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Rejoinder

Marco Scutari ˚

I would like to thank Hao Wang, Adrian Dobra, Christine Peterson and Francesco
Stingo for the insightful comments and critiques they contributed to the discussion.
The material contained in the paper originated in large part as the theoretical core of
my Ph.D. thesis (Scutari 2011), and served the purpose of improving my understanding
of the workings of prior and posterior distributions on graph structures as much as that
of exploring novel applications. As a result, and as the discussants have observed, the
paper provides a useful starting point for further developments while not focusing on
specific applications such as prior specification or the analysis of real-world data.

The discussants’ remarks highlight key strengths and limitations in the material, and
suggest several useful directions for future research. In the following, I will concentrate
on four topics that were touched on in all discussions: the development of new priors,
sampling random graphs from non-uniform distributions, the applications and interpre-
tation of the covariance matrix and the entropy of PpGpEqq and PpGpEq |Dq, and the
role of structure learning in graphical modelling.

1 Developing new prior distributions

In the paper much attention is devoted to the uniform prior and the maximum entropy
case. As remarked by Dobra, other choices are available in the literature that are more
flexible and tailored to real-world data. Additional examples inspired by genetics and
systems biology are presented, for instance, in Imoto et al. (2003), Werhli and Husmeier
(2007) and Mukherjee and Speed (2008). The reason for investigating the uniform prior
is two-fold. First of all, it is a limit case in terms of entropy and therefore it is useful
as a term of comparison along with maximum entropy distributions. Furthermore, the
uniform prior is a de facto standard for PpGpEqq in computer science and artificial
intelligence literature on Bayesian networks, to the point that sometimes its use is not
even mentioned explicitly but is implied by the fact that imaginary sample size is the
only hyperparameter.

Developing new priors using the second order moments of PpGpEqq (i.e. arc and edge
correlations) in addition to first order moments (i.e. arc and edge probabilities) presents
significant challenges due to the number of parameters involved. As the discussants
pointed out, achieving sparsity and addressing the need for multiplicity adjustment
while keeping hyperparameter specification simple is a difficult task. In my thesis, I
addressed a related problem, the regularisation of the covariance matrix of PpGpEq |Dq

with the shrinkage estimators from Ledoit and Wolf (2003) and Schäfer and Strimmer
(2005). Such estimators have a Bayesian interpretation and can be used to achieve
sparsity by shrinking diagpΣq and (in turn) edge and arc probabilities towards zero
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when the data does not support the corresponding dependence relationships. Clearly,
other approaches for sparse covariance matrix estimation (e.g. Cai et al. 2011) may be
used to the same effect.

2 Random graph sampling

The ability to sample efficiently from PpGpEqq and PpGpEq |Dq is crucial to investigate
the graphical properties of both Markov and Bayesian networks. In the case of Bayesian
networks, several Markov chain Monte Carlo approaches have been developed for uni-
form sampling with and without constraints (Melançon et al. 2000; Ide and Cozman
2002; Ide et al. 2004) and for posterior sampling (Friedman and Koller 2003). The
former can be adapted to include arbitrary structural constraints and unequal arc prob-
abilities by controlling the transition probabilities of arc inclusion, reversal and removal.
Unfortunately, mixing becomes increasingly slow as the number of nodes increases (be-
cause the dimension of the space of the graphs increases super-exponentially) and as
the sampling distribution moves away from maximum entropy (because the probability
mass is unevenly distributed, with sharp peaks and valleys).

As far as Markov networks are concerned, Dobra notes that sampling from the uniform
prior on the space of decomposable models is an open problem. It would be interesting
to investigate whether that could be solved by sampling from the space of the Bayesian
networks with some specific PpGpEqq and moralising the resulting DAGs.

3 Practical applications and interpretation

Peterson, Stingo and Wang observe (rightly) that practical interpretation and appli-
cations of the variability measures and the second order moments are not thoroughly
investigated in the paper. I hope that the geometrical representation of PpGpEqq and
PpGpEq |Dq on the space L of the eigenvalues of Σ will prove valuable in that respect.
Furthermore, I agree with the discussants that variability measures are not completely
intuitive to use as summary statistics, even though they can provide additional infor-
mation in parameter tuning and model selection when used in combination with other
criteria. Rather than considering the overall approach to be without merit, I believe
that better summary statistics could be derived from Σ using minimum and maximum
entropy as references.

4 Structure and parameter learning

In his discussion, Dobra argues that the split between structure and parameter learn-
ing has a potentially negative impact on modelling and inference, depending on the
parametric assumptions and the shape of PpGpEq |Dq. While this is true to a certain
extent, common operating practices in some settings emphasise structure learning over
parameter learning or skip parameter learning altogether.



M. Scutari 551

An example of such a workflow is the analysis in Sachs et al. (2005), which reconstructs
a causal protein signalling network with a very high accuracy. Structure learning was
performed using a mixture of observational and interventional discretised data. The
structure of the final Bayesian network was the result of model averaging over a set of
maximum a posteriori structures learned with simulated annealing initialised from the
maximum entropy distribution. In other words, both sampling and model averaging
were applied only to the network structure. Subsequent investigations on the signalling
pathways were then performed with additional, targeted experiments, not with param-
eter estimation and Bayesian network inference algorithms. This choice can be justified
by the fact that the authors’ main interest was in the presence or the absence of par-
ticular causal relationships, and because the data were discretised at the beginning of
the analysis, thus reducing the quality of quantitative inference results.

Another situation in which sampling from structure and parameter space at the same
time is problematic is when structure learning is not explicitly implemented within the
framework of Bayesian statistics. This is the case for many state-of-the-art learning
algorithms (e.g. the semi-interleaved Hiton-PC from Aliferis et al. 2010), which per-
form structure learning with frequentist or information theoretic criteria and parameter
learning with Bayesian posterior estimates.

In conclusion, while the approach to learning outlined by Dobra is certainly preferable
on theoretical grounds, I feel that investigating structure learning as a self-contained
part of graphical modelling is worthwhile and may be informative about the behaviour
of current practices in applied data analysis.
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