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Rejoinder

Daniel Schmidl ˚, Claudia Czado :, Sabine Hug ;, and Fabian J. Theis §

First of all, we would like to thank both D. Woodard and M. Girolami & A. Mira
for their excellent and detailed comments on our paper. Their remarks and questions
have given us quite a number of new ideas for improving our sampling procedure. As
suggested by both, we have conducted new sampling runs for two additional examples,
which illustrate the usefulness of CIMH and ACIMH and answer some of the ques-
tions brought forward. Since Woodard’s comments focus on one particular aspect of
CIMH/ACIMH, while Girolami & Mira point out several different considerations, we
will first reply to Woodard’s comments.

1 Rejoinder on Woodard’s comments

While our paper focuses primarily on a practical evaluation of the proposed new sam-
pling schemes, Woodard’s comments provide a nice theoretical addition. As pointed out
in Cowles and Carlin (1996), both approaches complement each other and are equally
important. Theoretical convergence results are often not easy or straightforward to as-
sess, so we thank D. Woodard for the effort to improve the theoretical understanding
of our algorithm.

Woodard shows that the efficiency should degrade exponentially in the dimension d
of the target distribution. It is true that our algorithm seems to suffer from a decaying
performance in higher-dimensional systems, as many other popular MCMC algorithms
like the independence sampler or the Metropolis-Hastings algorithm do, cf. Hairer et al.
(2011). However, we have already shown that the algorithm still performed well in two
medium-sized systems of 12 and 15 dimensions, see Schmidl et al. (2012).

To see if we can assess the dimensionality issue more thoroughly also in practice,
we chose a simple and straightforward example, which we sampled in various dimen-
sions from 2 to 50. Concretely, we chose to sample from a strongly correlated normal
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distribution with mean zero and the tridiagonal, positive definite covariance matrix:
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The example was run 5 times for 50,000 MCMC iterations for each examined dimension
d. The same set-up was applied for prerun sampling. The copula update parameters for
ACIMH were set to R = 10,000 and S = 4. Furthermore the copulas were fitted on 1,000
equally spaced prerun samples. The time for the prerun was added to the sampling times
of IM, RWMH, CIMH and ACIMH. Canonically, the cdf’s of a normal distribution were
used to transform the prerun samples to r0, 1sd. The independence proposal density q3
was taken to be a uniform distribution. Furthermore, we set r1 “ 0.99 and r2 “ 0.
All samplers were started at the origin. While CIMH and ACIMH approximated the d-
dimensional normal distributions very well, especially the AM algorithm ran into severe
problems. Even for d “ 20, its acceptance rate was ă 0.1% for all five runs. This is
because we did not readjust the parameter that controls the initial step size of AM.
We chose instead to leave all algorithms as they were adjusted for the two-dimensional
example in the main paper, to check if the algorithms scale well. Consequently, we show
only results for CIMH and ACIMH. However, we also feel that CIMH and ACIMH would
definitely benefit from having more prerun samples as the dimension of the problem gets
higher. As it was, CIMH and ACIMH showed a linear decay of acceptance rates with
dimension, while the performance indices (I1) and (I2) showed an exponentially decaying
behavior, see Figure 1. This confirms Woodard’s argument that the efficiency of the
algorithms should degrade exponentially in the dimension d.

To take up the suggestion in Woodard’s conclusion, we think that a block update
sampling algorithm is a very good idea in higher-dimensional systems. This was also
pointed out by Roberts and Sahu (1997) and Wilkinson and Yeung (2002). Inference in
dynamical systems with over one hundred parameters is challenging, but possible, see
Hug et al. (2013). Parameters from dynamical systems often come with a natural “hi-
erarchy”: kinetic parameters, parameters which correspond to initial conditions, noise
parameters and the so-called nuisance parameters like scaling and offset parameters.
This hierarchy could be used for designing block updates. Another intuitive variant
for finding blocks of parameters would be to choose a kinetic parameter and add to
that update block all parameters that are directly linked with this parameter, i.e. the
corresponding scaling, offset, initial condition and noise parameters of the players in
the ODE system that are directly influenced by the kinetic rate at question, and maybe
also “neighboring” kinetic parameters. Many variations are possible, but we feel that
the idea is very promising and we are eager to try it out in future applications.
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Figure 1: Results for the normal distribution in various dimensionalities. Figure (a):
Quotient of acceptance rate and INEFF, (I1), plotted over different dimensionalities.
Figure (b): Effective Sampling Size per second, (I2), plotted over different dimension-
alities. Figure (c): Acceptance rate, plotted over different dimensionalities. A decay of
sampling efficiency with rising dimensionality is clearly visible. Shown are results for
CIMH and ACIMH.

2 Rejoinder on Girolami and Mira’s comments

To our great pleasure, Girolami & Mira pointed out that inference in nonlinear determin-
istic dynamic systems is amongst the most challenging problems that currently feature
prominently in the literature of Bayesian inference. We believe that this is rightly so
since inference in these systems, while highly non-trivial, still is a very promising way of
discovering new biological insights. We will now address each of the points mentioned
in section 2.1 of the comment by Girolami & Mira.

� Fitting of the marginals The first point raised by Girolami & Mira is the fitting
of the marginals, for which the prerun Markov chain is required. We refer the
reader to section 5.4 of the original paper, where we showcased the deteriorating
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effect a wrongly chosen marginal distribution can have. The ESS per second
dropped by a factor of 2.9, if we specify exponential distributions as marginal types
instead of the correct normal distributions. Furthermore, we would like to suggest
the following guidelines for the prerun phase to ensure adequate performance of
the algorithm:

– We strongly recommend applying standard MCMC convergence statistics to
the prerun, such as the Geweke test (see e.g. Cowles and Carlin (1996)).
Also visual inspection of the chains by an expert is often very helpful. We
recommend that the prerun chain should not be in a visible burn-in phase.

– Like the number of burn-in samples to be discarded in standard MCMC al-
gorithms, the required number of prerun samples strongly depends on the
posterior to be sampled and can hardly be determined a priori. We rec-
ommend adding more prerun samples if the performance of the algorithm is
unsatisfactory.

� Posterior deterministic approximation We very much like the idea of replac-
ing the MCMC prerun with a posterior deterministic approximation. We could
imagine, e.g., approximating the posterior distribution with a variational approx-
imation and fitting the copula to that. This would certainly save computational
time. However, if the dependency structure is very rich or non-standard, the
results might be poor compared to CIMH with an MCMC prerun.

� Choice of copula Concerning the choice of the functional form of the copula, the
structure of the vine and their ramifications for the performance of the algorithm,
we can offer the following insights. The vine structure for the chosen D-vine was
selected using the procedure described in Dißmann et al. (2013). There a general
sequential tree by tree procedure was developed for the regular (R) vine case.
It is driven by modeling strong dependencies early in the vine structure using
a maximum spanning tree algorithm to reduce the influence of rounding errors
in later trees. As weights the absolute value of corresponding pairwise Kendall’s
tau values are used. For the subclass of D-vines this approach requires finding a
Hamiltonian path and this has been implemented in the R package VineCopula()
within the function RVineStructureSelect(). A small simulation study in Dißmann
et al. (2013) shows a reasonable performance with regard to model fit. The general
problem of model selection in R-vines is a current research area and the results
obtained so far are contained in Czado et al. (2013). We expect that after choosing
a good fitting R vine model the implications for the rapidity of convergence and
quality of the MCMC algorithm to be minor, but this will have to be investigated
in more detail in the future.

� Sampling from a banana-shaped distribution We gladly take up the sugges-
tion of trying out our copula-based algorithms on a “banana-shaped” distribution
as shown in Figure 2(a). This shape of distribution for example appears as the
posterior distribution ppθ|yq of the parameters θ “ pθ1, θ2q based on data y for
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the following model:

y|θ „ N
`

θ1 ` θ22, σ
2
y

˘

(2)

θi „ N
`

0, σ2
θ

˘

, i “ 1, 2. (3)

As in Lan et al. (2012), we generate 100 data points with θ1 ` θ22 “ 1, σy “ 2
and set σθ “ 1. As in the main paper, the example was run 100 times for 50,000
MCMC iterations. The same set-up was applied for prerun sampling. The copula
update parameters for ACIMH were set to R = 10,000 and S = 4. Furthermore
the copulas were fitted on 1,000 equally spaced prerun samples. The time for the
prerun was added to the sampling times of IMH, RWMH, CIMH, and ACIMH.
Canonically, the cdf’s of the prior distribution were used to transform the prerun
samples to r0, 1s2. The independence proposal density q3 was taken to be a uniform
distribution. Furthermore, we set r1 “ 0.99 and r2 “ 0. All samplers were
started at the origin and approximated the two-dimensional distribution very well.
We found that our sampling algorithm performed very well on this demanding
problem. More specifically, CIMH and ACIMH performed nicely when speaking
of acceptance rate, CIMH yielding 27.00˘ 0.07%, while ACIMH performs slightly
better at 27.09˘ 0.06%. This led to effective sample sizes of 3138˘ 125 for CIMH
and 2897 ˘ 109 for ACIMH. Also the other algorithms performed quite well and
we especially have to point out that AM performed very well with an acceptance
rate of 22.56˘0.09% and an effective sample size of 1030˘15. CIMH and ACIMH
by far outperformed the other three algorithms with respect to (I1) (Figure 2(b)).
For (I2) the situation is a bit different, here AM performed best with a mean
ESS per second of 95 samples per second, while the mean ESS per second for
CIMH was entirely comparable to that at 86 samples per second (Figure 2(c)).
ACIMH performed worse than that with a mean ESS per second of 46 samples
per second, since the extra time for the copula updates did not dramatically
increase the quality of the fit, which seems to have been covered very well from
the prerun already. We offer two reasons for the performance: first, we think
that AM is particularly easy and fast to implement, giving it a computational
advantage in such a low dimensional case, especially since it does not require any
prerun. Second, as can be seen from Figure 2(d), the uniformization with normally
distributed marginals might not be optimal. We suggest that applying for example
a kernel density estimate to the prerun samples might increase performance of
CIMH. This, however, is work in progress.

� Initialization of the algorithm Concerning the initialization of the algorithm,
we would like to point out that the copula proposal function is independent of the
current state of the chain, so we do not expect the initialization of the chain to
have any influence on performance. However, if r2 is rather large, i.e. if a lot of
random walk samples are generated, we naturally expect the chain to remain in
a transient phase much longer. The random walk portion is also the main reason
for initializing the chain in the mode of the distribution in the first place.

� Including information about the dynamic system As rightly pointed out
by Girolami & Mira, the vine-copula based algorithm is completely agnostic to
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Figure 2: Results for the banana-shaped distribution. Figure (a): Posterior density
surface for the banana-shaped distribution. Figure (b): Quotient of acceptance rate
and INEFF, (I1). Error bars show the estimated standard errors based on 100 runs.
Figure (c): ESS per second, (I2). Error bars show the estimated standard errors based
on 100 runs. Figure (d): Marginal copula data used to fit the CIMH and ACIMH
copula of the first run. The diagonal displays the histograms of the MCMC sample
marginals and τe the corresponding empirical Kendall’s τ . In the lower left panel, the
banana-shaped dependency structure is clearly visible.

the underlying dynamic system. While we are convinced that this is worthwhile
and sufficient in many cases, we nevertheless agree that including such information
would most certainly improve the performance of the sampling algorithm. We also
agree that pursuing this approach is very interesting. A straightforward way to do
this might be to combine the copula-based approach with the Riemann manifold-
based MCMC method MALA of Girolami and Calderhead (2011) instead of a
regular random walk Metropolis-Hastings as a second proposal function q2 for
CIMH. We will pursue research in this direction and hope to combine the benefits
of both approaches (see also the last item of this list).
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� Heavy-tailed proposal function Being able to sample from and design a heavy-
tailed independence proposal is indeed not always an easy task and requires some
expertise. For our applications in systems biology, the parameter values can be
truncated at some sensible bounds naturally. We feel that this usually should
make it possible to find a suitable uniform distribution that is more heavy-tailed
than the posterior. Otherwise, this certainly requires some expertise and is more
of a general problem. Having a uniform distribution as a heavy-tailed proposal
function worked fine in our examples and of course has the advantage that it is
easy to sample from.

� Performance in high dimensions As for how the indices (I1) and (I2) perform
in higher dimensions, we refer to our reply to Woodard’s comments in Section 1,
where we showed that the indices indeed decay exponentially as the dimension-
ality of the target distribution increases, see also Figure 1. However, since these
results were obtained without readjusting the parameters of the algorithms, we
feel that nevertheless a better performance in high dimensions than shown here
can be achieved. Still, both indices should always be seen in the context of the
dimensionality of the problem.

� Appraisal of index (I1) We agree with Girolami & Mira that the performance
index (I1) is in some sense not optimal, as the result is not completely unbiased.
This is mostly because the vine-copula based sampling algorithms do not directly
regulate or tune the acceptance rate but strive for an acceptance rate of 100 %,
whereas the step size of random walk algorithms like RWMH and AM are tuned
to yield acceptance rates of approximately 23 %. We would like to suggest that
it should be possible to replace the acceptance rate with a measure of how far
the acceptance rate of the sampling algorithm is off from what is deemed opti-
mal, thus achieving a normalization. However, we find that this topic is severely
underrepresented in the literature and should be the focus of further research,
since having sound criteria for comparisons can only be beneficial. Until then, we
would like to suggest that for our contribution (I1) should be taken more as a
goodness-of-fit index for the copula-based samplers and as additional information,
while the index (I2), i.e. the ESS per second, is a more common and more easily
interpretable index.

� Combination with local structure MCMC methods We think that the idea
of combining local information structure MCMC as suggested by Girolami and
Calderhead with our copula-based algorithm is very promising. The copula-based
algorithm strives to approximate the global structure of the posterior by modeling
the complete parameter dependencies. Girolami and Calderhead’s algorithm con-
trastingly tries to capture the local posterior structure at the current precise point
in the parameter space. A delayed rejection strategy should combine the best of
both approaches and provide an efficient global exploration of parameter space at
simultaneously high acceptance rates through the combination of delayed rejection
with local exploration. Furthermore, delayed rejection and the local exploration
should be especially beneficial for the adaptive copula-based sampling algorithm



40 Rejoinder

ACIMH, since this approach should generate a lot of “new” information in the
form of accepted samples that can be used to improve the fitting of the pair-copula
decomposition. A combination of both the global and local methodologies in such
a fashion should definitely provide new insights and should be heavily pursued.

In closing, we thank the referees for their work on our paper and their fruitful
comments. Furthermore we would like to thank the editor-in-chief for suggesting our
paper for this great interactive format. This discussion has opened new avenues for us
and we sincerely hope that it will also broaden the understanding of our paper for the
readers.
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