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Parameter Interpretation in Skewed Logistic
Regression with Random Intercept

Cristiano C. Santos*, Rosangela H. Loschi� and Reinaldo B. Arellano-Valle�

Abstract. This paper aims at providing the prior and posterior interpretations
for the parameters in the logistic regression model with random or cluster-level in-
tercept when univariate and multivariate classes of skew normal distributions are
assumed to model the random effects behavior. We obtain the prior distributions
for the odds ratio and their medians under skew normality for the random effects.
Original results related to linear combinations of skew-normal distributions are ob-
tained as a by-product and, in the univariate case, a new class of log-skew-normal
distribution is introduced. Robust results are obtained whenever a class of mul-
tivariate skew-normal distribution is assumed. We also evaluate the effect of the
misspecification of the random effects distributions in the odds ratio estimation.
We consider both simulated and the Teratogenic activity experiment datasets. The
latter was previously analysed in the literature. We concluded that the misspec-
ification of the random effects distribution yields poor odds ratios estimates and
that the median odds ratio is not necessarily the best measure of heterogeneity
among the clusters as suggested in the literature.

Keywords: Cluster, mixed models, random odds ratio, skew normal distribution

1 Introduction

Logistic regression has been the standard method to analyze binary response data which
occur in several fields of research. However, it fails to model binary data from clustered,
multi-level and longitudinal studies, for instance, because independence among the ob-
servations is assumed in its construction. Inspired by the theory of linear normal models,
random effects were included in the linear predictor of the logistic regression model in
order to allow for correlated responses (see Larsen et al. 2000; Diggle et al. 2002; Paulino
et al. 2005, for instance). The obtained model accounts for the covariance among the
measures in a relatively parsimonious way. Another important feature of random effect
models is their flexibility in representing the effect of important non-observed or latent
variables (Gibbons et al. 1994) as well as in accommodating outliers (Souza and Migon
2010), overdispersion (Schall 1991) and any degree of imbalance in longitudinal data
(Fitzmaurice et al. 2004).

Most research related to logistic regression with random effects (LRRE) or mixed
logistic regression have focused on the estimation of the parameters. Classical analysis
of correlated binary data is usually not straightforward. The difficulty in estimating
the parameters arises because the likelihood function involves multiple integrals with
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solutions that are frequently non-analytical even under the assumption of independent
and normally distributed random effects (Zeger and Karim 1991; Larsen et al. 2000;
Diggle et al. 2002; Larsen and Merlo 2005). Numerical approximations, such as the
ones considered by Breslow and Clayton (1993) and McCulloch and Searle (2001), are
therefore considered to solve the integrals. The non-normal case requires even more
work. According to Nelson et al. (2006) and Liu and Yu (2008), a transformation in the
joint (data and random effects) likelihood is needed in order to make possible the use
of the regular numerical approximations. An efficient expectation-maximization (EM)
algorithm for maximum likelihood estimation in nonlinear mixed model can be found
in Kuhn and Lavielle (2005).

The Bayesian paradigm provides a natural approach to inference in mixed models
(see Paulino et al. 2005, for instance). The random effects are treated as parameters
to be estimated. If the posterior distributions can not be obtained analytically, Markov
chain Monte Carlo (MCMC) methods can be used to approximate them. This easier way
of handling the inference problem under mixed models allows the use of more realistic
distributions for the random effects such as the Student-t or finite mixtures of normal
distributions as in Souza and Migon (2010) or the skew-normal and non-parametric
prior distributions as in Liu and Dey (2008). An empirical Bayes approach for LRRE
models is presented by Ten Have and Localio (1999).

Despite its great flexibility in modeling binary correlated data, LRRE does not
inherit the interpretational features of the standard logistic model (Larsen and Merlo
2005). Larsen et al. (2000) first consider parameter interpretation in the LRRE. Assum-
ing normally distributed random effects, Larsen et al. (2000) prove that the odds ratio
(OR) in LRRE will depend on the random effects. Thus, under the classical approach
considered in Larsen et al. (2000), the OR is a random quantity in a great number of
possible comparisons. Larsen et al. (2000) discuss different measures of heterogeneity
and suggest using the median (MOR) and the quantile intervals (IOR) of the odds ra-
tio distribution as the best alternatives. In addition, both measures (MOR and IOR)
have nice interpretations in terms of probability. In some cases, the MOR also allows
a simple interpretation in terms of the well-known odds ratio, that greatly facilitates
communication between the data analyst and the subject-matter researcher. The IOR
is not a classical confidence interval thus can not be used to make decisions about the
OR significance.

This paper focuses attention on the parameter interpretation in logistic regression
with random or cluster-level intercept. We assume independent and correlated random
effects considering, respectively, the univariate (Azzalini 1985) and the multivariate
(Azzalini and Dalla-Valle 1996) classes of skew-normal (SN) distributions to model the
random effects behavior. We extend some results in Larsen et al. (2000) by obtaining
the prior distributions of the odds ratio and their medians under skew normality for
the random effects. Some results related to the linear combination of SN random vari-
ables are also introduced and, in the univariate case, a new class of log-skew-normal
distribution is defined. From the Bayesian point of view, the results in Larsen et al.
(2000) are useful in the construction of more appropriate prior distributions for the
random effects since they provide a nice prior interpretation of the OR, conditionally
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on the fixed effects. Posterior interpretations for the OR as suggested in Martins-Filho
et al. (2010) are provided. Besides the posterior medians and modes, highest posterior
density (HPD) intervals for the OR are also obtained and with this a tool for testing
hypotheses about the OR is built. Alonso et al. (2008) and Litière et al. (2008) show
that, under maximum likelihood theory, the misspecification of the random effects dis-
tributions produces inconsistent estimators for the fixed effects (but the magnitude of
the bias is small) and severely affect the power and type I error rate. Since the OR
depends on both the fixed and random effects, it is also our goal to evaluate the impact
of the misspecification of the random effects distribution in the OR estimation. We
consider simulated datasets.

Biological, environmental and financial data are often skewed and heavy tailed. Such
behaviors are usually not well fitted by the normal distribution. The attractiveness of
using the SN family of distributions in these cases is its flexibility in fitting densities of
different shapes such as a perfectly symmetric distribution (like the normal distribution
when the skewness parameter is zero) or a distribution that reveals a strong degree of
asymmetry (like the half-normal distribution). In addition, the SN families of distribu-
tions preserve some nice properties of the normal family. Because of this, as a motiva-
tion, we reanalyze the dataset reported in Liu and Dey (2008) from a teratogenic activity
experiment which was performed to study the interaction between teratogenic activity
of the two niacin analogs 6-aminonicoti-namide(6AN) and 3-acetylpyridine(3AP). Liu
and Dey (2008) assumed a mixed logistic regression model with different prior speci-
fications for the random effects. They concluded that the skew-normal mixed logistic
model is better than the normal and the non-parametric ones. However, Liu and Dey
(2008) elicited a point mass probability prior for the skewness parameter. By doing
this, it is assumed that the random effects are necessarily all positive, or all negative
values.

This paper is organized as follows. Section 2 presents the LRRE in a general setting
and summarizes the results obtained by Larsen et al. (2000) for normal random effects.
Extensions of Larsen et al. (2000)’s results as well as the Bayesian approach for the
OR interpretation are obtained in Section 3 under skew-normally distributed random
effects. Section 4 discusses the posterior inference assuming independent and correlated
SN random effects. In Section 5, we evaluate the influence of the misspecification of the
random effects distributions in the OR as well as fixed and random effects estimates.
In Section 6 we consider an application to the teratogenic activity experiment analyzed
first by Liu and Dey (2008). We close the paper in Section 7 with some conclusions and
discussions about the limitations of the proposed models.

2 Odds ratio interpretation in logistic regression model
with random intercept

Following Larsen et al. (2000), suppose that the population is divided in k clusters and
that a sample of size ni is selected into the ith cluster. Let yij be the response variable
(yij is 1 if a success and 0 otherwise) for individual j in the cluster i, i = 1, . . . , k and
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j = 1, . . . , ni. Let xij = (1, xij1, xij2, ..., xijp)
t be the (p+1)× 1 vector of covariates for

the individual j in the ith cluster. Assume that X is the N × (p + 1) matrix with the

information related to the covariates for all N =
∑k

i=1 ni observed individuals.

Define γ = (γ1, ..., γk)
t ∈ Rk as the vector of random effects, where γi denotes the

random effect for the ith cluster. Let β = (β0, β1, β2, ..., βp)
t ∈ Rp+1 be the vector of

fixed effects. Denote by ηij = xt
ijβ+γi the linear predictor. Consequently, in the mixed

logistic regression, πij = P (yij = 1|β,γ,X) = exp {ηij}[1 + exp {ηij}]−1.

Assume that for a sample of N individuals it follows that, given β, γ and X, the

responses yij |β,γ,X
ind∼ Ber(πij). As a consequence, the likelihood function is

f(y|β,γ,X) =
k∏

i=1

ni∏
j=1

[
exp {ηij}

1 + exp {ηij}

]yij
[

1

1 + exp {ηij}

]1−yij

, (1)

where y = (y11, ..., y1n1 , ..., yk1, ..., yknk
)t.

In the usual logistic regression model, the fixed effects have an interpretation in terms
of the so-called odds ratio between the highest and the lowest risk individuals. That
interpretation makes the communication with researchers from other areas easy and
thus can help in the construction of more appropriate prior distributions for the fixed
effects. The interpretation of the fixed effects in the LRRE model was first discussed
by Larsen et al. (2000). Larsen et al. (2000) show that the odds ratio depends on both
the fixed and random effects and, consequently, several useful interpretations arise from
such a quantity. Reviewing Larsen et al. (2000)’s results, let j1 and j2 be two individuals
in the different clusters i1 and i2, respectively. The odds ratio becomes

ORi1j1,i2j2 = exp
{
(xt

i1j1 − xt
i2j2)β + γi1 − γi2

}
. (2)

If the comparison is between individuals in the same cluster - say, i1 = i2 = i - but
having different covariates, ORij1,ij2 = exp

{
(xt

ij1
− xt

ij2
)β
}
depends only on the fixed

effects and is exactly the same as for the usual logistic regression model. To quantify the
random effects, the comparison is done assuming that two individuals, j1 and j2, have
the same covariate vectors and are in different clusters; that is, the individual jk belongs
to cluster ik, k = 1, 2. In this case, the odds ratio depends on the random effects only
and is ORi1j1,i2j2 = exp {γi1 − γi2}. The odds ratio in (2) permits also the comparison
between the individuals with the highest risk in two different clusters, among others.

Under the classical approach for inference, the OR is a random quantity only when
the comparison depends on the random effects. Since it is random, Larsen et al. (2000)
propose to interpret the OR in terms of the median of its distribution. The so-called
median odds ratio is named here MOR. According to Larsen et al. (2000), the MOR
quantifies appropriately the heterogeneity among the different clusters. For the gen-
eral case, whenever we are comparing individuals with different covariates in different
clusters the median odds ratio is defined as

MORi1j1,i2j2 = med{exp
{
(xt

i1j1 − xt
i2j2)β + (γi1 − γi2) | β,X

}
}.
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It is important to recall that the distribution of γi1 − γi2 is symmetric around zero
under the assumption of independent and identically distributed (i.i.d.) random effects.
Therefore, independently of the clusters we are comparing, we have the same value
for the MOR when the individuals have the same covariates. To properly quantify-
ing the effect of clusters in these cases, Larsen et al. (2000) consider the median of
exp {|γi1 − γi2 |}, that is, the median odds ratio becomes

MORi1j1,i2j2 = med{exp {|γi1 − γi2 | | β,X}},

where |A| denotes the absolute value of A. To simplify the notation, through this
section let OR12 = ORi1j1,i2j2 and MOR12 = MORi1j1,i2j2 . Also, consider κ12 =
(xt

i1j1
− xt

i2j2
)β and W12 = γi1 − γi2 .

Larsen et al. (2000) show that if γ ∼ Nk(0,Σ), then W12 ∼ N(0, σ2
12), where σ

2
12

denotes the variance of W12. Consequently, the odds ratio in (2) can be rewritten as
OR12 = exp {κ12 +W12}. Thus the random variable OR12 has a lognormal distribu-
tion with location and scale parameters κ12 and σ2

12, respectively, and with probability
density function (p.d.f.) given by

fOR12|β,Σ(r) =
1√

2πrσ12
exp

{
− 1

2σ2
12

(ln r − κ12)2
}
, r ∈ R+, (3)

and theMOR12 is med{exp {κ12 +W12|β,Σ,X}} = exp {κ12}. This OR interpretation
was considered from the classical point of view and also provides a nice prior interpre-
tation for the OR, given the matrix X, the fixed effects β and the hyperparameters
for the prior of γ. From the Bayesian point of view, however, the OR is a random
quantity which depends on β and/or γ. Thus, in the next section, we propose to use
the posterior summaries of OR in order to interpret the fixed effects. We also extend
results in Larsen et al. (2000) by considering independent and correlated SN random
effects.

3 A Bayesian OR interpretation under skew normality

To simplify the inferential process in the logistic regression with random intercept,
the random effects are usually assumed to be independent with a common normal
distribution. Such an assumption, however, is questionable in some biological data as
shown in Liu and Dey (2008), for instance. In this section, we consider independent
(Azzalini 1985) and correlated (multivariate) (Azzalini and Dalla-Valle 1996) skew-
normal random effects. Both SN families include the normal one as a special case but,
differently from what is observed for the normal distribution, the independent case does
not follow straightforwardly from the multivariate case by assuming a diagonal scale
matrix. However, independence follows from the multivariate case if the scale matrix is
diagonal and there is only one non-null component in the vector of skewness parameters.

Throughout this paper denote by ϕn(y | µ,Σ) the p.d.f. associated with the mul-
tivariate Nn(µ,Σ) distribution, and by Φn(y | µ,Σ) the corresponding cumulative
distribution function (c.d.f.). If µ = 0 (respectively µ = 0 and Σ = In) these functions
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will be denoted by ϕn(y | Σ) and Φn(y | Σ) (respectively ϕn(y) and Φn(y)). For
simplicity, ϕ(y) and Φ(y) will be used in the univariate case.

3.1 Prior results for the OR - Independent case

Let us assume that, given σ2
i ∈ R+ and ξi, λi ∈ R, γi

ind.∼ SN(ξi, σ
2
i , λi) for i = 1, . . . , k,

that is, f(γi | ξi, σ2
i , λi) =

2
σi
ϕ
(

γi−ξi
σi

)
Φ
(
λi

γi−ξi
σi

)
, γi ∈ R.

As pointed out in (2), the OR12 depends on the random effects through the random
variable W12 = γi1 − γi2 . Thus, in order to obtain the distribution of OR12, we need
first to find the distribution of linear combinations of independent SN random variables.
As before, let OR12 = exp{κ12 +W12}, where κ12 = (xt

i1j1
− xt

i2j2
)β. Also, let δi =

λi[1 + λ2i ]
−1/2. It follows from Proposition 3 in Appendix A that W12 has the unified

skew-normal (SUN) p.d.f. given by

fW12|ξ,Λ,Ω∗
12
(w) = 4ϕ(w | ξi1 − ξi2 , σ2

i1 + σ2
i2) (4)

×Φ2

(
w − ξi1 + ξi2
σ2
i1
+ σ2

i2

ϵ|I2 −
ϵϵt

σ2
i1
+ σ2

i2

)
,

where ϵ = (σi1δi1 ,−σi2δi2)t. The distribution in (4) is denoted by W12 ∼ SUN1,2(ξi1 −

ξi2 ,0, [σ
2
i1
+ σ2

i2
]1/2,Ω∗

12) where Ω∗
12 =

(
I2 Γt

12

Γ12 1

)
and Γ12 = [σ2

i1
+ σ2

i2
]−1/2ϵt. The

SUN family of distributions was introduced by Arellano-Valle and Azzalini (2006) and
its definition is in Appendix A.

The next proposition provides the prior distribution for the OR12 and its median,
given the hyperparameters θ12 = (ξi1 , σ

2
i1
, λi1 , ξi2 , σ

2
i2
, λi2)

t and the fixed effects β.

Proposition 1. If γil
ind∼ SN(ξil , σ

2
il
, λil), l = 1, 2, then, given the fixed effects β and

the hyperparameters θ12 = (ξi1 , σ
2
i1
, λi1 , ξi2 , σ

2
i2
, λi2)

t, it follows that

(i) the prior distribution for the OR12 is the log-skew-normal distribution with p.d.f.

fOR12|β,θ12
(r) =

4

r
ϕ(ln r|κ12 + ξi1 − ξi2 , σ2

i1 + σ2
i2) (5)

×Φ2

(
ln r

σ2
i1
+ σ2

i2

ϵ|κ12 + ξi1 − ξi2
σ2
i1
+ σ2

i2

ϵ, I2 −
Ω12

σ2
i1
+ σ2

i2

)
,

for r ∈ R+, where Ω12 =

(
σ2
i1
δ2i1 −σi1σi2δi1δi2

−σi1σi2δi1δi2 σ2
i2
δ2i2

)
;

(ii) the median odds ratio is given by

MOR12 = exp {κ12} exp
{
Φ−1

SUN1,2

(
0.5|ξi1 − ξi2 ,0, [σ2

i1 + σ2
i2 ]

1/2,Ω∗
12

)}
, (6)

where ΦSUN1,2 denotes the c.d.f of the SUN p.d.f. given in (4).
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The proof of Proposition 1 is straightforward from Proposition 3 and some well-
known results of probability calculus. Thus it will be omitted.

To reduce the number of parameters to be estimated, a common practice in mixed

model is to assume i.i.d. random effects. If we assume that, given β, σ2 and λ, γil
iid∼

SN(ξ, σ2, λ), then a priori the random quantity OR12 has log-skew-normal distribution
with p.d.f.

fOR12|β,θ12
(r) =

4

r
ϕ(ln r|κ12, 2σ2)

×Φ2

(
δ ln r

2σ

(
1
−1

)
|δκ12
2σ

(
1
−1

)
, I2 −

δ2

2

(
1 −1
−1 1

))
, (7)

for r ∈ R+, where 1k is the k× 1 vector of ones. By assuming i.i.d. random effects we

have that W12 ∼ SUN1,2

(
0,0, (2σ2)1/2,

(
I2

δ(1,−1)t√
2

δ(1,−1)√
2

1

))
which is symmetric

around zero (see Figure 1). Consequently, the median of the distribution in (7) is

MOR12 = exp {κ12}. (8)

Results in (7) and (8) still follow if we consider γl
iid∼ SN(0, σ2, λ). Figure 1 presents

the p.d.f of W12 and OR in the i.i.d case for different values of λ and assuming σ2 = 1
and κ12 = 0. Positive and negative values of λ provide the same density. We also notice
that by eliciting high values for |λ|, the OR tends to be higher than assumed in Larsen
et al. (2000)’s model.

Figure 1 shows that the normal distribution (λ = 0) for the random effects re-
veals that, most probably, the odds ratio to compare two individuals with the same
characteristics but that are in different clusters is up to 1. However, normality is not a
reasonable assumption for the random effects, if the prior opinion of the expert discloses
that OR > 0.5 with high probability. To obtain a better fit, in this case, appropriate
prior distributions of OR must have heavier tails than that induced by the assumption of
normality for the random effects. From Figure 1, we notice that we reach this proposal
if a priori we assume, for instance, that γi ∼ SN(0, 1,−8.5).

It is noteworthy from (8) that by assuming i.i.d. SN random effects the prior in-
terpretation of the fixed effects through the MOR will not depend on the clusters the
individuals are in. That is not observed if the random effects are not identically dis-
tributed. A similar result was obtained by Larsen et al. (2000) in a more general setting
where the random effects can have different normal distributions.

The distributions of OR12 given in (5) and (7) belong to a class of log-skew-normal
distributions different from and with heavier tails than the log-skew-normal class in-
troduced by Marchenko and Genton (2010). In the class of distributions defined in
Marchenko and Genton (2010), the skewing function is the c.d.f of a univariate normal
distribution while in (7) the skewing function is the c.d.f of a bivariate normal distri-
bution. The distribution in (7) is obtained by skewing the distribution in (3) and we
return to Larsen et al. (2000)’s results if we let λ = 0 in (7).



388 Parameter Interpretation in Skewed Logistic Regression

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

r

D
en

si
ty

−
W

_1
2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

r

D
en

si
ty

−
O

R
Figure 1: Prior distribution of W12 (left) and OR (right) for the independent case,
σ2 = 1, κ12 = 0 and λ = −8.5 (solid line), −2 (+), −1 (dashed line), −0.5 (dotdashed
line), 0 (•, Larsen et al. (2000)’s model).

3.2 Prior results for the OR - Correlated case

Assume that, given ξ, Ω and α, γ ∼ SNk(ξ,Ω,α) with density

f(γ | ξ,Ω,α) = 2ϕk (γ | ξ,Ω) Φ
(
αtω−1(γ − ξ)

)
, γ ∈ Rk, (9)

where ξ = (ξ1, . . . , ξk)
t ∈ Rk is the location vector, α = (α1, . . . , αk)

t ∈ Rk is the
vector of skewness parameters, Ω is a k × k positive definite covariance matrix and
ω = diag{σ1, . . . , σk} is a diagonal matrix formed by the square root of elements in the
diagonal of Ω and is such that Ω = ωΩ̄ω where Ω̄ is a correlation matrix.

In order to obtain the distribution of the random quantity OR12, the distribution of
linear combinations of the random effects is needed. As in the previous section, it is of
particular interest to find the distribution of W12 = γi1 − γi2 . If γ ∼ SNk(ξ,Ω,α) with
p.d.f given in (9), it follows from Proposition 4 in Appendix A that

W12 ∼ SN(ξi1 − ξi2 , σ2
i1 + σ2

i2 − 2σi1i2 , λ
∗
12), (10)

where σ2
l = σll, σlm is the (l,m)th entry of Ω, αl is the lth coordinate of α and

λ∗12 =

∑k
l=1

αl
σl

[σi1l−σi2l][(
1+

∑k
l,m=1

αmαlσlm
σlσm

)
(σ2

i1
+σ2

i2
−2σi1i2)−

(∑k
l=1

αl
σl

[σi1l−σi2l]
)2

]1/2 .

Simpler structures for the matrix Ω can be assumed and hence more parsimonious
models are built. Also, depending on the structure assumed for Ω, we preserve the
interpretation of the odds ratio obtained under normality. This invariance occurs when
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in (10) the distribution of W12 is normal, i.e., for λ∗12 = 0. For instance, consider in (9)
that Ω = diag(σ2

1 , . . . , σ
2
k), σ

2
i ∈ R+. For any vector c ∈ Rk that is orthogonal to the

vector Ωω−1α, say, such that
∑k

i=1 αiσici = 0, we have that

ctγ ∼ N

(
k∑

i=1

ξici,
k∑

i=1

c2iσ
2
i

)
, (11)

which is equivalent to the result obtained under the assumption of independent and
normally distributed random effects.

A natural choice is to consider σ2
i = σ2 for all i. If

∑k
i=1 αici ̸= 0 and Ω = σ2Ik,

the distribution for ctγ is

ctγ ∼ SN

(
k∑

i=1

ξici, σ
2

k∑
i=1

c2i , λ
∗

)
, (12)

where λ∗ = [
∑k

i=1 αici][(1 +
∑k

i=1 α
2
i )(
∑k

i=1 c
2
i ) − (

∑k
i=1 αici)

2]−1/2. Under this par-
ticular structure for Ω, we have two interesting results related to the distribution of
W12. If α discloses different degree of skewness through the clusters, it follows that
W12 ∼ SN(ξi1 − ξi2 , 2σ2, [αi1 − αi2 ][2(1 +

∑k
i=1 α

2
i ) − (αi1 − αi2)

2]−1/2). However, we
return to normality if we assume α = α1k, for α ∈ R, that is, if γ ∼ SNk(ξ, σ

2Ik, α1k).
In this case, we have that W12 ∼ N(ξi1 − ξi2 , 2σ2).

Therefore the results established in Larsen et al. (2000) for the OR12 and MOR12

also follow if γ ∼ SNk(ξ, σ
2Ik, α1k) and under the conditions that lead to the result

in (11). In all these cases, the OR12 has the same log-normal distribution we observed
for normal random effects given in (3). In Proposition 2, we provide the distribution of
OR12 and its median for the general case.

Proposition 2. If the random effects γ ∼ SNk(ξ,Ω,α) with p.d.f given in (9) then,
given β, Ω and α, it follows that:

(i) the random variable OR12 = exp{κ12 +W12} has p.d.f.

fOR12|β,α,Ω(r) =
2

r
ϕ
(
ln r | (κ12 + ξi1 − ξi2), σ∗2)

×Φ
(
λ∗12 (ln r − (κ12 + ξi1 − ξi2))

σ∗

)
, (13)

r ∈ R+, where σ
∗2 = σ2

i1
+ σ2

i2
− 2σi1i2 and λ∗12 is as defined in (10), and

(ii) the median of the distribution in (13) is

MOR12 = med{exp{κ12 +W12} | β,α,Ω}
= exp{κ12} exp{Φ−1

SN (0.5)σ∗ + ξi1 − ξi2}, (14)

where ΦSN (.) denotes the c.d.f of the standard SN distribution with skewness pa-
rameter λ∗12 given in (10).
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(iii) if ξi1 − ξi2 = 0 it follows that

(1) med{exp{|W12|} | β,α,Ω} = exp{med{|W12| | β,α,Ω}} = exp{σ∗Φ−1(0.75)}
(2) med{exp{−|W12|} | β,α,Ω} = [med{exp{|W12|} | β,α,Ω}]−1.

The proof of Proposition 2 is omitted. It follows from Proposition 1.6.1 in Dalla-Valle
(2004) and some well-known results of probability calculus.

In particular, assume that γ ∼ SNk(ξ, σ
2Ik,α), where as before we have ξ =

(ξ1, . . . , ξk)
t and α = (α1, . . . , αk)

t. Consequently, given β, σ2 and α, the random
variable OR12 has p.d.f

fOR12|β,α,σ2(r) =

√
2

σr
ϕ

(
1√
2σ

(ln r − (κ12 + ξi1 − ξi2))
)

Φ

(
λ∗12√
2σ

(ln r − (κ12 + ξi1 − ξi2))
)
, r ∈ R+, (15)

with median given by

MOR12 = exp{κ12} exp{Φ−1
SN (0.5)

√
2σ + ξi1 − ξi2}, (16)

where λ∗12 = [αi1 − αi2 ][2(1 +
∑k

i=1 α
2
i )− (αi1 − αi2)

2]−1/2.

Figure 2 shows the p.d.f. of both W12 and OR12 when we assume two individuals
with the same values for the covariates (κ12 = 0), σ2 = 1 and αi2 = 0 and −5. Different
values of αi1 are considered. If the prior opinion of an expert reveals that OR12 is,
most probably, higher than one, from Figure 2 we perceive that the normal distribution
(αi1 = αi2 = 0) will not be an appropriate choice to describe the uncertainty about
the random effects. In this case, the multivariate SN distribution with αi1 = 5 and
αi2 = −5 yields a better description of her/his opinion.

The distributions in (13) and (15) belong to the log-skew-elliptical class of distri-
butions introduced by Marchenko and Genton (2010). As for the independent case,
the MOR12 depends on the fixed effects through exp{κ12} which is the odds ratio if
the random effects are not included in the model. Moreover, in both cases, exp{κ12}
is multiplied by a term which depends on the c.d.f. of some SN distribution. If for
the multivariate case in (16), the skewness parameter for the cluster i2 is αi2 = 0 and
for the cluster i1 we have a strong degree of skewness (αi1 → ∞), then the MOR12 is
higher than that observed for normal random effects. On the other hand, if αi1 = 0 and
αi2 →∞, then the MOR12 is smaller than that observed for the normal case. Figure 3
shows the behavior of MOR12×αi1 for κ12 = 0 and σ = 1 assuming different values for
the skewness parameter in the cluster i2. For simplicity, in Figures 2 and 3 we assume
αij = 0 for all j except for j = 1, 2.
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Figure 2: Prior distribution ofW12 (left) and OR (right) for the dependent case, αi2 = 0
(top) and −5 (bottom), σ2 = 1, κ12 = 0 and αi1 = 0 (solid line), −5 (+), −2 (dashed
line), 2 (dotdashed line), 5 (•).
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Figure 3: MOR12 × αi1 , for αi2 = −5 (+), αi2 = −2 (dashed line), αi2 = 0 (solid line),
αi2 = 2 (dotdashed line), αi2 = 5 (•).
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3.3 Posterior Odds Ratio

The OR is a random quantity which depends on both the parameters β and the random
effects γ. Due to the complexity of the posterior distribution in the LRRE, it is a
hard task to analytically obtain the posterior distribution of OR. On the other hand,
computational approaches such as MCMC methods provide good approximations for
the posterior distributions. Thus, we can approximate the posterior of OR12 as follows:

Step 1: Generate a sample (βl,γl) from the posterior distribution;

Step 2: Compute OR12
l = exp{(xi1j1 − xi2j2)

tβl + γli1 − γ
l
i2
}.

Steps 1 and 2 must be repeated until convergence has been attained for all parameters
and we obtain samples of the posterior distributions of reasonable sizes. The expression
in Step 2 is changed according to the specific interest of the researchers. One advantage
of such an approach is that the posterior summaries of OR, such as the median, mode,
and mean as well as the HPD intervals, are easily obtained (Martins-Filho et al. 2010).
The posterior modal odds ratio is an appealing estimator of the OR since it is in the
highest density region. Thus, informally speaking, we can conclude that when comparing
two subjects of two randomly selected clusters, the odds ratio will be, most probably,
the modal odds ratio. Median and HPD intervals also have natural interpretations in
terms of probability and they are similar to the ones proposed by Larsen et al. (2000) for
the MOR and IOR, respectively. However, using the posterior of OR we can perform
hypothesis tests about OR using the HPD intervals. In this case, our main interest
relies in testing the null hypothesis H0 : OR12 = 1 which will be accepted if the value
one is in the HPD interval. Performing such a test there is a gain in the analysis since
we can take into consideration only comparisons that are shown to be significant.

4 Bayesian inference in logistic regression models with
random intercept

From the Bayesian point of view, inference for mixed models is simpler since the random
effects γ = (γ1, . . . , γk)

t, γi ∈ Rk, are considered as unknown quantities to be estimated.

Assume the likelihood in (1). To complete the model specification, we should elicit
prior distributions for the parameters β and γ. We consider two different hierar-
chical models. We assume first i.i.d random effects with univariate SN distribution,

say, γ1, . . . , γk
iid∼ SN(−δσ

√
2/π, σ2, λ), given σ2 and λ, where δ = λ[1 + λ2]−1/2.

We also consider skewed correlated random effects such that, given σ2 and α, γ ∼
SN(−∆σ

√
2/π1k, σ

2Ik, α1k) where ∆ = α[1 + kα2]−1/2. In both models, we center
the SN distributions on zero to avoid nonidentifiability. As prior distributions for the
fixed effects we assume β ∼ Np+1(m, b2Ip+1), and for the hyperparameters we consider
σ2 ∼ IG(a, d), λ ∼ SN(h, τ2, θ) (Azzalini 1985) and α ∼ N(h, τ2), where m ∈ Rp+1,
h, θ ∈ R, and τ2, b2, a and d are real positive numbers. IG(a, d) denotes the inverted
gamma distribution with E(σ2) = d(a− 1)−1 and V(σ2) = d[(a− 1)2(a− 2)]−1.
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Let D = (y,X). As a consequence of the previous assumptions, for the i.i.d. case
the joint posterior distribution of (β,γ, σ2, λ) is

f(β,γ, σ2, λ|D) ∝

 k∏
i=1

ni∏
j=1

(πij)
yij (1− πij)1−yij

( 1

σ2

)(d+2)/2(
1

τ2

)1/2

× exp

{
− a

2σ2
− (β −m)t(β −m)

2b2
− (λ− h)2

2τ2

}

× exp

{
−
(γ + δσ

√
2/π1k)

t(γ + δσ
√
2/π1k)

2σ2

}

×Φk

λ
(
γ + 1kδσ

√
2
π

)
σ

Φ

(
θ(λ− h)

τ

)
. (17)

The posterior distribution in (17) has no closed form. An MCMC scheme will be
considered to sample from it. To obtain the posterior full conditional distributions
(f.c.d.) of the random effects, we consider Henze’s stochastic representation for the
univariate SN distribution. This well-known result establishes that, if Ti ∼ SN(λ) then

Ti
d
= δ|Ui|+(1−δ2)1/2Vi, where Ui and Vi are i.i.d. random variables with the standard

normal distribution. For simplicity, let ψi = |Ui|. Since γi ∼ SN(−δσ
√
2/π, σ2, λ),

given σ2 and λ, it follows that γi
d
= δσ

(
ψi −

√
2/π

)
+ σ

(
1− δ2

) 1
2 Vi. Similarly, if

λ ∼ SN(h, τ2, θ) we obtain that, given h, τ2 and θ, λ
d
= h + θτ√

1+θ2
M3 + τ√

1+θ2
M2,

where M1
d
= M2 ∼ N(0, 1) and M3 = |M1|. Assuming such transformations, the
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posterior f.c.d. are

f(β|D,γ, σ2,ψ, λ) ∝

 k∏
i=1

ni∏
j=1

[
exp {ηij}

1 + exp {ηij}

]yij
[

1

1 + exp {ηij}

]1−yij


× exp

{
− (β −m)t(β −m)

2b2

}
,

f(γ|D,β, σ2,ψ, λ) ∝

 k∏
i=1

ni∏
j=1

[
exp {ηij}

1 + exp {ηij}

]yij
[

1

1 + exp {ηij}

]1−yij


× exp

−
∑n

i=1

(
γi − σδ(ψi −

√
2/π)

)2
2σ2(1− δ2)

,

f(ψ|D,β,γ, σ2, λ) ∝
k∏

i=1

exp

−
(
ψi − (γi + σδ

√
2/π) δσ

)2
2(1− δ2)

1(0,∞)(ψi),

f(σ2|D,β,γ,ψ, λ) ∝
(

1

σ2

) k
2+a+1

exp

−
∑n

i=1

(
γi − σδ(ψi −

√
2/π)

)2
2σ2(1− δ2)

− d

σ2

,

f(λ|D,β,γ, σ2,ψ,M3) ∝ (1 + λ2)
k
2 exp

− (1 + λ2)

2σ2

n∑
i=1

(
γi −

λσ(ψi −
√

2/π)√
1 + λ2

)2
,

× exp

−
(1 + θ2)

(
λ−

(
θτM3√
1+θ2

+ h
))2

2τ2

,
f(M3|D,β,γ, σ2,ψ, λ) ∝ exp

{
− (1 + θ2)

2

(
M3 −

θ√
1 + θ2

(λ− h)
τ

)2
}
1[0,∞){M3},

where 1A{x} is the indicator function assuming 1 if x ∈ A. Notice that the posterior full
conditional distribution for each component ψi of ψ is the normal distribution truncated
below zero, with mean (γi + σδ

√
2/π)δ(σ)−1 and variance 1− δ2.

For the dependent case, we also have that the posterior distribution has no closed
form. In this case, it is given by
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f(β,γ, σ2, α|D) ∝

 k∏
i=1

ni∏
j=1

(πij)
yij (1− πij)1−yij

( 1

σ2

) k+2a+2
2

exp

{
− d

σ2

}

× exp

−
p∑

i=0

(βi −mi)
2

2b2
−

k∑
i=1

(
γi +∆σ

√
2
π

)2
2σ2

− (α− h)2

2τ2


×Φ

(
α

σ

k∑
i=1

(
γi +∆σ

√
2

π

))
.

To obtain the posterior f.c.d. we also consider the stochastic representation for a
multivariate SN distribution (Azzalini and Dalla-Valle 1996) which establishes that if

γ ∼ SNk(0k, Ik, α1k) then γ
d
= ∆|U | + V, where U ∼ N(0, 1) and V ∼ Nk(0k, Ik −(

1 + kα2
)−1

α21k1
t
k). Let us assume T = |U |. Consequently, if γ ∼ SNk(−∆σ

√
2/π,

σ2Ik, 1kα), then γ
d
= ∆σ

(
T −

√
2/π

)
+ σV. Let F = σ

(
T −

√
2/π

)
. The posterior

f.c.d. are thus given by

f(γ|D,β, σ2, T, α) ∝

 k∏
i=1

ni∏
j=1

[
exp {ηij}

1 + exp {ηij}

]yij
[

1

1 + exp {ηij}

]1−yij


× exp

{
− 1

2σ2
[γ −∆F]

′
[
Ik +

∆2

1− k∆2
1k1

′
k

]
[γ −∆F]

}
,

f(T |D,β,γ, σ2, α) ∝ exp

−
[
T 2 − 2T

(
∆
σ

∑k
i=1 γi + k∆2

√
2/π

)]
2(1− k∆2)

1(0,∞)(T ),

f(α|D,β,γ, σ2, T ) ∝ (1 + kα2)
1
2 exp

{
− (α− h)2

2τ2
− 1

2σ2
A′ [Ik + α21k1

′
k

]
A

}
,

f(σ2|D,β,γ, T, α) ∝
(

1

σ2

) k
2+a+1

exp

{
− d

σ2

}
× exp

{
− 1

2σ2
[γ −∆F]

′
[
Ik +

∆2

1− k∆2
1k1

′
k

]
[γ −∆F]

}
,

where A = γ − αF√
1+kα2

1k.

The posterior f.c.d. for β is as that obtained in the independent case, previously
discussed. In both cases considered here, the posterior f.c.d. for β and γ are log-concave
and the adaptive rejection sampling (ARS) algorithm can be used to generate from
their posteriors. The rejection method and the adaptive rejection Metropolis sampling



396 Parameter Interpretation in Skewed Logistic Regression

(ARMS) algorithm are also used to sample from the other posterior distributions. For
details of these algorithms, see Gilks et al. (1995) and Gilks and Wild (1992) for instance.

Remark: If γ ∼ SNk(0, σ
2Ik, α1k), then any r× 1 sub-vector of γ has an r-variate

SNr(0, σ
2Ir, α

∗1r) distribution, where α∗ = α[1 + α2(k − r)]−1/2. Consequently, the
marginal distribution of any γi tends to a normal distribution if there is a high number
of clusters. Moreover, the degree of skewness in the marginal distribution belongs to the
interval (−[k−1]−1/2; [k−1]−1/2). For any two components γl and γj of γ, it also follows
that Corr(γl, γj) = −2(α∗)2[π+2(α∗)2(π−2)]−1, where α∗ = α[1+α2(k− r)]−1/2. See
details in Azzalini and Dalla-Valle (1996).

5 Simulation studies

In this section, we have as the main goal to evaluate the effect of the misspecification of
the random effects distributions in the posterior odds ratio. We generate four datasets
from mixed logistic regression models. We consider 25 clusters as well as two covariates
and their interaction. The datasets (Data 1, Data 2, Data 3 and Data 4) are in Appendix
B. The difference among the datasets lies in the distribution used to generate the random
effects. For Data 1 and Data 2, the random effects were generated from i.i.d. normal
distributions, centered around zero and with variance 1 and 4, respectively. For Data
3 and Data 4, we assumed i.i.d. skew-normal distributions which put most of their
mass in positive values, that is the random effects are positive values with very high

probability. We assume γ
ind∼ SN(−1.32, 2.75, 35) and γ

ind∼ SN(−2.64, 10.99, 35) for
datasets 3 and 4, respectively. For comparison proposal, such skew-normal distributions
have both mean equal to zero and variance equal to 1, for Data 3, and 4, for Data 4.

We also fit four different models by assuming different prior distributions for the
random effects. For simplicity, we assume only i.i.d. distributions for the random

effects. In Model 1 we consider that γi
iid∼ N(0, σ2). Models 2, 3 and 4 assume that

γi
iid∼ SN(−δσ

√
2/π, σ2, λ). However, we assume different prior specifications for the

skewness parameter: λ ∼ N(0, 1000), in Model 2, λ ∼ SN(0, 2578.21, 5), in Model 3,
and in Model 4 we consider λ ∼ SN(0, 2751.46, 100). In all cases the prior variance
for λ is 1,000. Moreover, the prior distributions for λ in Models 3 and 4 put most
of their mass in positive values. The prior mode and mean for λ in Model 3 (Model
4) are 18.81 (1.96) and 39.73 (41.85), respectively. In our analysis, we also assume
few informative prior distributions for the fixed effects (βi ∼ N(0, 10), i = 0, . . . , 3)
and for σ2 (σ2 ∼ IG(2.001, 1)). Consequently, a priori, we have that E(σ2) = 1 and
V (σ2) = 1, 000.

For the MCMC, we ran a chain of size 30,000 (50,000) for the normal (skew-normal)
cases, discarded the first 20,000 samples as the burn-in period and used a lag of 10 (30)
steps to avoid serial correlation obtaining a sample of size 1,000. The algorithm was
implemented using the Ox software.

Although the deviance information criterion (DIC) and the conditional predictive
ordinate (CPO) in Table 1 point out that Model 1 must be preferred for Data 1 and Data
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2 and Models 2 and 3 are the best for Data 4 and Data 3, respectively, such measures do
not provide substantial evidence to support any of these models. Moreover, we observe
from Table 2 that the posterior point estimates for the fixed effects and for σ2 do not
substantially differ. On the other hand, the posterior HPD interval proves to be a good
auxiliary tool for model selection. For all parameters, the posterior 95% HPD intervals
disclose that the posterior uncertainty about the parameters is smaller than a priori.
Moreover, if the random effects distribution is not well specified, the magnitude of the
HPD intervals for the fixed effects and σ2 tends to be high. The skewness parameter is in
general poorly estimated mainly if we have a strong degree of asymmetry in the random
effects. The posterior 95% HPD intervals reveal that the posterior uncertainty about λ
is still very high. It is also noticeable that, for almost all cases, λ is not significantly
different from zero, exceptions occur for Data 3, under Models 3 and 4, and for Data
4 under Model 4. The mean square error (MSE) presented in Table 1 shows that the

Table 1: Model comparison

MSE for γ
Model Mean Median Mode CPO DIC

Data 1
1 3.05 2.95 2.98 -1631.84 3263.18
2 2.78 2.93 3.73 -1632.14 3263.91
3 3.61 3.85 4.86 -1632.17 3263.89
4 3.83 3.83 4.09 -1631.82 3263.21

Data 2
1 12.69 12.30 12.456 -1402.09 2803.93
2 20.13 19.66 19.12 -1402.46 2804.41
3 14.22 14.67 15.72 -1402.57 2804.86
4 13.35 13.26 14.43 -1402.77 2804.98

Data 3
1 5.03 5.12 5.30 -1568.09 3136.27
2 3.53 3.41 3.37 -1567.46 3135.01
3 3.17 3.01 3.12 -1566.81 3133.63
4 3.35 3.33 3.56 -1567.81 3135.63

Data 4
1 16.30 16.76 18.79 -1527.95 3056.05
2 12.01 11.40 11.30 -1526.32 3052.88
3 9.92 9.77 9.38 -1526.37 3053.15
4 10.26 10.68 11.74 -1526.61 3053.60

misspecification of the random effects distributions provide poor posterior estimates for
the random effects (see also Figure 4) and, because the OR depends on the γs, for the
odds ratio as well (see Table 3). Figure 4 shows the plug-in estimates for the p.d.f. of
the random effects assuming the posterior means (column 1), medians (column 2) and
modes (column 3) for all models and datasets. The graphics in line k correspond to
the estimates for Data k, k = 1, . . . , 4. It is noticeable from column 3 that, using the
posterior modes, all models provide good approximations for the true density for Data
1 and Data 2. That is an expected result since the skew-normal family of distributions
includes the normal one as a particular case. However, that is not necessarily observed
for the plug-in estimates using the posterior means and medians. Using the posterior
means, for instance, Models 3 and 4 for Data 1 and Model 2, for Data 2, point out
great degrees of skewness for the random effects distributions. For Data 3 and Data
4, Model 1 works poorly (which is expected, since the normal distribution does not



capture asymmetric behavior). The plug-in estimates under Models 2, 3 and 4 using
the posterior mean and median tend to be closer to the true density than the ones
obtained using the posterior mode.

Table 3 presents some posterior summaries of the odds ratios that compare indi-
viduals in different clusters with the same covariates (OR1, OR2 and OR3) as well as
with different covariates (OR4, OR5 and OR6). The posterior estimates for the OR
can truly differ from one model to another. The posterior distribution for the OR can
be strongly asymmetric since the posterior summaries for its distribution can be quite
far from each other (e.g., for the OR6 in Data 2). Contrary to what is suggested by
Larsen et al. (2000), the median of the OR distribution does not necessarily provide
the best estimate for the OR. If we have strong variation between clusters the poste-
rior means tend to provide better estimates for the OR, if there is strong asymmetry
between clusters (Data 4). However if we have symmetry between clusters (Data 2),
the posterior means (medians) provide better estimates for individual with the same
(different) covariates. For datasets with weak variation between clusters (Data 1 and
3), the posterior median usually is not the best estimator for the OR. In these cases,
the posterior means and modes tend to provide better estimates. If we have no (strong)
asymmetry between clusters the posterior modes (means) of the OR tend to be better
if we are comparing individuals with the same covariates.
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Table 2: Posterior estimates for β, σ2 and λ, all models and datasets

True Mean Median Mode HPD True Mean Median Mode HPD
Data 1 Data 2
Model 1 Model 1

β0 -0.10 -0.15 -0.15 -0.17 [-0.52,0.35] -0.10 -0.12 -0.12 -0.06 [-0.87,0.68]
β1 1.16 1.32 1.32 1.36 [0.86,1.73] 1.16 1.17 1.17 1.10 [0.26,2.00]
β2 0.48 0.32 0.32 0.34 [-0.14,0.76] 0.48 0.96 0.96 0.94 [-0.05,2.09]
β3 -0.78 -0.76 -0.77 -0.80 [-1.26,-0.32] -0.78 -1.29 -1.27 -1.25 [-2.27,-0.49]

V (γ) 1 1.11 1.04 0.95 [0.54,1.76] 4 4.31 4.01 3.60 [1.79,7.38]
Model 2 Model 2

β0 -0.10 -0.17 -0.18 -0.19 [-0.58,0.29] -0.10 -0.24 -0.23 -0.22 [-1.11,0.58]
β1 1.16 1.32 1.33 1.34 [0.84,1.83] 1.16 1.02 1.00 0.90 [0.15,1.82]
β2 0.48 0.36 0.36 0.39 [-0.10,0.82] 0.48 1.06 1.04 0.99 [0.14,2.11]
β3 -0.78 -0.74 -0.74 -0.77 [-1.31,-0.28] -0.78 -1.34 -1.34 -1.17 [-2.38,-0.40]
λ 0 0.48 0.33 0.19 [-52.41,39.83] 0 -9.95 -2.26 -0.70 [-43.10,3.08]

V (γ) 1 1.22 1.15 1.06 [0.55,2.07] 4 4.87 4.50 3.62 [2.35,8.79]
Model 3 Model 3

β0 -0.1 -0.22 -0.23 -0.22 [-0.72,0.24] -0.10 -0.26 -0.27 -0.21 [-1.07,0.46]
β1 1.16 1.30 1.30 1.25 [0.84,1.71] 1.16 1.11 1.10 1.04 [0.33,2.15]
β2 0.48 0.28 0.26 0.19 [-0.08,0.73] 0.48 1.00 0.99 0.94 [0.18,1.86]
β3 -0.78 -0.70 -0.69 -0.67 [-1.23,-0.21] -0.78 -1.28 -1.27 -1.17 [-2.15,-0.32]
λ 0 16.97 4.03 1.12 [-7.25,74.12] 0 -0.53 -0.54 -0.06 [-12.80,3.35]

V (γ) 1 1.23 1.14 1.01 [0.50,2.07] 4 4.59 4.28 3.75 [1.93,8.05]
Model 4 Model 4

β0 -0.10 -0.20 -0.20 -0.19 [-0.68,0.22] -0.10 -0.28 -0.28 -0.43 [-1.11,0.48]
β1 1.16 1.32 1.33 1.33 [0.84,1.78] 1.16 1.16 1.14 1.17 [0.36,2.01]
β2 0.48 0.28 0.27 0.24 [-0.12,0.79] 0.48 0.95 0.94 0.86 [0.10,1.78]
β3 -0.78 -0.69 -0.68 -0.68 [-1.13,-0.18] -0.78 -1.39 -1.35 -1.28 [-2.42,-0.55]
λ 0 3.37 1.70 0.84 [-0.94,14.21] 0 0.74 0.57 0.45 [-0.76,2.63]

V (γ) 1 1.17 1.09 0.98 [0.52,1.99] 4 4.37 4.08 3.62 [2.08,7.34]
Data 3 Data 4
Model 1 Model 1

β0 -0.1 -0.04 -0.04 -0.04 [-0.42,0.37] -0.10 -0.22 -0.24 -0.26 [-0.88,0.42]
β1 1.16 1.50 1.50 1.53 [1.10,1.94] 1.16 1.03 1.04 1.00 [0.34,1.79]
β2 0.48 0.82 0.82 0.86 [0.40,1.29] 0.48 0.92 0.92 0.96 [0.25,1.68]
β3 -0.78 -0.72 -0.71 -0.69 [-1.20,-0.22] -0.78 -0.35 -0.38 -0.53 [-1.29,0.59]

V (γ) 1 0.91 0.85 0.79 [0.39,1.55] 4 2.81 2.61 2.24 [1.34,4.95]
Model 2 Model 2

β0 -0.1 -0.06 -0.07 -0.13 [-0.39,0.39] -0.10 -0.25 -0.26 -0.25 [-0.94,0.42]
β1 1.16 1.45 1.44 1.38 [1.10,1.83] 1.16 1.23 1.24 1.12 [0.64,1.95]
β2 0.48 0.68 0.66 0.64 [0.32,1.07] 0.48 0.84 0.83 0.76 [0.29,1.48]
β3 -0.78 -0.69 -0.69 -0.69 [-1.05,-0.27] -0.78 -0.33 -0.37 -0.40 [-0.98,0.50]
λ 35 22.45 19.9 8.59 [-2.03,64.28] 35 24.63 20.81 5.78 [-1.15,64.28]

V (γ) 1 0.83 0.78 0.70 [0.41,1.38] 4 2.90 2.71 2.37 [1.30,4.96]
Model 3 Model 3

β0 -0.1 -0.05 -0.06 -0.10 [-0.35,0.36] -0.10 -0.26 -0.27 -0.37 [-0.74,0.34]
β1 1.16 1.40 1.40 1.39 [1.10,1.72] 1.16 1.18 1.20 1.34 [0.56,1.84]
β2 0.48 0.64 0.63 0.60 [0.36,0.98] 0.48 0.82 0.79 0.73 [0.29,1.46]
β3 -0.78 -0.65 -0.66 -0.70 [-1.03,-0.28] -0.78 -0.36 -0.35 -0.34 [-0.93,0.32]
λ 35 48.63 42.63 21.22 [1.48,113.22] 35 43.08 38.14 23.00 [-0.51,102.06]

V (γ) 1 0.84 0.79 0.74 [0.40,1.41] 4 2.84 2.73 2.80 [1.28,4.71]
Model 4 Model 4

β0 -0.1 -0.05 -0.07 -0.08 [-0.42,0.29] -0.10 -0.20 -0.23 -0.23 [-0.82,0.57]
β1 1.16 1.42 1.42 1.42 [1.10,1.77] 1.16 1.27 1.27 1.25 [0.52,1.94]
β2 0.48 0.68 0.66 0.66 [0.34,1.02] 0.48 0.82 0.80 0.77 [0.22,1.43]
β3 -0.78 -0.69 -0.69 -0.70 [-1.07,-0.28] -0.78 -0.35 -0.36 -0.32 [-0.98,0.32]
λ 35 12.62 12.96 20.33 [1.64,21.43] 35 15.25 16.86 21.39 [2.80,21.82]

V (γ) 1 0.83 0.78 0.66 [0.41,1.50] 4 3.02 2.78 2.49 [1.28,5.10]
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Figure 4: Histogram of the generated random effects, the true (solid line) and the
plug-in estimates for the random effect densities using the posterior mean (1st column),
median (2nd column) and mode (3rd column), under Model 1 (dotdashed line), Model
2 (dashed line), Model 3 (•) and Model 4 (+).
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Table 3: Posterior estimates for the odds ratio

True Mean Median Mode HPD True Mean Median Mode HPD
Data 1 Data 2
Model 1 Model 1

OR1 68.05 43.77 39.96 36.78 [15.06,79.95] 1.75 1.75 1.65 1.51 [0.91,3.00]
OR2 2.91 3.69 3.53 3.35 [1.73,5.72] 14.41 15.94 15.20 13.10 [7.34,25.70]
OR3 1.66 2.18 2.06 1.90 [1.13,3.60] 6.09 5.34 5.11 4.83 [2.91,8.46]
OR4 5.69 5.97 5.22 4.26 [1.92,11.93] 1.60 9.61 2.51 0.66 [0,34.18]
OR5 108.77 150.72 120.06 92.63 [34.77,338.70] 244.40 109.84 81.31 61.50 [19.73,282.15]
OR6 1.58 1.63 1.57 1.49 [0.97,2.40] 538.73 1233.35 480.02 203.35 [54.56,4986.74]

Model 2 Model 2
OR1 68.05 39.61 36.87 31.00 [15.67,69.72] 1.75 1.79 1.67 1.47 [0.78,2.88]
OR2 2.91 3.79 3.58 3.34 [1.82,6.32] 14.41 16.16 15.36 13.39 [7.44,26.32]
OR3 1.66 2.24 2.15 1.88 [1.00,3.53] 6.09 5.51 5.37 5.43 [2.92,8.41]
OR4 5.69 5.70 5.08 4.43 [1.50,11.06] 1.60 136.09 2.04 0.35 [0.00,101.42]
OR5 108.77 160.26 126.26 90.71 [28.89,386.59] 244.40 82.20 61.73 44.89 [14.12,200.95]
OR6 1.58 1.60 1.55 1.45 [0.90,2.34] 538.73 1937.18 529.76 223.08 [27.57,5203.58]

Model 3 Model 3
OR1 68.05 39.49 36.64 31.40 [14.96,69.86] 1.75 1.79 1.69 1.60 [0.87,3.04]
OR2 2.91 3.74 3.55 3.37 [1.71,5.96] 14.41 15.82 15.01 13.48 [7.79,26.24]
OR3 1.66 2.20 2.09 1.96 [1.08,3.68] 6.09 5.50 5.27 4.81 [2.69,8.45]
OR4 5.69 5.80 5.17 4.40 [1.50,11.88] 1.60 21.43 2.49 0.56 [0.00,38.13]
OR5 108.77 164.98 131.58 92.36 [21.66,395.93] 244.40 100.73 74.16 42.66 [15.25,266.41]
OR6 1.58 1.61 1.55 1.45 [0.92,2.34] 538.73 1457.14 514.93 220.62 [40.66,4162.15]

Model 4 Model 4
OR1 68.05 42.13 39.13 32.71 [17.05,75.78] 1.75 1.75 1.65 1.50 [0.79,2.88]
OR2 2.91 3.73 3.57 3.39 [1.69,5.97] 14.41 15.89 15.09 13.24 [7.67,26.82]
OR3 1.66 2.18 2.08 1.87 [1.07,3.65] 6.09 5.36 5.17 5.22 [2.96,8.50]
OR4 5.69 5.92 5.14 4.27 [1.71,12.16] 1.60 24.91 3.03 0.79 [0.02,42.67]
OR5 108.77 152.70 122.66 103.22 [24.92,358.69] 244.40 110.21 82.40 62.18 [15.17,265.10]
OR6 1.58 1.61 1.56 1.40 [0.92,2.34] 538.73 1449.51 511.03 202.53 [39.81,4308.76]

Data 3 Data 4
Model 1 Model 1

OR1 4.03 4.29 4.05 3.68 [1.86,7.05] 1.98 1.13 1.09 1.00 [0.63,1.71]
OR2 2.34 2.26 2.22 2.11 [1.28,3.24] 59.34 81.02 71.50 52.95 [24.99,166.57]
OR3 1.85 1.31 1.23 1.09 [0.59,2.14] 1160.22 133.73 68.14 43.64 [9.58,439.28]
OR4 53.48 28.57 26.29 21.42 [12.12,52.84] 2.10 1.88 1.77 1.72 [0.85,3.01]
OR5 9.30 17.17 16.12 14.80 [7.18,30.10] 2.21 1.55 1.28 0.96 [0.16,3.51]
OR6 15.77 21.12 20.28 19.75 [11.62,32.39] 1.82 1.96 1.85 1.66 [0.89,3.38]

Model 2 Model 2
OR1 4.03 4.33 4.13 4.00 [1.98,7.24] 1.98 1.14 1.11 1.11 [0.64,1.78]
OR2 2.34 2.20 2.16 2.00 [1.38,3.26] 59.34 64.75 58.72 52.84 [26.77,123.12]
OR3 1.85 1.32 1.24 1.12 [0.60,2.22] 1160.22 331.00 115.55 55.39 [10.30,1194.05]
OR4 53.48 30.93 28.10 25.10 [11.95,57.29] 2.10 1.87 1.79 1.70 [0.93,3.01]
OR5 9.30 17.45 16.00 14.14 [6.32,29.29] 2.21 1.73 1.54 1.28 [0.52,3.37]
OR6 15.77 19.63 18.76 17.20 [10.59,30.35] 1.82 1.97 1.91 1.89 [1.00,3.19]

Model 3 Model 3
OR1 4.03 4.44 4.24 4.00 [2.21,7.19] 1.98 1.14 1.09 0.98 [0.61,1.72]
OR2 2.34 2.17 2.13 2.11 [1.27,3.12] 59.34 60.24 54.93 45.56 [24.14,110.90]
OR3 1.85 1.32 1.26 1.15 [0.65,2.18] 1160.22 1179.08 133.44 53.33 [13.74,3093.65]
OR4 53.48 31.27 29.32 27.41 [13.73,57.79] 2.10 1.88 1.81 1.66 [0.86,2.98]
OR5 9.30 17.48 16.49 14.18 [7.71,30.54] 2.21 1.79 1.65 1.50 [0.47,3.32]
OR6 15.77 19.26 18.58 16.64 [10.31,29.25] 1.82 2.01 1.92 1.62 [0.96,3.30]

Model 4 Model 4
OR1 4.03 4.31 4.14 3.58 [2.01,7.10] 1.98 1.11 1.09 1.08 [0.61,1.68]
OR2 2.34 2.17 2.13 2.16 [1.34,3.20] 59.34 64.34 58.40 48.15 [22.01,117.00]
OR3 1.85 1.32 1.24 1.07 [0.54,2.15] 1160.22 979.37 132.36 50.01 [13.28,3209.89]
OR4 53.48 31.02 28.21 25.50 [12.98,59.37] 2.10 1.86 1.77 1.58 [0.89,3.03]
OR5 9.30 17.36 16.23 13.36 [7.46,30.70] 2.21 1.74 1.55 1.32 [0.46,3.60]
OR6 15.77 19.52 18.57 16.81 [10.66,30.74] 1.82 2.03 1.93 1.80 [0.96,3.46]
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6 Case Study: Teratogenic activity experiment

In this section we consider the dataset reported in Liu and Dey (2008). The goal
was to study the interaction between teratogenic activity of the two niacin analogs 6-
aminonicotinamide(6AN) and 3 acetylpyridine(3AP). Eggs were incubated and, after
96 hours of incubation, both substances were injected at the same time and dissolved
together. The experiment was done in four independent months.

We consider a Bernoulli model where the response variable assumes value 1 if the
egg generates an abnormal fowl at the end of the experiment. The covariates are 6AN,
3AP and their interaction. The covariates are standarized. We consider two definitions
for the clusters, the months (Data 1) as in Liu and Dey (2008) and the slots (Data 2).
The total numbers of clusters k in Data 1 and Data 2 are 4 and 16, respectively.

We fit the five models that differ from each other because different distributions for
the random effects are assumed. In Model 1 we consider γi

iid∼ N(0, σ2). Models 2 and 3

assume i.i.d. skew-normal random effects, that is, γi
iid∼ SN(−δσ

√
2/π, σ2, λ), with dif-

ferent prior information about the skewness parameter - for Model 2, λ ∼ N(−8.5, 100)
and for Model 3, λ ∼ N(0, 100). Correlated skew-normal random effects are consid-
ered in Models 4 and 5 for which we assume γ ∼ SN(−∆σ

√
2/π1k, σ

2Ik, α1k), where
∆ = α[1 + kα2]−1/2, and different prior distributions for α, say, α ∼ N(−8.5, 100) for
Model 4 and α ∼ N(0, 100) for Model 5. For comparison proposal, we considered the
posterior information provided by Liu and Dey (2008) in order to build the prior distri-
butions of the skewness parameters in Models 2 and 4. In these cases we are assuming
a priori that λ and α are negative with high probability and, consequently, we have
a strong evidence in favor of negative asymmetry for the random effects. In all cases,
however, we consider flat prior distributions for the skewness parameter. To complete
the model specification, we assume flat prior distributions for βi and σ2, that is, we
assume βi ∼ N(0, 10), for all i = 0, . . . , 3, and σ2 ∼ IG(2.001, 1). Notice that under
these prior specifications for Models 1, 3 and 5, given σ2 and κ12, we are assuming that
the prior distributions of OR have similar behavior and put substantial probability mass
on values up to one (see case λ = 0 in Figure 1).

For the MCMC, we ran chains of sizes 30,000, 50,000 and 70,000, respectively, for
the normal, independent skew-normal and correlated skew-normal cases. We discarded
the first 20,000 (normal and independent skew-normal cases) and 40,000 (correlated
skew-normal) samples as the burn-in periods and used lags of 10 (Normal case) and
30 (independent and correlated skew-normal cases) steps to avoid serial correlation
obtaining samples of size 1,000 in all models.

Table 4 presents the posterior point estimates and the HPD intervals with 95%
probability for the fixed effects, the variance for the random effects and the skewness
parameter. Comparing the models, for both datasets, the posterior point estimates for
the fixed effects obtained under the SN models are similar to the ones obtained under the
normal model, but the estimates for the variance of the random effect distribution V (γi)
differ. The posterior estimates indicate that both niacin analogs, 6AN and 3AP, have
positive effects in the teratogenic activity and their interaction has negative one. Also,
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the intercept is not relevant to explain the teratogenic activity. The variances of the
random effect distributions V (γi) are smaller than 1.0, with high posterior probability, in
all cases. To fairly compare the models, assume only the models in which the posterior
information provided by Liu and Dey (2008) is not considered. In these cases, the
95.0% HPD intervals for the fixed effects and V (γi) are tighter under Models 3 and 5
for both datasets. Thus, we have evidence against normality for the random effects. The
distributions adopted to describe the prior uncertainty about the skewness parameter
do not strongly influence the posterior inference for the variances of the random effects
(for instance, the posterior mode for V (γi) is 0.14 under Model 2, and is 0.13 under
Model 3). However, the estimates for V (γi) tend to increase with the number of clusters.
To give an example, under Model 2, the posterior modes for V (γi) in Data 1 and Data
2 are 0.14 and 0.25, respectively. Similar behaviors are observed for the fixed effects
and the skewness parameter. A great reduction in the uncertainty about the skewness
parameters λ and α was observed a posteriori for both datasets and all models.

Table 4: Posterior estimates for the parameters, Teratogenic activity experiment

Mean Median Mode HPD Mean Median Mode HPD
Data 1 Data 2
Model 1 Model 1

DIC=2453.353, CPO= -1226.711 DIC=2361.254, CPO= -1180.818
β0 -0.22 -0.22 -0.29 [-0.78,0.37] -0.30 -0.30 -0.32 [-0.64,0.06]
β1 1.07 1.07 1.07 [0.91,1.23] 1.26 1.26 1.30 [0.86,1.67]
β2 0.56 0.56 0.56 [0.42,0.70] 0.67 0.67 0.67 [0.30,1.05]
β3 -0.71 -0.70 -0.69 [-0.93,-0.53] -0.78 -0.78 -0.76 [-1.15,-0.38]

V (γi) 0.44 0.37 0.27 [0.10,0.97] 0.44 0.40 0.38 [0.17,0.79]
Model 2 Model 2

DIC=2453.154, CPO= -1226.613 DIC=2360.162, CPO= -1180.198
β0 -0.28 -0.28 -0.29 [-0.83,0.16] -0.29 -0.28 -0.24 [-0.60,-0.01]
β1 1.08 1.07 1.07 [0.92,1.24] 1.32 1.32 1.34 [1.02,1.65]
β2 0.57 0.57 0.55 [0.44,0.71] 0.68 0.68 0.69 [0.41,0.99]
β3 -0.72 -0.72 -0.72 [-0.93,-0.56] -0.77 -0.77 -0.84 [-1.10,-0.41]
λ -7.88 -7.57 -6.61 [-27.89,11.58] -11.83 -11.02 -11.84 [-27.55,3.19]

V (γi) 0.24 0.19 0.14 [0.04,0.54] 0.32 0.28 0.25 [0.12,0.60]
Model 3 Model 3

DIC=2453.725, CPO= -1226.914 DIC=2360.621, CPO= -1180.419
β0 -0.22 -0.22 -0.29 [-0.68,0.18] -0.29 -0.29 -0.27 [-0.59,0.06]
β1 1.07 1.07 1.04 [0.90,1.23] 1.27 1.28 1.28 [0.82,1.63]
β2 0.56 0.56 0.57 [0.42,0.69] 0.65 0.66 0.66 [0.26,0.96]
β3 -0.72 -0.71 -0.71 [-0.93,-0.53] -0.77 -0.76 -0.79 [-1.12,-0.41]
λ 1.14 2.03 5.68 [-19.11,20.06] -6.26 -5.54 -3.78 [-22.07,9.34]

V (γi) 0.22 0.18 0.13 [0.05,0.50] 0.35 0.31 0.24 [0.11,0.70]
Model 4 Model 4

DIC=2453.436, CPO= -1226.778 DIC=2361.036, CPO= -1180.699
β0 -0.26 -0.27 -0.30 [-0.58,0.18] -0.30 -0.31 -0.34 [-0.59,-0.04]
β1 1.07 1.07 1.09 [0.92,1.23] 1.26 1.26 1.24 [0.87,1.66]
β2 0.57 0.56 0.55 [0.44,0.71] 0.64 0.65 0.68 [0.25,1.07]
β3 -0.72 -0.71 -0.68 [-0.90,-0.51] -0.76 -0.76 -0.74 [-1.14,-0.36]
α -8.28 -8.61 -12.07 [-28.67,9.69] -8.78 -8.75 -8.98 [-29.46,10.41]

V (γi) 0.38 0.31 0.24 [0.09,0.85] 0.43 0.39 0.33 [0.17,0.82]
Model 5 Model 5

DIC=2453.095, CPO= -1226.604 DIC=2360.549, CPO= -1180.454
β0 -0.23 -0.24 -0.27 [-0.72,0.21] -0.30 -0.30 -0.29 [-0.55,-0.06]
β1 1.07 1.07 1.09 [0.92,1.24] 1.23 1.24 1.25 [0.84,1.59]
β2 0.56 0.56 0.55 [0.42,0.69] 0.66 0.66 0.64 [0.19,1.04]
β3 -0.72 -0.71 -0.73 [-0.89,-0.51] -0.77 -0.76 -0.71 [-1.15,-0.35]
α 0.05 -0.07 2.14 [-17.9,20.76] 0.26 0.22 -0.85 [-18.43,20.28]

V (γi) 0.40 0.32 0.23 [0.08,0.91] 0.42 0.38 0.33 [0.16,0.76]



404 Parameter Interpretation in Skewed Logistic Regression

Considering the 95% HPD intervals and point estimates of λ and α, we have the
highest evidence in favor of a negative degree of skewness in the random effects distri-
butions for Data 1, under Models 2 and 4, and for Data 2, under Models 2, 3 and 4.
That is in agreement with the conclusions in Liu and Dey (2008). For Data 2 and all
models we also noticed that the asymmetry is higher a posteriori. However, the HPD
intervals also disclose that λ and α are not significatively different from zero pointing to
a normal distribution for the random effects. Despite this, taking into consideration the
DIC and the CPO, skew-normal models are selected as the best models (Model 2 for
Data 2, and Model 5 for Data 1). The CPO and the DIC also indicate an improvement
in the model fitting by assuming the slots as the clusters.

Table 5 provides posterior summaries of the odds ratio distributions for some par-
ticular comparisons: OR1 compares the eggs of slots 4 and 5, November 1961; OR2

compares the eggs of slots 2 and 3, April 1962; OR3 compares the eggs of slot 3, Jan-
uary 1962, and of slot 5, November 1961; OR4 compares the eggs of slot 3, April 1962,
and of slot 5, November 1961; OR5 compares the eggs of slot 1, January 1962, and of
slot 1, December 1961; and, finally, OR6 compares the eggs of slot 2, December 1961,
and of slot 5, April 1962. The posterior means, modes and medians for all odds ratios

Table 5: Posterior summaries for some OR, Teratogenic activity experiment

Mean Median Mode HPD Mean Median Mode HPD
Data 1 Data 2
Model 1 Model 1

OR1 1.48 1.48 1.48 [1.34,1.63] 1.32 1.27 1.15 [0.70,2.03]
OR2 4.28 4.26 4.22 [3.51,5.34] 1.55 1.49 1.42 [0.79,2.33]
OR3 2.15 2.12 2.15 [1.46,2.87] 1.85 1.78 1.53 [1.01,2.72]
OR4 1.29 1.28 1.25 [0.95,1.57] 0.97 0.93 0.86 [0.50,1.55]
OR5 109.18 98.4 79.89 [38.59,206.49] 170.55 143.00 103.94 [45.99,367.00]
OR6 1.50 1.48 1.48 [1.09,1.97] 0.77 0.75 0.74 [0.43,1.17]

Model 2 Model 2
OR1 1.48 1.48 1.48 [1.33,1.61] 1.34 1.28 1.13 [0.69,2.07]
OR2 4.32 4.30 4.30 [3.39,5.27] 1.51 1.46 1.37 [0.78,2.22]
OR3 2.04 2.01 1.97 [1.37,2.69] 1.78 1.73 1.59 [1.04,2.62]
OR4 1.28 1.28 1.25 [0.97,1.59] 0.97 0.94 0.89 [0.51,1.53]
OR5 109.31 99.08 79.19 [34.48,197.56] 171.77 148.71 108.70 [36.37,354.32]
OR6 1.49 1.47 1.41 [1.09,1.98] 0.79 0.77 0.69 [0.44,1.17]

Model 3 Model 3
OR1 1.48 1.48 1.48 [1.33,1.63] 1.34 1.27 1.17 [0.72,2.10]
OR2 4.29 4.24 4.11 [3.38,5.26] 1.52 1.49 1.54 [0.80,2.37]
OR3 2.07 2.04 2.00 [1.39,2.72] 1.80 1.73 1.60 [1.08,2.69]
OR4 1.28 1.26 1.24 [1.01,1.66] 0.96 0.94 0.84 [0.50,1.51]
OR5 108.93 97.99 86.50 [36.48,198.44] 168.80 146.97 122.37 [42.14,348.33]
OR6 1.49 1.48 1.39 [1.05,1.96] 0.77 0.75 0.75 [0.43,1.19]

Model 4 Model 4
OR1 1.48 1.48 1.48 [1.34,1.61] 1.34 1.31 1.28 [0.73,2.14]
OR2 4.27 4.26 4.32 [3.42,5.14] 1.53 1.50 1.52 [0.80,2.35]
OR3 2.14 2.10 1.96 [1.51,2.84] 1.86 1.76 1.69 [1.12,2.94]
OR4 1.29 1.28 1.26 [0.98,1.63] 0.97 0.93 0.90 [0.45,1.54]
OR5 110.91 98.41 85.80 [36.59,211.24] 164.35 141.74 113.97 [44.90,344.45]
OR6 1.49 1.48 1.45 [1.05,1.95] 0.77 0.74 0.72 [0.41,1.16]

Model 5 Model 5
OR1 1.48 1.48 1.46 [1.34,1.62] 1.31 1.26 1.08 [0.72,2.02]
OR2 4.28 4.25 4.00 [3.33,5.17] 1.57 1.51 1.31 [0.82,2.38]
OR3 2.14 2.11 1.99 [1.41,2.82] 1.85 1.80 1.78 [1.04,2.71]
OR4 1.29 1.28 1.25 [0.95,1.58] 0.96 0.93 0.84 [0.48,1.54]
OR5 108.75 98.66 85.25 [42.09,202.69] 168.96 142.91 108.15 [45.51,371.59]
OR6 1.51 1.48 1.44 [1.13,1.96] 0.76 0.73 0.70 [0.43,1.16]
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(except for OR5), all models and for the two datasets tend to be similar indicating only a
smooth degree of asymmetry in their posterior distributions. Such similarity is stronger
in Data 2. For Data 1, under almost all models (except Model 3), we can conclude that
the eggs in slot 3, April 1962, are comparable to the ones in slot 5, November 1961 (see
OR4). In this case, the value 1 belongs to the 95% HPD interval. Thus, the eggs in slot
3, incubated in April 1962, and in slot 5, incubated in November 1961, have the same
chance of generating abnormal fowls. Similar conclusion can be drawn from OR1, OR2,
OR4 and OR6, for Data 2, under all models.

Let us consider Data 1 and only the best model (Model 5). Taking into consideration
the modal OR3, for instance, we conclude that, for eggs that did not receive any dosage
of 6AN and a dosage of 500 of 3AP, the chance of generating abnormal fowls for eggs
incubated in January 1962 is, most probably, 1.99 as likely as for eggs incubated in
November 1961. If we consider the median OR, our conclusion is that such a chance is
higher than 2.11 with posterior probability of 50.0%. For OR5, the posterior estimates
greatly differ. Considering eggs that did not receive any dosage of 3AP, the expected
and the most probable chances of those incubated in January, 1962 which received a
dosage of 10 of 6AN generating an abnormal fowls are, respectively, 108.8 and 85.3 as
likely as those incubated in December 1961 which received a dosage of 4 of 6AN. The
other comparisons follow similarly.

7 Conclusions

In this paper, we extended previous work by providing an odds ratio interpretation in
logistic regression with random or cluster-level intercept under the Bayesian paradigm.
We assume skew-normal distributions for the random effects. We considered indepen-
dent and dependent skew-normal random effects and, given the fixed effects, we obtained
the prior distributions for the odds ratio and their medians. As a by-product, we also
obtained results related to linear combinations of skew-normal random variables which,
as far as we know, have not been considered in the literature yet. One advantage of
the posterior odds ratio interpretation is that we also provided tools to decide about its
significance. We analyzed simulated datasets and the dataset reported in Liu and Dey
(2008) from a teratogenic activity experiment.

In summary, although the point estimates for the fixed effects are not influenced
by the random effects distributions, such distributions do influence the estimates for
the odds ratio as well as the magnitude of the HPD intervals. We concluded that the
misspecification of the random effects distributions can lead to poor estimates for the
odds ratios and leads to HPD intervals with higher magnitude. We also observed the
median odds ratio is not necessarily the best measure of heterogeneity as suggested by
Larsen et al. (2000). In several cases, the posterior mean and mode prove to be better
estimators for the odds ratio. In addition, the posterior mode for the OR also has an
appealing interpretation in terms of probability. For the teratogenic activity experiment
we considered more flexible skew-normal models than that in Liu and Dey (2008). The
posterior estimates for the skewness parameter were negative under the majority of the
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models which agrees with the conclusions in Liu and Dey (2008).
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Appendix A: Linear combination of SN random variables

Assume that the distribution of a random quantity Y ∈ Rd belongs to the unified SN
(SUN) family of distributions introduced by Arellano-Valle and Azzalini (2006), that is,

Y ∼ SUNd,m(ξ,γ, ω̄,Ω∗), where ω̄ = ω1d, Ω = ωΩ̄ω and Ω∗ =

(
∆ Γt

Γ Ω̄

)
, if its

p.d.f. and moment generating function (m.g.f.) are, respectively, given by

f(y) = ϕd(y − ξ;Ω)
Φm(γ + ΓtΩ̄−1ω−1(y − ξ);∆− ΓtΩ̄Γ)

Φm(γ |∆)
, y ∈ Rd, (18)

MY(r) = exp

{
ξtr+

1

2
rtΩt

}
Φm(γ + Γtωr |∆)[Φm(γ |∆)]−1, r ∈ Rd.

Consider the linear combination ctγ where ct ∈ Rk is a constant vector. If the

coordinates of vector γ are such that γi
ind∼ SN(ξi, σ

2
i , λi), for all i = 1, . . . k, then

we prove next that the distribution of the linear combination ctγ belongs to the SUN
family given in (18).

Proposition 3. If γi
ind∼ SN(ξi, σ

2
i , λi), for all i = 1, . . . , k, and ct = (c1, . . . , ck)

is a 1 × k constant vector, then ctγ ∼ SUN1,k(c
tξ,0, (ctΛtΛc)1/2,Ω∗), where ξt =

(ξ1, . . . , ξk), Λ = diag{σ1, . . . , σk}, ∆ = diag{δ1, . . . , δk}, δi = λi[1 + λ2i ]
−1/2, Γt =

(ctΛtΛc)−1/2Λ∆c, Ω∗ =

(
Ik Γt

Γ 1

)
and its p.d.f. is

fctγ|ξ,Λ,Ω∗(x) = 2kϕ(x | ctξ, ctΛtΛc)

×Φk

(
Λ∆c

ctΛtΛc
(x− ctξ) | Ik −

Λ∆cct∆tΛt

ctΛtΛc

)
. (19)

Proof: To prove (19) we consider that if γ ∼ SN(ξ, σ2, λ) then its m.g.f. is given

by Mγ(r) = 2 exp
{
rξ + r2σ2

2

}
Φ(δσr) where δ = λ[1 + λ2]−1/2. Therefore, using well-

known results on the m.g.f. for linear combinations of independent random variables,
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we have that

Mctγ(g) = 2k exp

{
k∑

i=1

gciξi +
1

2

k∑
i=1

g2c2iσ
2
i

}
k∏

i=1

Φ

(
λi

(1 + λ2i )
1
2

σicig

)

= 2k exp

{
gctξ +

r2

2
(Λc)t(Λc)

}
Φk (Λ∆cg)

= exp

{
gctξ +

r2

2
ctΛtΛc

}
Φk(gΛ∆c)[Φk(0)]

−1, (20)

which is the m.g.f. of the SUN distribution pointed out in (19).

Assume now that the coordinates of vector γ are correlated. The following proposi-
tion provides the distribution of a linear combination of the components of γ assuming
that γ has the multivariate skew-normal distribution.

Proposition 4. If γ ∼ SNk(ξ,Ω,α) with p.d.f. given in (9), then it follows that
ctγ ∼SN(ξtc,ctΩc,λ), where λ = [αtΩ̄ωc][(1 +αtΩ̄α)(ctΩc)− (αtΩ̄ωc)2]−1/2.

The proof of Proposition 4 is omitted. It follows straightforwardly from the moment
generating function. A similar result can be found in Dalla-Valle (2004) (Proposition
1.6.1) where it is proved that if C is a k×k non-singular matrix then Cγ has a k-variate
skew normal distribution.

Appendix B: Simulated datasets
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Table 6: Simulated Datasets

Number of success
X1 X2 ni Data 1 Data 2 Data 3 Data 4

1 -0.429 -1.519 110 6 0 15 43
2 -0.429 0.261 108 30 35 24 90
3 -1.194 0.261 107 8 89 12 5
4 -0.429 0.854 107 14 0 76 56
5 -1.194 0.854 103 17 32 37 68
6 0.031 -1.519 98 41 3 18 24
7 0.031 0.261 102 87 5 64 64
8 0.031 0.854 106 37 82 41 20
9 1.868 -1.519 203 195 201 194 148
10 1.868 0.854 175 137 151 152 160
11 -1.194 0.854 180 87 157 36 115
12 0.337 -1.519 156 122 43 67 131
13 0.337 0.261 152 27 131 132 79
14 -1.194 0.261 148 21 134 21 27
15 0.337 0.854 151 90 53 143 42
16 -1.194 0.854 148 63 88 66 54
17 1.868 0.261 110 92 100 94 91
18 0.031 -1.519 108 27 47 53 6
19 0.337 0.854 107 68 79 43 36
20 -0.429 0.261 103 68 23 60 6
21 -1.194 -1.519 98 3 1 0 1
22 -0.429 0.854 102 90 42 70 102
23 0.031 0.261 106 81 104 96 42
24 0.337 -1.519 203 142 69 51 21
25 1.868 0.854 175 144 83 156 171
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