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Full Robustness in Bayesian Modelling of a
Scale Parameter

Alain Desgagné ˚

Abstract. Conflicting information, arising from prior misspecification or outly-
ing observations, may contaminate the posterior inference in Bayesian modelling.
The use of densities with sufficiently heavy tails usually leads to robust posterior
inference, as the influence of the conflicting information decreases with the impor-
tance of the conflict. In this paper, we study full robustness in Bayesian modelling
of a scale parameter. The log-slowly, log-regularly and log-exponentially varying
functions as well as log-exponential credence (LE-credence) are introduced in or-
der to characterize the tail behaviour of a density. The asymptotic behaviour of
the marginal and the posterior is described and we find that the scale parameter
given the complete information converges in distribution to the scale given the
non-conflicting information, as the conflicting values (outliers and/or prior’s scale)
tend to 0 or 8, at any given rate. We propose a new family of densities defined on
R with a large spectrum of tail behaviours, called generalized exponential power
of the second form (GEP2), and its exponential transformation defined on p0,8q,
called log-GEP2, which proves to be helpful for robust modelling. Practical consid-
erations are addressed through a case of combination of experts’ opinions, where
non-robust and robust models are compared.

Keywords: Bayesian robustness, conflicting information, log-exponentially vary-
ing functions, log-regularly varying functions, log-slowly varying functions, LE-
credence, Log-GEP2

1 Introduction

In Bayesian analysis, conflicting information may contaminate the posterior inference.
Conflict can arise from outlying observations as well as prior misspecification. The
outcome depends on the relative tail behaviour of the involved densities. The conflict
is usually resolved by modelling the densities with sufficiently heavy tails.

Outlier rejection in Bayesian analysis was first described by De Finetti (1961), where
the simplest case with a single observation having mean θ was considered. The theory
has mostly evolved for location parameter inference, see for instance Dawid (1973),
O’Hagan (1979, 1988, 1990), Angers (2000) and Desgagné and Angers (2007).

Robustness for scale parameter inference was first considered by Andrade and O’Ha-
gan (2006). They show that modelling with regularly varying densities leads to partial
robust inference, in the sense that the influence of conflicting information is limited.
They first consider the simple case of one observation combined with the prior. It is
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then generalized to multiple observations when one group of outliers moves to infinity as
a block. Andrade and O’Hagan (2011) also consider partial robustness for the location-
scale parameter inference. A good description of the existing literature is given in this
paper.

In our paper, we study robustness in Bayesian modelling of a scale parameter. In
contrast to Andrade and O’Hagan (2006), we give some conditions to obtain full robust-
ness, in the sense that the information provided by the conflicting densities is completely
rejected in the posterior inference. Our context is also more general, as we consider mul-
tiple observations with many conflicting sources (prior and/or observations) that move
to 0 or 8 at any given rate.

In Section 2, we define three classes of functions called log-slowly, log-regularly and
log-exponentially varying functions. Analogously to the regularly varying functions used
in Andrade and O’Hagan (2006), these classes describe the tail behaviour of a function.
We find that modelling densities with log-exponentially varying functions may lead to
full Bayesian robustness in a scale parameter inference. In connection with these classes,
we also define log-exponential credence (LE-credence) as a measure of tail behaviour,
which proves to be useful to characterize and order different tails.

In Section 3, the resolution of conflicts in a scale parameter model is analysed. We
start with the description of the mathematical context in Section 3.1. The Bayesian
model consists of positive conditionally independent random variables Xi | σ sharing
the same scale parameter σ. We also detail the meaning of robustness in our context,
especially its asymptotic nature.

In Section 3.2, the main result of this paper is given. The asymptotic behaviour
of the marginal and the posterior is described and we find that the random variable σ
given the complete information converges in distribution to the random variable σ given
the non-conflicting information, as the conflicting values (outliers and/or prior) tend to
0 or 8, at any given rate. Conditions for the achievement of this full robustness are
given. They concern the tail behaviour of the prior and the likelihood.

In Section 3.3, we derive two special cases. We analyse the classical case of a single
observation combined with the prior. We see that a conflict can be resolved either in
favour of the prior or the observation, depending on their relative tail behaviour. A
useful case in practice, where the tail behaviour is the same for all densities, is also
studied. We see that full robustness is achieved if the non-conflicting values exceed the
conflicting values.

In Section 4.1, we propose the exponential transformation of densities defined on
the real line as a method to devise appropriate densities defined on p0,8q to achieve
robustness in our context. Using this approach, we also propose in Section 4.2 a new
family of densities defined on R, called generalized exponential power of the second form
(GEP2), and its exponential transformation defined on p0,8q, called log-GEP2. The
large spectrum of tail behaviours of the log-GEP2 density is useful for robust modelling.
Special cases of this density are given in Section 4.3, such as the well-known log-normal.

An example is given in Section 5, where non-robust and robust models are com-
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pared. Practical considerations are addressed through a case of combination of experts’
opinions. Finally we conclude in Section 6 and the proofs are given in Section 7.

2 Log-exponentially varying functions

2.1 Definitions

Tail behaviour is a key component for robust Bayesian modelling. Therefore, we in-
troduce three classes of functions called log-slowly, log-regularly and log-exponentially
varying functions, following the idea of regularly varying functions developed by Kara-
mata (1930).

We assume that every function is defined on p0,8q, continuous and strictly positive.
Definitions and results are given for the asymptotic behaviour at 8, with the differences
for the asymptotic behaviour at 0 put in square brackets.

We say that the functions fpzq and gpzq are asymptotically equivalent at 8r0s, writ-
ten fpzq „ gpzq as z Ñ 8r0s, if

fpzq{gpzq Ñ 1 as z Ñ 8r0s.

Definition 1 (Log-slowly varying function). We say that a measurable function g is
log-slowly varying at 8r0s, written g P L0p8qrL0p0qs, if for all ν ą 0, we have

gpzνq „ gpzq as z Ñ 8r0s.

For instance, the functions 1 and log | log z| are both log-slowly varying at 0 and 8.

Definition 2 (Log-regularly varying function). We say that a measurable function g
is log-regularly varying at 8r0s with index ρ P R, written g P Lρp8qrLρp0qs, if for all
ν ą 0, we have

gpzνq{gpzq Ñ ν´ρ as z Ñ 8r0s,

or equivalently (for ρ ‰ 0), if there exists a constant A ą 1 such that for z ě Arz ď 1{As,
g can be written as

gpzq “ | log z|´ρSpzq, where S P L0p8qrL0p0qs.

Definition 3 (Log-exponentially varying function). We say that a measurable func-
tion g is log-exponentially varying at 8r0s with index pγ, δ, αq, written g P Lγ,δ,αp8q

rLγ,δ,αp0qs, if there exists a constant A ą 1 such that for z ą Arz ă 1{As, g can be
written as

gpzq “ expp´δ| log z|γq| log z|´αSpzq,

where S P L0p8qrL0p0qs, γ ě 0, δ ě 0, α P R.

By convention, we set γ “ 0 if and only if δ “ 0. The class of log-exponentially
varying functions includes the class of log-regularly varying functions (when γ “ δ “ 0
and α “ ρ), which includes itself the class of log-slowly varying functions (when ρ “ 0).
Notice that gpzq P Lγ,δ,αp0q if and only if gp1{zq P Lγ,δ,αp8q.
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Definition 4 (LE-credence). We say that the right [left] LE-credence of a measurable
function g is pγ, δ, αq if g P Lγ,δ,αp8qrLγ,δ,αp0qs.

The concept of LE-credence has interesting properties and interpretation regarding
the tails of a function, as described in Section 2.2. We can also define the ordering of
LE-credence as follows.

Definition 5 (Ordering of LE-credence). For two given LE-credences denoted by pγ1,
δ1, α1q and pγ2, δ2, α2q, we write

i) pγ1, δ1, α1q “ pγ2, δ2, α2q if γ1 “ γ2, δ1 “ δ2, α1 “ α2 and we say that the LE-
credences are equal,

ii) pγ1, δ1, α1q ą pγ2, δ2, α2q if γ1 ą γ2 or γ1 “ γ2, δ1 ą δ2 or γ1 “ γ2, δ1 “ δ2, α1 ą α2

and we say that pγ1, δ1, α1q is larger than pγ2, δ2, α2q.

2.2 Properties

For two functions g1 and g2 that are log-exponentially varying at 8r0s, we can order
the asymptotic behaviour of their tails, using LE-credence, as follows.

Proposition 1 (Ordering of tails). If g1 P Lγ1,δ1,α1p8r0sq and
g2 P Lγ2,δ2,α2p8r0sq, then

pγ1, δ1, α1q ą pγ2, δ2, α2q implies that g1pzq{g2pzq Ñ 0 as z Ñ 8r0s.

If pγ1, δ1, α1q “ pγ2, δ2, α2q, then the ratio of the log-slowly varying part of g1 and g2
determines the tails dominance.

Proof. It is omitted since it is mostly algebraic.

The terminology LE-credence follows the idea of credence defined in O’Hagan (1990),
which describes essentially the tails that behave like |z|´β . Analogously, LE-credence de-
scribes the tails that behave like the function expp´δ| log z|γq| log z|´αSpzq. LE-credence
can be interpreted as a measure of the tail’s thickness. According to Proposition 1, the
function with the smallest LE-credence has the heaviest tail. For instance, if fpzq is
the density of a log-normal distribution with parameter τ2 “ 1{2 (see Section 4.3), it
can be verified that the left and right LE-credences of zfpzq are given by p2, 1, 0q. If
fpzq is the density of a log-double-Pareto distribution with parameter λ “ 1 (see Sec-
tion 4.3), it can be verified that the left and right LE-credences of zfpzq are given by
p0, 0, 2q. According to Definition 5, we have p2, 1, 0q ą p0, 0, 2q, which means that the
tails of the log-double-Pareto are heavier than those of the log-normal. As it will be
seen in Section 3, in case of conflict between two sources of information, the source with
the largest LE-credence will be preferred to the other one (with additional conditions).
LE-credence is therefore a measure of confidence in a source of information in case of
conflict. In our example, the source modelled using the log-normal would be preferred
in case of conflict.
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LE-credence is also useful to determine if a log-exponentially varying function is
integrable, as described in the next proposition.

Proposition 2 (Integrability). For a function zfpzq P Lγ,δ,αp8r0sq, there exists a
constant A ą 1 such that fpzq is integrable on z ą Arz ă 1{As, if

i) pγ, δ, αq ą p0, 0, 1q, ii) pγ, δ, αq “ p0, 0, 1q, with the log-slowly varying part of zfpzq

having a decay sufficiently fast (e.g. plog | log z|q´β, with β ą 1).

Proof. It is omitted since it is mostly algebraic.

In particular, if f is a probability density function, we know from Proposition 2 that
LE-credences larger than p0, 0, 1q in both tails of zfpzq are sufficient to guarantee that
f is proper.

An important characteristic of a log-exponentially varying function with LE-credence
sufficiently small is its asymptotic scale invariance, as shown in the next proposition.

Proposition 3 (Scale invariance). If g P Lγ,δ,αp8r0sq and γ ă 1, then we have, for
σ ą 0,

gpσzq „ gpzq as z Ñ 8r0s.

Or equivalently, if zfpzq P Lγ,δ,αp8r0sq and γ ă 1, then we have, for σ ą 0,

p1{σqfpz{σq „ fpzq as z Ñ 8r0s.

Proof. See Section 7.1.

In particular, if f is a probability density function, we know from Proposition 3 that
fpzq is scale invariant as z Ñ 8r0s if the first term (γ) of the right [left] LE-credence of
zfpzq is smaller than 1.

In the next proposition, we give the asymptotic behaviour, as z Ñ 8r0s, of the
density (evaluated at z) of the product of two independent and identically distributed
random variables with density f . Though the connection is not apparent yet, this result
is essential for the proof of our results of robustness given in Section 3.

Proposition 4 (Product of random variables). If f is a proper density, such that zfpzq

has a right [left] monotonic tail and zfpzq P Lγ,δ,αp8r0sq with γ ă 1, then

i)

ż 8

0

p1{σqfpz{σqfpσq dσ „ 2fpzq as z Ñ 8r0s,

and
ii) sup

σą0
fpz{σqfpσq{fpzq Ñ sup

σą0
σfpσq as z Ñ 8r0s.

Proof. See Section 7.2.

Note that ii) is still valid if we relax the condition that f needs to be a proper density
to the condition that σfpσq is bounded on σ ą 0, to allow for the cases γ “ δ “ 0 and
0 ď α ď 1. Only a minor and trivial change has to be done in the proof.
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Notice that for a proper and continuous density f defined on p0,8q, it is easy to
show that the function σfpσq is bounded (which is not necessarily the case for fpσq as
σ Ñ 0), with σfpσq Ñ 0 as σ Ñ 0 or σ Ñ 8.

By monotonicity of the right [left] tail of zfpzq, it is meant that

y ě z ry ď zs implies that yfpyq ď zfpzq as z Ñ 8r0s. (1)

3 Resolution of conflicts in a scale parameter model

3.1 The scale parameter model and notations

The Bayesian structure is given as follows.

i) Let X1, . . . , Xn be n random variables conditionally independent given σ with their

conditional densities given by Xi | σ
D
„ p1{σqfipxi{σq,

ii) the prior density of σ is given by σ | ϕ
D
„ p1{ϕqπpσ{ϕq,

where x1, . . . , xn, σ, ϕ ą 0.

As in Section 2, we assume that f1, . . . , fn and π are defined on p0,8q, continuous
and strictly positive. In addition, we assume that each density is proper. The only
exception is the possibility for the prior to be modelled by a non-informative (hence
considered as non-conflicting) improper density (such as πpσq91{σ), as long as σπpσq

is bounded on σ ą 0.

It necessarily means that the functions zf1pzq, . . . , zfnpzq and zπpzq are bounded on
z ą 0, with a limit of 0 in their tails as z Ñ 0 and z Ñ 8 (except for an improper prior).
Notice that the limit of the densities f1pzq, . . . , fnpzq, πpzq at 0 can be anything ranging
from 0 to infinity. We also assume that both tails of zf1pzq, . . . , zfnpzq and zπpzq are
monotonic, as defined in (1).

The scale parameter of the prior, ϕ, is considered known. The parameter ϕ represents
the information provided by the prior, and in this sense plays in our inference the same
role as the observations x1, . . . , xn. Any other hyperparameters are assumed to be
known and are implicitly included in the densities.

We study robustness of the inference on σ in the presence of extreme observations xi
and/or misspecification of the prior’s scale ϕ. The nature of the results is asymptotic,
in the sense that some xi and/or ϕ are going to 0 or 8. We find conditions on the
densities to obtain full robustness, given by the complete rejection of the information
provided by the conflicting values.

Among the n observations, denoted by xn “ px1, . . . , xnq, we assume that k of them,
denoted by the vector xk, form a group of non-outlying observations or fixed values. We
assume that l of them, denoted by the vector xl, are considered as left outliers (smaller
than the fixed values) and r of them, denoted by the vector xr, are considered as right
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outliers (larger than the fixed values), with k ` l ` r “ n. Similarly, the prior scale ϕ
can be considered as a fixed value, left outlier or right outlier.

For i “ 0, 1, . . . , n, we define three binary functions ki, li and ri as follows. If xi
is a fixed value, we set ki “ 1; if it is a left outlier, we set li “ 1; and if it is a right
outlier, we set ri “ 1. Similarly, if ϕ is a fixed value, we set k0 “ 1; if it is a left outlier,
we set l0 “ 1; and if it is a right outlier, we set r0 “ 1. These functions are set to 0
otherwise. We have ki ` li ` ri “ 1 for i “ 0, 1, . . . , n, with

řn
i“1 ki “ k,

řn
i“1 li “ l and

řn
i“1 ri “ r. If the prior is a non-informative improper density, ϕ is treated as a fixed

value, with k0 “ 1.

We assume that each conflicting value (outlier/prior) is going to 0 or 8 at any given
rate. They can move as a block, as assumed in Andrade and O’Hagan (2006), but they
are not restricted to any patterns. The conflicting values can therefore be combined in
one variable ω, defined as follows:

i) ω “ minp1{ϕ, 1{xl,xrq if l0 “ 1, ii) ω “ minp1{xl,xrq if k0 “ 1,

iii) ω “ minpϕ, 1{xl,xrq if r0 “ 1.

If we let ω Ñ 8, it means that each component of the vector is going freely to 8 at
any given rate.

Let the posterior density of σ be denoted by πpσ | xn, ϕq and the marginal density
of X1, . . . , Xn be denoted by mpxn | ϕq, with

πpσ | xn, ϕq “ mpxn | ϕq´1p1{ϕqπpσ{ϕq

n
ź

i“1

p1{σqfipxi{σq.

Let the posterior density of σ considering only the fixed values xk and ϕk0 (ϕk0 “ ϕ if
k0 “ 1; ϕk0 “ 1 if k0 “ 0) be denoted by πpσ | xk, ϕ

k0q and its corresponding marginal
density be denoted by mpxk | ϕk0q, with

πpσ | xk, ϕ
k0q “ mpxk | ϕk0q´1p1{σqppσ{ϕqπpσ{ϕqqk0

n
ź

i“1

pp1{σqfipxi{σqqki . (2)

In this case, the prior density is p1{σq ˆ ppσ{ϕqπpσ{ϕqqk0 , or equivalently p1{ϕqπpσ{ϕq

if k0 “ 1 or 1{σ if k0 “ 0.

Similarly, we define the posterior density of σ considering only the left conflicting
values xl and ϕ

l0 and that considering only the right conflicting values xr and ϕr0 as
follows:

πpσ | xl, ϕ
l0q9p1{σqppσ{ϕqπpσ{ϕqql0

n
ź

i“1

pp1{σqfipxi{σqqli and (3)

πpσ | xr, ϕ
r0q9p1{σqppσ{ϕqπpσ{ϕqqr0

n
ź

i“1

pp1{σqfipxi{σqqri . (4)

Furthermore, we have

σπpσ | xn, ϕq9σπpσ | xk, ϕ
k0q ˆ σπpσ | xl, ϕ

l0q ˆ σπpσ | xr, ϕ
r0q.
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It is interesting to notice that the posterior considering the whole information can be
seen as a combination of three posterior densities considering the fixed values, the left
and the right conflicting values.

3.2 Resolution of conflicts

Using the Bayesian context described in Section 3.1, the main theorem of this paper is
now presented.

Theorem 1 (Robustness). If the following conditions are satisfied:

i)

zπpzq P

#

Lγ0,δ0,α0p8q with γ0 ă 1; if l0 “ 1;

Lγ1
0,δ

1
0,α

1
0
p0q with γ1

0 ă 1; if r0 “ 1,

ii) for i “ 1, . . . , n,

zfipzq P

#

Lγi,δi,αip8q with γi ă 1; if ri “ 1;

Lγ1
i,δ

1
i,α

1
i
p0q with γ1

i ă 1; if li “ 1,

iii)
pzπpzqqk0

śn
i“1pp1{zqfip1{zqqki

pp1{zqπp1{zqq
l0 śn

i“1 pzfipzqq
li

Ñ 0 as z Ñ 0,

iv)
pzπpzqqk0

śn
i“1pp1{zqfip1{zqqki

pp1{zqπp1{zqq
r0 śn

i“1 pzfipzqq
ri Ñ 0 as z Ñ 8,

then we have the following results:

a) mpxn | ϕq „ mpxk | ϕk0q pp1{ϕqπp1{ϕqq
l0`r0 śn

i“1 fipxiq
li`ri as ω Ñ 8,

b) πpσ | xn, ϕq Ñ πpσ | xk, ϕ
k0q, σ ą 0, as ω Ñ 8,

c) σπpσ | xn, ϕq Ñ 0, as | log σ| Ñ 8, ω Ñ 8,

d) σ | xn, ϕ
D
Ñ σ | xk, ϕ

k0 as ω Ñ 8.

Proof. See Section 7.3.

The four conditions involve only the tails of the densities. More precisely, the right
conflicting values (xr, ϕ

r0) imply the right tail of zπpzq if ϕ is fixed and its left tail if
ϕ Ñ 8, and the left tail of zfipzq if xi is fixed or its right tail if xi Ñ 8, i “ 1 . . . , n.
The left conflicting values (xl, ϕ

l0) imply the opposite tails.
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In conditions i) and ii) we require, for the concerned tails of the conflicting densities,
that zπpzq and zfipzq are log-exponentially varying with 0 ď γ ă 1, which ensures
that these tails are sufficiently heavy. Notice that there are no such contraints on the
densities of the fixed values; we could for instance choose densities with lighter tails.

Using equations (2), (3) and (4), conditions iii) and iv) can be written respectively
as

σπpσ | xk, ϕ
k0 “ 1q

p1{σqπp1{σ | xl, ϕl0 “ 1q
Ñ 0 as σ Ñ 0, and

σπpσ | xk, ϕ
k0 “ 1q

p1{σqπp1{σ | xr, ϕr0 “ 1q
Ñ 0 as σ Ñ 8,

where 1 is a vector of 1. The interpretation of conditions iii) and iv) is easier with
this writing. The left tail of σπpσ | xk, ϕ

k0 “ 1q must be lighter than the right tail of
σπpσ | xl, ϕ

l0 “ 1q and the right tail of σπpσ | xk, ϕ
k0 “ 1q must be lighter than the

left tail of σπpσ | xr, ϕ
r0 “ 1q.

Notice that this interpretation may suggest that the left or right conflicting values
are treated as a block, even if we specified earlier that they go to 0 or 8 at any given
rate. However there is no contradiction since rejecting conflicting values when they
move as a block requires the strongest conditions.

The asymptotic behaviour of the marginal and the posterior are given respectively
in results a) and b). For any fixed value σ ą 0, the posterior considering the entire
information behaves as the posterior considering only the non-conflicting values. The
conflicting information is then completely rejected. The convergence of σπpσ | xn, ϕq

to 0 is established in result c), as σ, ω Ñ 8 or 1{σ, ω Ñ 8 at any given rate. It means
in particular that σπpσ | xn, ϕq converges to 0 for any area around the conflicting
values, and that an eventual mode at these values will also decrease to 0. Notice that
σπpσ | xn, ϕq{pσπpσ | xk, ϕ

k0qq, as ω Ñ 8 and | log σ| Ñ 8, has a form of 0{0 and its
limit can be anywhere between 0 and 8, depending on the relation between σ and ω.
In result d), the convergence in distribution is understood as

Prrσ ď d | xn, ϕs Ñ Prrσ ď d | xk, ϕ
k0s, for any d ą 0, as ω Ñ 8.

Therefore any estimators of σ based on quantiles of the posterior density are robust to
outliers and misspecified priors.

3.3 Special cases

A single observation

Two interesting special cases are described in this section. We first study the inference
with a sample of a single observation. While not realistic in practice, it gives some
intuition of how the robustness works. The Bayesian structure is simplified as follows:

i) let X1 be a random variable with its conditional density given by

X1 | σ
D
„ p1{σqf1px1{σq,
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ii) the prior density of σ is given by σ | ϕ
D
„ p1{ϕqπpσ{ϕq,

where x1, σ, ϕ ą 0. We assume that the densities π and f1 are proper. We must
decide which source of information we trust in case of conflict, between the prior and
the observation.

Consider first that we choose to resolve an eventual conflict in favour of the prior,
or stated another way, the conflicting value would be the observation x1. Starting from
the general context, we set n “ 1, k “ 0, l ` r “ 1, k0 “ 1, l0 “ r0 “ 0, k1 “ 0,
l1 ` r1 “ 1, xn “ x1, xk “ H, ω “ 1{x1 if l1 “ 1 and ω “ x1 if r1 “ 1. We can verify
that

mpxk | ϕk0q “ 1 and πpσ | xk, ϕ
k0q “ p1{ϕqπpσ{ϕq.

Theorem 1 is then simplified as follows:

If the following conditions are satisfied:

zf1pzq P

#

Lγ1,δ1,α1
p8q with γ1 ă 1; if r1 “ 1;

Lγ1
1,δ

1
1,α

1
1
p0q with γ1

1 ă 1; if l1 “ 1,

and
zπpzq

pzf1pzqql1
Ñ 0 as z Ñ 0 and

zπpzq

pzf1pzqq
r1 Ñ 0 as z Ñ 8,

then we have the following results:

a) mpx1 | ϕq „ f1px1q as ω Ñ 8,

b) πpσ | x1, ϕq Ñ p1{ϕqπpσ{ϕq, σ ą 0, as ω Ñ 8,

c) σπpσ | x1, ϕq Ñ 0, as | log σ| Ñ 8, ω Ñ 8,

d) σ | x1, ϕ
D
Ñ σ | ϕ as ω Ñ 8.

In practice, we may wish to be protected against a potential outlier in any direction,
that is too small or too large. It suffices then to satisfy the conditions for both l1 “ 1
and r1 “ 1. We choose f such that zf1pzq is log-exponentially varying at 0 and 8 (not
necessarily with the same LE-credence) with γ1, γ

1
1 ă 1. And we choose π such that

πpzq{f1pzq Ñ 0, as z Ñ 0 and z Ñ 8, that is the left and right tails of π are respectively
lighter than the left and right tails of f1.

It follows that the marginal of X1 behaves asymptotically as f1px1q and the posterior
behaves as the prior, the source that we decided to trust in case of conflict. The outlier
is completely rejected.

Consider now that we choose to resolve an eventual conflict in favour of the obser-
vation, or stated another way, the conflicting value would be the prior’s scale ϕ.
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In this case, we set n “ 1, k “ 1, l ` r “ 0, k0 “ 0, l0 ` r0 “ 1, k1 “ 1, l1 “ r1 “ 0,
xn “ xk “ x1, ω “ 1{ϕ if l0 “ 1 and ω “ ϕ if r0 “ 1. We can verify that

mpxk | ϕk0q “ 1{x1 and πpσ | xk, ϕ
k0q “ p1{σqpx1{σqf1px1{σq.

Theorem 1 is then simplified as follows:

If the following conditions are satisfied:

zπpzq P

#

Lγ0,δ0,α0p8q with γ0 ă 1; if l0 “ 1;

Lγ1
0,δ

1
0,α

1
0
p0q with γ1

0 ă 1; if r0 “ 1,

and
zf1pzq

pzπpzqql0
Ñ 0 as z Ñ 8 and

zf1pzq

pzπpzqq
r0 Ñ 0 as z Ñ 0,

then we have the following results:

a) mpx1 | ϕq „ p1{x1qp1{ϕqπp1{ϕq as ω Ñ 8,

b) πpσ | x1, ϕq Ñ p1{σqpx1{σqf1px1{σq, σ ą 0, as ω Ñ 8,

c) σπpσ | x1, ϕq Ñ 0, as | log σ| Ñ 8, ω Ñ 8,

d) σ | x1, ϕ
D
Ñ σ | x1 as ω Ñ 8.

In practice, we may wish to be protected against a potential misspecification of the
prior’s scale in any direction, that is too small or too large. It suffices then to satisfy the
conditions for both l0 “ 1 and r0 “ 1. We choose π such that zπpzq is log-exponentially
varying at 0 and 8 (not necessarily with the same LE-credence) with γ0, γ

1
0 ă 1. And

we choose f1 such that f1pzq{πpzq Ñ 0, as z Ñ 0 and z Ñ 8, that is the left and right
tails of f1 are respectively lighter than the left and right tails of π.

It follows that the product of x1 with the marginal of X1 behaves asymptotically
as p1{ϕqπp1{ϕq and the posterior behaves as p1{σqpx1{σqf1px1{σq. The latter is based
exclusively on the information provided by the likelihood, that is the observation x1
and the density f1, which is the source that we decided to trust in case of conflict. The
information provided by the prior p1{ϕqπpσ{ϕq, that is the scale parameter ϕ and the
density π, is completely ignored. Notice that the limiting posterior can be interpreted
as the posterior density given x1, where 1{σ plays the role of the prior. It is interesting
to observe that even if the chosen prior in the model is completely rejected, it still
remains the non-informative prior 1{σ, inherent in the Bayesian structure. In result d),
the random variable σ | x1 has the density given in result b).
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The same tail behaviour for each source of information

A simple and practical model consists in choosing the same tail behaviour for each tail
of each density, that is

zπpzq „ zf1pzq „ ¨ ¨ ¨ „ zfnpzq, as z Ñ 0 or z Ñ 8.

Notice that the shape of each density may be distinct since the conditions involve only
the asymptotic tail behaviour. In case of conflict, we choose to give the same weight to
each source of information.

Since zπpzq „ p1{zqπp1{zq and zfipzq „ p1{zqfip1{zq, conditions iii) and iv) are
simplified as follows:

pzf1pzqqpk0`kq´pl0`lq Ñ 0 and pzf1pzqqpk0`kq´pr0`rq Ñ 0 as z Ñ 8,

which is equivalent to k0`k ą maxpl0` l, r0`rq since zf1pzq Ñ 0 as z Ñ 8. Theorem 1
is then simplified as follows:

If for i “ 1, . . . , n, we have

zπpzq, zfipzq P Lγ,δ,αp0q and zπpzq, zfipzq P Lγ,δ,αp8q, with γ ă 1,

and
k0 ` k ą maxpl0 ` l, r0 ` rq,

then results a) to d) follow.

For instance, there are up to 10 conflicting values at left and 10 others at right that
could be rejected with a group of 11 fixed or non-conflicting values.

If all the conflicting values are on the same side, we have

maxpl0 ` l, r0 ` rq “ pn` 1q ´ pk0 ` kq,

and
k0 ` k ą maxpl0 ` l, r0 ` rq ô k0 ` k ą pn` 1q{2,

that is the conflicting values will be completely rejected if they are less numerous than
the fixed values, in other words, if the non-conflicting values represent more than half
of the sources of information.

4 Log-exponentially varying densities

An important condition of robustness, given in Theorem 1, requires choosing log-
exponentially varying densities in our modelling, with tails sufficiently heavy. How-
ever, for most of the known densities f defined on p0,8q, the function zfpzq is not
log-exponentially varying, and if it is the case, its tails are not sufficiently heavy for
robustness.



A. Desgagné 199

For instance, if a gamma density is given by

fpzq “ e´zzδ´1Γpδq´1, (5)

where δ ą 0 and Γpδq “
ş8

0
uδ´1 e´udu is the gamma function, then we have zfpzq „

e´zzδ Γpδq´1 as z Ñ 8, and

zfpzq „ zδ Γpδq´1 “ expp´δ| log z|qΓpδq´1 as z Ñ 0.

We observe that zfpzq P L1,δ,0p0q, with the log-slowly varying part equal to Γpδq´1, but
it is not sufficiently heavy. Furthermore, zfpzq is not log-exponentially varying at 8.

A special attention should be paid to the left tail of a density defined on p0,8q. For
a density f such that zfpzq P Lγ,δ,αp0q, that is

fpzq “ p1{zq expp´δ| log z|γq| log z|´αSpzq,when z ă 1{A for some A ą 1,

we can show that the limit of fpzq as z Ñ 0 is

i) a constant t ą 0 if pγ, δ, αq “ p1, 1, 0q and the log-slowly varying function Spzq

converges to t as z Ñ 0,

ii) 0 if pγ, δ, αq ą p1, 1, 0q or pγ, δ, αq “ p1, 1, 0q and Spzq Ñ 0 as z Ñ 0,

iii) 8 if pγ, δ, αq ă p1, 1, 0q or pγ, δ, αq “ p1, 1, 0q and Spzq Ñ 8 as z Ñ 0.

Notice that fpzq „ Spzq as z Ñ 0 if pγ, δ, αq “ p1, 1, 0q. For instance, for the gamma
density given by (5) with an LE-credence of p1, δ, 0q, we can verify that fpzq Ñ 1 if
δ “ 1; fpzq Ñ 0 if δ ą 1; fpzq Ñ 8 if δ ă 1. It means that the condition of robustness
γ ă 1 implies that fpzq Ñ 8 as z Ñ 0.

To help the search of valid densities for robustness purposes, we propose in Sec-
tion 4.1 a method of transformation of densities defined on R in order to devise a
density f such that zfpzq is log-exponentially varying in both tails. In Section 4.2, we
propose a family of densities resulting from this method of transformation.

4.1 Exponential transformation of densities defined on the real line

A simple method to devise densities defined on p0,8q consists of the exponential trans-
formation of densities defined on R. For most of the known densities on R, the trans-
formation results in densities f such that zfpzq is log-exponentially varying at 0 and
8.

A well-known case is the exponential transformation of the standardized normal
density in a log-normal density f . The function zfpzq is then log-exponentially varying
at 0 and 8 and its LE-credence is (2,1/2,0) in both tails, which is however too large for
robustness purposes.
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In general, we start with a random variable Y having a density gpyq defined on R
that is unimodal, symmetric with respect to the origin (gpyq “ gp´yq), with a scale
parameter set to any value (1 by default). Let the cumulative distribution function of a
random variable Y be denoted by FY p¨q and its a-quantile be denoted by QY paq, such
that

1 ´ FY pQY paqq “ PrrY ą QY paqs “ a.

Notice that by symmetry we have F p´yq “ 1 ´ F pyq and QY paq “ ´QY p1 ´ aq, for
0 ă a ă 1, with QY p1{2q “ 0.

We proceed now to the exponential transformation Z “ exppτY q. The density of Z
is then given by

fpzq “ pτzq´1gpτ´1 log zq,

where z, τ ą 0. Notice the symmetry given by zfpzq “ p1{zqfp1{zq resulting from
gpyq “ gp´yq, which means that the tail behaviour of zfpzq is the same at 0 and 8. If
we add a scale parameter s ą 0, we have

Z | s
D
„ p1{sqfpz{sq “ pτzq´1gpτ´1 logpz{sqq.

It follows that FZ|spzq “ FY pτ´1 logpz{sqq and we obtain the relation of symmetry given
by FZ|sps{zq “ 1 ´ FZ|spszq. It also can be verified, for 0 ă a ă 1, that

QZ|spaq “ s exppτQY paqq and QZ|sp1 ´ aq “ s{ exppτQY paqq “ s2{QZ|spaq.

In particular, the median is QZ|sp1{2q “ s. The geometric mean of QZ|sp1 ´ aq and
QZ|spaq is hence the median s.

The parameter τ can be used to control the dispersion of the density f . To simplify
the choice of τ , we can proceed as follows. For a given probability 1 ´ a (for instance
1 ´ a “ 0.95), we choose an interval p1{b, bq, where b ą 1, that includes 1 ´ a of the
mass of the density fpzq, that is such that

1 ´ a “ Prr1{b ď Z ď bs “

ż b

1{b

fpzqdz.

It necessarily follows that b “ exppτQY pa{2qq, and solving for τ , we find

τ “ plog bq{QY pa{2q. (6)

Notice that the choice of τ in (6) does not depend on the median s.

It is equivalent and possibly easier to choose an interval ps{b, sbq around a given
median s that includes 1 ´ a of the mass of the density p1{sqfpz{sq, since

ż b

1{b

fpzqdz “

ż sb

s{b

p1{sqfpz{sqdz “ Prrs{b ď Z ď sb | ss.
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It it also equivalent, in a Bayesian context, to choose a p1 ´ aq-credibility interval
for s given by pz{b, zbq, since

ż b

1{b

fpzqdz “

ż b

1{b

fpsqds “

ż zb

z{b

p1{sqpz{sqfpz{sqds “ Prrz{b ď s ď zb | zs,

where p1{sqpz{sqfpz{sq represents the posterior density of s given the observation z,
with 1{s as the non-informative prior and p1{sqfpz{sq as the model.

For example, we can choose gpyq “ Cpνqpν ` y2q´pν`1q{2, a Student density with
ν ą 0 degrees of freedom, where Cpνq is the appropriate normalizing constant. Then
the “log-Student” density with parameters ν and τ is given by

fpzq “ Cpνqpτzq´1pν ` plog zq2{τ2q´pν`1q{2, (7)

where z, τ ą 0. The function zfpzq is log-exponentially varying at 0 and 8 with its
LE-credence given by p0, 0, ν ` 1q in both tails, for any values of τ . Therefore, the
log-Student is a good candidate for robust inference.

Two other examples are the exponential transformation of the symmetric Laplace
and logistic densities, that behave as gpyq „ expp´|y|q as |y| Ñ 8. It can be verified
that the “log-Laplace” and “log-logistic” densities behave as zfpzq „ expp´p1{τq| log z|q

as |z| Ñ 0 or |z| Ñ 8, with their LE-credence given by p1, τ´1, 0q. However, their tails
are not sufficiently heavy for robustness purposes.

To facilitate the search of appropriate densities for robustness’s sake, we introduce
in the next section a new family of densities.

4.2 The log-GEP2 distribution

The generalized exponential power (GEP) density was first introduced by Angers (2000)
and then by Desgagné and Angers (2005) with a minor modification about the sign of
some parameters. It is a symmetric density around the origin, defined on the real line,
with a constant part in the center. Its interest lies in the large spectrum of its tail
behaviour. We propose in this section a modified GEP density with no constant part,
called generalized exponential power of the second form (GEP2), and its exponential
transformation defined on p0,8q, called log-GEP2.

The GEP2 density is built with the right tail of the GEP density (proportional to
expp´δyγqy´αplog yq´β), translated to the origin and doubled.

Definition 6. A random variable Y has a GEP2 distribution, written Y „ GEP2 pγ,
δ, α, β, θq, if its density is given by

gpyq “ p1{2qKpγ, δ, α, β, θq expp´δp|y| ` θqγqp|y| ` θq´αplogp|y| ` θqq´β ,

where y P R, γ ě 0, δ ě 0, α P R, β P R, θ ě 0, and

pKpγ, δ, α, β, θqq´1 “

ż 8

θ

expp´δyγqy´αplog yq´βdy. (8)
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By convention, we set γ “ 0 if and only if δ “ 0. In order for g to be strictly positive,
continuous and proper, these additional constraints must be satisfied: i) θ ą 1 if β ‰ 0,
ii) θ ą 0 if β “ 0, α ‰ 0, iii) α ą 1 or α “ 1, β ą 1 if γ “ δ “ 0.

The GEP2 density is symmetric with respect to the origin and is generally unimodal,
except possibly when α ă 0 and/or β ă 0. In this case, it suffices to choose θ large
enough to guarantee unimodality, such that

γδθγ ` α ` β{ log θ ě 0. (9)

In particular, if β “ 0, equation (9) is simplified as θ ě |α|1{γpγδq´1{γ if α ă 0.

The log-GEP2 density is devised using the method of transformation described in
Section 4.1.

Definition 7. A random variable Z has a log-GEP2 distribution, written Z „ log-GEP2

pγ, δ, α, β, θ, τq, if its density is given by

fpzq “ p1{2qKpγ, δ, α, β, θqpτzq´1 expp´δpτ´1| log z| ` θqγq

ˆ pτ´1| log z| ` θq´αplogpτ´1| log z| ` θqq´β ,

where z ą 0, τ ą 0. The domain and constraints on the other parameters are given
in the definition of the GEP2 distribution and the constant Kpγ, δ, α, β, θq is given by
equation (8).

If γ ď 1 or γ ą 1, α “ β “ θ “ 0, it can be verified that zfpzq is log-exponentially
varying at 0 and 8 with LE-credences given by pγ, δ{τγ , αq. Notice that the parameter
θ has no impact on the tails if γ ď 1. The term plogpτ´1| log z| ` θqq´β is log-slowly
varying at 0 and 8 since it behaves as plog | log z|q´β in both tails. A scale parameter
can be added, and as noticed in Section 4.1, it corresponds to the median.

4.3 Special cases of the log-GEP2 distribution

We now describe in more detail some special cases of the log-GEP2 density for which
the normalizing constant is analytically tractable.

Log-normal distribution

If γ “ 2, δ “ 1{2, α “ β “ θ “ 0, then Z has a log-normal density with parameter τ ,
given by

fpzq “ p2πq´1{2pτzq´1 expp´plog zq2{p2τ2qq. (10)

The function zfpzq is log-exponentially varying at 0 and 8 with LE-credence given by
p2, p2τ2q´1, 0q. We have

FZpzq “ Φpτ´1 log zq and QZpaq “ exppτΦ´1p1 ´ aqq,

where Φ is the usual cumulative distribution function of a standardized normal.
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Log-Laplace distribution

If γ “ δ “ 1, α “ β “ θ “ 0, then Z has a log-Laplace density with parameter τ , given
by

fpzq “ p2τzq´1 expp´p1{τq| log z|q “ p2τzq´1z´p1{τq signplog zq.

The function zfpzq is log-exponentially varying at 0 and 8 with LE-credence given by
p1, τ´1, 0q. Furthermore, we have

FZpzq “ p1{2q expp´p1{τq| log z|q if z ď 1

and
QZpaq “ expp´τ logp2aqq if a ď 1{2.

Notice that FZp1{zq “ 1 ´ FZpzq and QZp1 ´ aq “ 1{QZpaq. Furthermore, we can
simulate Z using Z “ QZpaq if a is generated from a uniform distribution.

Log-double-Pareto distribution

If γ “ δ “ β “ 0, α “ λ`1, θ “ 1, where λ ą 0, then Z has a log-double-Pareto density
with parameters λ and τ , given by

fpzq “ λp2τzq´1pτ´1| log z| ` 1q´pλ`1q. (11)

The function zfpzq is log-exponentially varying at 0 and 8 with LE-credence given by
p0, 0, λ` 1q. Furthermore, we have

FZpzq “ p1{2qpτ´1| log z| ` 1q´λ if z ď 1 and

QZpaq “ exppτpp2aq´1{λ ´ 1qq if a ď 1{2.

Log-exponential-power distribution

If γ ą 0, δ ą 0, α “ 0, β “ θ “ 0, then Z has a log-exponential-power density with
parameters γ, δ and τ , given by

fpzq “ γδ1{γp2Γp1{γqq´1pτzq´1 expp´δτ´γ | log z|γq.

The function zfpzq is log-exponentially varying at 0 and 8 with LE-credence given by
pγ, δτ´γ , 0q. Furthermore, we have

FZpzq “
Γp1{γ, δτ´γ | log z|γq

2Γp1{γq
if z ď 1,

where Γpa, bq “
ş8

b
ua´1 e´udu is the incomplete gamma function, for a ą 0 and b ě 0.

In particular, Γpa, 0q “ Γpaq is the gamma function.

Notice that the log-exponential-power distribution includes the log-normal if γ “ 2,
δ “ 1{2 and the log-Laplace if γ “ δ “ 1.
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Log-double-generalized-gamma distribution

If γ ą 0, δ “ 1, α “ 1´λ pλ ą 0q, β “ 0, θ ě 0, with θ ą 0 if λ ‰ 1 and θ ě ppλ´1q{γq1{γ

if λ ą 1, then Z has a log-double-generalized-gamma density with parameters γ, λ, θ
and τ , given by

fpzq “ γp2Γpλ{γ, θγqq´1pτzq´1 expp´pτ´1| log z| ` θqγqpτ´1| log z| ` θqλ´1.

The function zfpzq is log-exponentially varying at 0 and 8 with LE-credence given by
pγ, τ´γ , 1 ´ λq if γ ď 1 or γ ą 1, λ “ 1, θ “ 0. Otherwise if γ ą 1, the parameter θ has
an impact on the exponential term and zfpzq is no longer log-exponentially varying.
However it is not a problem for robustness, since γ ă 1 must be satisfied for conflicting
densities. Furthermore, we have

FZpzq “
Γpλ{γ, pτ´1| log z| ` θqγq

2Γpλ{γ, θγq
if z ď 1.

Notice that the log-double-generalized-gamma(γ, λ, θ, τ) distribution includes the
log-exponential-power(γ, δ “ 1, τ) if λ “ 1 and θ “ 0.

5 Example

Table 1: Prior and experts’ predictions, with their 95% credibility intervals.

Prior Experts
1 2 3 4 5

Predictions ϕ, x1, . . . , x5 4.5 2.25 4 4.5 5.2 12

Left bound ϕ{b0 or xi{bi 1.25 1.5 2.5 3 3.2 10

Right bound ϕb0 or xibi 16.2 3.375 6.4 6.75 8.45 14.4

bi 3.6 1.5 1.6 1.5 1.625 1.2

τi (log-normal) .6535 .2069 .2398 .2069 .2477 .0930

τi (log-double-Pareto) 1.5610 .4941 .5728 .4941 .5917 .2222

τi (log-Student) .4983 .1577 .1828 .1577 .1889 .0709

We consider a simple example of a portfolio manager that needs a prediction on the
volatility of a stock index represented by σ, where the volatility is measured say by the
standard deviation of the next twelve monthly returns. He asks 5 experts (quantitative
models for instance) for their prediction on the volatility σ, represented by the obser-
vations x1, . . . , x5, as well as a measure of confidence on their prediction, denoted by
bi ą 1, where pxi{bi, xibiq represents a 95% credibility interval for σ, for i “ 1, . . . , 5.
The manager wants to combine this information with his prior beliefs using the Bayesian
model described in Section 3.1. The prediction given by the prior is based on the histor-
ical median of the volatility, represented by ϕ, and the measure of confidence is denoted
by b0 ą 1, where 95% of the past volatilities lie in the interval pϕ{b0, ϕb0q.
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Data are given in Table 1. The predictions and intervals are expressed in percent-
ages. Each of the densities π, f1, . . . , f5 are modelled using three different distributions,
namely the log-normal(τi) as given by (10) with LE-credence given by p2, p2τ2i q´1, 0q, the
log-double-Pareto(λ “ 5, τi) as given by (11) with LE-credence given by p0, 0, 6q, and the
log-Student(ν “ 5, τi) as given by (7) with LE-credence given by p0, 0, 6q, i “ 0, 1, . . . , 5.
Notice that τ0 is associated to π and τi to fi. For each distribution, the parameter τi is
set according to (6), where a “ 0.05. The values of τi are given in Table 1.

0 5 10 15 20

0
1

2
3

4
5

6

σ

(σ
φ)

 π
(σ

φ)
,  

 ( x
i

σ)
 f i

(x
i

σ)
  a

nd
  σ

 π
(σ

 | 
x

n
 , 

φ)

Posterior as a Combination of Each Source 
            

 for the Non−Robust Log−Normal Model

Prior
Experts 1 and 5
Experts 2 to 4
Posterior

Figure 1: Example of non-robust modelling.

The inference on σ is performed using its posterior density given by

σπpσ|x5, ϕq9pσ{ϕqπpσ{ϕq

5
ź

i“1

pxi{σqfipxi{σq.

The functions pσ{ϕqπpσ{ϕq and pxi{σqfipxi{σq, as well as their product σπpσ|x5, ϕq, are
plotted in Figure 1 when the densities are log-normal and in Figure 2 when the densities
are log-Student. The graph for the log-double-Pareto densities is similar to Figure 2 and
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Figure 2: Example of robust modelling.

hence is not shown. We see that experts 2, 3 and 4 (thin solid lines) provided similar
information. The prior information (dotted line) is also similar, but much more diffuse.
However, the information provided by experts 1 and 5 (dashed lines) seems in conflict
with the other sources, the common area shared with the others being small.

For the non-robust log-normal model (Figure 1), the posterior information (thick
solid line) lies in an area largely ignored by most of the other sources of information,
except for the quasi non-informative prior and for expert 3. For the robust log-Student
model (Figure 2), the posterior information (thick solid line) agrees with the prior and
experts 2, 3 and 4, but shares only a small area with the information given by experts
1 and 5, suggesting that the outliers are mostly rejected.

Posterior estimation of σ is done using either the expectation Epσ | x5, ϕq or the
median Qσ|x5,ϕp1{2q. Results are given in Table 2. Different scenarios are considered:
i) experts 1 to 5 are included in the model; ii) experts 1 and 5 are excluded; iii) only
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Table 2: Posterior estimation of σ.

Experts
Model Estimator 1,2,3,4,5 2,3,4 2,3,4,5 1,2,3,4

1) Log-normal Epσ | x5, ϕq 7.37 4.56 8.64 3.74
Qσ|x5,ϕp1{2q 7.36 4.52 8.62 3.71

2) Log-Student Epσ | x5, ϕq 4.51 4.55 4.95 4.17
(log-normal prior) Qσ|x5,ϕp1{2q 4.48 4.52 4.87 4.17
3) Log-d.-Pareto Epσ | x5, ϕq 4.53 4.53 4.74 4.35
(log-normal prior) Qσ|x5,ϕp1{2q 4.50 4.50 4.67 4.35
4) Log-Student Epσ | x5, ϕq 4.51 4.55 4.92 4.18
(truncated prior) Qσ|x5,ϕp1{2q 4.48 4.52 4.86 4.18

5) Log-d.-Pareto Epσ | x5, ϕq 4.52 4.52 4.68 4.38
(truncated prior) Qσ|x5,ϕp1{2q 4.50 4.50 4.61 4.39

expert 1 is excluded; iv) only expert 5 is excluded.

For the model where each density is log-normal (model 1 in Table 2), the posterior
expectation and the moments exist. However, if each density is either log-Student or log-
double-Pareto, the moments do not exist even if the posterior is proper, its tails being
too heavy. In this case, the inference can be done using quantiles such as the median.
Credibility intervals can also be calculated. If one prefers working with expectation and
moments, we propose two solutions.

A first solution is to use a log-normal density for one source of information. Ideally,
we choose a source that we absolutely trust in case of conflict (since it will never be
rejected) or that is so diffuse that a conflict with other sources is practically impossible,
as is the case in our example with the prior. This way, the moments exist and we can
estimate σ with the posterior expectation. In our example, we use a log-normal for the
prior in models 2 and 3 (see Table 2).

A second solution is to use a truncated prior. In our example, we use a truncated
log-Student in model 4 and a truncated log-double-Pareto in model 5. We can choose
points of truncation, say 1{t and t, with t ą 1 as large as we want, in accordance
with our context. For the calculation of the median with truncation, it would suffice to
choose t large enough to approach the median without truncation as close as we want,
since the posterior is proper. Theoretically, the (absolute) moments being infinite, their
value calculated with truncated prior increases with t. However, in practice it happens
that it increases at such a slow rate that it is not noticeable. It is the case in our
example, where the calculation of moments seems totally insensible to the points of
truncation beyond a certain threshold. Whether we choose t “ 30 or t “ 1000, it makes
no difference in the calculation of the expectation and variance, at a precision of at least
6 decimals. In our context, we are quite sure that the volatility will fall between 0.001%
and 1000%. This solution is interesting only if the moments are practically insensitive
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to the chosen points of truncation for t beyond a certain threshold. Further analysis
would be necessary to better understand when this method works. For instance, we
noticed in our example that this insensitivity increases with the number of observations
in the model.

Using Theorem 1, we know how the posterior behaves in the presence of conflicting
information. Robustness with the log-normal model is not guaranteed, since its LE-
credence is too large. For the log-Student or log-double-Pareto models, where every tail
has the same behaviour, robustness is guaranteed if the number of non-outlying values
is larger than the maximum between the number of left and right conflicting values. In
our example, it means that information given by experts 1 and 5 would be rejected as
they move away in each direction. Even if the results of Theorem 1 are asymptotic, we
see in Table 2 that rejection occurs efficiently with finite observations.

Notice first that every model gives essentially the same results when the conflicting
values (experts 1 and 5) are excluded, see the second column of Table 2. That was
expected (and desirable) with the way we chose the parameters τi. We can also observe
that estimation using either the posterior expectation or median gives similar results. In
the same way, estimation using a truncated or a log-normal prior for the robust models
gives similar results. Even the robust log-Student and log-double-Pareto models give
comparable results, which can be explained by their identical LE-credence.

We see that the log-normal model is largely influenced by expert 1 (Epσ | xn, ϕq “

3.74) and by expert 5 (Epσ | xn, ϕq “ 8.64) when they are added separately in the
model. The log-normal model is still contaminated when they are both added in the
model (Epσ | xn, ϕq “ 7.37). For the robust models, the influence of experts 1 and 5 is
already quite small and theory tells us that it would decrease to nothing if the conflict
would increase.

6 Conclusion

Full robustness has been investigated in Bayesian modelling of a scale parameter. The
log-exponentially varying functions have been introduced to provide a framework for
the characterization of the eligible densities that lead to robust inference. LE-credence
has been defined as the vector of parameters associated with a log-exponentially varying
function and has proved to be useful to characterize the thickness of a tail and to order
different tails. The log-regularly and log-slowly varying functions have also been defined
as a subclass of the the log-exponentially varying functions.

The main results are given in Theorem 1. Their nature is asymptotic, not in the
classical way where the sample size n Ñ 8, but in the sense that the conflicting values
(some observations and/or the prior’s scale) move to 0 or 8. Nevertheless, the results
are still useful with finite information as it is shown in our example of combination of
experts’ opinions.

Essentially, robustness is guaranteed if: 1) the appropriate tail of a conflicting den-
sity, say fpzq, is sufficiently heavy, more precisely if zfpzq is log-exponentially varying;
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2) if the right tail of the posterior density considering only the non-conflicting values is
lighter than the left tail of the posterior density considering only the large conflicting
values; 3) if the left tail of the posterior density considering only the non-conflicting
values is lighter than the right tail of the posterior density considering only the small
conflicting values. These conditions are intuitive and easy to verify. They are based
only on the densities of the model and on some limits; there are no integrals, derivatives
or cumulative distribution functions involved.

The principal result of robustness is given by the convergence in distribution of the
random variable σ given the complete information to the random variable σ given the
non-conflicting information, as the conflicting values (outliers and/or prior) tend to 0
or 8, at any given rate. Full robustness is achieved asymptotically, as the influence of
the conflicting values disappears completely as they move apart. We also found that
if the tail behaviour is the same for all densities, full robustness is guaranteed if the
non-conflicting values exceeds the conflicting values.

Practical concerns have also been addressed. The log-GEP2 density has been intro-
duced to compensate for the rarity of densities appropriate for full robustness in a scale
parameter structure. A log-GEP2 density, say fpzq, has the property that zfpzq has the
same tail behaviour at 0 and 8, which is useful if we want to be equally protected against
conflicting values in all directions. Its large tail behaviour can be helpful for a user: it
includes the log-normal density, the log-Laplace and a diversity of log-exponentially and
log-regularly varying functions.

Practical considerations have also been addressed through an example of combina-
tion of experts’ opinions. Prediction of a scale parameter of interest is given by different
experts, as well as a measure of confidence on their prediction. It is shown how to reflect
this confidence in the modelling of the densities. The non-robust log-normal model is
compared with the robust log-Student and log-double-Pareto models. Even though the
theoretical results are asymptotic, the phenomenon of rejection occurred quite well in
this example with only five observations.

We also proposed solutions for the cases where modelling leads to posterior inference
with no existence of the moments, for instance when all densities are log-Student. One
can simply use quantiles, median and credibility intervals. If working with moments is
preferred, one solution is to model a non-informative or diffuse source of information
(usually the prior) with the lighter-tailed log-normal distribution. A second solution is
to use a truncated prior. We found that in practice (at least in our example), the choice
of the points of truncation beyond a certain threshold has no perceptible impact on the
posterior moments, at a precision of at least 6 decimals. While not conventional, we
think it is worthwhile to further investigate this approach.

This paper can be generalized in different ways. While the class of log-exponentially
varying functions is quite large, it still can be widened. We think the class of slowly
varying functions could be a good starting point, as suggested by Proposition 3. Fur-
thermore, our results of robustness could be extended to include convergence of the
posterior expectation of functions. Finally, a thorough investigation on how the robust-
ness performs in practice with different modelling would be interesting.
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7 Proofs

Notice that, as mentioned in Section 2, the square brackets distinguish asymptotic
behaviour at 0 from that at 8.

7.1 Proof of Proposition 3

Since g P Lγ,δ,αp8r0sq, we can write gpzq „ expp´δ| log z|γq| log z|´αSpzq, with S P

L0p8r0sq, as z Ñ 8r0s. Then, considering σ ą 0 and using the Taylor series develop-
ment of | log z ` log σ|γ , we have, as z Ñ 8r0s,

gpzσq

gpzq
„

expp´δ| log z ` log σ|γq| log z ` log σ|´αSpzσq

expp´δ| log z|γq| log z|´αSpzq

„ exp

˜

´δ
8
ÿ

k“1

psignplog zq log σqkγ ¨ pγ ´ 1q ¨ ¨ ¨ pγ ´ pk ´ 1qq

k!| log z|k´γ

¸

Spzσq

Spzq

„
Spzσq

Spzq
exp

´

´δ
´

signplog zqplog σqγ| log z|´p1´γq

` plog σq2γpγ ´ 1qp1{2q| log z|´p2´γq ` . . .
¯¯

„
Spzσq

Spzq
,

as long as 0 ď γ ă 1. It suffices now to show that Spzσq „ Spzq, for any σ ą 0. The
power invariance of Spzq can be written as follows: @λ ą 1, we have, as z Ñ 8r0s,
1{λ ď ν ď λ ñ Spzνq{Spzq Ñ 1, or equivalently

minpz1{λ, zλq ď a ď maxpz1{λ, zλq ñ Spaq{Spzq Ñ 1.

If maxpz, 1{zq is large enough, specifically if maxpz, 1{zq ě λλ{pλ´1q, then it can be
verified that

minpz1{λ, zλq ď z{λ ă zλ ď maxpz1{λ, zλq.

It follows that, as z Ñ 8r0s,

z{λ ď a ď zλ ñ Spaq{Spzq Ñ 1 or 1{λ ď σ ď λ ñ Spzσq{Spzq Ñ 1.

7.2 Proof of Proposition 4

The proof for the case z Ñ 0 is omitted since it is similar to the case z Ñ 8. Using the
symmetry of fpz{σqfpσq around σ “

?
z, it can be verified that

ż 8

0

p1{σqfpz{σqfpσq{fpzq dσ “ 2

ż

?
z

0

p1{σqfpz{σqfpσq{fpzq dσ

“ 2

ż

?
z

0

p1{σqpz{σqfpz{σqσfpσq{pzfpzqq dσ.
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Consider an intermediate variable τ Ñ 8 as well as z Ñ 8. We first choose a value
of τ ą 1 as large as we want, and once τ chosen, we can choose a value of z as large as
we want. We split the integral in three parts between 0 ă 1{τ ă τ ă

?
z.

Firstly, if 0 ă σ ď 1{τ ,

pz{σqfpz{σqσfpσq{pzfpzqq ď σfpσq Ñ 0 as σ ď 1{τ Ñ 0,

using the monotonicity of the right tail of zfpzq for any z larger than a certain constant,
since z{σ ě zτ ě z for any τ ą 1. Similarly we have

2

ż 1{τ

0

p1{σqfpz{σqfpσq{fpzq dσ ď 2

ż 1{τ

0

fpσq dσ Ñ 0 as τ Ñ 8.

Secondly, if 1{τ ď σ ď τ ,

lim
zÑ8

fpz{σqfpσq{fpzq “ σfpσq, (12)

using Proposition 3 since 1{τ ď σ ď τ and z Ñ 8. We have

σfpσq ď sup
1{τďσďτ

σfpσq Ñ sup
σą0

σfpσq as τ Ñ 8.

Notice that for a chosen τ , if z is large enough, equation (12) means that
fpz{σqfpσq{fpzq is bounded by say 2σfpσq for 1{τ ď σ ď τ . Therefore, we can use
Lebesgue’s dominated convergence theorem to pass the limit z Ñ 8 inside the integral
and we have

lim
zÑ8

2

ż τ

1{τ

p1{σqfpz{σqfpσq{fpzq dσ “ 2

ż τ

1{τ

fpσq dσ Ñ 2 as τ Ñ 8.

For the third part of the integral, consider first γ “ δ “ 0, that is zfpzq P Lαp8q,
where pγ, δ, αq is the LE-credence of zfpzq. If τ ď σ ď

?
z,

pz{σqfpz{σqσfpσq{pzfpzqq ď

?
zfp

?
zq

zfpzq
σfpσq

„ 2ασfpσq Ñ 0 as σ ě τ Ñ 8,

using the monotonicity of the right tail of zfpzq for any z larger than a certain constant
since z{σ ě

?
z, and using the definition of zfpzq P Lαp8q. Similarly we have

2

ż

?
z

τ

p1{σqfpz{σqfpσq{fpzq dσ ď 21`α

ż 8

τ

fpσq dσ Ñ 0 as τ Ñ 8.
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Consider now 0 ă γ ă 1, δ ą 0 and α P R. If τ ď σ ď
?
z, we have

pz{σqfpz{σqσfpσq

zfpzq
“

expp´δplogpz{σqqγq expp´δplog σqγq

expp´δplog zqγq

gpz{σqgpσq

gpzq

“
expp´δplogpz{σqqγq expp´δplog σqγq

expp´δplog zqγq expp´δp2 ´ 2γqplog σqγq

ˆ expp´δp2 ´ 2γqplog σqγq
gpz1´νqgpσq

gpzq

ď 2|α| expp´δplog zqγpp1 ´ νqγ ` p2γ ´ 1qνγ ´ 1qq

ˆ expp´δp2 ´ 2γqplog σqγq exppψplog σqγq

ď 2|α| expp´δp2 ´ 2γ ´ ψqplog σqγq Ñ 0 as σ ě τ Ñ 8.

In the first equality, since τ ď σ ď
?
z ď z{σ ď z{τ ď z, it suffices to choose τ large

enough to write afpaq “ expp´δplog aqγqgpaq with gpaq P Lαp8q, where a P tσ, z{σ, zu.
In the second equality, we defined ν “ plog σq{ log z, so we can write σ “ zν and
z{σ “ z1´ν . Furthermore, we can verify that 0 ă ν ď 1{2 if 1 ă τ ď σ ď

?
z. In the first

inequality, we used the definition of gpzq P Lαp8q, that is gpz1´νq „ gpzqp1´ νq´α, and
since 1{2 ď 1 ´ ν ă 1, gpz1´νq ď gpzq2|α|. We also defined ψ such that 0 ă ψ ă 2 ´ 2γ .
This means that expp´ψplog σqγqgpσq ď 1 for σ ě τ , if τ is chosen large enough since the
exponential term dominates the log-regularly varying gpσq. In the second inequality, it
can be verified that the function p1´νqγ `p2γ ´1qνγ ´1 is non-negative for ν P p0, 1{2s,
since it is concave and finds its minimum at ν “ 0 and ν “ 1{2 for a value of 0.

Similarly we have

2

ż

?
z

τ

p1{σqfpz{σqfpσq{fpzq dσ

ď 21`|α|

ż 8

τ

1

σ
expp´δp2 ´ 2γ ´ ψqplog σqγq dσ

“ 21`|α|

ż 8

log τ

expp´δp2 ´ 2γ ´ ψqθγq dθ Ñ 0 as τ Ñ 8.

7.3 Proof of Theorem 1

The proof of results a) to d) of Theorem 1 are given in this section. We first need to
introduce intermediate functions and results. Let the function Hpσ, ϕ,xnq be defined
as

Hpσ, ϕ,xnq “ πpσ | xk, ϕ
k0q

ˆ

pσ{ϕqπpσ{ϕq

p1{ϕqπp1{ϕq

˙l0`r0 n
ź

i“1

ˆ

p1{σqfipxi{σq

fipxiq

˙li`ri

. (13)

We can verify that

Hpσ, ϕ,xnq “
mpxn | ϕqπpσ | xn, ϕq

mpxk | ϕk0qpp1{ϕqπp1{ϕqql0`r0
śn

i“1 fipxiq
li`ri

. (14)
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Note that our assumptions on the densities π, f1, . . . , fn imply that the posterior πpσ |

xk, ϕ
k0q and πpσ | xn, ϕq are proper densities. Considering that, and using (14), we

obtain
ż 8

0

Hpσ, ϕ,xnq dσ “
mpxn | ϕq

mpxk | ϕk0qpp1{ϕqπp1{ϕqql0`r0
śn

i“1 fipxiq
li`ri

. (15)

From (15), we see that result a) can be written as follows:

ż 8

0

Hpσ, ϕ,xnq dσ Ñ 1 as ω Ñ 8,

where Hpσ, ϕ,xnq is given by (13). Furthermore, dividing (14) by (15), we find

πpσ | xn, ϕq “ Hpσ, ϕ,xnq

M

ż 8

0

Hpσ, ϕ,xnq dσ. (16)

Equation (16) is useful for the proof of result c). Finally, from (13) and (16), we have

πpσ | xn, ϕq

πpσ | xk, ϕk0q
“

1
ş8

0
Hpσ, ϕ,xnq dσ

ˆ

pσ{ϕqπpσ{ϕq

p1{ϕqπp1{ϕq

˙l0`r0

ˆ

n
ź

i“1

ˆ

p1{σqfipxi{σq

fipxiq

˙li`ri

. (17)

Equation (17) is useful for the proof of result b). We now present some results.

Lemma 1. Conditions iii) and iv) of Theorem 1 are respectively equivalent to the
following equations:

σπpσ | xk, ϕ
k0q

pp1{σqπp1{σqq
l0 śn

i“1 pσfipσqq
li

Ñ 0 as σ Ñ 0, and

σπpσ | xk, ϕ
k0q

pp1{σqπp1{σqq
r0 śn

i“1 pσfipσqq
ri Ñ 0 as σ Ñ 8.

Proof. The proofs for conditions iii) and iv) being similar, we only present them for
the latter. We show both directions of the equivalence. Let p “ minpϕ,xkq and q “

maxpϕ,xkq if k0 “ 1, or let p “ minpxkq and q “ maxpxkq if k0 “ 0. We have, as
σ Ñ 8,

σπpσ | xk, ϕ
k0q

pp1{σqπp1{σqq
r0 śn

i“1 pσfipσqq
ri 9

ppσ{ϕqπpσ{ϕqq
k0

śn
i“1 ppxi{σqfipxi{σqq

ki

pp1{σqπp1{σqq
r0 śn

i“1 pσfipσqq
ri

„
ppσ{ϕqπpσ{ϕqq

k0
śn

i“1 ppxi{σqfipxi{σqq
ki

ppq{σqπpq{σqq
r0 śn

i“1 ppσ{qqfipσ{qqq
ri

ď
ppσ{qqπpσ{qqq

k0
śn

i“1 ppq{σqfipq{σqq
ki

ppq{σqπpq{σqq
r0 śn

i“1 ppσ{qqfipσ{qqq
ri Ñ 0 as σ{q Ñ 8 ô σ Ñ 8.
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If we consider the opposite direction of the equivalence, we have

pσπpσqq
k0

śn
i“1 pp1{σqfip1{σqq

ki

pp1{σqπp1{σqq
r0 śn

i“1 pσfipσqq
ri „

pσπpσqq
k0

śn
i“1 pp1{σqfip1{σqq

ki

pp1{pσpqπp1{pσpqqq
r0 śn

i“1 ppσpqfipσpqq
ri

ď
ppσp{ϕqπpσp{ϕqq

k0
śn

i“1 ppxi{pσpqqfipxi{pσpqqq
ki

pp1{pσpqπp1{pσpqqq
r0 śn

i“1 ppσpqfipσpqq
ri

9
pσpqπpσp | xkq

pp1{pσpqπp1{pσpqqq
r0 śn

i“1 ppσpqfipσpqq
ri Ñ 0 as σp Ñ 8 ô σ Ñ 8.

Scale invariance for conflicting densities and monotonicity of the tails of zπpzq and zfipzq

are used.

Corollary 1. There exists a non-decreasing step function h1pσq defined on p0, 1q such
that h1pσq Ñ 0 as σ Ñ 0 and

σπpσ | xk, ϕ
k0q

pp1{σqπp1{σqq
l0 śn

i“1 pσfipσqq
li

ď h1pσq, for σ ă 1,

and there exists a non-increasing step function h2pσq defined on p1,8q such that h2pσq

Ñ 0 as σ Ñ 8 and

σπpσ | xk, ϕ
k0q

pp1{σqπp1{σqq
r0 śn

i“1 pσfipσqq
ri ď h2pσq, for σ ą 1.

The existence of the functions h1pσq and h2pσq simply arises from the definition of
limit.

Proposition 3 (scale invariance) and Proposition 4 (product of random variables)
can be used on the tails involved in conditions i) and ii). A corollary of Proposition 4
is given as follows.

There exists a constant K ą 1 such that
ż 8

0

p1{σqfpz{σqfpσq{fpzq dσ ă K, as z Ñ 8r0s,

and
sup
σą0

fpz{σqfpσq{fpzq ă K, as z Ñ 8r0s.

And by a change of variable σ1 “ 1{σ, we also have

ż 8

0

p1{σqfpzσqfp1{σq{fpzq dσ ă K, as z Ñ 8r0s,

and
sup
σą0

fpzσqfp1{σq{fpzq ă K, as z Ñ 8r0s.

Notice that K can be chosen large enough to be valid for all involved densities.
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Proof of result a) of Theorem 1

Consider an intermediate variable τ Ñ 8 as well as ω Ñ 8. We first choose a value
of τ ą 1 as large as we want, and once τ chosen, we choose a value of ω as large as we
want. The integral of result a) is divided into three parts between 0 ă 1{τ ă τ ă 8.

If 1{τ ď σ ď τ ,

lim
ωÑ8

Hpσ, ϕ,xnq “ πpσ | xk, ϕ
k0q,

using Proposition 3 since 1{τ ď σ ď τ and ω Ñ 8. Notice that for a chosen τ , if ω
is large enough, it means that Hpσ, ϕ,xnq is bounded by say 2πpσ | xk, ϕ

k0q for 1{τ ď

σ ď τ , which is integrable. Therefore, we can use Lebesgue’s dominated convergence
theorem to pass the limit ω Ñ 8 inside the integral and we have

lim
ωÑ8

ż τ

1{τ

Hpσ, ϕ,xnq dσ “

ż τ

1{τ

πpσ | xk, ϕ
k0q dσ Ñ 1 as τ Ñ 8.

If σ ě τ and r0 ` r ą 0, then

σHpσ, ϕ,xnq

ď σπpσ | xk, ϕ
k0q

ˆ

pσ{ϕqπpσ{ϕq

p1{ϕqπp1{ϕq

˙r0 n
ź

i“1

ˆ

pxi{σqfipxi{σq

xifipxiq

˙ri

“
σπpσ | xk, ϕ

k0q

pp1{σqπp1{σqq
r0 śn

i“1 pσfipσqq
ri

ˆ

πpσ{ϕqπp1{σq

πp1{ϕq

˙r0 n
ź

i“1

ˆ

fipxi{σqfipσq

fipxiq

˙ri

ď h2pτq

ˆ

πpσ{ϕqπp1{σq

πp1{ϕq

˙r0 n
ź

i“1

ˆ

fipxi{σqfipσq

fipxiq

˙ri

ď h2pτqKr`1 Ñ 0 as τ Ñ 8.

Monotonicity of the tails of zπpzq and zfipzq is used in the first equality for any ω larger
than a certain constant since σ ě τ ą 1. In the second inequality, we use h2pσq ď h2pτq

for σ ě τ ą 1 from condition iv). Proposition 4 is used in the last inequality. Similarly,
we have

ż 8

τ

Hpσ, ϕ,xnq dσ

ď h2pτq

ż 8

0

1

σ

ˆ

πpσ{ϕqπp1{σq

πp1{ϕq

˙r0 n
ź

i“1

ˆ

fipxi{σqfipσq

fipxiq

˙ri

dσ

ď h2pτqKr`1 Ñ 0 as τ Ñ 8.

If σ ě τ and r0 ` r “ 0, we have

σHpσ, ϕ,xnq ď σπpσ | xk, ϕ
k0q Ñ 0 as σ ě τ Ñ 8,
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and
ż 8

τ

Hpσ, ϕ,xnq dσ ď

ż 8

τ

πpσ | xk, ϕ
k0qdσ Ñ 0 as τ Ñ 8.

If σ ď 1{τ and l0 ` l ą 0, then

σHpσ, ϕ,xnq

ď σπpσ | xk, ϕ
k0q

ˆ

pσ{ϕqπpσ{ϕq

p1{ϕqπp1{ϕq

˙l0 n
ź

i“1

ˆ

pxi{σqfipxi{σq

xifipxiq

˙li

“
σπpσ | xk, ϕ

k0q

pp1{σqπp1{σqq
l0 śn

i“1 pσfipσqq
li

ˆ

πpσ{ϕqπp1{σq

πp1{ϕq

˙l0 n
ź

i“1

ˆ

fipxi{σqfipσq

fipxiq

˙li

ď h1p1{τq

ˆ

πpσ{ϕqπp1{σq

πp1{ϕq

˙l0 n
ź

i“1

ˆ

fipxi{σqfipσq

fipxiq

˙li

ď h1p1{τqKl`1 Ñ 0 as τ Ñ 8.

Monotonicity of the tails of zπpzq and zfipzq is used in the first equality for any ω
larger than a certain constant since σ ď 1{τ ă 1. In the second inequality, we use
h1pσq ď h1p1{τq for σ ď 1{τ ă 1 from condition iii). Proposition 4 is used in the last
inequality. Similarly, we have

ż 1{τ

0

Hpσ, ϕ,xnq dσ

ď h1p1{τq

ż 8

0

1

σ

ˆ

πpσ{ϕqπp1{σq

πp1{ϕq

˙l0 n
ź

i“1

ˆ

fipxi{σqfipσq

fipxiq

˙li

dσ

ď h1p1{τqKl`1 Ñ 0 as τ Ñ 8.

If σ ď 1{τ and l0 ` l “ 0, we have

σHpσ, ϕ,xnq ď σπpσ | xk, ϕ
k0q Ñ 0 as σ ď 1{τ Ñ 0,

and
ż 1{τ

0

Hpσ, ϕ,xnq dσ ď

ż 1{τ

0

πpσ | xk, ϕ
k0qdσ Ñ 0 as τ Ñ 8.

Proof of result b) of Theorem 1

From equation (17), we find that

πpσ | xn, ϕq

πpσ | xk, ϕk0q
Ñ 1 as ω Ñ 8,

for any σ ą 0, using result a) of Theorem 1 and Proposition 3.
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Proof of result c) of Theorem 1

From equation (16) and result a), we have

σπpσ | xn, ϕq “ σHpσ, ϕ,xnq

M

ż 8

0

Hpσ, ϕ,xnq dσ

„ σHpσ, ϕ,xnq as ω Ñ 8.

And as shown in the proof of result a),

σHpσ, ϕ,xnq Ñ 0 as ω Ñ 8 and σ Ñ 0 or σ Ñ 8,

at any given rate.

Proof of result d) of Theorem 1

We first write result d) as follows. @d ą 0, we have, as ω Ñ 8,

ˇ

ˇ

ˇ

ˇ

ż 8

d

πpσ | xn, ϕq dσ ´

ż 8

d

πpσ | xk, ϕ
k0q dσ

ˇ

ˇ

ˇ

ˇ

Ñ 0.

We also write result b) as follows. @τ ą 1, we have, as ω Ñ 8,

1{τ ď σ ď τ ñ πpσ | xn, ϕq{πpσ | xk, ϕ
k0q Ñ 1.

We choose any fixed d ą 0. Then consider an intermediate variable τ Ñ 8 as well
as ω Ñ 8. We choose a value of τ as large as we want, and once τ is chosen, we choose
a value of ω as large as we want, to make the difference in absolute values as close as
we want to 0. In particular, we choose τ ě maxp1{d, dq ô 1{τ ď d ď τ , which means
that pd, τq P p1{τ, τq.

Firstly, since πpσ | xk, ϕ
k0q is a proper density, we have,

ż 8

τ

πpσ | xk, ϕ
k0q dσ Ñ 0 as τ Ñ 8.

Secondly, considering that πpσ | xk, ϕ
k0q and πpσ | xn, ϕq are proper densities and

using result b), we have, as ω Ñ 8,

ż 8

τ

πpσ | xn, ϕq dσ ď 1 ´

ż τ

1{τ

πpσ | xn, ϕq dσ „ 1 ´

ż τ

1{τ

πpσ | xk, ϕ
k0q dσ

Ñ 0, as τ Ñ 8.
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Thirdly, using result b), we have, as ω Ñ 8,

ˇ

ˇ

ˇ

ˇ

ż τ

d

πpσ | xn, ϕq dσ ´

ż τ

d

πpσ | xk, ϕ
k0q dσ

ˇ

ˇ

ˇ

ˇ

ď

ż τ

d

ˇ

ˇπpσ | xn, ϕq ´ πpσ | xk, ϕ
k0q

ˇ

ˇ dσ

“

ż τ

d

πpσ | xk, ϕ
k0q

ˇ

ˇπpσ | xn, ϕq{πpσ | xk, ϕ
k0q ´ 1

ˇ

ˇ dσ

ď
ˇ

ˇπpσ˚ | xn, ϕq{πpσ˚ | xk, ϕ
k0q ´ 1

ˇ

ˇ

ż τ

d

πpσ | xk, ϕ
k0q dσ

ď
ˇ

ˇπpσ˚ | xn, ϕq{πpσ˚ | xk, ϕ
k0q ´ 1

ˇ

ˇ Ñ 0, as ω Ñ 8,

for a σ˚ P pd, τq P p1{τ, τq.

Combining these three results, we have

ˇ

ˇ

ˇ

ˇ

ż 8

d

πpσ | xn, ϕq dσ ´

ż 8

d

πpσ | xk, ϕ
k0q dσ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż τ

d

πpσ | xn, ϕq dσ ´

ż τ

d

πpσ | xk, ϕ
k0q dσ

ˇ

ˇ

ˇ

ˇ

`

ż 8

τ

πpσ | xn, ϕq dσ `

ż 8

τ

πpσ | xk, ϕ
k0q dσ

Ñ 0 as τ, ω Ñ 8.
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