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Comment on Article by Müller and Mitra

Bradley P. Carlin* and Thomas A. Murray�

Congratulations to the authors on a fine and comprehensive review of nonparamet-
ric Bayesian (BNP, or NPB?) inference! The authors offer a whirlwind review of an
enormous field that has seen explosive growth since the advent of MCMC methods for
Bayesian computing; indeed, the two fields rose to prominence simultaneously around
1990, and enjoyed substantial cross-pollination (see Escobar and West, 1998, for a re-
view). One of us (BPC) admits to being somewhat surprised to be asked to serve as
a discussant for this paper, since if he has any professional reputation at all, it is that
of an unapologetic Bayesian parametrician who prefers BUGS implementions, with the-
oretical properties simulated via repeated calls from R using BRugs or rjags. But the
editors insisted this is precisely what they were looking for, and after reading the paper
we agree with them: this is a very nice paper that is in need of a crabby parametrician
or two to fuss about its breezy claims of heretofore-unimagined modeling freedom and
insight, especially when there is often relatively modest payoff for the effort expended.
As such, our outlook here is like an asymptotician’s wary view of the Gibbs sampler in
1990, or any frequentist’s view of the phrase “applied Bayesian statistics” before 1980.
While the progressive Gibbs-applied viewpoint prevailed in both those cases, the other
ideas hardly vanished; asymptotic approximations are even cool again thanks to the
emergence of the INLA package (c.f. Rue et al., 2009). Thus we hope the reader will
grant us our slightly peevish, “you-kids-get-off-my-lawn” tone so that we may fulfill our
Prof. Cranky Pants role, as the editors (and we) believe we must.

BNP is of course all about flexibility; in their very first paragraph, the authors speak
glowingly of “allowing for a richer and larger class of models.” Indeed this has been a
central theme of all Bayesian modeling since 1990, so publishing this in Bayesian Anal-
ysis is preaching to the choir to be sure (and what a choir; the authors’ reference list
is long and only scratches the BNP surface). But the ways in which this flexibility
manifests are sometimes mysterious, and other times easily mimicked by a carefully
considered yet much simpler parametric model. Later in their introduction, the au-
thors worry that, “Restriction to a parametric family can mislead investigators into an
inappropriate illusion of posterior certainty.” In our admittedly limited experience, a
much more common problem in Bayesian modeling is accidental over-parametrization
of a previously-understood model, resulting in poor identifiability and associated slow
MCMC convergence. Indeed, the recent explosion in BNP research has led to the pub-
lication of a few BNP models before their utility had been established for even a single
real dataset. In our opinion, mere flexibility for flexibility’s sake is not enough; the flex-
ibility must be both well-understood and routinely controlled. In this regard, we were
puzzled by the authors’ Figure 2(a), which overlays their BNP results with arguably
the world’s most popular nonparametric estimator, the Kaplan-Meier empirical survival
curve. The former are a poor match to the latter for Y > 2.5, but this discrepancy is
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not mentioned. In fact, there seem to be some discrepancies with the labeling of the
data posted to the authors’ website (the censoring indicator and the study arms appear
to be mislabeled), so we were unable to analyze these data ourselves. Nevertheless,
based on the Kaplan-Meier survival curves shown in the paper, there do not appear to
be any observed events in either treatment arm more than 7.5 years after treatment.
With only censored information near year 8, it is difficult to say whether the “bump”
in the p.d.f. to the right of T = 8 in Figure 2(b) is truly there, or merely an artifact of
the cure-rate BNP model employed.

This brings us to our second point, which is the inherent difficulty in explaining
the results of some BNP analyses to ourselves, our students, and our substantive area
colleagues. While parameters are unobservable creatures, their presence in models does
often help our intuition about what is going on scientifically, and these colleagues often
prefer such models and their relatively straightforward interpretations. But with BNP
modeling, much of this comfort level is lost, and replaced with piles of mathematical
notation that is largely impenetrable to non-statisticians. Indeed, the job the authors
have undertaken here (review all of BNP methods in a single paper) is inherently im-
possible; there is just too much out there. This has led some sections of the paper to
look rather “bare bones”; we suspect even the most savvy and diligent but BNP-naive
statistics PhD students would have a hard time grasping Polya trees and their mixtures
by reading only Section 2.2. Of course, the many researchers working in this area know
this, and have sought to develop R packages like DPpackage to help out. But it would
still be easy to worry that our beloved Bayesian inference engine had now moved irrevo-
cably to “black box” status if we were to buy into a purely BNP approach. Some recent
introductory, “Bayes-and-BUGS” books (Kruschke, 2011; Lunn et al., 2012) go part of
the way in this direction, introducing Bayes rule mostly via example, and encouraging
students to rely as much on the software and their intuition about Bayesian learning
as on mathematical equations or calculus. But at least these models are still acces-
sible to most students and scientists with quantitative but not strongly mathematical
backgrounds.

Even if we grant that the flexibility of BNP is well worth considering and its com-
plexity likely to be worth the payoff, there is still the matter of comparing such results
to those of parametric methods likely to be competitive (according to some pre-agreed
performance metric). In addition to Figure 2, another setting where the authors did not
do this is their very first example, the analysis of the zero-censored discrete data in Table
1. Here the authors reject a finite mixture of Poissons as likely to produce “misleadingly
precise inference” (repeating their earlier worry), and laud the BNP method’s ability to
deliver a model-based yet appropriately imprecise estimate of p(F (0)|y). While it is true
that the 95% BNP credible interval for F (0) = P (Yi = 0) is indeed wider (suggesting
values from around 0.3 to 0.7) than any simple parametric alternative would produce,
we were struck by the narrowness of the BNP interval for F (1) = P (Yi = 1) (which
is consistently estimated to be near 0.3), and its poor agreement with the empirical
proportion of 1’s among the nonzero values (37/55 = 0.67) apparent in Figure 1(a).
Obviously the BNP model believes that a lot of zero observations were missed, and the
extent to which this is actually true determines the model’s performance. Of course



B.P. Carlin and T.A. Murray 305

Hurdle Poisson ZIP
q prior: Beta(70,30) Beta(1,1) Beta(70,30) Beta(1,1)

q 0.81 (0.74, 0.86) 0.98 (0.94, 1.0) 0.81 (0.74, 0.87) 0.98 (0.94, 1.0)
λ 0.86 (0.58, 1.18) 0.86 (0.59, 1.18) 1.49 (1.19, 1.83) 1.49 (1.19, 1.83)

F (0) 0.19 (0.14, 0.26) 0.02 (0.00, 0.06) 0.38 (0.30, 0.46) 0.24 (0.17, 0.33)
F (1) 0.51 (0.41, 0.61) 0.62 (0.51, 0.73) 0.27 (0.23, 0.30) 0.33 (0.29, 0.36)

D 129.5 107.7 169.1 147.4
pD 1.07 1.02 1.08 1.02

DIC 130.6 108.7 170.2 148.4

Table 1: Posterior summaries and model choice statistics, hurdle Poisson and ZIP mod-
els, for two different beta priors on q.

we don’t know the true F (0) and it is largely inestimable by design, but we began to
wonder how much one could learn from a comparison of standard parametric models in
this setting. As such, we used OpenBUGS to fit two simple alternatives, a hurdle Poisson
model (see e.g. Neelon et al., 2010),

F (k) = P (Yi = k|λ, q) =

{
1− q , k = 0

q e−λλk

k!(1−e−λ)
, k = 1, 2, . . .

(0.1)

and a zero-inflated Poisson (ZIP) model (Lambert, 1992),

F (k) = P (Yi = k|λ, q) =

{
(1− q) + qe−λ , k = 0

q e
−λλk

k! , k = 1, 2, . . .
(0.2)

where in both cases λ > 0 and q ∈ (0, 1). Note that model (0.1) mixes a point mass at
0 with a truncated Poisson for the nonzero observations, while model (0.2) mixes the
point mass with an untruncated Poisson. These are both relatively simple, 2-parameter
models, yet they lead to results that are surprisingly different from each other and from
those in Figure 1.

Our implementations used the dcat function in OpenBUGS, and ran for 30,000 it-
erations after a 1000-iteration burn-in period. Table 1 provides the DIC-based model
choice and posterior parametric summaries from models (0.1) and (0.2), where we use
a vague prior for λ and compare the effects of two priors for the point mass parameter
q: an informative Beta(70, 30) (that expects a point mass at 0 of somewhere between
0.2 and 0.4), and a noninformative Beta(1, 1) = Unif(0, 1) distribution. We see that
the prior on q is quite influential (not surprising in this missing data setting), but its
influence is little affected by the choice of likelihood. Conversely, the Poisson parameter
λ is quite different between the two likelihoods, but unaffected by the choice of q prior.
Yet when we turn to the fitted probabilities of 0 and 1, F (0) and F (1), we see very
large differences across both models and priors. The hurdle Poisson consistently leads
to higher F (1) values, and correspondingly lower F (0) values, than the ZIP model; we
note that the 95% Bayesian credible intervals for these quantities do not even overlap
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across models and priors. The DIC scores suggest the hurdle model’s greater fidelity to
the observed proportion of 1’s in the dataset (as compared to both ZIP and DPM) leads
to better fit statistics. Perhaps equally interesting, the total range for F (1) suggested
across all four parametric models extends from 0.23 to 0.73, a much, much wider range
than that indicated by the DPM model. For us, this calls into question the authors’
preference for the DPM model here: its fit for F (1) is poor, and any alleged “flexibility
compared to a simpler parametric family” does not manifest for this model quantity;
mixing across the 4 simple parametric models in Table 1 would produce an even wider
credible interval.

The authors do consider parametric alternatives in Figure 4, which compares BNP
and parametric results, and finds the latter wanting due to its strong respect for the
“good vs. intermediate prognosis” classification system apparently parametrically im-
posed on this model. But here again, we do not feel that the authors have fairly
illustrated the flexibility parametric approaches can provide. Here, estimation of the
probability of response πi across a variety of sarcoma subtypes is of primary interest,
but it is somewhat unclear a priori how similar each subtype is to the others aside
from the prognosis. We investigated three parametric logistic models that facilitate
various amounts of between-subtype borrowing of strength. Each of these models uses
the paper’s binomial likelihood, and link function

logit(πi) = α+ γxi + θi ,

where xi = {−1, 1} for good and intermediate prognosis, respectively. For all three

parametric approaches, we model the random effects as θi|τ
iid∼ N(0, τ), and assign

vague priors to α and τ . We then form three model variants simply by altering the prior
on γ. First, we fit an exchangeable model that borrows across all subgroups simply by
taking p(γ) = 0, i.e., by not permitting a prognosis effect at all. Second (and at the
other extreme), we form a nonexchangeable model by placing a vague prior on γ having
mean 0 and near-zero precision, a construction that allows the data to dictate the effect
of prognosis on the mean of the πi’s. Finally, we also consider a partially exchangeable
model that shrinks the estimate of γ toward zero by modeling γ|τ0 ∼ N(0, τ0) and
placing a vague gamma prior on τ0, calibrated to deliver a prior 95% credible interval
of (0.0033, 300) for the odds ratio for good prognosis versus intermediate prognosis.

For all three models, we again used OpenBUGS to obtain 10,000 posterior draws
from 2 parallel chains, each following a generous 45,000-iteration burn-in. The resulting
posterior estimates were robust to modest changes in our prior distributions. Our
Figure 1 displays the 95% posterior credible intervals for the three parametric models.
Note that our very simple exchangeable model (solid lines) produces interval estimates
virtually indistinguishable from those from the BNP model (solid lines in the authors’
Figure 4), with the exception of the upper limit for Rhabdo (i = 2). However, both
of these models appear to preclude very low event rates for the two good prognosis
subtypes, despite strong evidence to the contrary in the data (yi = 0 for i = 1, 2). By
contrast, our partially exchangeable model (dotted lines in our figure) fixes this problem,
and nicely illustrates that parametric models can in fact deliver sensible results that are
intermediate to the two extreme cases.
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Figure 1: Central 90% posterior credible intervals of success probabilities πk for each
sarcoma subtype under three types of parametric logistic models: exchangeable (solid),
nonexchangeable (dashed), and partially exchangeable (dotted). The central marks
(“+”) denote the posterior means. The partially exchangeable model produces results
intermediate to those of the other models, which make diametrically opposed a priori
assumptions regarding exchangeability of the two prognosis groups.

Of course, parametricians use fairly complex, partially exchangeable random effects
structures all the time; our Minnesota colleague Jim Hodges calls them “smoothers” (so
a CAR prior is a “spatial smoother”, etc.). DPM priors offer a particular, very flexi-
ble kind of smoother which may well be attractive in various settings. But parametric
smoothers may be able to do a similar job, in a way that is more accessible for prac-
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titioners, and without an infinite number of parameters. For instance, recent research
in what are called commensurate prior models (Hobbs et al., 2011, 2012) offer a para-
metric compromise to the stark choice between “separate analysis” and “pooling” the
authors mention (and just illustrated in our Figure 1). Recently, commensurate priors
have been used in clinical trial survival modeling, both for drug trial design (Hobbs et
al., 2013) and post-market medical device surveillance (Murray et al., 2013).

Well perhaps this is enough for one cranky discussion! There is certainly much to
like in this paper; the effectiveness and broad utility of DPM models is hard to deny,
and we are very fond of the authors’ writeup of nonparametric regression in Section
4, which nicely clarifies that BNP technology may apply to the regression mean struc-
ture, the underlying error distribution, or (provided care is taken) both. We also liked
the mixed approach taken in Section 5, which represents a modern view of modeling
wherein some key elements (say, the non-linear mixed-effects model in Example 7) are
specified in traditional parametric terms, but other elements seek full nonparametric
flexibility. To belabor our earlier MCMC analogy a bit further, all in all the current
situation reminds us of the slow resolution of the Bayes-frequentist controversy over the
past decade, in which Bayesians moved more toward default priors and away from hard-
core subjectivism, while frequentists added basic MCMC-Bayes tools to their kitbags
in order to take advantage of the newfound modeling freedoms their Bayesian brethren
kept buzzing about. Indeed, at the 2005 Joint Statistical Meetings right here in Min-
neapolis, then-ASA President Brad Efron (who is actually from St. Paul) essentially
argued that the disagreement was already over; the two sides had come together, both
recognizing the advantages in the other’s argument, and borrowing the other side’s best
stuff as appropriate. Perhaps 2015 will see the merging of parametric and nonparamet-
ric Bayesian inference in the same way, with even cranky guys like us routinely using
both approaches. OK, maybe 2025.
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