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A Bayesian Dose-finding Design for Drug
Combination Trials with Delayed Toxicities

Suyu Liu ∗ and Jing Ning †

Abstract. We propose a Bayesian adaptive dose-finding design for drug combina-
tion trials with delayed toxicity. We model the dose-toxicity relationship using the
Finney model, a model widely used in drug-drug interaction studies. The intu-
itive interpretations of the Finney model facilitate incorporating the available prior
dose-toxicity information from single-agent trials into combination trials through
prior elicitation. We treat unobserved delayed toxicity outcomes as missing data
and handle them using Bayesian data augmentation. We conduct extensive sim-
ulation studies to examine the operating characteristics of the proposed method
under various practical scenarios. Results show that the proposed design is safe
and able to select the target dose combinations with high probabilities.

Keywords: Adaptive design, Late-onset toxicity, Combining drugs, Missing data,
Maximum tolerated dose, Phase I trial

1 Introduction

The goal of phase I drug combination clinical trials is to find the maximum tolerated
dose (MTD) combinations of multiple agents that will then be further examined for
synergistic treatment effects in subsequent phase II and III trials. Numerous designs
have been proposed for phase I drug combination clinical trials, including those by Thall
et al. (2003); Conaway et al. (2004); Wang and Ivanova (2005); Yuan and Yin (2008);
Yin and Yuan (2009b); Yin and Yuan (2009a); Braun and Wang (2010); and Wages
et al. (2011), among others. A fundamental assumption underlying these adaptive dose-
finding methods is that the toxicity outcome can be observed quickly, such that, by the
time of the next dose assignment, complete information on toxicity will be available for
the currently treated patients. In other words, the follow-up for all enrolled patients
must be completed before a new patient can be enrolled.

However, in practice, toxicities are not always immediately observable and sometimes
require a relatively long follow-up time for assessment. For example, in radiotherapy
trials, dose-limiting toxicities (DLTs) often occur long after the treatment is finished
(Coia et al. 1995; Cooper et al. 1995). Muler et al. (2004) reported a phase I trial of
combined cisplatin and gemcitabine to treat patients with pancreatic cancer. In that
trial, patients were required to be followed for 9 weeks to fully assess toxicity (e.g.,
grade 4 thrombocytopenia and neutropenia), but the patient accrual rate was as fast
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as one per week. Consequently, by the time of dose assignment for a new patient, some
patients under treatment had not completed follow-up and might experience toxicity
later during the follow-up period (i.e., late-onset toxicity).

The issue of late-onset toxicity is of particular importance in the emerging era of novel
molecularly targeted agents. A recent review paper in the Journal of Clinical Oncology
found that among a total of 445 patients in 36 trials involving molecularly targeted
agents, 57% of the grade 3 and 4 toxicities were late-onset (Postel-Vinay et al. 2011).

In the context of single-agent clinical trials, a handful of methods have been proposed
to address the issue of late-onset toxicity. Cheung and Chappell (2000) proposed the
time-to-event continual reassessment method, in which subjects who have not experi-
enced toxicity at a given time point are weighted by the proportions of their follow-up
times with respect to the entire evaluation period, and subjects who have experienced
toxicity are given a full weight of 1. Mauguen et al. (2011) extended this weighting
approach to the escalation with overdose control design. From a different perspective,
Yuan and Yin (2011) treated late-onset toxicities as a missing data problem and pro-
posed an expectation-maximization (EM) algorithm to handle the unobserved toxicity
outcome. However, because these designs focus on single-agent trials and are based
on the assumption that toxicity monotonically increases with the dose, they cannot be
directly applied to drug combination trials, for which the dose-toxicity relationship is
only partially ordered in the two-dimensional drug combination space (Conaway et al.
2004).

In this article, we propose a Bayesian dose-finding design for drug combination trials
with late-onset toxicities. We model the two-dimensional dose-toxicity surface using
the Finney model (Finney 1971), which is widely used in drug-drug interaction studies
(Greco et al. 1995). The intuitive interpretations of the Finney model greatly facilitate
our ability to understand the model and elicit priors for the model parameters. We
treat the late-onset toxicity as missing data and handle these missing data using the
Bayesian data augmentation approach. By “imputing” the missing toxicity outcome,
our design not only efficiently incorporates the partial information from patients who
have not completed follow-up but also supports real-time dose assignment for newly
accrued patients.

The rest of the paper is organized as follows. In Section 2, we present the Finney
model and propose the Bayesian data augmentation approach to handle the missing
data caused by late-onset toxicity. In Section 3, we outline the estimation procedure;
we describe the dose-finding algorithm for the proposed design in Section 4. In Section
5, we present extensive simulation studies to examine the operating characteristics of
the new design. We conclude with a brief discussion of our findings in Section 6.
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2 Method

2.1 Dose-toxicity Model

Let aj be the jth dose for agent A, a1 < . . . < aJ , bk be the kth dose for agent B,
b1 < . . . < bK , and (j, k) represent the combination of dose aj and dose bk. We assume
that the toxicity probability of combination (j, k), denoted as pjk, follows the Finney
model of the form

logit(pjk) = β0 + β1log(aj + ρbk + γ(ajρbk)
1/2), (1)

where β0, β1, γ, and ρ (> 0) are unknown parameters. We require the regression slope
β1 > 0 to ensure that the probability of toxicity increases with the dose. One important
advantage of the Finney model is its intuitive interpretations for drug combination
studies. Specifically, ρ measures the relative potency of agent B versus agent A to
induce toxicity, that is, the amount of agent A required to produce the same (toxicity)
effect as a unit of agent B. A value of ρ > 1 indicates that, given the same dose, agent B
is more likely to cause toxicity than agent A. The drug-drug interaction between A and
B is characterized by the synergy-antagonism parameter γ, with γ = 0 corresponding to
the Loewe additivity effect (Loewe and Muischnek 1926), γ > 0 to synergy, and γ < 0
to antagonism.

Another important advantage of the Finney model is that, unlike the dose-toxicity
models used in most existing designs, which have been devised mainly for statistical
convenience, the Finney model has been extensively studied and validated by real-world
data (Greco et al. 1995; Govindarajulu 2001). Thus, the Finney model is expected to
provide a good approximation of the true dose-toxicity relationship. In addition, when
each agent is administered individually (i.e., setting the dose of the other agent to zero),
the Finney model becomes the standard logistic model:

logit(pj0) = β0 + β1log(aj), (2)

logit(p0k) = β0 + β1log(ρbk), (3)

where pj0 denotes the toxicity probability of dose level j for agent A as a single agent
and p0k denotes the toxicity probability of dose level k for agent B as a single agent.

Suppose that n patients have entered the trial. For the ith subject, let yi and (ji, ki)
denote the binary toxicity outcome and the received dose combination, respectively.
When the toxicity outcomes y = {yi, i = 1, . . . , n} are fully observed, the complete-data
likelihood function is given by

L(y|θ) =
n∏

i=1

exp{yiβ0 + yiβ1log(aji + ρbki + γ(ajiρbki)
1/2)}

1 + exp{β0 + β1log(aji + ρbki + γ(ajiρbki)
1/2)}

,

and the posterior distribution of θ = (β0, β1, γ, ρ) is

f(θ|y) ∝ f(θ)L(y|θ), (4)
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where f(θ) is the prior distribution of θ. Unfortunately, when toxicity is of late onset,
this complete-data likelihood function is not available because some values of y are
missing, as described below.

2.2 Accommodating Late-onset Toxicity

In a phase I dose-finding trial, we accrue patients sequentially and follow them for a
fixed period of time (0, T ) to assess their toxicity outcome yi. In contrast to the common
misconception that late-onset toxicity is that which requires a long assessment time T ,
whether or not the toxicity is of late onset actually depends on the relative length of
the assessment time and the inter-arrival time of the patients, (i.e., the ratio of the
assessment time and the inter-arrival time, denoted as the A/I ratio). In other words,
late-onset toxicity is a relative concept. If the assessment time T is not longer than the
inter-arrival time of the patients (i.e., the A/I ratio ≤ 1), the toxicity is not of late onset,
even when T is very large. This is because by the time of dose assignment for a newly
arrived patient, all the previously treated patients would have finished the assessment
period, and their toxicity outcomes would be fully observed. By contrast, if T is longer
than the patient inter-arrival time (i.e., the A/I ratio > 1), for example in the case of a
fast accrual, the toxicity may be of late onset even when T is short. This is because at
the moment of dose assignment for a new cohort of patients, some previously enrolled
patients would not have completed their assessment period. Even though these patients
would not have experienced toxicity at that point in time, they might yet experience
toxicity during the remaining period of follow-up.

A consequence of late-onset toxicity is that some patients’ toxicity outcomes yi may
be subject to missingness. For subject i, let ti denote the time to toxicity, and let si
(si ≤ T ) denote the actual follow-up time at the moment of dose assignment for a newly
arrived cohort. If subject i will not experience toxicity (i.e., yi = 0), we set ti = ∞.
Then, yi is missing when ti > si and si < T , and is observed otherwise. That is, the
toxicity outcome is missing for patients who have not yet experienced toxicity (ti > si)
and have not been fully followed to T (si < T ). In the case that yi is observed, yi = 1
if ti ≤ si and 0 if ti > si = T .

A natural approach to handling the unobserved toxicity outcome is to “impute” and “fill
in” the missing data so that standard complete-data methods can be applied. Under the
Bayesian paradigm, this can be achieved using data augmentation (Tanner and Wong
1987). The data augmentation process consists of two iterative steps: the imputation
(I) step, in which the missing data are imputed, and the posterior (P) step, in which
the posterior samples of unknown parameters are simulated based on imputed data.
Specifically, at the I step, we impute the missing data by drawing samples from their
posterior predictive distribution

f(yi|ti > si,θ) = Bernoulli(πi)
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with

πi = pr(yi = 1|ti > si,θ)

=
pr(yi = 1|θ)pr(ti > si|yi = 1)

pr(yi = 0|θ)pr(ti > si|yi = 0) + pr(yi = 1|θ)pr(ti > si|yi = 1)

=
pjikipr(ti > si|yi = 1)

1− pjiki + pjikipr(ti > si|yi = 1)
, (5)

where pjiki is given in model (1). Because πi involves the unknown survival probability
pr(ti > si|yi = 1), in order to impute the missing value of yi, we need to model the time
to toxicity ti for patients who will experience toxicity (i.e., yi = 1). For this purpose,
we specify a flexible piecewise exponential model for the time to toxicity for patients
who will experience toxicity.

Specifically, we partition the assessment period [0, T ] into L disjoint intervals [0, u1),
[u1, u2), . . ., [uL−1, uL ≡ T ) and assume a constant hazard λl in the lth interval. We
set the hazard at time T as infinity to ensure that the survival function drops to 0
at the end of the follow-up. Typically, it is adequate to set the number of partitions
equal to the average number of patients/cohorts who have not finished their follow-up
(i.e., L = the A/I ratio−1) because that is the number of survival rates required to
be evaluated. Define the observed time xi = min(si, ti) and δil = 1 if the ith subject
experiences toxicity in the lth interval and δil = 0 otherwise. Let x = (x1, . . . , xn) and
λ = (λ1, . . . , λL). Conditional on y, the likelihood function of λ is given by

L(x|λ,y) =
n∏

i=1

L∏
l=1

(λl)
δilexp{−yiλldil},

where dil = ul − ul−1 if xi > ul; dil = xi − ul−1 if xi ∈ [ul−1, ul) and dil = 0 otherwise.
To pool information across different doses and obtain more reliable estimates, we here
assume that the time-to-toxicity distribution is invariant to the dose level, conditioning
on the patient experiencing toxicity (yi = 1). The sensitivity analysis in Section 5.2
shows that our method is not sensitive to the violation of this assumption.

Under this piecewise exponential model, the Bernoulli probability πi in equation (5) is
given by

πi =
pjikiexp(−

∑L
l=1 λldil)

1− pjiki + pjikiexp(−
∑L

l=1 λldil)
, (6)

which can be used to draw the missing data for the I step. After completing the I step,
we turn to the P step to draw the posterior samples of unknown parameters conditional
on the imputed data. In this step, the standard Markov chain Monte Carlo method for
complete data can be used because the missing data have been imputed in the I step.
The details of implementing the data augmentation are provided in Section 3.
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2.3 Specification of Priors

The intuitive interpretations of the Finney model greatly facilitate the prior specification
for unknown parameters. Noting that in practice the relative (toxicity) potency of agent
B versus agent A is most likely within a 10-fold difference, we assigned the relative
potency parameter ρ a lognormal prior LN(0.81, 0.81), which covers the range (0.1,
10) about 95% of the time. In addition, because the prior mode of ρ is 1, this prior
naturally centers around the neutral opinion that agent A and B have the same potency.
For the synergy-antagonism parameter γ, we chose a normal prior N(3.3, 4) based on
two considerations. (1) For toxicity, antagonism is much rarer than synergy. Under this
prior, the prior probability of antagonism is about 5%. (2) A two–standard-deviation
change from the prior mean yields a range of (-0.7, 7.3), which covers the values of γ
typically encountered in practice.

The prior specification for the intercept β0 and slope β1 requires more consideration.
In practice, it is almost invariably true that before two agents are combined, each
of them has been thoroughly investigated individually. Therefore, the investigator has
sufficient prior information regarding the toxicity profile of each of the agents as a single
agent, i.e., the values (or estimates) of the pj0’s and p0k’s, denoted as p̂j0 and p̂0k. We
incorporate this prior information into the design through specifying appropriate priors
for β0 and β1 and ascribing “effective” dose values to aj and bk. That is, the values of
aj and bk that we use to fit the model will not be the actual clinical dose values but
instead transformed values that are consistent with the single-agent toxicity profiles.
The approach of using the effective dose has been used in model-based phase I trial
designs, such as the continual reassessment method (CRM), to improve the estimation
stability and operating characteristics of designs (Paoletti and Kramar 2009; Yin and
Yuan 2009a).

Without a loss of generality, we set a1 = 1 and aJ = 10 to fix the scale of the dose for
agent A. Then, given the prior estimates of the single-agent toxicity probabilities p̂j0 and
p̂0k, we calculate the effective dose as follows: based on the single-agent dose-toxicity
model (2), we first back-solve the values of β0 and β1

β̂0 = logit(p̂10) (7)

β̂1 = log

{
p̂J0/(1− p̂J0)

p̂10/(1− p̂10)

}
/log(10). (8)

Then we calculate the effective dose values of agent A and B as

aj = exp[{logit(p̂j0)− β̂0}/β̂1], (9)

bk = exp[{logit(p̂0k)− β̂0}/β̂1], (10)

for j = 2, . . . , J − 1 and k = 1, . . . ,K (by setting ρ = 1). By doing this, we ensure that

when β0 = β̂0 and β1 = β̂1, the single-agent toxicity probabilities for aj and bk match
the prior estimates p̂j0 and p̂0k. Subsequently, we center the prior distributions of β0

and β1 at β̂0 and β̂1, respectively. We assign β0 a normal prior N(β̂0, σ
2
0 β̂

2
0) and set

σ0 = 2 so that the prior standard deviation is twice the prior mean. Theoretically, this
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prior may run into the problem of the variance being 0 if β̂0 = 0, however that problem
almost never occurs in practice. This is because β̂0 = 0 means p̂10 = 0.5, and the latter
is extremely unlikely as the toxicity rate of the lowest dose of agent A is almost always
well below 0.5. We assign β1 a gamma prior with mean β̂1 and scale parameter σ1. We
set σ1 = 4 so that the prior variance is four times as large as the prior mean.

For the piecewise exponential time-to-toxicity model, we assign each component of λ
an independent gamma prior distribution. As a neutral prior opinion between toxicity
occurring late versus early during the follow-up, we assume that a priori toxicity occurs
uniformly throughout the follow-up period (0, T ). Under this assumption, the hazard
at the middle of the lth partition is λ̃l = L/{T (L − l + 0.5)}. Thus, we assign λl a
gamma prior distribution with mean λ̃l and variance Dλ̃l. The simulation study shows
that D = 2 represents a reasonably vague prior and generally yields good operating
characteristics. When prior knowledge is available regarding the shape of the hazard
for the time to toxicity, the hyperparameters of the gamma prior can be tuned to match
the prior information.

3 Estimation

We now describe the estimation procedure for the proposed models based on Bayesian
data augmentation. Let y = (yobs,ymis), where yobs and ymis denote the observed
and missing toxicity data, respectively; and let Dobs = (yobs, r) denote the observed
data with r = {ri, i = 1, . . . , n} where ri is the missing data indicator. If data are
missing, ri = 1, otherwise ri = 0. Note that in our case, as described by Yuan and Yin
(2011), the missing data induced by the late-onset toxicity are nonignorable because yi
is more likely to be missing when yi = 0 than when yi = 1; that is, the probability
of yi being missing depends on the value of yi. Therefore, the observed data used for
inference include not only the observed toxicity outcomes yobs but also the missing data
indicators r. Inference that ignores r would lead to biased estimates.

Our estimation procedure iterates between the I step and the P step until the Markov
chain converges. At the I step, we impute the missing data by drawing samples from
their full conditional distribution, f(yi|Dobs,θ,λ), i.e.,

Bernoulli

(
exp{β0 + β1log(aji + ρbki + γ(ajiρbki)

1/2)−
∑L

l=1 λldil}
1 + exp{β0 + β1log(aji + ρbki + γ(ajiρbki)

1/2)−
∑L

l=1 λldil}

)
.

Then, at the P step, given the imputed data y, we sequentially sample the unknown
model parameters from their full conditional distributions, as follows:

(i) Sample each component of θ sequentially from their full conditional distribution,
which is proportional to f(θ|y) given by equation (4).

(ii) Sample λl, l = 1, . . . , L, from

f(λl|y) = Ga
(
λ̃l/D +

n∑
i=1

δil, 1/D +
n∑

i=1

yidil

)
.
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where Ga(a, b) denotes a gamma distribution with the shape parameter a and the
rate parameter b.

We iteratively draw a sequence of samples of the missing data and model parameters
through the I step and P step. When the algorithm converges, the sequence of samples of
θ converges to its marginal posterior distribution, which can be used to make inferences
about the toxicity probabilities and direct dose finding.

4 Trial Design and Conduct

As is common to model-based clinical trial designs, the model-based dose-finding algo-
rithm is difficult to apply at the beginning of the trial, because very limited information
is available and the posterior estimates of the probabilities of toxicity for dose combi-
nations are highly variable. When toxicity is of late onset, this issue is of even greater
concern because it is possible that none of the toxicity outcomes will be observed during
the early stage of the trial due to the missing data. To overcome this difficulty, we use
a start-up rule to obtain some preliminary toxicity data before switching to the model-
based dose-finding algorithm. Specifically, we begin the start-up phase by treating the
first cohort of patients at the lowest dose combination (a1, b1) and then escalate the
dose along the diagonal of the dose combination matrix from (a1, b1) to (a2, b2) and
so on until the first toxicity occurs. If the dose matrix is not square, say J > K, we
first escalate the dose along the diagonal from (a1, b1) to (a2, b2) and so on until we
reach (aK , bK); thereafter, we escalate the dose by holding the dose level of B at K and
increasing the dose level of A from (aK , bK) to (aK+1, bK) and so on until we reach the
highest dose combination (aJ , bK). During this start-up phase, we require that each of
the treated patients is fully monitored for toxicity assessment before a new patient is
enrolled. Upon observing one toxicity outcome, the start-up phase is completed. Note
that although we escalate the dose along the diagonal, because the start-up rule is very
conservative (i.e., terminates after the first toxicity occurs), further ensuring patient
safety is not of great concern. The maximum number of patients experiencing toxicity
in the start-up phase will not be greater than that of one cohort, which in practice is
typically no more than 3 patients, making our method even safer than the standard
3+3 design. The advantage of escalating along the diagonal is that it accumulates the
dose-toxicity information for two agents simultaneously. This approach has been used
previously by Thall et al. (2003) and Houede et al. (2010).

After the start-up phase is completed, we switch to the following model-based dose-
finding algorithm. Let ϕ be the physician-specified target toxicity limit, and ce and cd
be the fixed probability cutoffs for dose escalation and de-escalation, respectively. The
values of ce and cd can be calibrated through simulation studies to obtain desirable
operating characteristics. To guard against dramatic changes in dose and to improve
safety, at this stage we restrict dose escalation or de-escalation of each agent to no more
than one dose level and prohibit dose escalation of two agents at the same time (i.e., dose
escalation along the diagonal). The model-based dose-finding algorithm is described as
follows:
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i. If at the current dose combination (j, k),

Pr(pjk < ϕ|Dobs) > ce,

the dose will be escalated to one of the adjacent dose combination {(j+1, k), (j, k+
1), (j+1, k−1), (j−1, k+1)}, at which the posterior mean of the toxicity probability
is higher than pjk and closest to ϕ.

ii. If at the current dose combination (j, k),

Pr(pjk > ϕ|Dobs) > cd,

the dose will be de-escalated to one of the adjacent dose combinations {(j −
1, k), (j, k − 1), (j + 1, k − 1), (j − 1, k + 1), (j − 1, k − 1)}, at which the posterior
mean of the toxicity probability is lower than pjk and closest to ϕ.

iii. Otherwise, the next cohort of patients will continue to be treated at the current
dose combination (i.e., the current dose combination is retained).

iv. Once the maximum sample size is reached, the dose combination that has a pos-
terior mean of the toxicity probability closest to ϕ is selected as the MTD combi-
nation.

For patient safety, we impose the following stopping rule in our algorithm: if pr(p11 >
ϕ|Dobs) > 0.8, then the trial is terminated and no MTD is selected. In practice, addi-
tional stopping rules can be used to allow early selection of the MTD. For example, we
can terminate the trial early and select the MTD when a certain number of consecutive
cohorts are treated at the same dose.

In addition to finding the MTD combination, we may also be interested in identifying
a set of safe doses as the candidates to be further investigated in phase II trials for
efficacy. We define the set of safe doses as the doses that satisfy the safety requirement
pr(pjk < ϕ|D) > cs, where cs is a prespecified safety threshold.

5 Numerical Examples

5.1 Simulation Study

We examined the operating characteristics of the proposed design by simulating all 8
toxicity scenarios previously considered by Yin and Yuan (2009b), in which each agent
had four dose levels (see Table 1). The target toxicity probability was ϕ = 0.3, and the
maximum sample size was 20 cohorts of 3 patients each. We assumed that the follow-up
time for assessing toxicity was 3 months and that the patient accrual followed a Poisson
process with the rate of three patients per month (i.e., A/I = 3).

We simulated times to toxicity based on a Weibull distribution. At each dose level,
the scale and shape parameters of the Weibull distribution were chosen such that (1)
the cumulative distribution function at time T , the end of the follow-up, is the toxicity
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Table 1: Eight toxicity scenarios for a two-agent combination trial with a target prob-
ability of toxicity of 0.3. The target maximum tolerated dose combinations are shown
in boldface.

Drug A
Dose Level 1 2 3 4 1 2 3 4

Scenario 1 Scenario 2
4 0.50 0.55 0.60 0.70 0.48 0.52 0.55 0.58
3 0.15 0.30 0.50 0.60 0.42 0.45 0.50 0.52
2 0.10 0.12 0.30 0.45 0.30 0.40 0.48 0.50
1 0.06 0.08 0.10 0.15 0.15 0.30 0.40 0.45

Scenario 3 Scenario 4
4 0.30 0.50 0.55 0.60 0.50 0.55 0.60 0.70
3 0.12 0.30 0.50 0.55 0.30 0.50 0.55 0.60
2 0.10 0.15 0.30 0.45 0.12 0.30 0.50 0.55
1 0.08 0.12 0.16 0.18 0.10 0.15 0.30 0.45

Drug B Scenario 5 Scenario 6
4 0.20 0.30 0.45 0.50 0.30 0.50 0.60 0.70
3 0.16 0.18 0.30 0.45 0.15 0.30 0.52 0.60
2 0.14 0.16 0.20 0.30 0.10 0.20 0.30 0.55
1 0.08 0.13 0.16 0.18 0.08 0.14 0.19 0.30

Scenario 7 Scenario 8
4 0.16 0.18 0.20 0.30 0.70 0.75 0.80 0.85
3 0.13 0.16 0.18 0.20 0.60 0.65 0.70 0.80
2 0.12 0.14 0.16 0.18 0.55 0.60 0.65 0.70
1 0.10 0.12 0.14 0.16 0.50 0.55 0.60 0.65

probability of that dose and (2) among all the toxicities that occur in (0, T ), half of
them occur in (T/2, T ), the latter half of the follow-up period. The first condition
ensures that the toxicity probability of each dose matches that given in Table 1, and the
second condition ensures that the toxicity event is of late onset. Because the toxicity
probability varies across the dose levels, the scale and shape parameters of the Weibull
distribution need to be different for different dose levels.

We used L = 2 partitions to construct the piecewise exponential time-to-toxicity model.
We took the single-agent toxicity probabilities (p10, . . . , p40) =(0.06, 0.12, 0.20, 0.30)
and (p01, . . . , p04) =(0.04, 0.08, 0.16, 0.30) and set ce = 0.8 and cd = 0.45 to direct dose
escalation and de-escalation. We compared the proposed design with the latent-table
design proposed by Yin and Yuan (2009b). Like most existing combination trial designs,
the latent-table design requires fully observed data for dose assignment. Therefore,
when implementing that design, we suspended accrual until all of the toxicity outcomes
in the trial were completely observed prior to the next dose assignment, although it
may not be feasible in practice. For the purpose of comparison, we also implemented
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a complete-data version of the proposed design, which suspended accrual and made
dose assignment based on completely observed data as the latent-table design. This
complete-data design provides an optimal upper bound and benchmark “limit” of the
proposed design. Under each scenario, we simulated 1,000 trials.

Table 2 displays the selection percentage, the average percentage of patients treated
at each dose combination under the latent-table and proposed designs. For ease of
comparison, these simulation results are summarized in Table 3, including the total
selection percentage of the target MTD combinations, the selection percentage of overly
toxic doses (i.e, doses with toxicity probabilities larger than the target ϕ), the percentage
of patients treated at the MTD combinations, the percentage of patients treated at
overly toxic doses, and the average trial duration. Note that when the toxicity is of late
onset, it is particularly important to examine the selection percentage of overly toxic
doses and the percentage of patients treated at the overly toxic doses because the danger
of late-onset toxicity is that patients who have not experienced toxicity at a given time
during follow-up may still experience toxicity during the late phase of follow-up.

In particular, scenario 1 had two MTD combinations in the two-dimensional space. The
proposed design outperformed the latent-table design with a 27.7% higher selection
percentage of the target MTD combinations and 9.3% more patients allocated to the
MTD combinations. The proposed design was also safer. It selected the overly toxic
doses 21.2% less frequently and treated 6.0% fewer patients at the overly toxic doses
compared to the latent-table design. More notably, because our proposed design allows
for continual accrual, the trial duration using this design was less than half of that
using the latent-table design, shortening the trial from 56.9 months to 26.8 months.
The proposed design tended to assign more patients to the toxic doses (i.e., the doses
above the MTD) located on the diagonal than the latent-table design. This was because
the two designs used different start-up rules: the proposed design escalated the dose
along the diagonal, whereas the latent-table design escalated the dose along the edges
of the dose matrix. This should not be a concern because the total number of patients
assigned the overly toxic doses (not limited to the diagonal) was smaller under the
proposed design than the latent-table design. Overall, the performance of the proposed
design was close to its optimal bound (i.e., the complete-data design), suggesting that
the proposed design was able to efficiently handle the missing toxicity outcome.

Scenario 2 also had two MTD combinations, but at different locations. In this case,
the rate of selecting the MTD combinations by the proposed design was 9.3% higher
than that of the latent-table design, but the latter allocated 7.4% more patients to the
MTD combinations. In terms of safety, the two designs are comparable, with similar
percentages of patients treated at the overly toxic doses and similar selection percentages
for overly toxic doses. For scenarios 3 through 5, three MTD combinations were selected,
but they were located at different positions. The proposed design outperformed the
latent-table design under these scenarios. Compared to the latent-table design, the
proposed design was better at selecting target MTD combinations and avoiding overly
toxic doses. The percentages of patients treated with the target MTD combinations and
overly toxic doses were often comparable between the two designs, but the proposed
design cut the trial duration from about 56 months to 26 months. Scenario 6 had four
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MTD combinations, and scenario 7 had only one. The selection percentage of the MTD
combinations under the proposed design was comparable to that of the latent-table
design in scenario 6 and was slightly higher in scenario 7. Scenario 8 was designed
to examine whether the proposed method would terminate the trial early if all the
dose combinations were excessively toxic. Both the proposed and latent-table designs
stopped the trials before large numbers of patients were treated at overly toxic doses.

Table 4 displays the performance of the proposed designs in identifying the set of safe
doses with the safety threshold cs = 1− cd = 0.55. We can see that the proposed design
was able to identify the true “safe set” with high probabilities similar to those of the
complete-data design.

5.2 Sensitivity Analysis

We conducted four types of sensitivity analysis by manipulating four simulation parame-
ters. Specifically, we examined the performance of the proposed design when (1) the true
distribution of the time to toxicity was a log-logistic distribution; (2) the distribution of
the time to toxicity is heterogeneous across doses by controlling (10j +10k)% of events
occurred in (0, T/2) for combination (j, k), that is, higher doses result in earlier toxi-
cities; (3) the number of partitions used for the piecewise exponential time-to-toxicity
model was 6; (4) the prior distributions of β0, β1 and λ were more vague by setting
σ0 = 4, σ1 = 16 and D = 4; and (5) the A/I ratio was 5 (under a faster accrual of one
cohort per 0.6 month). Note that the A/I ratio controls the amount of missing data
in the trials. When the A/I ratio is high, the new cohort arrives rapidly and the trial
requires more frequent decision making about dose assignment. Consequently, at each
moment of decision making, the cohorts that have already entered the trial are followed
for only a short period of time, resulting in a high percentage of missing toxicity out-
comes. In other words, a higher A/I ratio (e.g., 5) makes it more difficult to find the
correct dose.

Table 5 shows the results of the sensitivity analysis under the 8 toxicity scenarios listed
in Table 1. The results under the first three conditions are similar to those reported in
Table 3, suggesting that the proposed design was robust with respect to the distribution
of the time to toxicity, the number of partitions (used for the piecewise exponential
model), and the prior specification. When the A/I ratio was 5, we observed that the
selection percentage of the target MTD combinations and the percentage of patients
treated at the MTD combinations were slightly lower than those when the A/I ratio
was 3 (see Table 3). This was expected, because a high A/I ratio of 5 induced more
missing data and thus less information was available to make the decision about dose
assignment. Nevertheless, in general the performance of the proposed design was similar
under the two A/I ratios. Because the accrual was faster under the A/I ratio of 5, the
corresponding average trial duration was shorter than that under the A/I ratio of 3.
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6 Concluding Remarks

We have proposed a Bayesian adaptive dose-finding design for combination trials with
delayed toxicity outcomes. We model the dose-toxicity relationship using the Finney
model. The advantage of using the Finney model is that the parameters in the model
have intuitive interpretations, which greatly facilitates incorporating the available dose-
toxicity information from single-agent trials through prior elicitation. In addition, the
Finney model has been validated by empirical studies, and thus is expected to improve
the goodness of fit of the model and the performance of the trial design. To accom-
modate delayed toxicity outcomes, we treat unobserved delayed toxicity outcomes as
missing data and use Bayesian data augmentation to handle the resulting missing data.
We employ a flexible piecewise exponential model to capture the partial information
from the patients whose outcomes have not been observed due to incomplete follow-up.
We have also conducted extensive simulation studies to examine the operating char-
acteristics of the proposed method under various practical scenarios. The proposed
design allows for continuous accrual and shortens the trial duration without sacrificing
the MTD selection percentage or patient safety.

The proposed design focuses on finding the MTD, but it can be extended to a phase
I/II design that simultaneously considers toxicity and efficacy. Because efficacy often
requires a longer assessment time than toxicity, it is more likely that at the moment of
dose assignment for a newly accrued patient, the efficacy outcome for patients who have
entered the trial has not been fully assessed. Similar to the way our design accounted
for late-onset toxicity, the proposed methodology based on Bayesian data augmentation
can be used to handle late-onset efficacy.
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Table 2: The selection percentage (Sel) and average percentage (Pts) of patients treated
at each dose combination for the simulation study. Values in boldface correspond to the
target maximum tolerated dose combinations.
% Latent-table Complete-data Proposed

Scenario 1
Sel 13.4 1.7 0.1 0.0 9.8 0.7 0.0 0.0 5.8 1.2 0.1 0.0

8.9 24.5 6.5 0.5 9.6 41.5 8.2 0.0 9.0 38.7 7.4 0.1
0.1 1.9 16.8 14.6 0.0 1.4 24.7 1.5 0.1 2.1 30.3 1.0
0.0 0.1 1.2 9.8 0.0 0.0 0.7 1.1 0.0 0.0 1.0 2.5

Pts 9.8 3.0 1.1 0.5 5.2 3.3 0.9 1.1 4.2 4.1 1.9 1.8
11.4 13.2 4.9 3.0 13.6 25.9 8.9 0.6 11.2 17.8 10.4 1.7
6.3 3.7 9.3 9.0 2.2 14.5 12.7 0.9 2.2 16.4 14.1 1.3
5.6 4.7 5.3 9.1 6.4 0.6 2.3 1.0 7.7 0.7 3.3 1.4

Scenario 2
Sel 0.5 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.3 0.3 0.0 0.0

7.9 1.0 0.2 0.0 2.9 2.3 0.0 0.0 4.7 0.6 0.1 0.0
27.1 8.1 1.2 0.1 23.6 14.1 1.1 0.0 25.1 14.8 0.6 0.0
4.7 22.7 7.3 0.6 6.6 37.1 4.1 0.0 7.0 34.0 4.7 0.1

Pts 2.0 0.4 0.0 0.0 0.9 0.7 0.3 0.3 1.1 1.0 0.4 0.4
9.9 1.8 0.2 0.0 5.1 3.5 1.6 0.1 4.6 3.8 2.4 0.3
25.1 7.9 1.6 0.4 16.2 15.7 1.0 0.0 15.5 16.8 1.5 0.1
19.2 21.2 8.7 1.6 25.4 26.1 3.1 0.1 25.7 23.3 2.9 0.1

Scenario 3
Sel 20.0 9.4 0.8 0.1 15.5 5.1 0.5 0.1 11.0 4.6 0.6 0.2

3.9 19.9 6.2 1.2 6.3 37.5 7.8 0.1 7.3 32.3 7.3 0.0
0.1 3.8 13.1 9.9 0.0 2.5 19.4 1.0 0.5 5.1 24.3 1.2
0.0 0.0 2.6 8.6 0.0 0.1 1.8 1.1 0.0 0.1 1.6 2.3

Pts 14.6 7.8 2.6 1.1 8.9 5.7 1.7 1.2 4.9 5.8 2.6 2.0
9.0 11.8 4.6 2.3 10.8 24.1 8.1 0.6 9.4 16.2 9.4 1.2
6.2 3.5 7.4 6.3 2.5 14.4 9.6 0.8 3.6 16.7 11.8 1.0
5.8 4.8 5.1 7.1 7.1 1.1 2.5 0.8 9.1 1.4 3.7 1.2

Scenario 4
Sel 2.5 0.3 0.0 0.0 0.8 0.0 0.0 0.0 1.5 0.1 0.0 0.0

27.3 7.3 0.2 0.0 22.2 7.0 0.1 0.0 19.8 6.5 0.2 0.0
5.5 22.9 6.8 0.2 5.8 45.9 4.1 0.1 7.8 45.4 4.8 0.0
0.0 5.6 17.5 2.6 0.1 1.8 9.5 0.2 0.1 1.5 9.3 0.0

Pts 6.2 1.2 0.2 0.0 2.7 0.9 0.4 0.3 3.2 1.8 0.8 0.7
18.7 5.7 0.7 0.2 13.4 6.7 2.9 0.2 11.0 6.9 3.9 0.5
12.5 15.3 4.8 1.2 13.3 32.1 2.9 0.1 12.7 29.5 3.9 0.1
6.8 9.3 12.6 4.6 9.2 7.8 6.9 0.2 11.7 7.2 6.2 0.1
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Table 2, continued.

% Latent-table Complete-data Proposed
Scenario 5

Sel 4.9 19.1 13.2 2.8 9.4 24.8 14.0 2.9 8.5 23.2 11.3 2.8
1.0 5.9 16.2 11.3 1.3 8.8 20.5 3.6 1.7 8.2 25.4 5.6
0.2 0.9 4.7 15.4 0.5 1.6 3.8 6.3 0.2 1.2 2.7 7.0
0.0 0.0 0.4 3.1 0.0 0.1 0.4 0.8 0.0 0.0 0.1 1.0

Pts 7.6 10.6 7.1 3.5 5.8 15.1 8.1 6.5 5.6 11.8 7.7 8.3
6.4 5.7 9.7 6.2 3.7 12.4 14.7 4.9 3.9 11.7 14.4 4.9
6.7 1.8 4.2 8.5 2.4 9.4 3.3 3.2 2.9 9.6 4.0 3.5
6.4 5.3 4.6 5.7 7.2 1.4 0.7 1.1 8.9 1.2 0.7 1.2

Scenario 6
Sel 19.9 8.8 0.1 0.0 15.5 5.4 0.4 0.0 11.4 3.9 0.4 0.0

5.6 21.5 4.6 0.2 8.2 34.7 4.9 0.0 10.2 29.0 6.1 0.0
0.3 5.3 13.3 3.7 0.2 8.1 16.6 0.5 0.5 9.7 21.1 0.3
0.0 0.3 5.7 10.3 0.0 0.1 3.1 1.1 0.1 0.6 2.2 2.4

Pts 14.4 7.6 2.0 0.4 8.7 5.4 1.4 0.8 5.2 5.3 2.4 1.3
9.9 12.4 3.9 1.1 11.9 21.1 6.7 0.4 10.3 15.8 7.7 0.9
6.7 5.1 8.2 3.9 3.6 17.3 9.3 0.3 4.5 19.5 10.4 0.5
5.9 5.1 6.4 7.1 7.3 2.0 3.3 0.6 9.0 2.4 4.0 0.9

Scenario 7
Sel 0.8 3.6 13.6 60.5 1.5 4.0 7.9 72.7 1.7 3.6 9.3 73.3

0.1 1.0 3.6 11.9 0.6 0.7 1.0 7.4 0.1 0.7 1.1 5.7
0.1 0.4 1.3 1.9 0.0 0.5 0.2 0.6 0.1 0.6 0.3 0.6
0.0 0.1 0.2 0.2 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.1

Pts 6.9 6.5 10.4 24.8 3.1 6.1 8.6 44.0 2.7 6.0 8.2 42.3
5.8 2.1 3.2 8.7 3.0 4.0 5.2 6.9 2.7 4.0 5.0 6.9
6.4 0.9 1.4 4.1 2.8 6.3 0.4 0.6 2.6 7.4 0.4 0.7
6.2 4.6 3.9 4.1 7.9 0.9 0.2 0.1 9.9 0.8 0.2 0.1

Scenario 8
Sel 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.7 0.0 0.0 0.0

Pts 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0
3.5 0.0 0.0 0.0 0.5 0.1 0.3 0.0 0.0 0.3 0.4 0.0
29.6 0.0 0.0 0.0 3.2 6.8 0.1 0.0 1.8 6.2 0.2 0.0
60.0 6.1 0.9 0.0 83.3 5.3 0.1 0.0 86.0 4.9 0.1 0.0
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Table 3: Summary of the simulation results.

Scenario
Design 1 2 3 4 5 6 7 8

Selection percentage of MTD combinations
Latent-table 41.3 49.8 53.0 67.7 50.7 65.0 60.5 0.0
Complete-data 66.2 60.7 72.4 77.6 51.6 67.9 72.7 0.0
Proposed 69.0 59.1 67.6 74.5 55.6 63.9 73.3 0.0

Selection percentage of overly toxic doses
Latent-table 36.8 27.0 27.6 19.9 27.3 17.4 0.0 0.2
Complete-data 20.2 24.7 14.6 12.3 20.5 11.2 0.0 0.6
Proposed 15.6 26.2 13.9 13.1 19.7 10.7 0.0 0.7

% of patients treated at MTD combinations
Latent-table 22.5 46.3 33.8 46.6 28.8 42.1 24.8 0.0
Complete-data 38.6 42.4 42.6 52.4 33.0 39.6 44.0 0.0
Proposed 31.8 38.9 32.9 46.6 29.7 32.3 42.3 0.0

% of patients treated at overly toxic doses
Latent-table 31.3 34.5 24.7 24.8 16.8 18.9 0.0 100
Complete-data 20.8 32.4 18.1 17.3 19.5 15.0 0.0 100
Proposed 25.3 35.5 22.0 21.8 20.8 18.1 0.0 100

Trial duration (months)
Latent-table 56.9 49.5 56.4 56.2 56.5 56.4 56.5 11.5
Complete-data 56.8 50.1 56.6 56.1 56.3 56.5 56.5 12.4
Proposed 26.8 24.1 26.3 25.4 26.6 26.0 26.4 6.5
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Table 4: The selection percentage of each combination as a safe dose under the proposed
methods based on 1,000 simulated trials. The boxes indicate the true set of safe doses.

Scenario Complete-data Proposed
1 17.4 3.5 0.9 0.0 15.7 3.9 0.9 0.6

96.5 66.8 10.4 0.9 95.4 62.6 8.3 1.1
99.2 99.2 78.4 8.1 99.3 99.1 74.9 7.3
99.2 99.2 99.0 52.8 99.3 99.3 99.2 44.7

2 0.7 0.2 0.0 0.0 1.4 0.6 0.5 0.2
6.5 2.5 0.6 0.0 6.8 2.1 1.3 0.5
44.5 16.7 4.3 0.4 48.1 18.3 3.4 1.1
91.7 72.0 21.2 2.9 91.6 75.0 24.3 2.3

3 30.2 9.4 2.3 0.6 25.5 9.4 3.5 1.4
95.4 71.7 19.2 2.9 92.2 64.8 16.6 3.8
98.7 98.4 78.5 13.9 98.3 97.2 72.2 12.7
98.8 98.8 98.2 55.3 98.4 98.3 97.3 48.9

4 1.5 0.6 0.4 0.20 2.5 1.1 0.5 0.2
33.9 7.4 0.9 0.5 32.3 8.1 2.2 0.5
95.9 72.6 13.9 0.8 95.4 70.6 13.0 1.8
97.6 97.4 75.5 8.0 97.0 96.7 71.4 7.4

5 81.2 56.5 19.5 5.8 82.7 56.0 20.1 6.9
96.8 93.0 71.5 17.9 98.1 94.9 72.9 19.7
98.7 98.1 95.2 58.6 98.8 98.5 96.8 58.1
98.8 98.8 98.0 91.7 98.9 98.9 98.5 91.2

6 27.5 9.9 3.3 0.8 24.0 7.7 3.1 1.6
89.4 63.5 16.3 3.6 86.2 56.1 13.2 3.1
98.7 96.8 71.0 13.9 97.6 95.8 66.4 10.1
98.8 98.8 97.1 50.3 97.9 97.9 94.9 43.9

7 95.7 94.7 90.1 70.4 95.8 94.2 91.4 71.8
97.1 96.8 95.5 88.9 96.9 96.6 95.4 90.4
97.5 97.5 96.9 95.1 97.2 97.1 96.7 94.7
97.5 97.5 97.4 96.9 97.2 97.2 97.1 96.5

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0
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Table 5: Summary of the results for the sensitivity analysis.

Scenario
Condition 1 2 3 4 5 6 7 8

Selection percentage of MTD combinations
Log-logistic 65.2 61.3 65.7 77.4 55.5 63.4 72.3 0.0
Heterogeneous 66.0 58.4 65.9 75.3 53.6 61.8 72.9 0.0
6 partitions 67.1 56.3 67.6 76.3 52.1 64.9 71.6 0.0
Vague priors 67.8 58.8 69.5 81.4 53.4 65.2 67.4 0.0
A/I ratio=5 65.2 56.1 63.2 73.4 50.1 59.7 66.0 0.0

Selection percentage of overly toxic doses
Log-logistic 17.3 25.0 17.8 10.2 18.3 8.7 0.0 1.1
Heterogeneous 17.6 26.1 15.2 11.5 20.5 10.8 0.0 0.7
6 partitions 15.8 25.6 14.8 12.1 18.8 10.3 0.0 0.3
Vague priors 14.3 25.1 14.2 9.4 20.2 9.9 0.0 0.3
A/I ratio=5 15.1 28.0 15.4 13.9 18.3 10.6 0.0 0.6

% of patients treated at MTD combinations
Log-logistic 32.1 37.3 34.6 45.7 29.4 31.0 42.9 0.0
Heterogeneous 33.5 38.9 35.2 47.3 31.4 34.0 40.9 0.0
6 partitions 33.3 38.0 34.0 46.7 29.2 31.8 39.1 0.0
Vague priors 32.7 39.5 34.8 48.5 30.0 33.1 39.3 0.0
A/I ratio=5 26.9 36.0 29.7 42.5 24.8 25.8 36.6 0.0

% of patients treated at overly toxic doses
Log-logistic 24.3 35.9 22.9 21.0 20.9 18.7 0.0 100
Heterogeneous 24.3 35.2 21.4 20.2 18.9 17.5 0.0 100
6 partitions 23.2 33.8 21.6 19.9 19.1 17.6 0.0 100
Vague priors 22.8 34.6 21.8 18.7 20.2 17.9 0.0 100
A/I ratio=5 26.7 35.0 24.5 22.0 21.5 20.5 0.0 100

Trial duration (months)
Log-logistic 26.9 23.9 26.2 25.3 26.6 25.9 26.3 6.7
Heterogeneous 26.9 24.0 26.2 25.3 26.4 26.0 26.4 6.8
6 partitions 26.7 23.8 26.3 25.5 26.5 26.1 26.4 6.5
Vague priors 26.8 24.1 26.2 25.6 26.3 26.1 26.0 6.4
A/I ratio=5 20.1 17.5 19.6 18.7 19.9 19.4 19.9 5.5


