.

Now consider two possible outcome feature allocations: f2 = {{2}, {2}}, and f ′
2 =

{{1}, {2}}. The probability of any ordering f̃2 of f2 under this model is

P(F̃2 = f̃2) = p010 p001 p111 p100.

To see this result, note the distinction between indices {1, 2} and the feature labels {1, 2}
used in an intermediate step above. Likewise, the probability of any ordering f̃ ′

2 of f ′
2 is

P(F̃2 = f̃ ′
2) = p110 p101 p011 p000.

It follows from these two probabilities that we can choose values of p10, p01, p11, p00 such
that P(F̃2 = f̃2) ̸= P(F̃2 = f̃ ′

2). But f̃2 and f̃ ′
2 have the same feature counts and N value

(N = 2). So there can be no such symmetric function p, as in Eq. (5), for this model.
�
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17 453 62

17 453 62

ϕ3

ϕ4

ϕ1

ϕ2

Figure 6: Left: An example Kingman paintbox. The upper rectangle represents
the unit interval. The lower rectangles represent a partition of the unit interval into
four subintervals corresponding to four clusters. The horizontal locations of the seven
vertical lines represent seven uniform random draws from the unit interval. The resulting
partition of [7] is {{3, 5}, {7, 1, 2}, {6}, {4}}. Right: An alternate representation of the
same Kingman paintbox, now with each subinterval separated out into its own vertical
level. To the right of each cluster subinterval is a uniform random label (with index
determined by order of appearance) for the cluster.

5 The Kingman paintbox and feature paintbox

Since the class of exchangeable feature models with EFPFs is a strict subclass of the
class of exchangeable feature models, it remains to find a characterization of the latter
class. Noting that the sequence of feature collections Y †

n is an exchangeable sequence
when the uniform random labeling of features is used, we might turn to the de Finetti
mixing measure of this exchangeable sequence for such a characterization.

Indeed, in the partition case, the Kingman paintbox (Kingman 1978; Aldous 1985)
provides just such a characterization.
Theorem 10 (Kingman paintbox). Let Π∞ := (Πn)

∞
n=1 be an exchangeable random

partition of N, and let (M↓
n,k, k ≥ 1) be the decreasing rearrangement of cluster sizes

of Πn with M↓
n,k = 0 if Πn has fewer than k clusters. Then M↓

n,k/n has an almost

sure limit ρ↓k as n → ∞ for each k. Moreover, the conditional distribution of Π∞ given

(ρ↓k, k ≥ 1) is as if Π∞ were generated by random sampling from a random distribution

with ranked atoms (ρ↓k, k ≥ 1).

When the partition clusters are labeled with uniform random labels rather than by
the ranking in the statement of the theorem above, Kingman’s paintbox provides the
de Finetti mixing measure for the sequence of partition labels of each index n. Two
representations of an example Kingman paintbox are illustrated in Figure 6. The King-
man paintbox is so named since we imagine each subinterval of the unit interval as
containing paint of a certain color; the colors have a one-to-one mapping with the uni-
form random cluster labels. A random draw from the unit interval is painted with the
color of the Kingman paintbox subinterval into which it falls. While Figure 6 depicts
just four subintervals and hence at most four clusters, the Kingman paintbox may in
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general have a countable number of subintervals and hence clusters. Moreover, these
subintervals may themselves be random.

Note that the ranked atoms need not sum to one; in general,
∑

k ρ
↓
k ≤ 1. When

random sampling from the Kingman paintbox does not select some atom k with ρ↓k > 0,
a new cluster is formed but it is necessarily never selected again for another index.
In particular, then, a corollary of the Kingman paintbox theorem is that there are two
types of clusters: those with unbounded size as the number of indices N grows to infinity
and those with exactly one member as N grows to infinity; the latter are sometimes
referred to as singletons or collectively as Kingman dust. In the feature case, we impose
one further regularity condition that essentially rules out dust. Consider any feature
allocation F∞. Recall that we use the notation Y †

n to indicate the set of features to
which index n belongs. We assume that, for each n, with probability one there exists
some m with m ̸= n such that Y †

m = Y †
n . Equivalently, with probability one there is no

index with a unique feature collection. We call a random feature allocation that obeys
this condition a regular feature allocation.

We can prove the following theorem for the feature case, analogous to the Kingman
paintbox construction for partitions.
Theorem 11 (Feature paintbox). Let F∞ := (Fn) be an exchangeable, consistent,
regular random feature allocation of N. There exists a random sequence (Ck)

∞
k=1 such

that Ck is a countable union of subintervals of [0, 1] (and may be empty) and such
that F∞ has the same distribution as F ′

∞ where F ′
∞ is generated as follows. Randomly

sample (U ′
n)n iid uniform in [0, 1]. Let Yn := {k : U ′

n ∈ Ck} represent a collection of
feature labels for index n, and let F ′

∞ be the induced feature allocation from these label
collections.

Proof. Given F∞ as in the theorem statement, we can construct (Y †
n )

∞
n=1 as in Lemma 1.

Then, according to Lemma 1, (Y †
n )

∞
n=1 is an exchangeable sequence. Note that Y †

n defines
a partition: n ∼ m (i.e., n and m belong to the same cluster of the partition) if and only
if Y †

n = Y †
m. This partition is exchangeable since the feature allocation is. Moreover,

since we assume there are no singletons in the induced partition (by regularity), the
Kingman paintbox theorem implies that the Kingman paintbox atoms sum to one.

By de Finetti’s theorem (Aldous 1985), there exists α such that α is the directing
random measure for (Y †

n ). Condition on α = µ. Write µ =
∑∞

j=1 qjδxj , where the qj
satisfy qj ∈ (0, 1] and are written in monotone decreasing order: q1 ≥ q2 ≥ · · ·. The
condition that the atoms of the paintbox sum to one translates to

∑∞
j=1 qj = 1. The

(xj) are the (countable) unique values of Y †
n , ordered to agree with the qj . The strong

law of large numbers yields

N−1#{n : n ≤ N,Y †
n = xj} → qj , N → ∞.

Since
∑∞

j=1 qj = 1, we can partition the unit interval into subintervals of length qj . The

jth such subinterval starts at sj :=
∑j−1

l=1 ql and ends at ej := sj+1. For k = 1, 2, . . .,
define Ck :=

∪
j:ϕk∈xj

[sj , ej). We call the (Ck)
∞
k=1 the feature paintbox.
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Figure 7: An example feature paintbox. The top rectangle represents the unit interval.
Each vertical level below the top rectangle represents a subset of the unit interval
corresponding to a feature. To the right of each subset is a uniform random label for
the feature. For example, using the notation of Theorem 11, the topmost subset is C2

corresponding to feature label ϕ2. The vertical dashed lines represent uniform random
draws; i.e., U ′

n for index n. The resulting feature allocation of [7] for this realization of
the construction is {{3, 5, 7, 1}, {5, 7}, {7, 1}, {6}, {6}}. The collection of feature labels
for index 7 is Y7 = {ϕ2, ϕ3, ϕ1}. The collection of feature labels for index 4 is Y4 = ∅.

Then F∞ has the same distribution as the following construction. Let (U ′
1, U

′
2, . . .) be

an iid sequence of uniform random variables. For each n, define Yn = {k : U ′
n ∈ Ck} to

be the collection of features, now labeled by positive integers, to which n belongs. Let
F ′
∞ be the feature allocation induced by the (Yn).

A point to note about this feature paintbox construction is that the ordering of the
feature paintbox subsets Ck in the proof is given by the order of appearance of features
in the original feature allocation F∞. This ordering stands in contrast to the ordering
of atoms by size in the Kingman paintbox. Making use of such a size-ordering would be
more difficult in the feature case due to the non-trivial intersections of feature subsets.
A particularly important implication is that the conditional distribution of F∞ given
(Ck)k is not the same as that of F ′

∞ given (Ck)k (cf. Pitman (1995) for similar ordering
issues in the partition case).

An example feature paintbox is illustrated in Figure 7. Again, we may think of each
feature paintbox subset as containing paint of a certain color (where these colors have a
one-to-one mapping with the uniform random labels). Draws from the unit interval to
determine the feature allocation may now be painted with some subset of these colors
rather than just a single color.

Next, we revisit earlier examples to find their feature paintbox representations.
Example 12 (A general two-feature allocation (continued)). The feature paintbox for
the random feature allocation in Example 9 consists of two features. The total measure
of the paintbox subset for feature 1 is p10+p11. The total measure of the paintbox subset
for feature 2 is p01 + p11. The total measure of the intersection of these two subsets is
p11. A depiction of this paintbox appears in Figure 8. �
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p00p10 p11 p01

Figure 8: A feature paintbox for the two-feature allocation in Example 9. The top
rectangle is the unit interval. The middle rectangle is the feature paintbox subset for
feature 1. The lower rectangle is the feature paintbox subset for feature 2.

Example 13 (Three-parameter Indian buffet process (continued)). The 3IBP turns
out to be an instance of a general class of exchangeable feature models that we refer to
as feature frequency models. This class of models not only provides a straightforward
way to construct feature paintbox representations in general, but also plays a key role
in our general theory, providing a link between feature paintboxes and EFPFs. In the
following section, we define feature frequency models, develop the general construction
of paintboxes from feature frequency models, and then return to the construction of
the feature paintbox for the 3IBP as an example. We subsequently turn to the general
theoretical characterization of feature frequency models. �

6 Feature frequency models

We now discuss a general class of exchangeable feature models for which it is straight-
forward to describe the feature paintbox. Let (Vk) be a sequence of (not necessarily
independent) random variables with values in [0, 1] such that

∑∞
k=1 Vk < ∞ almost

surely. Let ϕk
iid∼ Unif[0, 1] and independent of the (Vk). A feature frequency model is

built around a random measure B =
∑∞

k=1 Vkδϕk
. We may draw a feature allocation

given B as follows. For each data point n, independently draw its features like so: for
each feature indexed by k, independently make a Bernoulli draw with success probabil-
ity Vk. If the draw is a success, n belongs to the feature indexed by k (i.e., the feature
with label ϕk). If the draw is a failure, n does not belong to the feature indexed by k.
The feature allocation is induced in the usual way from these labels.

The condition that the frequencies have an almost surely finite sum guarantees, by
the Borel-Cantelli lemma, that the number of features exhibited by any index n is
almost surely finite, as required in the definition of a feature allocation. We obtain
exchangeable feature allocations simply by virtue of the fact that the feature allocations
are independently and identically distributed given B. The Bernoulli draws from the
feature frequencies guarantee that the feature allocation is regular.

Before constructing the feature paintbox for such a model, we note that Vk is the total
length of the paintbox subset for the feature indexed by k. In this sense, it is the
frequency of this feature (hence the name “feature frequency model”). And ϕk is the
uniform random feature label for the feature with frequency Vk. Finally, to achieve the
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ϕ1
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Figure 9: An example feature paintbox for a feature frequency model (Section 6). One
such model is the 3IBP (Example 14).

independent Bernoulli draws across k required by the feature allocation specification,
we need for the intersection of any two paintbox subsets to have length equal to the
product of the two paintbox subset lengths. This desideratum can be achieved with a
recursive construction.

First, divide the unit interval into one subset (call it I1) of length V1 and another subset
(call it I0) of length 1 − V1. Then I1 is the paintbox subset for the feature indexed
by 1. Recursively, suppose we have paintbox subsets for features indexed 1 to K − 1.
Let e be a binary string of length K − 1. Suppose that Ie is the intersection of (a) all
paintbox subsets for features indexed by k (k < K) where the kth digit of e is 1 and (b)
all paintbox subset complements for features indexed by k (k < K) where the kth digit
of e is 0. For every e, we construct I(e,1) to be a subset of Ie with total length equal to
VK times the length of Ie. We construct I(e,0) to be Ie\I(e,1).

Finally, the paintbox subset for the feature indexed by K is the union of all Ie′ with e′

a binary string of length K such that the final digit of e′ is 1. An example of such a
paintbox is illustrated in Figure 9.
Example 14 (Three-parameter Indian buffet process (continued)). We show that the
three-parameter Indian buffet process is an example of a feature frequency model, and
thus its feature paintbox can be constructed according to the general recipe that we have
just presented.

The underlying random measure for the three-parameter Indian buffet process is known
as the three-parameter beta process (Teh and Görür 2009; Broderick et al. 2012a). This
random measure, denoted B, can be constructed explicitly via the following recursion
(with K0 = 0 and n = 1, 2, . . .), which extends the results of Thibaux and Jordan
(2007):

K+
n ∼ Poisson

ˆ

γ
Γ(θ + 1)

Γ(θ + n)
· Γ(θ + α− 1 + n)

Γ(θ + α)

˙

,

Kn = Kn−1 +K+
n

Vk ∼ Beta(1− α, θ + n− 1 + α), k = Kn−1 + 1, . . . ,Kn

ϕk ∼ Unif[0, 1]

B =
∞∑
k=1

Vkδϕk
,
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where we recall that the ϕk are assumed to be drawn from the uniform distribution for
simplicity in this paper, but in general they may be drawn from a continuous distribution
that serves as a prior for the parameters defining a likelihood.

Given B =
∑∞

k=1 Vkδϕk
, the feature allocation is drawn according to the procedure out-

lined for feature frequency models conditioned on the underlying random measure. Teh
and Görür (2009) demonstrate that the distribution of the resulting feature allocation is
the same as if it were generated according to a three-parameter Indian buffet process.
An alternative proof proceeds as in the two-parameter case covered by Broderick et al.
(2012b). �
We have seen that the 3IBP can be represented as a feature frequency model. It is
straightforward to observe that the two-feature model in Examples 9 and 12 cannot be
represented as a feature frequency model unless the intersection of the feature subsets
has length p11 equal to the product of the feature subset lengths (p10+p11 and p01+p11);
i.e., unless (p10 + p11)(p01 + p11) = p11 (cf. Figure 8). Therefore, we have the following
result similar to Proposition 2.
Proposition 3. The class of feature frequency models is a strict but non-empty subclass
of the class of exchangeable feature allocations.

In proving Propositions 3 and 2, we used the 3IBP as an example that belongs to
both the class of feature models with EFPFs and the class of feature frequency models.
Moreover, in both cases we used two-feature models as an example of exchangeable
feature models that do not belong to these subclasses; in particular, we used two-
feature models in which the feature combination probabilities p10, p01, p11, p00 are not
in the necessary proportions. These observations suggest that feature frequency models
and EFPFs may be linked. We flesh out the relationship between the two representations
in the next few results.

We start with a priori labeled features. Recall from Section 3 that an a priori labeled
feature allocation is to a feature allocation what a classification is to a clustering; that
is, the feature labels are known in advance. The case where we know the feature order
in advance is somewhat easier and gives intuition for the type of result we would like in
the true feature allocation case. In particular, we prove the results for the case of two
a priori labeled features in Theorem 15 and then the case of an unbounded number of
a priori labeled features in Theorem 16.

From there, we move on to the (a priori) unlabeled case that is the focus of the paper
and prove the equivalence of EFPFs and a slight extension of feature frequency models
in Theorem 17.
Theorem 15. Consider a model with two a priori labeled features: feature 1 and feature
2. If the two features are generated from labeled feature frequencies, the probability of
an a priori labeled feature allocation of [N ] with MN,1 occurrences of feature 1 and
MN,2 occurrences of feature 2 takes the form p̌(N ;MN,1,MN,2), where we make no
symmetry assumptions about p̌ here and also allow any of MN,1 and MN,2 to be zero.
Conversely, if the probability of any a priori labeled feature allocation can be written
as p̌(N ;MN,1,MN,2), then the feature allocation has the same distribution as if it were
generated from labeled feature frequencies.
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Proof. Note that throughout this proof we consider the probability of a particular la-
beled feature allocation of [N ] with MN,1 occurrences of feature 1 and MN,2 occurrences
of feature 2, as distinct from the probability of all labeled feature allocations of [N ] with
MN,1 occurrences of feature 1 and MN,2 occurrences of feature 2. The latter, which is
not addressed here, would be the sum over instances of the former. In particular, re-
calling the matrix representation from Section 3, there are

ˆ

N

MN,1

˙ˆ

N

MN,2

˙

possible N×2 matrices with MN,1 ones in the first column and MN,2 ones in the second
column.

The reader may feel there is some similarity in this setup to the two-feature allocation
of Examples 9 and 12. We note that the quantities p10, p01, p11, p00—which retain
essentially the same meaning as in Figure 8—may now be random and that their order
is pre-specified and non-random.

First, we calculate the probability of a certain labeled feature configuration under this
model. Let M ′

n,10 be the number of indices in [n] with feature 1 but not feature 2. Let
M ′

n,01 be the number of indices in [n] with feature 2 but not feature 1. Let M ′
n,00 count

the indices with neither feature, and let M ′
n,11 count the indices with both features.

Then

P(F̂N,1 = f̂N,1, F̂N,2 = f̂N,2) = E(pM
′
N,10

10 p
M ′

N,01

01 p
M ′

N,11

11 p
M ′

N,00

00 ). (8)

Denote the total probabilities of features 1 and 2 as, respectively, q1 = p10 + p11 and
q2 = p01 + p11. Suppose that we have a feature frequency model. This assumption
implies that

p10
a.s.
= q1(1− q2), p01

a.s.
= (1− q1)q2, p11

a.s.
= q1q2, p00

a.s.
= (1− q1)(1− q2), (9)

where any one of the equalities in Eq. (9) implies the others. It follows that

P(F̂N,1 = f̂N,1, F̂N,2 = f̂N,2) = E[qMN,1

1 (1− q1)
N−MN,1q

MN,2

2 (1− q2)
N−MN,2 ], (10)

where Mn,1 = M ′
n,10 +M ′

n,11 is the total number of indices with feature 1, and likewise
Mn,2 = M ′

n,01 +M ′
n,11 is the total number of indices with feature 2.

So we see that making a feature frequency model assumption yields a feature allocation
probability in Eq. (10) that depends only on N,MN,1,MN,2. Since we retain the known
labeling in this example, the probability is not symmetric in MN,1 and MN,2.

In the other direction, suppose we know that

P(F̂N,1 = f̂N,1, F̂N,2 = f̂N,2) = p̌(N,MN,1,MN,2) (11)

for some function p̌. Again, we make no symmetry assumptions about p̌ here, and any
of MN,1 and MN,2 may be zero. Then frequencies p10, p01, p11, p00 must exist by the
law of large numbers; we note they may be random.
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The assumption in Eq. (11) implies that the configurations

(M ′
4,10,M

′
4,01,M

′
4,00,M

′
4,11) = (2, 2, 0, 0)

(M ′
4,10,M

′
4,01,M

′
4,00,M

′
4,11) = (0, 0, 2, 2)

(M ′
4,10,M

′
4,01,M

′
4,00,M

′
4,11) = (1, 1, 1, 1)

have the same probability. That is, by Eq. (8),

E[p210p201] = E[p211p200] = E[p10p01p11p00].

It follows that

E[(p10p01 − p11p00)
2] = E[p210p201 + p211p

2
00 − 2p10p01p11p00] = 0.

So it must be that p10p01
a.s.
= p11p00. Recall that this condition is familiar from Exam-

ple 9.

Adding p10p11 to both sides of the almost sure equality and then further adding p11(p01+
p11) to both sides yields

(p10 + p11)(p01 + p11)
a.s.
= p11(p10 + p01 + p11 + p00),

which reduces to
q1q2

a.s.
= p11

from the definitions of q1 and q2 and from the fact that p10 + p01 + p11 + p00 = 1.

By Eq. (9) and surrounding text, we see that Eq. (11) implies our model is a feature
frequency model. Thus, the equivalence between models with a priori labeled EFPFs
and a priori labeled feature frequency models in the case of two features results from
simple algebraic manipulations.

Extending the argument above becomes more tedious when more than two features are
involved. In the case of multiple, or even countably many, labeled features, a more
elegant proof exists.
Theorem 16. Consider a model with features a priori labeled 1, 2, 3, . . .. If the fea-
tures are generated from labeled feature frequencies, the probability of an a priori labeled
feature allocation of [N ] with K or fewer features and MN,k occurrences of feature k
for k ∈ {1, . . . ,K} takes the form p̌(N ;MN,1, . . . ,MN,K), where we make no symmetry
assumptions about p̌ here and note that any of MN,1, . . . ,MN,K may be zero. Call p̌
a labeled EFPF. Conversely, if the probability of any a priori labeled feature alloca-
tion can be written as p̌(N ;MN,1, . . . ,MN,K), then the feature allocation has the same
distribution as if it were generated from labeled feature frequencies.

Proof. First, consider the claim that every labeled feature frequency model has a labeled
EFPF. This claim is intuitively clear since the independent Bernoulli draws at each
atom of the (potentially random) measure B =

∑∞
k=1 Vkδϕk

result in a probability that
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depends only on the number of occurrences of the corresponding feature and not any
interactions between features.

To show this direction formally, we consider a fixed, labeled feature allocation f̂N =
(AN,1, AN,2, . . . , AN,K) with MN,k := |AN,k| and note that

P(F̂N = f̂N )

= E
”

P(F̂N = f̂N |B)
ı

= E

«˜

K∏
k=1

V
MN,k

k (1− Vk)
N−MN,k

¸

·

˜ ∞∏
k=K+1

(1− Vk)
N

¸ff

.

It follows that P(F̂N = f̂N ) has p̌ form.

Now consider the other direction. We start with a labeled feature allocation F∞. In
this case, we know that for every labeled feature allocation of [N ],

f̂N = (AN,1, . . . , AN,K),

we have that a function p̌ exists in the form

P(F̂N = f̂N ) = p̌(N, |AN,1|, . . . , |AN,K |), (12)

with no additional symmetry assumptions for p̌ and where the block sizesMN,k = |AN,k|
may be zero.

Let Zn,k be one if n belongs to the kth feature (i.e., n ∈ AN,k) or zero otherwise. Let
b1, . . . , bk be values in {0, 1}. Our goal is to show that conditional on some (as yet
unknown) labeled feature frequencies, the probability of feature presence factorizes as
independent Bernoulli draws:

P(Z1,1 = b1, . . . , Z1,K = bK |V1, . . . , VK) =

K∏
k=1

V bk
k (1− Vk)

1−bk . (13)

By the assumption on p̌, the labeled feature sizes MN,1, . . . ,MN,K are sufficient for
the distribution of the labeled feature allocation. Let ξN be the sigma-field of events
invariant under permutations of the first N indices. We note that MN,1, . . . ,MN,K are
measurable with respect to ξN and start by considering

P(Z1,1 = b1, . . . , Z1,K = bK |ξN )

=
K∏

k=1

P(Z1,k = bk|Z1,1 = b1, . . . , Z1,k−1 = bk−1, ξN ). (14)

Then since the feature sizes are sufficient for the feature allocation distribution, we have

P(Z1,k = bk|Z1,1 = b1, . . . , Z1,k−1 = bk−1, ξN )
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= P(Z1,k = bk|ξN )

=
1

N

N∑
n=1

P(Zn,k = bk|ξN )

= E

«

1

N

N∑
n=1

1{Zn,k = bk}|ξN

ff

=
1

N

N∑
n=1

1{Zn,k = bk}.

The last line follows since the sum is measurable in ξN . By the strong law of large
numbers, the final sum converges almost surely as N → ∞ to some potentially random
value in [0, 1]; call it Vk if bk = 1. By Eq. (14), then, we have

P(Z1,1 = b1, . . . , Z1,K = bK |ξN )
a.s.−→

K∏
k=1

V bk
k (1− Vk)

1−bk . (15)

We next observe that the lefthand side of Eq. (15) is a reverse martingale. (ξN ) is a
reversed filtration since ξN ⊇ ξN+1 for all N . Moreover, (1) P(Z1,1 = b1, . . . , Z1,K =
bK |ξN ) is measurable with respect to ξN ; (2) the same quantity is integrable; and (3)
by the tower law,

E rP(Z1,1 = b1, . . . , Z1,K = bK |ξN )|ξN+1s = P(Z1,1 = b1, . . . , Z1,K = bK |ξN+1).

Since P(Z1,1 = b1, . . . , Z1,K = bK |ξN ) is a reverse martingale, we have that

P(Z1,1 = b1, . . . , Z1,K = bK |ξN )
a.s.−→ P(Z1,1 = b1, . . . , Z1,K = bK |ξ∞)

for ξ∞ =
∩∞

n=1 ξn by reverse martingale convergence. Together with Eq. (15), this
convergence implies that

P(Z1,1 = b1, . . . , Z1,K = bK |ξ∞) =

K∏
k=1

V bk
k (1− Vk)

1−bk ,

and since the Vk are measurable with respect to ξ∞, the tower law yields Eq. (13), as
was to be shown.

While illustrative, the two previous results do not directly deal with feature allocations
as defined earlier in this paper; namely, they do not show any equivalence between
EFPFs and feature frequency models in the case where the features are unlabeled (which
is exactly the case where EFPFs are defined). We will show in the unlabeled case that
every feature frequency model has an EFPF and that every regular feature allocation
with an EFPF is an feature frequency model. In fact, we can consider a general—i.e.,
not necessarily regular—feature allocation and characterize the EFPF representation in
this case.
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Theorem 17. Let λ be a non-negative random variable (which may have some arbitrary
joint law with the feature frequencies in a feature frequency model). We can obtain an ex-
changeable feature allocation by generating a feature allocation from a feature frequency
model and then, for each index n, including an independent Poisson(λ)-distributed num-
ber of features of the form {n} in addition to those features previously generated (which
may also include index n). A feature allocation of this type has an EFPF. Conversely,
every feature allocation with an EFPF has the same distribution as one generated by
this construction for some joint distribution of λ and the feature frequencies.

Proof. Suppose a feature allocation f̃ is generated as described by the construction in
Theorem 17 with (potentially random) measure B =

∑∞
k=1 Vkδϕk

giving the frequencies
in the feature frequency model component. We wish to show that the feature allocation
has an EFPF. We will make use of the fact that an equivalent way to generate the
Poisson component of the feature allocation is to draw Poisson pNλq singletons and
then assign each uniformly at random to an index in [N ].

Consider f̃N = (A1, A2, . . . , AK). Let S = {k : |Ak|= 1} represent the feature indices
of the singletons of the feature allocation. These features may have been generated
either from the feature frequency model or from the Poisson component. To find the
probability of the feature allocation, we consider each possible association of singletons
to one of these components. For any such association, let S̃ represent those singletons
assigned to the Poisson component; that is, S̃ ⊆ S. Let K̃ = K − |S̃| represent the
number of remaining features, which we denote by

(Ã1, . . . , ÃK̃).

Then the probability of this feature allocation satisfies

P(F̃N = f̃N )

= E
”

P(F̃N = f̃N |B, λ)
ı

= E

»

—

—

–

∑
S̃:S̃⊆S

N−S̃Poisson
´

S̃|Nλ
¯ ∑

(i1,...,i
K̃

)

distinct

1

K!

¨

˚

˚

˝

V
|Ã1|
i1

(1− Vi1)
N−|Ã1| · · ·V |ÃK̃ |

iK̃
(1− ViK̃

)N−|ÃK̃ |
∏
l∈N

l/∈{i1,...,iK̃}

(1− Vl)
N

˛

‹

‹

‚

fi

ffi

ffi

fl

.

The final expression depends only on the number of data points N and feature sizes
and is symmetric in the feature sizes. So it has EFPF form.

In the other direction, we sidestep the issue of feature ordering by looking at the number
of features to which each data index belongs. The advantage of this approach is that
this number does not depend on the feature order. The following result is the key to
making use of this observation.



T. Broderick, J. Pitman and M. I. Jordan 827

Lemma 2. Let Kn be a sequence of positive integers. For each n, suppose we have
(constants)

1 ≥ pn,1 ≥ pn,2 ≥ . . . ≥ pn,Kn > 0.

And, for completeness, suppose pn,k = 0 for k > Kn. Let Xn,k ∼ Bern(pn,k), inde-

pendently across n and k and with k = 1 : Kn. Define #n :=
∑Kn

k=1 Xn,k. Then the
following are equivalent.

(i) #n
d→ # for some finite-valued random variable # on {0, 1, 2, . . .}.

(ii) There exist (constants) {pk}∞k=1 and λ such that pk ∈ [0, 1] and λ > 0 and further
such that, ∀k = 1, 2, . . .,

pn,k → pk, n → ∞ (16)

and
Kn∑
k=1

pn,k →
∞∑
k=1

pk + λ, n → ∞. (17)

In this case, we further have
1 ≥ p1 ≥ p2 ≥ · · · , (18)

and

#
d
= Y +

∞∑
k=1

Xk, (19)

where Xk ∼ Bern(pk), independently across k, and Y ∼ Poisson(λ).

The proof of Lemma 2 appears in Appendix 2; this lemma is essentially a special case
of a more general result in Appendix 1.

In this direction of the proof of Theorem 17, we want to show that if we assume that
the probability of a feature allocation takes EFPF form, then the allocation has the
same distribution as if it were generated according to a feature frequency model with
a Poisson-distributed number of singleton features for each n. To see how Lemma 2
may be useful, we let #̂ be the number of features in which index 1 occurs. Recall that
in order to use the EFPF, we apply a uniform random ordering to the features of our
feature allocation. Examining #̂ is advantageous since it is invariant to the ordering
of the features, and we can thereby avoid complicated considerations that may arise
related to the feature ordering and consistency of ordering across feature allocations of
increasing index sets.

Indeed, recall that once we have chosen a uniform random ordering for the features, the
EFPF assumption tells us that any feature allocation with the requisite feature sizes
and number of indices has the same probability. Let KN be the number of features
containing indices [N ]. If MN,k is the size of the kth feature (under the uniform random
ordering) after N indices, then there are

ˆ

N

MN,1

˙

· · ·
ˆ

N

MN,KN

˙
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such configurations. MN,1/N have index 1 in the first feature. For each such allocation,
there are equally many configurations of the remaining features. So, for each such
allocation, MN,2/N have index 1 in the second feature. And so on. That is, we have
that, conditionally on the feature sizes, the number of features with index 1 has the
same distribution as a sum of Bernoulli random variables:

KN∑
k=1

X̃N,k, X̃N,k
indep∼ Bern(MN,k/N). (20)

First, we note that the feature sizes are sufficient for the distribution by the EFPF
assumption. So we may, in fact, condition on ξN , which we define to be the sigma-field
of events invariant under permutations of the indices n = 1, . . . , N . That is, #̂|ξN has
the same distribution as the sum in Eq. (20).

Second, we note that the sum in Eq. (20) has no dependence on the ordering of the
features. In particular, then, let 1 ≥ pN,1 ≥ pN,2 ≥ · · · ≥ pN,KN be the sizes of the
features divided by N and ordered so as to be monotonically decreasing. Again, note
that we are only considering those features including some data index in [N ]. It follows
that

#̂|ξN
d
=

KN∑
k=1

X̃N,k, X̃N,k
indep∼ Bern(pN,k). (21)

So we see that we have circumvented ordering concerns and can simply use a size
ordering in what follows.

At this point, it seems natural to apply Lemma 2 to #̂|ξN . To do so, we need to show

that #̂|ξN converges in distribution to some random variable with non-negative integer
values as N → ∞. To that end, we note that (ξN ) is a reversed filtration: ξN ⊇ ξN+1

for all N . And further P(#̂ = j|ξN ) is a reversed martingale since (1) P(#̂ = j|ξN ) is

measurable with respect to ξN ; (2) P(#̂ = j|ξN ) is integrable; and (3) by the tower law,

E[P(#̂ = j|ξN )|ξN+1] = P(#̂ = j|ξN+1). It follows that

P(#̂ = j|ξN )
a.s.−→ P(#̂ = j|ξ∞)

and hence
#̂|ξN

d−→ #̂|ξ∞ a.s.

for ξ∞ =
∩∞

n=1 ξn by reverse martingale convergence.

So we may apply Lemma 2 conditional on ξ∞. By the lemma, we have that, conditional
on ξ∞,

#̂
d
= Y +

∞∑
k=1

Xk

Y ∼ Poisson(λ)

Xk
indep∼ Bern(pk)
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for some λ ≥ 0 and some 1 ≥ p1 ≥ p2 ≥ · · ·. The conditioning on ξ∞ means that, in
general, λ and the frequencies 1 ≥ p1 ≥ p2 ≥ · · · may be positive random variables, as
was to be shown.

7 Conclusion

It has been known for some time that the class of exchangeable partitions is the same
as the class of partitions generated by the Kingman paintbox, which is in turn the same
as the class of partitions with exchangeable partition probability functions (EPPFs). In
this paper, we have developed an analogous set of concepts for the feature allocation
problem. We defined a feature allocation as an extension of partitions in which indices
may belong to multiple groups, now called features. We have developed analogues of
the EPPF and the Kingman paintbox, which we refer to as the exchangeable feature
partition function (EFPF) and the feature paintbox, respectively. The feature paintbox
allows us to construct a feature allocation via iid draws from an underlying collection of
sets in the unit interval. In the special cases of partitions and feature frequency models
the construction of these sets is particularly straightforward.

The Venn diagram presented earlier in Figure 1 summarizes our results and also suggests
a number of open areas for further investigation. In particular it would be useful to
develop a fuller understanding of the regularity condition on feature allocations that
allows the connection to the feature paintbox. It would also be of interest to carry
the program further by exploring generalizations of the partition and feature allocation
framework to other combinatorial representations, such as the setting in which we allow
multiplicity within, as well as across, features (Broderick et al. 2011; Zhou et al. 2012).
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Appendix 1: Intermediate lemmas leading to Lemma 2

To prove Lemma 2, we will make use of a few definitions and lemmas. We start with
two definitions. First, suppose we have constants p1, p2, p3, . . . such that

1 ≥ p1 ≥ p2 ≥ p3 ≥ . . . ≥ 0

and a constant λ such that 0 ≤ λ < ∞. Then we say that the random variable # has
the extended Poisson-binomial distribution with parameters (λ, p1, p2, . . .) if there exist
independent random variables X0, X1, X2, . . . with

X0 ∼ Poisson(λ)

Xk ∼ Bern(pk), k = 1, 2, . . .

such that

# = X0 +

∞∑
k=1

Xk.

The terminology “extended Poisson-binomial distribution” is motivated by the familiar
Poisson-binomial distribution (Wang 1993; Chen and Liu 1997; Johnson et al. 2011),
which describes the special case of the above where λ = 0 and pk = 0 for all k > K for
some finite K.

Second, we say that µ is the spike size-location measure with parameters (λ, p1, p2, . . .)
if µ puts mass λ at 0 and mass pk at pk for k = 1, 2, . . .. With these definitions in hand,
we can state the following lemmas.
Lemma 3. Let # have the extended Poisson-binomial distribution with parameters
(λ, p1, p2, . . .).

Then

(i) # is a.s. finite if and only if
∑∞

k=1 pk < ∞.

(ii) If # is a.s. finite, then the parameters (λ, p1, p2, . . .) are uniquely determined by
the distribution of #.

In particular, since the parameters (λ, p1, p2, . . .) uniquely determine the distribution
of #, Lemma 3 tells us that there is a bijection between the distribution of # and
the parameters (λ, p1, p2, . . .) when # is a.s. finite. See Appendix 3 for the proof of
Lemma 3.

The next lemma tells us that this correspondence between distributions and parameters
is also continuous in a sense.
Lemma 4. For n = 1, 2, . . ., let #n have the extended Poisson-binomial distribution
with parameters (λn, pn,1, pn,2, . . .). Let µn be the spike size-location measure with pa-
rameters (λn, pn,1, pn,2, . . .).

Then the following two statements are equivalent:

(i) #n converges in distribution to a finite-valued limit random variable.
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(ii) µn converges weakly to some finite measure on [0, 1].

If the convergence holds, the limiting random variable (call it #) has an extended
Poisson-binomial distribution, and the limiting measure (call it µ) is a spike size-
location measure. In this case, # and µ have the same parameters; call the parameters
(λ, p1, p2, . . .).

This lemma is suggested by, and provides an extension to, previous results on triangular
arrays of random variables with row sums converging in distribution; cf., Kallenberg
(2002). See Appendix 4 for the proof of Lemma 4.

Lemma 2 highlights a special case of Lemmas 3 and 4 that we use to prove the equiva-
lence in Theorem 17.

Appendix 2: Proof of Lemma 2

We can rephrase the statement of Lemma 2 in terms of the terminology introduced in
Appendix 1. In particular, we are given a sequence of random variables #n, where #n

has an extended Poisson-binomial distribution with parameters

(0, pn,1, pn,2, . . . , pn,Kn , 0, 0, . . .).

Then we see that Lemma 2 is essentially a special case of Lemma 4 where λn and all
but finitely many of the pn,k are equal to zero; this special case is exactly the usual
Poisson-binomial distribution.

(1) ⇒ (2). We assume that #n converges in distribution to some finite-valued random
variable #, and we wish to show that the pn,k converge to some limiting pk as n → ∞
for each k, and likewise that

∑Kn

k=1 pn,k converges to
∑∞

k=1 pk+λ for some non-negative
constant λ. The pn,k are just the ordered atom sizes of the spike size-location measures
µn in Lemma 4. By Lemma 4, the µn converge weakly to some spike size-location
measure µ.

Denote the parameters of µ by (λ, p1, p2, . . .). The convergence of µn to µ yields both
the desired convergence of the atom sizes (Eq. (16), repeated here)

pn,k → pk, n → ∞

and the desired convergence of the total mass of µn (Eq. (17), repeated here)

Kn∑
k=1

pn,k →
∞∑
k=1

pk + λ, n → ∞.

(2) ⇒ (1). Now we assume that the pn,k converge to some limiting pk as n → ∞ for

each k, and likewise that
∑Kn

k=1 pn,k converges to
∑∞

k=1 pk + λ for some appropriate
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positive constants {pk}, λ. We wish to show that #n converges in distribution to some
finite-valued random variable #.

The assumed convergences guarantee the weak convergence of the spike size-location
measures µn to some finite measure on [0, 1]. Lemma 4 then guarantees that #n con-
verges in distribution to some finite-valued random variable #.

Assume (1) and (2). We wish to show that 1 ≥ p1 ≥ p2 ≥ . . . (Eq. (18)), but this result
follows from the monotonicity of the pn,k.

Eq. (19) in the original lemma statement can be rephrased as wanting to show that # has
the extended Poisson-binomial distribution with parameters (λ, p1, p2, . . .). This follows
directly from the final statement in Lemma 4 and our identification of the limiting spike
size-location measure µ as having parameters (λ, p1, p2, . . .) in a previous part of this
proof (“(1) ⇒ (2)”).

Appendix 3: Proof of Lemma 3

Throughout we assume that # has the extended Poisson-binomial distribution with
parameters (λ, p1, p2, . . .).

(1). We want to show that # is a.s. finite if and only if
∑∞

k=1 pk < ∞. Since # is
extended Poisson-binomially distributed, we can write # = X0 +

∑∞
k=1 Xk for in-

dependent X0 ∼ Poisson(λ) and Xk ∼ Bern(pk) for k = 1, 2, . . .. First suppose∑∞
k=1 pk < ∞. Then

∑∞
k=1 Xk is a.s. finite by the Borel-Cantelli lemma. Second,

suppose
∑∞

k=1 pk = ∞. Then
∑∞

k=1 Xk is a.s. infinite by the second Borel-Cantelli
lemma. Since X0 is a.s. finite by construction, the result follows.

(2). We want to show that if # is a.s. finite, then the parameters (λ, p1, p2, . . .) are
uniquely determined by the distribution of #. To that end, let µ be the spike size-
location measure with parameters (λ, p1, p2, . . .) . Note that µ need not be a probability
measure but is finite by the assumption that # is a.s. finite together with part (1) of
the lemma.

To better understand the distribution of #, we write the probability generating function
of #. For s with 0 ≤ s ≤ 1, we have

Es# = e−λ(1−s)
∞∏
k=1

r1− (1− s)pks ,

which implies that for s with 0 < s ≤ 1 we have

− logEs# = λ(1− s)−
∞∑
k=1

log r1− (1− s)pks (22)
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= λ(1− s) +

∞∑
k=1

∞∑
j=1

1

j
(1− s)jpjk

from the Taylor series expansion of the logarithm

= λ(1− s) +
∞∑
j=1

1

j
(1− s)j

∞∑
k=1

pjk

interchanging the order of summation since the summands are non-negative

= (1− s)µ{0}+
∞∑
j=1

1

j
(1− s)j

∫
(0,1]

xj−1µ(dx) (23)

=
∞∑
j=1

1

j
(1− s)jmj−1, (24)

where

mj :=

∫
[0,1]

xjµ(dx)

is the jth moment of the measure µ.

Now the distribution of # uniquely determines the probability generating function of #,
which by Eq. (24) uniquely determines the sequence of moments of the measure µ. In
turn, µ is a bounded measure on [0, 1] and hence uniquely determined by its moments.
And the parameters (λ, p1, p2, . . .) are uniquely determined by µ.

Appendix 4: Proof of Lemma 4

For n = 1, 2, . . ., we assume #n has the extended Poisson-binomial distribution with
parameters (λn, pn,1, pn,2, . . .). We further assume µn has the spike size-location measure
with parameters (λn, pn,1, pn,2, . . .).

(2) ⇒ (1). Suppose the µn converge weakly to some finite measure µ on [0, 1]. We want
to show that #n converges in distribution to a finite-valued limit random variable.

In Appendix 3, we noted that we can express the probability generating function of an
extended Poisson-binomial distribution in terms of a spike size-location measure with
the same parameters. In particular, by Eq. (23), we can write the negative log of the
probability generating function of #n as

− logEs#n =

∫
[0,1]

fs(x) µn(dx),

where

fs(x) :=

∞∑
j=1

1

j
(1− s)jxj−1 =

{
−x−1 log r1− (1− s)xs x > 0
1− s x = 0

. (25)
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Since fs(x) is bounded in x for each fixed s with 0 < s ≤ 1, we have by the assumption
of weak convergence of µn that

lim
n→∞

− logEs#n =

∫
[0,1]

fs(x) µ(dx).

Moreover, since µ is finite by assumption, we have that the result is finite for each s
with 0 < s ≤ 1. It follows that #n converges in distribution to a finite random variable
#, with probability generating function given by

Es# = exp

{
−
∫
[0,1]

fs(x) µ(dx)

}
. (26)

Assume (1). Now suppose the #n converge in distribution to a finite random variable
#. The next two parts of the proof will rely on an intermediate step: showing that µn

has bounded total mass in this case.

To show that µn has bounded total mass, first note that E#n is exactly the total mass
of µn:

E#n = λn +
∞∑
k=1

pn,k =: Σn,

and Var#n = λn +
∞∑
k=1

pn,k(1− pn,k).

Noting that Var#n ≤ Σn allows us to apply Chebyshev’s inequality to find

1/4 ≥ P(|#n − E#n|≥ 2
a

Var#n)

3/4 ≤ P(|#n − Σn|≤ 2
a

Var#n)

≤ P(|#n − Σn|≤ 2
a

Σn)

≤ P(#n ≥ Σn − 2
a

Σn).

Since #n converges in distribution by assumption, the sequence #n is tight. Choose ϵ
such that 1/2 > ϵ > 0. Then there exists some Nϵ such that, for all n ≥ 1, we have
P(#n ≤ Nϵ) > 1− ϵ > 1/2. It follows that, for all n ≥ 1,

1/4 ≤ P(Nϵ ≥ Σn − 2
a

Σn).

Since Σn is non-random, it must be that P(Nϵ ≥ Σn − 2
?
Σn) = 1. That is, the total

mass of µn is bounded.

Assume (1) and (2). Suppose #n converges in distribution to some finite-valued limit
random variable # and that µn converges weakly to some finite measure µ. We want
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to show that # has an extended Poisson-binomial distribution, that µ is a spike size-
location measure, and that # and µ have the same parameters.

We start by showing that µ is discrete. Choose any ϵ > 0. Since the mass of µn is
bounded across n by the previous part of the proof (“Assume (1)”), the number of
atoms of µn greater than ϵ is bounded across n. It follows that the number of atoms of
µ has the same bound. So µ is discrete. Since µn converges weakly to µ, we see that µ
must have atoms with sizes and locations p1, p2, . . . such that

1 ≥ p1 ≥ p2 ≥ . . .

as well as a potential atom, with size we denote by λ, at zero. That is, µ is a spike
size-location measure with parameters (λ, p1, p2, . . .).

In a previous part of the proof (“(2) ⇒ (1)”), we expressed the probability generating
function of # as a function of µ (Eq. (26)). With this relation in hand, we can reverse
the series of equations presented in Appendix 3 and ending in Eq. (23) to find the form
of the probability generating function for # (Eq. (22)). In particular, Eq. (22) tells us
that # is an extended Poisson-binomial random variable with parameters (λ, p1, p2, . . .).
In particular, we emphasize that # has the same parameters as µ, which we have already
shown above is a spike size-location measure.

(1) ⇒ (2) Now step back and assume that #n converges in distribution to a finite-
valued limit random variable; call it #. We wish to show that µn converges weakly to
some finite measure on [0, 1].

By a previous part of this proof (“Assume (1)”), the mass of µn is bounded across n.
Moreover, by construction, all of the mass for each µn is concentrated on [0, 1]. So
it must be that the sequence µn is tight. It follows that if every weakly convergent
subsequence µnj has the same limit µ, then µn converges weakly to µ.

Consider a subsequence (nj)j of N. We know #nj converges in distribution to # by
the assumption that #n converges in distribution to #. The previous part of this proof
(“Assume (1) and (2)”) gives that the form of the limit of µnj is determined by #;
namely, the limit is a spike size-location measure with parameters shared by #. In
particular, then, the limit µ must be the same for every subsequence, and the desired
result is shown.


