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A Bayes Linear Approach to
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Abstract. We introduce a strategy for quantifying and synthesising uncertainty
about elements of a risk assessment using Bayes linear methods. We view the
population of subjective belief structures and the use of Bayes linear adjustments
as a flexible and transparent tool for risk assessors who want to quantify their un-
certainty about hazard based on disparate sources of information. For motivation,
we use an application of the strategy to human skin sensitisation risk assessment
where there are many competing sources of information available.
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1 Introduction

We present a flexible method for combining lines of evidence of varying quality in a risk
assessment. The method is based upon the theory of Bayes linear statistics (Goldstein
and Wooff 2007) and its extension by Bayes linear kinematics (as described in Goldstein
and Shaw 2004). The approach is amenable to weight-of-evidence assessments because
it allows us to model the influence of many disparate sources of information and the
computations for a new assessment can be done almost instantaneously.

The concept is to build a belief structure that relates the sources of information to
the quantitative endpoint of the risk assessment. Within the Bayes linear framework, the
risk assessors only need to specify first- and second-order moments for the quantities
of interest. We use formal expert elicitation techniques to capture their knowledge
(elicitation is reviewed in O’Hagan et al. 2006). Due to the flexibility of Bayes linear
methods, we can accommodate incomplete data and informal evidence provided that
beliefs about the link between the evidence and the quantity of interest have been
specified.

We motivate the method by considering an application in the risk assessment of
new chemicals. Specifically, we will be considering the potency that causes human
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sensitisation when a chemical is applied to the skin. Skin sensitisation and the resulting
allergic contact dermatitis is an undesired immune response caused by a chemical coming
into contact with the skin that presents clinically as a rash, skin lesion, papules or
blistering at the site of exposure. The minimum amount of chemical (in µg{cm2 skin)
required to cause such a response is known as the potency of the chemical and more
generally as the inherent hazard of the chemical. Risk assessors working in this area
often need to weigh-up several lines of evidence from in vivo and, increasingly, in vitro
experiments when characterising the potency for a new chemical in order to determine a
safe dose for exposed individuals. Current quantitative risk assessment of skin sensitising
chemicals often consists of estimating single values for potency and exposure levels, on
some common scale, and comparing them as a ratio. This approach is deterministic, and
any uncertainties in the estimates are accounted for through the use of safety factors.
There have been recent attempts to assess parts of the risk problem probabilistically (see
Jaworska et al. 2010, 2011; Safford 2008) and to model competing data sources formally
(see Ellison et al. 2010). We take this approach further by explicitly considering the
link between the available test data and actual human skin sensitisation potency. We
use a Bayes linear framework to model the assessors’ expectations and uncertainties and
to update those beliefs in the light of the competing data sources. Such an approach
to synthesising multiple lines of evidence and estimating hazard provides a transparent
mechanism to defend and communicate risk management decisions.

The aim of the present paper is to demonstrate a methodology that captures experts’
quantitative beliefs about hazard for use in a risk assessment. We do not wish to
impose a rigid model structure for performing calculations: the aim of this paper is to
communicate one plausible and defensible strategy for completing weight-of-evidence
risk assessments using Bayes linear methods. In the subsequent sections, we describe
methods that could be adapted to many different quantitative assessments where the
data sources are varied and their relative influence is complex. In the discussion section
at the end of the paper, we highlight the benefits of our approach over probabilistic
Bayesian modelling for this type of application.

2 Bayes linear models and kinematics

Bayes linear methods provide a framework for modelling beliefs about the relationships
between variables of interest. In particular, they are methods for statistical modelling
and inference within a subjectivist framework. Traditional subjective Bayesian analysis
is based upon fully-specified probability distributions, which can be difficult to obtain
at the necessary level of detail. Bayes linear methods attempt to solve this problem
by developing updating rules using partially specified beliefs: expectations and covari-
ances are used to model beliefs rather than full probability distributions. Some people
view Bayes linear analyses as approximations to traditional Bayesian analyses. Never-
theless, Bayes linear methods follow the same principle: prior beliefs are specified and
then updated in the light of new data. Bayes linear methodology provides a tractable
framework for updating beliefs when full specification of joint probability distributions
is too costly. Practical examples of the application of Bayes linear methods are given
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in O’Hagan et al. (1992); Craig et al. (1997); Farrow et al. (1997). A comprehensive
introduction to the theory and methods can be found in Goldstein and Wooff (2007).

2.1 Bayes linear adjustments

Let B denote a collection of quantities about which we wish to make inferences. Allow
D to be a subset of B for which we will learn values. Before we learn D, we specify
our prior beliefs over B (this encompasses our beliefs about D): the expectation of B,
EpBq, and the corresponding variance-covariance matrix, VarpBq. We can update our
beliefs about B given an observed D using the following formulae:

EDpBq “ EpBq ` CovpB,DqVar´1pDq rD ´ EpDqs ,

VarDpBq “ VarpBq ´ CovpB,DqVar´1pDqCovpD,Bq.

These formulae are reached by choosing the linear combination of the elements of D
that minimise the squared difference between that linear combination and the elements
of B; full details and justifications for these updating rules are given in Goldstein and
Wooff (2007). In practice, as in a probabilistic Bayesian analysis, the updates can be
done sequentially. When setting up an environment within which these updates take
place, it can be useful to decompose the update into scalar-update steps because it is
then possible to gauge the impact of each data source.

In our particular application, the information that is brought to bear when weighing
the evidence is not in such a clear-cut form. For some pieces of information, we may be
able to rule out portions of the variable-space or we might have some anecdotal evidence
that would make us want to shift our prior beliefs. We could extend our Bayes linear
model to accommodate such information without changing the updating rules, but this
would result in an increase in the number of variables over which we need to specify
beliefs. An alternative approach is to use Bayes linear kinematics.

2.2 Bayes linear kinematics

The Bayes linear adjustments can be modified when, rather than obtaining a single
value for D, we receive information that changes our beliefs about D through the use
of kinematics. The theory underpinning these methods is given in Goldstein and Shaw
(2004) and the general concept of kinematics is introduced in Jeffrey (1983).

Again, we have an initial prior specification over B: EpBq and VarpBq. We now
change our beliefs about a subset of B; that is, we change our beliefs from EpDq and
VarpDq to EnpDq and VarnpDq respectively where n denotes new beliefs. We can update
our beliefs about B using Bayes linear kinematics updating formulae:

EnpBq “ EpBq ` CovpB,DqVar´1pDq rEnpDq ´ EpDqs ,

VarnpBq “ VarpBq ´ CovpB,DqVar´1pDqCovpD,Bq

` CovpB,DqVar´1pDqVarnpDqVar´1pDqCovpD,Bq.
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These are an extension of the usual Bayes linear updating rules: if the value of D is
learnt with certainty, then EnpDq “ D and VarnpDq “ 0.

These updating rules result from satisfying a Bayes linear sufficiency condition. The
condition is that, if we were to learn the exact value of D, then EDpBq “ En,DpBq and
VarDpBq “ Varn,DpBq regardless of the specified EnpDq and VarnpDq. Adherence to
this condition implies that care needs to be taken when using Bayes linear kinematics to
update a belief specification sequentially. If we apply new sets of beliefs to data nodes
sequentially, then we will get different results if we change the order of the updates.
In practice, if there is only one non-zero element in VarnpDq (and the experts are
not available to judge the impact of the other sequential adjustments on EnpDq and
VarnpDq), the kinematic update should be performed first. This can be followed by the
single Bayes linear updates in any order. If there are several variables being updated
using the kinematic procedure, there are two main ways that we can deal with the
problem of consistency. The most useful would be to check the sensitivity of the analyses
to the ordering. Alternatively, we could complete the kinematic update for all the
variables that are going to be treated in that way before updating sequentially using
the standard Bayes linear update.

3 Assessment of skin allergy risk

Skin sensitisation refers to a human health risk (manifesting as allergic contact der-
matitis) that can be caused by skin contact with a wide range of chemicals, including
those used in personal care products. In terms of biological mechanism, the key step is
regarded to be the chemical reaction between the sensitising chemical and proteins in
the skin (Basketter et al. 1995). This insight has motivated development of a number of
in vitro tests for assessing protein reactivity of skin sensitisers (see Aleksic et al. 2009;
Gerberick et al. 2004, for example). Further explanation of this health risk and current
risk assessment procedures is given in Basketter (2008).

The quantity of interest in our weight-of-evidence assessment is the mean threshold
for skin sensitisation (or sensitisation potency) for the population of consumers. For
our purposes, sensitisation potency is measured in terms of chemical mass per unit area
of skin (log

10
µg cm´2). Before considering the sensitising potency of the chemical, the

risk assessors consider whether the chemical has the potential to be a skin sensitiser
in humans. A method to approach this, which handles the disparate lines of evidence
within a probabilistic framework, has been presented in Owen et al. (2012). Here, we
consider the quantification of uncertainty about the sensitising potency, and we assume
that the chemical under consideration is a skin sensitiser.

The overall aim of this case study is to capture the risk assessors’ current views
on the relative influence of different tests on beliefs about sensitisation potency for
humans. We used formal expert elicitation techniques to capture knowledge about
the relationships between the different experiments and skin sensitising potency for
humans. We split the problem into two parts: building a conceptual model for the
links between the experiments and the quantity of interest, and populating the model
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with beliefs about the first- and second-order moments of the modelled quantities. We
facilitated nine elicitation workshops at Unilever1 between July 2010 and March 2011.
The experts were risk assessors and chemists, nominated by Unilever, who had a wide
range of experience covering both the application and analysis of in vivo and in vitro
experiments. The facilitators of the exercise were the authors who have experience in
facilitating group elicitation sessions, expertise in statistical modelling and extensive
experience of risk analysis. The facilitators led the elicitation process and carried out
calculations with the elicited judgements. Although we have an understanding of the
application area, it was important for us to remain impartial and not influence the
judgements. The strategy for eliciting the group’s opinions is similar to the method of
Gosling et al. (2012) where the focus of the facilitated meetings was on the capturing
of a group consensus. This is not the only method we could have employed. A recent
review of the group elicitation problem is given in French (2011).

3.1 Influence diagrams and their population

Undirected graphs provide a simple way of representing beliefs about dependencies
between a collection of variables. Figure 1 illustrates a portion of the graph from the
skin sensitisation risk model. In Figure 1, three variables of interest are displayed as
nodes on a graph. If there is a direct link between nodes and we learn about one of the
linked nodes, then beliefs about the other nodes will change. If there is no direct link
between the nodes (for example, between “Guinea pig maximisation test” and “True
human potency”), learning about one of the nodes will inform us about the intermediate
nodes, and they, in turn, will alter the beliefs about the other nodes. Hence, we use
these graphs to build-up a model for the conditional independence for the variables.

Guinea pig
maximisation test

True guinea True human
potencypig potency

Figure 1: An undirected influence diagram.

Uncertainties about the true skin sensitising potency for humans stem from the in-
adequacies of experimentation (impurities in the test chemical for example) and the fact
that chemical reactivity and laboratory animals are not perfect models for the average
human. In our modelling, we make the distinction between the experimental result and
the true chemical sensitisation potency and chemical reactivity2. This allows us to sepa-
rate the uncertainty about the adequacy of the experiments from the uncertainty about
whether laboratory animals and reactivity are suitable predictors for human sensitisa-
tion. This approach of separating true quantities from experimental results is similar in
principle to the work of Turner et al. (2009), who separated different sources of bias us-
ing idealised studies, and of Goldstein and Rougier (2009), who introduced the concept

1Colworth Science Park, Bedford, UK.
2Here chemical reactivity is a measure of the rate of binding of the chemical to a suitable protein

(glutathione at 20 ˝C and pH 7.4, measured in log10 per second per molar, log10 s
´1M´1) and is the

focus of the in vitro tests.
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of an idealised computer model.

If the experts are able to identify conditional independence between variables, the
following formula for belief separation can be applied. If we have three collections of
random variables, denoted by X , Y and Z, and we believe that, if we know the value
of Y , then learning Z will tell us nothing more about X , then

CovpX,Zq “ CovpX,Y qVarpY q´1CovpY, Zq

will reduce the number of judgements that the experts need to make. We are making
a distinction between the true values for the quantities of interest and corresponding
experimental observation. This gives us an opportunity to build conditional indepen-
dence into our model because, if the assessors were to know the true values of the animal
potencies, then experimental data on one animal would not tell us anything extra about
an experiment on another species.

Figure 2 shows one version of the influence diagram that was proposed by the risk
assessors, which was constructed by identifying plausible conditional independencies.
The shaded boxes represent experimental results that we might obtain for a new chemi-
cal and the unshaded boxes represent true quantities for the chemical. The three shaded
boxes on the top right represent in vivo experimental results and the bottom two shaded
boxes represent in vitro experimental results. As mentioned previously, there are no
direct links between any of the experiments because, if we knew the true animal po-
tency, the corresponding in vivo experiment would give us no extra information about
the other true quantities (or the experiments that aim to measure them). In Table 1,
we list details of the variables given in Figure 2 along with the abbreviations we will
use hereafter.

Repeat insult
patch test

True human
potency

True mouse
potency

True guinea
pig potency

Local lymph
node assay

Maximisation
test

Reactivity

Roberts and Natsch’s
experimentexperiment

Chipinda et al.’s

Figure 2: The complete influence diagram for the skin sensitisation application.
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Table 1: Descriptions of the variables in Figure 2

Node label Abbr. Description

True human potency HA Mean human potency (threshold for sensitisation)
under occlusion for the population of consumers
(measured in log

10
µg cm´2).

True mouse potency MA Mean mouse potency (threshold for sensitisa-
tion) under occlusion for the population of CBA-
strain mice used in experiments (measured in
log

10
µg cm´2).

True guinea pig (GP)
potency

GA Mean GP potency (threshold for sensitisation) un-
der occlusion for the population of GPs used in
experiments (measured in log

10
µg cm´2). It is

assumed that the GP has been shaved.

Repeat insult patch
test (HRIPT)

HD The no-observed-effect levels (NOELs) from a hu-
man test (measured in log

10
µg cm´2). This could

be largest NOEL from several reported experi-
ments. The experiment follows the protocol of
Stotts (1980).

Local lymph node
assay (LLNA)

MD This is the experimental effective concentration
that sees a three times increase in lymph node
stimulation over control mice (EC3) (measured in
log

10
µg cm´2). The desired vehicle is a 4:1 mix

of acetone and olive oil. The test is on an inbred
strain of mice. The experiment follows the proto-
col of Gerberick et al. (2000).

Maximisation test GD This is a Gerberick classification taken from the
following set once a maximisation test has been
performed on a number of GPs: “very weak”,
“very weak/weak”, “weak”, “moderate”, “mod-
erate/strong”, “strong”, “potent” and “negative”.
It is assumed that the GPs have been shaved. The
experiment follows the protocol described in An-
dersen and Maibach (1985).

Reactivity RA This is the rate constant (log
10

k) for a reaction
in glutathione at 20 ˝C and pH 7.4 (measured in
log

10
s´1M´1).

Chipinda et al.’s
reactivity experiment

RD1 This is a rate constant (log
10

k) measured by ki-
netic profiling for a reaction in nitrobenzenethiol
at 25 ˝C and pH 7.5 (in log

10
s´1M´1). This

should be corrected to 20 ˝C and pH 7.4 before
use in the model. The experiment follows the pro-
tocol described in Chipinda et al. (2010).

Roberts and Natsch’s
reactivity experiment

RD2 This is a rate constant (log
10

k) measured by
kinetic profiling for a reaction in the peptide
Ac-RFAACAA at 25 ˝C and pH 7.5 (in
log

10
s´1M´1). This should be corrected to 20

˝C and pH 7.4 prior to entry into the model.
The experiment follows the protocol described in
Roberts and Natsch (2009).
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For each of the variables shown in Figure 2, we elicited information from the experts
about the mean and variance when considering all possible chemicals they might assess
in the future. We also asked them to restrict their focus to chemicals that fall within
the Michael acceptor domain because the assessors expected that the different chemical
domains have different relationships between the experiments (see Tokoroyama 2010,
for further details on the Michael acceptor class). Our strategy for this part of the
elicitation was

1. revisit the precise definition of the quantity,

2. consider situations where the value could be relatively very small or large,

3. elicit summaries of a probability distribution,

4. fit an appropriate distribution to the judgements (using the technique of O’Hagan
1998),

5. feed back the fitted distribution to the experts (showing plots of the density and
reporting different distributional summaries),

6. allow the experts to revise their original judgements until they are satisfied with
the representative distribution,

7. use the fitted distribution to derive an expectation and variance for the quantity
of interest.

The most important part of the modelling is the characterisation of the links between
the nodes. These links represent correlations that need to be elicited from the assessors.
To do this, we used two strategies. When the quantities linked together are on the
same scale and of the same type (human to guinea pig potency, for example), we asked
the assessors about the difference between the two quantities. Then using the earlier
judgements about the marginal quantities, it is trivial to calculate the corresponding
correlation. When the quantities were not of the same type (the relationship between
reactivity and mouse potency, for example), we set hypothetical values for the first
variable and elicited beliefs about the second conditional on the first. By repeating this
process, we were able to recover the implied correlation between the variables. These
methods are described in more detail in Clemen et al. (2000) and, from a Bayes linear
perspective, in Revie et al. (2010).

We needed to elicit information about nine expectations, nine variances and eleven
correlations to complete the prior belief specification based on the influence diagram of
Figure 2. In practice, we elicited more information than this to check the consistency
of the risk assessors’ judgements and the suitability of the model. Throughout the elic-
itation sessions, we were wary of questioning fatigue in the risk assessors. We cut short
the planned elicitation sessions if the experts were beginning just to repeat the same
judgements, and we spent a lot of time feeding back results and consequences of judge-
ments to break up the repetitive process of defining variables and making judgements
on them (steps 1 to 3 in the strategy given above).
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Of course, all of the judgements are based on the experience of the risk assessors
and are strongly influenced by the many datasets they have seen. This is intentional:
we are trying to capture the assessors’ process, and we want to understand how they
use the disparate data sources in an assessment given their knowledge and experience
of skin sensitising potency and the chemicals they assess. Given the inherent subjec-
tivity of the approach, we dedicated whole day sessions to exploring the consequences
of judgements with the experts particularly highlighting the judgements that greatly
affected the adjusted beliefs for HA and considering the impact of changing the model
structure shown in Figure 2.

As mentioned in Section 2.1, Bayes linear updating proceeds by altering the expec-
tation and variances for the quantities of interest using observed data from the modelled
experiments. For MD, RD1 and RD2, the experiment data come in the required, single-
value form. However, for the other experiments, the results are not so clear cut. For
HD, the result will typically be a no-observed-effect level (NOEL), which can be thought
of as a lower bound on a result from an experiment measuring the mean sensitisation
potency for humans. For GD, the result of the experiment is a classification into a po-
tency category. The risk assessors view this as the true guinea pig potency falling within
a range of possible potencies that typically span one order of magnitude. We can treat
this as information that alters the risk assessors’ beliefs about the result of a guinea pig
experiment that directly measures sensitisation potency. For both of these sources of
information, we must invoke the kinematic adjustment rules as described in Section 2.2.
When updating the model sequentially, we first adjusted the model using GD to ensure
consistency with the judgements the experts made about the guinea pig classifications.
Again, it was important for us to check the consistency of the adjustment mechanism
with the risk assessors’ presumptions for the model’s behavior. We did this by first
testing the model on a number of chemicals with known skin sensitisation properties
(one such example is given in the next section), and we investigated the robustness
of our results by perturbing the judgements over sensible ranges and by changing the
sequence of the Bayes linear adjustments.

3.2 Results

Case study: cinnamic aldehyde

We begin this section by looking at one application of the model. Cinnamic aldehyde
is used to give products a cinnamon aroma, and it is a known skin sensitiser (Schorr
1975). A risk assessment for cinnamic aldehyde was considered because almost all of the
experiments in the model have been performed for this chemical (for some experiments,
the tests have been carried out many times). The different sources of information that
are relevant to the model for this chemical are listed in Table 2. Note that, the lower
the sensitisation concentration, the more potent the chemical is said to be.

Given the experts’ belief specifications and if we treat cinnamic aldehyde as a new
chemical, we can use the risk assessment model of the previous section. The risk as-
sessors begin with the prior expectation of 2 and a variance of 2 (on the log

10
-scale
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Table 2: The experimental data used to update the model.

Source of information3 Value used
HD: We have the following three NOELs: 97, 388 and

591 (in µg cm´2).
591 µg cm´2

MD: We have that a concentration of 1.56% gives a stim-
ulation index of 3 in the mouse (this can be con-
verted to µg cm´2).

390 µg cm´2

GD: There are several maximisation test results, but
they show “strong” sensitising potential.

Strong

RD2: A value for logpkq of -1.66 has been measured using
the method of Roberts and Natsch (2009).

-1.66 log
10

`

s´1M´1
˘

for HA). This implies that the risk assessors have little idea where the true sensitising
concentration for humans lies over seven orders of magnitude. After updating the model
with the information in Table 2, the beliefs are adjusted to an expectation of 2.96 with
variance of 0.11. This could be interpreted as being quite sure that the true potency is
within half an order of magnitude of 1000 µg cm´2. It is clear that this value is some
way from the experimental results reported in Table 2. This is because the data points
are thought to be no-expected-sensitisation levels whereas the model focusses on the
mean threshold for skin sensitisation for the population of consumers, which is likely to
be higher.

Earlier, when introducing Bayes linear methods, we mentioned the benefits of avoid-
ing making full probabilistic specifications. However, by using this approach, we lose
the ability to make statements about the probability of the potency being less than
some threshold of interest. Bayes linear approaches are a pragmatic step to getting a
quantitative indication of the uncertainties in the quantities of interest and their relative
influence on human potency. That said, there are ways to construct bounds for proba-
bilities from expectations and variances using Chebyshev’s or the Vysochanskij-Petunin
inequality (Vysochanskij and Petunin 1980). Using these, we could say something about
the probability of exceeding (or falling below) a potency threshold, which could be useful
to the risk assessors.

Consequences of the model

We can also use the model to explore some of the features of the risk assessor’s be-
liefs. For instance, we can calculate which sources of information reduce the expert’s
uncertainty about the quantity of interest the most.

3The HRIPT NOELs, the LLNA data and the guinea pig classification (as defined in Table 1) are
taken from an unpublished data set.
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The resolution of a variable X induced by observing variables D is defined as

ResDpXq “ 1 ´
VarDpXq

VarpXq
.

The resolution is related to the R2 value that is often calculated when performing
standard linear regression because it measures how much of the uncertainty has been
explained by the information that we have added into the model. Resolution is reported
on a scale of zero to one: a value of zero means that we have learnt nothing about the
variable from observing D and a value of one means that we have nothing more to learn
about the variable.

In Table 3, we list the resolutions of HA, MA, GA and RA obtained when updating
the risk assessors’ beliefs using the data sources shown. If we accept the Bayes linear
model as an adequate representation of the risk assessors’ beliefs, then the resolutions
in Table 3 show that the in vivo experiments tell the assessors more about the animal
potencies than the in vitro experiments. We also have that the in vitro experiments
tell us more about the chemical reactivity. It is also clear that the assessors currently
believe that a result from the mouse experiment (MD) produces the largest reduction in
the uncertainty about human potency (HA) despite the presence of human experimental
data (HD). This is due to the human data being included in the model as a bound on
the potency rather than a single value for a threshold like the mouse data. It should
also be noted that the resolutions for MD, RD1 and RD2 are not affected by the actual
experimental result (this is obvious from the variance adjustment formula of Section 2.1).
The resolutions are affected significantly when changing the value of HD because we are
using the kinematic adjustment formulae and, as we increase the NOEL value, we rule
out more potency values.

Resolution for
Data used HA MA GA RA

HD = 0 log
10

µg cm´2 0.24 0.22 0.22 0.02
HD = 2 log

10
µg cm´2 0.59 0.55 0.55 0.06

HD = 4 log
10

µg cm´2 0.78 0.73 0.73 0.08
MD = 0 log

10
µg cm´2 0.88 0.94 0.88 0.10

MD = 2 log
10

µg cm´2 0.88 0.94 0.88 0.10
MD = 4 log

10
µg cm´2 0.88 0.94 0.88 0.10

GD = “Very weak” 0.86 0.86 0.92 0.09
GD = “Moderate” 0.83 0.83 0.89 0.09
RD1 = -2 log

10
s´1M´1 0.10 0.10 0.10 0.99

RD1 = 0 log
10

s´1M´1 0.10 0.10 0.10 0.99
RD2 = -2 log

10
s´1M´1 0.10 0.10 0.10 0.99

RD2 = 0 log
10

s´1M´1 0.10 0.10 0.10 0.99

Table 3: Resolutions induced in HA, MA, GA and RA given the single results shown.

We can also consider the results of exposing the model to conflicting experimental re-
sults. Conflicting experimental results do occur for some chemicals; the model can cope
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with conflicts because we have explicitly modelled differences between species and be-
tween experimental results and true values for the chemical potency. For example, if we
have conflicting evidence from MD and GD (MD “ 20, 000µg cm´2 and GD ““Strong”),
then the Bayes linear adjustment gives us an expectation of 4, 700µg cm´2, which is a
compromise between the two experimental results. When such conflicts exist in the
data, it would be good practice for the risk assessors to consider why such differences
occur and whether the original belief specifications were appropriate. It is possible to
detect such outliers using standardised versions of the quantities of interest as described
in Goldstein and Wooff (2007).

The resolution calculations can be performed on the model without much compu-
tational cost. This means that the consequences of the experts’ judgement can be fed
back quickly and thorough sensitivity analyses can be performed to establish where
more effort in the expert elicitation process might benefit the accuracy of the model.
For instance, in Figure 3, we have produced a plot of the resolution of the assessors’
uncertainty about the true human potency given in vitro data (either RD1 or RD2) for
different values of correlation between reactivity and animal potency. It is clear that
the value specified for this correlation has a large impact on inferences from the model
when in vitro data are available. Given this information, a large portion of the elicita-
tion sessions was focussed on this parameter (this was not just due to this sensitivity:
the correlation was also difficult for the assessors to express beliefs about due to relative
lack of familiarity with new in vitro methods compared to established in vivo methods).

A by-product of the model is an assessment of the true mouse potency given results
from the in vitro experiments alone. This is beneficial because, prior to obtaining MD,
the model can tell us what value of MD to expect. The expected true mean mouse
threshold for sensitisation derived from the model could help to set the test concentra-
tions, and, therefore, help avoid testing at unrealistically low and high concentrations.
Of course, the same argument could be extended to the other experiments. Indeed, the
model itself could easily be extended to include other in vitro experiments such as the
peptide depletion experiments of Aleksic et al. (2009) and Gerberick et al. (2004). A
further benefit of the model is that it gives an understanding of the confidence provided
by experimental data for making risk assessment decisions. In addition to experimental
data, understanding human exposure is essential to the risk assessment process and
limiting exposure is often the risk manager’s main tool in being able to control risk.
Including exposure in the model would allow risk assessors to have a better understand-
ing of how it determines the risk with varying degrees of experimental data. Such an
understanding of uncertainty in both exposure and experimental data would be of great
utility in deciding whether new in vitro experiments provide sufficient confidence for
making risk assessment decisions and thus potentially obviating the need for in vivo
testing.
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Figure 3: The effect of changing the value of correlation on the resolution of uncertainty
about human potency.

4 Discussion

4.1 Application and extensions of the skin sensitisation model

Skin sensitisation is an important safety consideration in risk assessment of consumer
products for which topical exposure is intended. Risk assessment of potential skin sensi-
tising ingredients proceeds by ensuring the predicted consumer exposure to the product
ingredient (µg cm´2 of skin) is sufficiently far from the expected sensitisation threshold
in the consumer population (µg cm´2 of skin). The sensitisation threshold is chemical
specific and is determined through an expert weight-of-evidence interpretation of the
available data. There are many alternative strategies for completing weight-of-evidence
assessments: many are reviewed in Weed (2005) and Suter and Cormiera (2011). Our
proposed method gives a simple framework within which many competing sources of
information can be handled, the assessors’ beliefs about the collected information and
the quantities of interest are explicit, and the model can be extended and refined as
knowledge increases and new experimental approaches are developed. These qualities
should make the approach valuable to risk assessors in many different fields.

The final structure for assessing the chemical potency for skin sensitisation was
the result of many hours of discussion. The links between the nodes result from a
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consideration of how different sources of information influence the risk assessors’ beliefs
and of what is possible in terms of quantitative modelling. Due to the flexibility of the
Bayes linear approach, the latter set of considerations placed little constraint on the
development of the model. We are confident that, in these models, we have correctly
captured the experts’ beliefs. Time was dedicated to feeding back the consequences of
these model choices in the expert workshops and revising the model where appropriate.
The feedback and revision elements are important when using expert judgements to
build and populate a model: we had several iterations of these stages to capture the
experts’ beliefs. Of course, models populated by different experts could easily lead to
different conclusions with regards to the uncertainty in human sensitisation potency.
Due to the simplicity of the model and the transparency of specifying a finite number
of model parameters, it would be easy to identify where the differences lie. This sort of
information could help experts to focus their research efforts and scientific debate and
help to highlight reasons for different opinions to the risk managers.

Risk assessors are interested in a number of questions with regard to this approach for
determining sensitisation thresholds: which assays or tests provide the most confidence
in specifying the sensitisation threshold; and, do some assays provide equivalent confi-
dence on the sensitisation threshold. In the context of finding alternative approaches to
animal testing, the question of which assays provide equivalent or sufficient confidence
in the sensitisation threshold is of particular importance. This is reflected in the results
presented here where the resolution in human threshold due to animal data (for example,
mouse LLNA) can be directly compared with that of non-animal data (for example, the
Chipinda reactivity data). However, it is important to emphasise that the sensitisation
threshold is only one half of the risk assessment problem and that decisions on safety are
always made in the context of consumer exposure. Ideally, the model presented should
be extended to make weight-of-evidence judgements on the overall risk of sensitisation
for a given exposure. By extending the model in this way, the safe level of exposure
supportable for a given test result and resolution could be determined. Such a principle
has already been used to set safe exposures using only prior knowledge (Safford 2008;
Safford et al. 2011).

4.2 Why is a kinematic approach appropriate?

The model we have presented in this paper gives us a mechanism for updating beliefs
about the average human skin sensitisation threshold for a chemical given disparate
data sources. Of course, this updating could be done through a probabilistic Bayesian
model with some hierarchical structure. If we view our Bayes linear model as a simple
approximation to a full Bayes analysis, then a natural extension would be to model
the beliefs using probability distributions and handle the updating through appropriate
likelihoods. Of course, this would be tremendously challenging in an example where
there are several disparate sources of information. However, if we were able to produce
a probabilistic model for part of the model (linking one source of data to an animal’s
average sensitisation threshold say), we can apply a kinematic approach to update part
of the belief structure that has undergone a probabilistic Bayesian analysis (see Gold-
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stein and Shaw 2004). In this application, we chose to use the Bayes linear framework
for several reasons:

1. The risk assessors could potentially have different results for each assay type from
different research laboratories and may disagree on the strength of the evidence
from each data source. Our model allows them to make changes and view the
consequences of their specifications instantaneously. If we had some numerical
integration to perform over a multidimensional space in a fully probabilistic treat-
ment, then we could not match this speed of calculation.

2. The simple structure of the belief specification allows us to add new elements to
the model relatively easily. In some cases, it could be as easy as specifying just one
expectation, variance and correlation. This was important to the risk assessors
because many new assays are being developed at the moment.

3. It is not the norm in fully probabilistic models to have data that are uncertain once
they have been collected. Although it is possible to model this in a probabilistic
way by adding an extra hierarchical level, the Bayes linear kinematic gives a
consistent and easily-implementable way of including such data.

4. In specifying the Bayes linear model, the focus is on just expectations, variances
and correlations so we need a finite number of judgements. The result of this
is that the experts understand the elicitation task, and it is easier to perform a
sensitivity analysis to evaluate the robustness of the model to the judgements.

5. Through several trials of the model with the experts, we felt that the resulting
adjusted belief structures closely approximated the experts’ thought process when
assimilating the data.

Overall, we believe that, by following a Bayes linear modelling approach, we have pro-
duced a model that is consistent with the risk assessors’ thought process, quick to
evaluate and relatively simple to modify (either in terms of structure or individual
judgements). By following a Bayes linear scheme, we lose the ability to talk directly
about our results in terms of chances or probabilities of adverse effects occurring (al-
though we can derive bounds on probabilities as mentioned in the previous section).
This omission rules out the application of standard decision theory methods, but there
are Bayes linear analogues based around expected utilities (as discussed in Goldstein
and Wooff 2007).

If we were to pursue a fully probabilistic modelling approach, we could build a
hierarchical model that modelled the data from each source simultaneously with an
ordinal variable for the guinea pig maximisation test results. However, we would find
that the computation of the posterior would be much more time consuming, and it might
be more difficult for the risk assessors to understand the implications of their judgements
due to the time needed to perform thorough sensitivity analyses. Ultimately, this latter
point could lead to the risk assessors being distrustful of the model and not adopting it
in their assessment process.
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