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Bayesian Estimation of Log-Normal Means with
Finite Quadratic Expected Loss

Enrico Fabrizi∗ and Carlo Trivisano†

Abstract. The log-normal distribution is a popular model in biostatistics and
other fields of statistics. Bayesian inference on the mean and median of the dis-
tribution is problematic because, for many popular choices of the prior for the
variance (on the log-scale) parameter, the posterior distribution has no finite mo-
ments, leading to Bayes estimators with infinite expected loss for the most common
choices of the loss function. We propose a generalized inverse Gaussian prior for the
variance parameter, that leads to a log-generalized hyperbolic posterior, for which
it is easy to calculate quantiles and moments, provided that they exist. We derive
the constraints on the prior parameters that yield finite posterior moments of or-
der r. We investigate the choice of prior parameters leading to Bayes estimators
with optimal frequentist mean square error. For the estimation of the lognormal
mean we show, using simulation, that the Bayes estimator under quadratic loss
compares favorably in terms of frequentist mean square error to known estimators.

Keywords: Bayes estimators, generalized hyperbolic distribution, generalized
inverse gamma distribution, Bessel functions.

1 Introduction

Suppose that a random variable X with mean ξ and variance σ2 is normally distributed,
such that exp(X) ∼ LogN(ξ, σ2). In this paper we consider the problem of Bayesian
inference about functionals of (ξ, σ2) of the form θa,b = exp(aξ+bσ2) with a, b ∈ < based
on a random sample (X1, . . . , Xn). We may obtain the mean, the median, the mode
and various non-central moments of the log-normal distribution for different choices of
a, b. More specifically a = 1 and b = 0 yields the median (θ1,0), a = 1 and b = −1
yields the mode (θ1,−1) and a = 1 and b = .5 yields the mean (θ1,0.5). This estimation
problem is of practical relevance because, when analyzing positively skewed data, it
is common practice to take the log transformation and assume the normality of the
transformed data. Krishnamoorthy et al. (2011), Zou et al. (2009), Gill (2004), Dagne
(2001), Limpert et al. (2001) are just a few examples of research about inference on the
log-normal mean and quantiles with applications in different fields of enquiry.

The problem has a long tradition in both the frequentist and the Bayesian literature.
With reference to the latter, an important starting point is Zellner (1971). He considers
diffuse priors of the type p(ξ, σ) ∝ σ−1 and he obtains the following results for the
log-normal median: i) p(θ1,0|σ, data) is a log-normal distribution; and ii) p(θ1,0|data)
is a log-t distribution.
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carlo.trivisano@unibo.it

© 2012 International Society for Bayesian Analysis DOI:10.1214/12-BA733

mailto:enrico.fabrizi@unicatt.it
mailto:carlo.trivisano@unibo.it


976 Bayesian Estimation of Log-Normal Means

Summarizing the log-t distribution is challenging using popular loss functions, such
as the quadratic, because moments of all orders do not exist. For the log-normal
mean Zellner (1971) shows that p(θ1,0.5|σ, data) is a log-normal distribution. To obtain
p(θ1,0.5|data) he suggests studying the joint posterior p(log(θ1,0.5), σ|data), integrating
out σ and then considering its exponential transformation. He notes that the inte-
gral over σ can be ‘expressed in terms of modified Bessel functions’ but that ‘it is the
case that the posterior mean of θ1,0.5 does not exist’, which creates similar problems in
summarizing the posterior distribution, (that is in obtaining ‘Bayes estimators’ of the
parameter in question and easily interpretable measures of the information loss).

Most of Zellner’s paper focuses on the inference conditional on σ. He notes that,
within the class of estimators of the form k exp(X̄) with X̄ = n−1

∑n
i=1Xi and where k

is a constant, the estimator for θ1,0.5 with minimum mean square error (MSE) is given

by θ̆1,0.5 = exp(X̄+σ2/2−3σ2/2n). From a Bayesian point of view, this estimator may
be justified as the minimizer of the posterior expected loss, provided that the relative
quadratic loss function LRQ = [(θ − θ̂)/θ]2 is adopted.

Another important reference is Rukhin (1986). Rukhin proposes the following ‘gen-
eralized’ prior:

p(ξ, σ) = p(σ) ∝ σ−2ν+n−2 exp
(
− σ2

[
γ2/2− 2

(
b− a2/n

)])
, (1)

with ν ∈ <, γ2 > 4(b − a2/n). Assuming the relative quadratic loss function LRQ, he

obtains an estimator for θa,b of the form θ̂Rua,b = exp(aX̄)g(Y ) that is given by

θ̂Rua,b = exp(aX̄)

(
β

γ

)ν
Kν(βY )

Kν(γY )
, (2)

β = γ2−2c, c = b−3a2/(2n) and Kν( ) is the modified Bessel function of the third kind
(the Bessel-K function from now on). For a general introduction to Bessel functions,
see Abramowitz and Stegun (1968), chapters 9 and 10. To obtain the values for the hy-

perparameters ν, γ, Rukhin (1986) chooses to minimize the frequentist MSE of θ̂Rua,b . As
the Kν( ) are quite difficult to handle, Rukhin uses a ‘small arguments’ approximation

to θ̂Rua,b to propose a value for ν and a ’large arguments’ approximation to propose a
value for γ. Rukhin does not recognize that, with a simple change of variable, the prior
he proposes may be seen as the product of a flat prior over the real line for ξ and the
following prior on σ2:

p(σ2) ∝ (σ2)−ν+n/2−3/2 exp(−σ2[ψ2/2− 2
(
b− a2/n)]) (3)

which is the limit of a generalized inverse gamma distribution, GIG(λ, δ, γ) as δ → 0.
The other parameters are given by λ = −ν+n/2−1/2 and γ2 = ψ2/2−2(b−a2/n) (see
section 2 for more details and notation). He does not provide the posterior distribution,
so his proposal is inadequate for many inferential purposes (i.e., calculating of posterior
variances or posterior probability intervals).

In this paper, we derive the posterior distribution of θa,b assuming a proper gener-
alized inverse gamma prior on σ2 (and a flat prior over the real line for ξ). We show
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that this posterior is a log-generalized hyperbolic distribution and state the conditions
on the hyperparameters that guarantee the existence of posterior moments of a given
order. Once these conditions are met for the first two non-central moments, we discuss
the Bayes estimators with the ordinary quadratic loss function LQ = (θ − θ̂)2.

The main results of the paper may be summarized as follows: i) we show that,
given our choice of the prior distributions, Bayes estimators associated with the relative
quadratic loss function LRQ can be reconducted to posterior expectations provided that
b is properly modified; ii) adopting a ‘small arguments’ approximation to the Bessel-K
functions and a choice of hyperparameters aimed at minimizing the MSE, we show using
simulation that our Bayes estimator of the mean, i.e. θ1,0.5 is substantially equivalent
to the estimator proposed in Shen et al. (2006), which has been proven to be superior
to many of the alternatives previously proposed in the literature.

The paper is organized as follows. In section 2 we briefly present the generalized
inverse Gaussian and generalized hyperbolic distributions. In section 3, posterior distri-
butions for σ2 and θa,b are derived, and Bayes estimators under quadratic and relative
quadratic losses are introduced. Section 4 is devoted to the choice of values to be as-
signed to the hyperparameters in order to obtain Bayes estimators with the minimum
frequentist MSE. In section 5 we introduce a simulation exercise and discuss the results,
while section 6 describes an application to a real data set. The concluding section 7
offers some conclusions and ideas for future research.

2 The generalized inverse Gaussian and generalized hy-
perbolic distributions

In this section we briefly introduce the generalized inverse Gaussian (GIG) and gen-
eralized hyperbolic (GH) distributions, establish the notation and mention some key
properties that will be used later. For more details on these distributions, see Bibby
and M. (2003) and Eberlein and von Hammerstein (2004) among others.

The density of the GIG distribution may be written as follows:

p(x) =
(γ
δ

)λ 1

2Kλ(δγ)
xλ−1 exp

{
− 1

2

(
δ2x−1 + γ2x

)}
, (4)

x > 0. If δ > 0 the permissible values for the other parameters are γ ≥ 0 if λ < 0 and
γ > 0 if λ = 0. If δ ≥ 0 then γ, λ should be strictly positive.

The moments of the GIG can be expressed as functions of the Bessel-K functions by

E(Xj) =

(
δ

γ

)j
Kλ+j(δγ)

Kλ(δγ)
. (5)

The mode of the GIG is a simple function of the distribution’s parameters. More

specifically, Mo(X) = (γ−2)
(
λ − 1 +

√
(λ− 1)2 + δ2γ2

)
for strictly positive γ, and

Mo(X) = δ2/[2(1 − λ)] for γ = 0. We note that using theorem 1.2 from Laforgia and
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Natalini (2010), and the positive skewness of the GIG distribution (Nguyen et al. 2003),
it may easily be shown that for γ > 0

(λ− 1) +
√

(λ− 1)2 + δ2γ2

γ2
≤ E(X) ≤

(λ+ 1) +
√

(λ+ 1)2 + δ2γ2

γ2
. (6)

Many important distributions may be obtained as special cases of the GIG. For
λ > 0 and γ > 0, the gamma distribution emerges as the limit when δ → 0. The
inverse-gamma is obtained when λ < 0, δ > 0 and γ → 0 and an inverse Gaussian
distribution is obtained when λ = − 1

2 .

Barndorff-Nielsen (1977) introduces the generalized hyperbolic (GH) distribution
as a normal variance-mean mixture where the mixing distribution is GIG. That is, if
(X|W = w) ∼ N(µ+βw,w) and W ∼ GIG(λ, δ, γ) then the marginal distribution of X
will be GH (i.e., X ∼ GH(λ, α, β, δ, µ), where α2 = β2 + γ2). The probability density
function of the GH is given by

f(x) =

(
γ
δ

)λ
√

2πKλ(δγ)

Kλ−1/2

(
α
√
δ2 + (x− µ)2

)(√
δ2 + (x− µ)2/α

)1/2−λ exp
(
β(x− µ)

)
, (7)

x ∈ <, and where γ2 = α2 − β2. The parameter domain is defined by the following
conditions: i) δ ≥ 0, α > 0, α2 > β2 if λ > 0; ii) δ > 0, α > 0, α2 > β2 if λ = 0; iii)
δ > 0, α ≥ 0, α2 ≥ β2 if λ < 0. The parameter α determines the shape, β determines the
skewness (the sign of the skewness is consistent with that of β), µ is a location parameter,
δ serves for scaling and λ influences the size of mass contained in the tails. The class of
GH distributions is closed under affine transformations i.e if X ∼ GH(λ, α, β, δ, µ) and
Z = b0X + b1 then Z ∼ GH(λ, α/|b0|, β/|b0|, |b0|δ, b0µ+ b1). An essential tool in what
follows is the moment generating function of the GH distribution:

MGH(t) = exp(µt)

(
γ2

α2 − (β + t)2

)λ/2
Kλ

(
δ
√
α2 − (β + t)2

)
Kλ(δγ)

(8)

which exists provided that |β + t| < α.

3 Bayes estimators of θa,b

3.1 Derivation of the posterior distribution for σ2 and θa,b

The representation of the GH distribution as a normal mean-variance mixture with the
GIG as mixing distribution introduced in the previous section provides the basis for
obtaining the posterior distribution of ηa,b = log(θa,b) when assuming a GIG prior for
σ2. More specifically we can prove the following result.

Theorem 3.1. Assume the following: i) p(ηa,b|σ2, X) ∼ N(η̄a,b, a
2σ2/n) with η̄a,b =

aX̄ + bσ2 and ii) p(ξ, σ2) = p(ξ)p(σ2), with p(σ2) ∼ GIG(λ, δ, γ) and p(ξ) an improper
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distribution uniform over the real line.
It follows that

p(σ2|data) ∼ GIG(λ̄, δ̄?, γ), (9)

p(ηa,b|data) ∼ GH(λ̄, ᾱ, β̄, δ̄, µ̄) (10)

where δ̄? =
√
Y 2 + δ2, Y 2 =

∑n
i=1(Xi − X̄)2, λ̄ = λ − n−1

2 , ᾱ =
√

n
a2 (γ2 + nb2

a2 ) and

β̄ = n b
a2 . Let γ̄2 = ᾱ2 − β̄2. As a consequence γ̄2 = n

a2 γ
2, δ̄ =

√
a2

n (Y 2 + δ2) and

µ̄ = aX̄.

Proof. To prove (9) simply note that:

p(σ2|data) ∝
∫
σ−n exp

{
− 1

2σ2
(Y 2 + n(ξ − X̄)2)

}
×

(γ
δ

)λ 1

2Kλ(δγ)
(σ2)λ−1 exp

{
− 1

2

(
δ2σ−2 + γ2σ2

)}
dξ

∝
∫

(σ2)−n/2+λ−1 exp

{
− 1

2σ2

(
Y 2 + δ2

)
− γ2σ2

2

}
× exp

{
− 1

2σ2
n(ξ − X̄)2

}
dξ

= (σ2)λ−
n+1
2 exp−

{
1

2

(
Y 2 + δ2

σ2
− γ2σ2

2

)}
.

The second statement is a special case of the Barndorff-Nielsen (1977) result.

We are not primarily interested in p(ηa,b|data), but rather in θa,b = exp(ηa,b) which
is distributed as a log-GH, a distribution that has not, to our knowledge, received any
attention in the literature. In any case, we can calculate the moments of p(θa,b|data)
that we need for summarizing the posterior distribution with a quadratic loss function
by using the moment-generating function of the GH distribution (MGH(t)) and more
specifically the fact that E(θ|data) = MGH(1) and V ar(θ|data) = MGH(2)−[MGH(1)]2.

If we are able to generate samples from the GH distribution, moreover, we may
obtain a sample from its exponential transformation. The quantiles and probability
intervals may then be calculated using Monte Carlo (MC) techniques. From among the
variety of software available for generating random GH numbers, we mention the ghyp

package running under R (Breymann and Lüthi 2010).

Mη|data(t) exists only if
∣∣β̄ + t

∣∣ < ᾱ, or equivalently if ᾱ2 − (β̄ + t)2 > 0 (i.e.,

γ̄2 > t2 +2n b
a2 t). This condition implies the following constraint on the prior parameter
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γ:

γ2 >
a2

n
t2 + 2bt. (11)

The existence of posterior moments requires that γ is above a positive threshold when
a 6= 0, b > 0 (as for the expected value). The threshold is asymptotically 0 for the
median, (i.e., θ0,1), and it is negative for the mode (whenever n > t/2): so, it does not
represent a restriction. With respect to the inference on the expected value (θ1,0.5) note
that the popular inverse gamma prior on σ2, a special case of the GIG for λ < 0, δ > 0
when γ → 0, does not respect condition (11) thereby leading to a posterior distribution
with non-existent moments. Note that this result is consistent with the following remark
from Zellner (1971) concerning the inference about θ1,0: posterior moments exist only
for the limit as n→∞ (that is, when the log-t posterior converges to the log-normal).
Similarly, the uniform prior over the range (0, A) for σ (Gelman 2006) implies that
p(σ2) ∝ 1

σ1(0,A), which may be seen as an approximation to a Gamma( 1
2 , ε) (where

ε = (4A2)−1) truncated at A2. For λ > 0, γ > 0 and δ → 0, GIG(λ, δ, γ) →
Gamma(λ, γ2/2). If we let A → ∞, therefore, p(σ) ∝ 1 is equivalent to a GIG prior
with γ → 0 and thus implies non-existent posterior moments.

Consistent with intuition, condition (11) implies that, in practice, to obtain a poste-
rior distribution of θa,b with finite moments, a prior with short tails should be chosen.

3.2 Bayes estimators under quadratic and relative quadratic losses

If we summarize p(θ|data) using the ordinary quadratic loss function we obtain θ̂QBa,b =
E(θa,b|data) or

θ̂QBa,b = exp(µ̄)

(
γ̄2

ᾱ2 − (β̄ + 1)2

)λ̄/2

×
Kλ̄

(
δ̄
√
ᾱ2 − (β̄ + 1)2

)
Kλ̄(δ̄γ̄)

(12)

= exp(aX̄)

(
γ2

γ2 −
(
a2

n + 2b
))(λ−n−1

2 )/2

×
K{λ−n−1

2 }

(√
(Y 2 + δ2)(γ2 − (a

2

n + 2b))
)

K{λ−n−1
2 }

(√
(Y 2 + δ2)γ2

) . (13)

We provided two alternative expressions for θ̂QBa,b : (12) is indexed on the posterior
parameters, and (13) highlights the role of the prior parameters, which will be useful
for studying the choice of hyperparameters that is discussed in the next section.

Under a relative quadratic loss function, the Bayes estimator is defined as θ̂RQBa,b =

E(θ−1
a,b)/E(θ−2

a,b) (see Zellner (1971)). The following result shows that θ̂RQB may be
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reconducted to a Bayes predictor under a quadratic loss function with a different choice
of b and modified prior parameters.

Theorem 3.2. For the Bayes estimator under relative quadratic loss function, we have
that θ̂RQBa,b = θ̂QBa,b? with b? = b − 2a2/n provided that the prior p(σ2) ∼ GIG(λ, δ, γ?)

with γ2
? = γ2 − 4a2/n+ 4b is assumed.

Proof. Let τa,b = −log(θa,b). From the stated properties of the GIG distribution, we
have τa,b|data ∼ GH(λ̄, ᾱ, β̄, δ̄,−µ̄) and
2τa,b|data ∼ GH(λ̄, ᾱ/2, β̄/2, 2δ̄,−2µ̄). Using (8) it may be shown that

θ̂RQB = exp(aX̄)

[
n
a2 (γ2 − 4a2

n + 4b)
n
a2 (γ2 − a2

n + 2b)

]{λ−n−1
2 }/2

(14)

×
K{λ−n−1

2 }

(√
(Y 2 + δ2)(γ2 − a2

n + 2b)
)

K{λ−n−1
2 }

(√
(Y 2 + δ2)(γ2 − 4a2

n + 4b)
) .

If we set b? = b − 2a2/n and γ2
? = γ2 − 4a2

n + 4b we obtain a formula that has exactly
the structure of (13).

4 Choice of hyperparameters

We can easily see that θ̂QBa,b is sensitive to the choice of the prior parameters; therefore a
careful choice of λ, δ, γ is an essential part of the inferential procedure. Following Rukhin
(1986), our aim is to choose the hyperpaameters to minimize the frequentist MSE of
the Bayes estimators. In practice this choice is a complicated task because expression
(13) contains a ratio of Bessel-K functions that is quite intractable. Following Rukhin
(1986) again, we will use a ‘small argument’ approximation to obtain the MSE-‘optimal’
values of the hyperparameters. Unfortunately this method is viable only for λ and δ
because the small value approximation is free of γ. A more ‘heuristic’ argument will be
proposed for the latter parameter. The simulation in section 5 shows that the parameters
determined in this manner also lead to good estimator performance when the arguments
of the Bessel-K functions are no longer small. According to (10), priors with light tails
are required to guarantee a finite posterior expectation and expected loss when b > 0.
For this reason, when a guess of σ2 is available a priori, it may be used to improve the
performances of the Bayes estimators. How this can be done, without breaking down
the MSE even when the guess is grossly wrong is described in section 4.2.
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4.1 Choice of hyperparameters using the small arguments approxi-
mation to the modified Bessel functions of the third kind

Consider first the following approximation of θ̂QBa,b using the ‘small argument’ approxi-
mation of the Bessel-K functions.

Theorem 4.1. Under the assumptions that (Y 2+δ2)γ2 < 1, (Y 2+δ2)(γ2−(a
2

n +2b)) < 1
and λ < n−1

2 we have that

θ̂QB ∼= exp(aX̄) exp

{
− (Y 2 + δ2)(a2 + 2nb)

4n(λ− n−3
2 )

}
= θ̂qb. (15)

Proof. Now consider the following power series representation of a Bessel function of
the first kind:

Iν(z) =

(
1

2
z

)ν ∞∑
k=0

(
1
4z

2
)k

k!Γ(ν + k + 1)
(16)

ν ∈ <. Note that for z < 1, the addends in the sum part of (16) are decreasing, so for
small values (z → 0) the series may be approximated by its first terms (k = 0, 1, 2, . . . ).
Moreover,

Kν(z) =
π

2 sin(νπ)

[
I−ν(z)− Iν(z)

]
(17)

ν ∈ <−Z. Note that both (16) and (17) are proved in Abramowitz and Stegun (1968),
chapter 9. Combining the two and assuming ν > 0 we may write[

I−ν(z)− Iν(z)
]

=

(
1

2
z

)−ν[
1

Γ(1− ν)
+

(
1
4z

2
)

Γ(2− ν)
+ . . .

−

(
1

2
z

)2ν
1

Γ(ν + 1)
−

(
1

2
z

)2ν+2
1

Γ(ν + 2)
− . . .

]
.

Note that the terms in the second line are negligible for z → 0. Assuming ν − 1 ∼= ν
and (ν − 1)(ν − 2) ∼= (ν − 1)2

Kν(z) ∼=
π

2 sin(νπ)

(
1

2
z

)−ν
1

Γ(1− ν)
exp

(
1

4

z2

1− ν

)
. (18)

We may re-write θ̂QB as

θ̂QB = exp(aX̄)

(
γ2 − u
γ2

)ν/2Kν

(√
(Y 2 + δ2)(γ2 − u)

)
Kν

(√
(Y 2 + δ2)γ2

) ,

where u = a2+2nb
n , ν = −λ̄. Note that, as we assume 2λ < n− 1, the case ν < 0 is not

relevant. Using the fact that Ka( ) = K−a( ) and replacing z with the arguments of the

Bessel-K that appear in θ̂QB completes the proof.
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Rukhin (1986) proves that to minimize the frequentist MSE of estimators in the

form exp(aX)g(Y ) such as θ̂qb , and θ̂QB ,

E
[
g(Y )− exp(cσ2)

]2
, (19)

where c = b−3a2/(2n), should be minimized. Unfortunately, minimization of (19) with
respect to (λ, δ) does not lead to a unique minimum. The optimum MSE is reached for
a set of (λ, δ) pairs that are described by equation (20).

Theorem 4.2. Under the assumptions of theorem 4.1, the value of λ in (15) that
minimizes (19) is given by

λopt =
n− 3

2
− (n− 1)(a2 + 2nb)

4nc
− (a2 + 2nb)

4nc

δ2

σ2
(20)

provided that b /∈ (− a2

2n ,
3a2

2n ). The result holds for any δ in <+.

Proof. Following (19) we should minimize

φ = E

{
exp

[
a2 + 2nb

2n(ν − 1)
(Y 2 + δ2)

]
+ exp(2cσ2)− 2 exp

[
a2 + 2nb

4n(ν − 1)
(Y 2 + δ2) + cσ2

]}

where ν = −λ̄.
Because Y 2

σ2 ∼ χ2(n− 1) = Gamma
(
n−1

2 , 1
2

)
then Y 2 ∼ Gamma

(
n−1

2 , 1
2σ2

)
. Using the

standard formula for the moment generating function it follows that E
[

exp
(
rY 2

)]
=(

1− 2rσ2
)−n−1

2

, provided that r < 1
2σ2 . Thus

E

{
exp

[
a2 + 2nb

2n(ν − 1)
Y 2

]}
=

(
1− a2 + 2nb

n(ν − 1)
σ2

)−n−1
2

∼= exp

(
(n− 1)(a2 + 2nb)σ2

2n(ν − 1)

)

when σ2 < n(ν−1)
a2+2nb . The approximated function to be minimized may be written as

φ̃ = exp

{
(a2 + 2nb)

2n(ν − 1)

[
(n− 1)σ2 + δ2

]}

− 2 exp

{
(a2 + 2nb)

4n(ν − 1)

[
(n− 1)σ2 + δ2

]
+ cσ2

}
+ exp(2cσ2).

Taking partial derivatives of φ̃, and equating both partial derivatives to 0 leads to
exactly the same equation:

exp

{
(a2 + 2nb)

2n(ν − 1)

[
(n− 1)σ2 + δ2

]}
= exp

{
(a2 + 2nb)

4n(ν − 1)

[
(n− 1)σ2 + δ2

]
+ cσ2

}
.
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Taking the log and solving for ν, we obtain

ν = 1 +
(n− 1)(a2 + 2nb)

4nc
+

(a2 + 2nb)

4nc

δ2

σ2
. (21)

So, we may obtain an ‘optimal’ value of ν for any choice of (positive) δ2. Formula (20)
follows from noting that ν = n−1

2 − λ.

Note that if b ∈ (− a2

2n ,
3a2

2n ) we would obtain λopt >
n−1

2 for which the approximation
(15) on which this choice of λ is based is not valid anymore. In practice, the median
(a = 1, b = 0) is the only relevant case that falls outside the applicability of theorem 4.2.
To choose λ when b = 0 we may observe that the estimators obtained under quadratic
loss, (13), and relative quadratic loss, (14), are very close and asymptotically equivalent.

Since b? /∈ (− a2

2n ,
3a2

2n ) we may then apply (20) replacing b? = b− 2a2

n instead of b.

The λopt in (20) is a function not only of δ, as anticipated, but also of the unknown
σ2; therefore, an optimal choice of (δ, λ) should depend, at least in principle, on a prior
guess for σ2. A method for circumventing the problem that is implicitly suggested by
the generalized prior (3) is to let δ → 0. This condition may be approximated in practice
by a δ that is much smaller than σ so as to make the third addend in (20) negligible.
This approximation can be justified by noting (from (6)) that δ has the same order of
magnitude of the expectation and the mode of σ2; therefore, choices of the type δ = kσ2

0

for some constant k and prior guess of the variance σ2
0 imply a negligible third addend

in (20) in the ‘small value setting’ we assumed for the derivation of θ̂qb.

The estimator θ̂qb1,0.5 is connected to popular estimators that have already been dis-
cussed in the literature. Note that if δ = 0, a = 1, b = 0.5 and we replace λopt into

(3.1), we obtain θ̂qb1,0.5 = exp
(
(X̄) + S2(n−3)

2n

)
, which is the MSE-optimal estimator (3.9)

proposed by Zellner (1971) with the assumed known σ2 replaced by S2 = Y 2/(n − 1).
This estimator is also similar to the one proposed in Evans and Shaban (1976) with the
function g truncated to the first term.

As far as γ is concerned, we propose choosing a value close to the minimum value to
assure the existence of the first two posterior moments. Therefore, we specify the GIG
with the heaviest possible tail among those yielding p(θ|data) with finite variance:

γ2
0 = max

{
0, 4
(a2

n
+ b
)}

+ ε (22)

where ε is a positive, typically small constant. Note that γ0 depends on n. In any
case, we found in our simulations that θ̂QB1,0.5 is not particularly sensitive to alternative
choices of γ0 that are close to (i.e., of the same order of magnitude of) the γ0 we propose.

Much larger values lead to inefficient θ̂QB1,0.5 with far larger frequentist MSEs. Moreover,
the resulting GIG distribution will have a particularly light right tail for positive b. This
result implies that the prior will be relatively peaked. In figure 1 we plot the log-density
of the GIG prior for the discussed choice of the hyperparameters (and various n) and
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Figure 1: Log density of the GIG prior for the discussed choice of hyperparameters (and
various n) and of a Inv −Gamma(0.001, 0.001).

compare it to that of a Inv−Gamma(0.001, 0.001), a commonly used prior for variance
parameters.

Because a choice of δ close to 0 implies a peak close to 0, in the next section we
explore how a prior guess on the population variance may be used to improve the
performances of the Bayes estimators.

4.2 Choice of hyperarameters based on prior guesses of σ2

Assume that a prior guess σ2
0 for σ2 is available and this value is ‘far’ from 0. The subject

of this section is how to specify priors that incorporate this prior guess and preserve the
optimality properties we have described. We restrict our attention to positive b, because
when b ≤ 0, the existence of the first two posterior moments does not necessarily imply
a prior with light tails, and we may choose priors with a more distributed probability
mass.

We start by introducing the following approximation of E(σ2) that is based on the
inequality (6) and that has proved in simulations to be effective for a wide range of
choices for λ, δ, γ:

E(σ2) ∼=
λ+

√
λ2 + δ2γ2

γ2
. (23)

In the following we denote the approximate expected value from (23) by σ2
E . We then

introduce the following result:

Theorem 4.3. Assuming that i) λ is a function of δ as expressed in (20) and that ii)

b > 3a2

2n , we have σ2
E = kσ2 for 0 < k < 1.
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Proof. We may rewrite (20) as λ = c1 − c2δ
2 with c1 = −1 − (n − 1) 2a2

2nb−3a2 and

c2 = a2+2nb
2(2nb−3a2)σ2 . Substituting this identity into (23) and solving for δ2, we obtain:

δ2 =
kσ2(kγ2σ2 − 2c1)

1− 2kc2σ2
. (24)

Of course, δ2 must be positive. The signs of both c1 and c2 depend on that of c (defined

in (2)). Because 2nb − 3a2 > 0 (i.e., b > 3a2

2n ) implies that c1 < 0 and c2 > 0, the
numerator of δ2 is always positive and we may focus on the denominator. It is positive
whenever

k <
2nb− 3a2

2nb+ a2
< 1, (25)

a condition that reduces to k < n−3
n+1 for a = 1, b = 0.5.

The main implication of this result is that the relationship between λ and δ implied
by (20) leads naturally to conservative priors whose expected values cannot exceed σ2.
This finding is consistent with all the theory of MSE-optimal estimation of log-normal
parameters, in which efficiency is improved at the price of some negative bias. As a
byproduct, (24) suggests how to choose δ2 as a function of γ2, a prior guess σ2

0 and k.

To clarify the interpretation of the parameter k, we study its relation to the coef-
ficient of variation of the prior distribution. Note first that if W ∼ GIG(λ, δ, γ), with
λ < −1, then

CV 2(W ) ∼= −
1

λ+ 1
. (26)

To see how this result follows, note that

CV 2(W ) + 1 =
Kλ+2(δγ)

Kλ+1(δγ)

Kλ(δγ)

Kλ+1(δγ)
=
E(W1)

E(W2)
,

with W1 ∼ GIG(λ + 1, δ, γ) and W2 ∼ GIG(λ, δ, γ). Using the approximation (23) for
the expected values, we find that

CV 2(W ) + 1 =
(λ+ 1) +

√
(λ+ 1)2 + δ2γ2

λ+
√
λ2 + δ2γ2

.

Because
√
m2

1 +m2
∼= |m1| + m2

2|m1| for a positive m2, CV 2(W ) + 1 ∼= λ(λ + 1)−1 for

λ < −1, from which (26) follows. We can now state the following result.

Theorem 4.4. Given assumptions i) and ii) of theorem 4.3, assuming that δ is selected
according to (24) and using the approximation in (26) for the squared coefficient of
variation, it follows that CV 2(σ2) is a monotonically decreasing function of k.

Proof. Because b > 3a2

2n implies that c1 + 1 < 0 and c2 > 0, λ = c1 − c2δ
2 implies

that λ + 1 < 0. It follows from (26) that the squared coefficient of variation will be
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monotonically decreasing in k whenever −(λ + 1) is monotonically increasing (that is,

when its derivative is positive) ∀k ∈ (0, 2nb−3a2

2nb+a2 ).

To determine the sign of d
dk{c2δ

2 − (c1 + 1)}, we focus on the sign of the numerator in
d
dk

c2kσ
2(kγ2σ2−2c1)
1−2kc2σ2 .(

2c2kγ
2σ4 − 2c1c2σ

2
)(

1− 2kc2σ
2
)

+
(
c2k

2γ2σ4 − 2c1c2kσ
2
)
2c2σ

2 > 0

may be simplified to

2c2σ
2
(
kγ2σ2 − c2k2γ2σ4 − c1

)
> 0.

This inequality holds whenever kγ2σ2(1−c2kσ2) > c1. Given that c1 < 0, this condition

holds ∀k ∈ (0, 2nb−3a2

2nb+a2 ) because for k within this range, we know that 1 − 2c2kσ
2 > 0

implies that 1− c2kσ2 > 0.

When selecting a value of k within its permissible range, we should consider that
the larger the value of k, the closer the expected value of the prior is to the guess σ2

0 ,
but also the smaller the prior’s coefficient of variation (that is the more informative is
the distribution). Likewise, a larger a priori coefficient of variation yields an expected
value farther to the left of σ2

0 .

The parameter k may be interpreted as a measure of the amount of a priori infor-
mation available. If we are quite uncertain about our prior guess for σ2 it makes sense
to have not only a prior with a large coefficient of variation but also a conservatively
small expected value. In fact, it can be easily shown through simulation that prior
specification that puts a sizeable part of the prior mass beyond σ2 yields Bayes esti-
mators with huge frequentist MSEs. Therefore, the relationship (through k) between a
prior expected value and the coeffient of variation is consistent with the optimization
of frequentist MSE of the Bayes estimators.

We also note that the relationship between k and the squared CV is nonlinear. The
speed of the squared CV reduction increases with k; therefore, choices of k close to its
maximum imply very peaked prior distributions. On the other extreme, a small k leads
to a prior that is practically the same as those considered in section 4.1.

5 Simulation

In this section, we compare, using their frequentist MSEs, the Bayes estimators intro-
duced in the previous sections with other estimators, both frequentist and Bayesian. We
focus on estimating the mean of the log-normal (i.e., θ1,0.5), a popular problem in the
literature and one for which several competing estimators exist. Specifically, we consider
the unbiased estimator of Evans and Shaban (1976) and the estimator proposed by Shen
et al. (2006) which the authors proved to be more efficient than the various alternatives
that had previously been proposed in the literature. We also consider the Bayes esti-
mator of Rukhin (1986). As a general benchmark, we also consider the MSE-optimal
estimator of Zellner (1971) which is based on a known σ2.
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Table 1: Comparison of alternative estimators in terms of MSE: prior for σ2 not incor-
porating guesses.

MSE
n Est./σ2 0.1 0.5 1 2 5 20

n=11 θ̂BQ 0.0095 0.0514 0.109 0.228 0.531 0.982

θ̂BR 0.0096 0.0540 0.120 0.268 0.661 0.998

θ̂Ru 0.0095 0.0513 0.110 0.244 0.680 1.291

θ̂SBZ 0.0095 0.0505 0.105 0.217 0.544 0.998

θ̂ES 0.0098 0.0594 0.147 0.422 2.533 65.77

θ̂Zel 0.0093 0.0458 0.090 0.173 0.384 0.944

n=101 θ̂BQ 0.0010 0.0060 0.014 0.036 0.133 0.729

θ̂BR 0.0010 0.0060 0.014 0.038 0.170 0.929

θ̂Ru 0.0011 0.0067 0.017 0.052 0.308 18.970

θ̂SBZ 0.0010 0.0060 0.014 0.036 0.134 0.805

θ̂ES 0.0010 0.0061 0.015 0.039 0.183 4.562

θ̂Zel 0.0010 0.0049 0.010 0.020 0.486 0.182

n=401 θ̂BQ 0.0003 0.0016 0.004 0.010 0.041 0.375

θ̂BR 0.0003 0.0016 0.004 0.010 0.045 0.566

θ̂Ru 0.162 9.755

θ̂SBZ 0.0003 0.0016 0.004 0.010 0.041 0.376

θ̂ES 0.0003 0.0016 0.004 0.010 0.045 0.780

θ̂Zel 0.0003 0.0013 0.003 0.005 0.012 0.049

The simulation set-up is essentially the same as that introduced in Zhou and Gao
(1997) and also used by Shen et al. (2006). We assume that X ∼ N(−σ2/2, σ2); then
exp(X) is log-normally distributed, and our estimand E

[
exp(X)

]
= 1. We consider 6

distinct values for σ2 (σ2 = 0.1, 0.5, 1, 2, 5, 20) and three sample sizes (n = 11, 101, 400).
The results we present used 100, 000 MC samples, and were obtained using R.

In tables 1 and 2, we present the results obtained under the priors specified according
to the suggestions of Section 4.1; specifically we set δ = 0.01. In presenting the results,
we denote the estimator of formula (3.1) in Rukhin (1986) by θ̂Ru, with the prior

parameters chosen using formulas (3.6) and (3.7) of the same paper. Let θ̂ES denote

the unbiased estimator of Evans and Shaban (1976) and let θ̂SBZ denote the estimator
from Shen et al. (2006). We also denote the optimal estimator assuming a known σ2

that was discussed above by θ̂Zel. Because the simulations only address estimating the
mean, we omit the indexes related to the choice of a, b.

Despite the prior parameters having been chosen using a ‘small arguments’ approx-
imation to the Bessel-K function, results show that θQB performs well regardless of the
size of σ2. Specifically θ̂QB is close to θ̂SBZ for all values of σ2, n. We emphasize this
as θ̂SBZ is the reference frequentist estimator in the recent literature.
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Both estimators are negatively biased (see table 2) and the bias rapidly increases

with σ2, especially when n = 11, even though θ̂QB is less biased and more variable
with respect to θ̂SBZ . In any case, note that θ̂Zel, which is MSE-optimal and assumes
known σ2, is also negatively biased. From Theorem 1 in Shen et al. (2006), θ̂SBZ is
obtained from

θ̂SBZ(σ2) = exp

{
X̄ +

Y 2(n− 1)

2(n+ 4)(n− 1) + 3(n− 1)σ2

}

in which σ2 in the denominator is replaced by its Maximum Likelihood (ML) estimator

Y 2/(n − 1). The approximation of θ̂QB for small values of σ2, obtained from (15) by
replacing λ with (20) and setting δ = σ2 (and assuming σ4 negligible) may be written
as

θ̂qb(σ2) = exp

{
X̄ +

Y 2(n− 3)

2n(n− 4) + 2nσ2

}
which is close to θ̂SBZ .

θ̂QB is also more efficient than θ̂ES . For small σ2, θ̂QB is only moderately biased
and shows a similar MSE, while for large population variances, the unbiasedeness of
θ̂ES is quite costly in terms of variance.

When comparing θ̂QB to θ̂RQB , we find that the two perform similarly for small
σ2, but θ̂QB becomes clearly superior to the predictor based on the relative quadratic
loss function as σ2 increases. θ̂Ru exhibits an MSE close to that of θ̂QB for small σ2,
but its properties deteriorate dramatically for large population variances. We have
already noted that the prior chosen for σ2 in Rukhin (1986) is the limit of a GIG for
δ → 0; nonetheless the proposed choice for γ is inconsistent with the existence of the
first two moments of the posterior distribution for the mean of the log-normal. The
results for θ̂Ru when n = 400 and σ2 ≤ 2 are missing because of numerical problems.
These estimators involve the calculation of Bessel-K functions with very large orders
(the order increases linearly with n) and arguments very close to 0, which results in
huge values. These values lead to numerical instability and the generation of errors
with the software we used. Because they are not essential to our purposes, we do not
investigate the problem further.

In table 3, we report selected results for the estimators of the log-normal mean in the
case where the priors for σ2 incorporate prior guesses using the methodology described
in Section 4.2. These priors are relevant only for large σ2; therefore, we report the results
only for σ2 = 1, 5, 20. They involve a parameter k that controls both the closeness of
the prior expectation to σ2

0 (the prior guess) and the peakedeness of the prior. Let M
denote the maximum admissible value for k according to (25); we consider the cases
where k = 0.5M and k = M . The purpose of this second set of comparisons involving
θ̂QB is mainly to determine how much efficiency improves when a guess of the population
variance is available and used in the prior specification and how sensitive these gains
are to incorrect guesses for σ2. For this purpose, we consider the following values for σ2

0 :
0.4σ2, 0.8σ2, σ2, 1.2σ2, 1.6σ2, 2σ2. These values correspond to errors in guessing σ2 that
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Table 2: Comparison of alternative estimators in terms of Bias: prior for σ2 not incor-
porating guesses.

Bias
n Est./σ2 0.1 0.5 1 2 5 20

n=11 θ̂BQ -0.0075 -0.0470 -0.103 -0.225 -0.555 -0.990

θ̂BR -0.0254 -0.1278 -0.246 -0.445 -0.793 -0.999

θ̂Ru -0.0102 -0.0540 -0.107 -0.207 -0.448 -0.921

θ̂SBZ -0.0108 -0.0621 -0.134 -0.288 -0.680 -0.999

θ̂ES 0.0010 0.0015 0.002 0.004 0.004 0.007

θ̂Zel -0.0075 -0.0408 -0.082 -0.159 -0.354 -0.827

n=101 θ̂BQ -0.0014 -0.0067 -0.015 -0.039 -0.154 -0.812

θ̂BR -0.0034 -0.0186 -0.042 -0.104 -0.341 -0.963

θ̂Ru 0.0029 0.0160 0.033 0.067 0.176 0.818

θ̂SBZ -0.0023 -0.0111 -0.024 -0.055 -0.191 -0.888

θ̂ES -0.0004 -0.0005 0.000 0.000 0.001 -0.014

θ̂Zel -0.0015 -0.0061 -0.011 -0.022 -0.052 -0.185

n=401 θ̂BQ 0.000 -0.002 -0.004 -0.010 -0.044 -0.415

θ̂BR -0.001 -0.005 -0.011 -0.029 -0.118 -0.732

θ̂Ru 0.278 1.661

θ̂SBZ -0.0006 -0.0029 -0.006 -0.015 -0.054 -0.447

θ̂ES -0.0001 -0.0002 0.000 0.000 0.000 0.002

θ̂Zel -0.0004 -0.0015 -0.003 -0.006 -0.013 -0.050
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range from large and negative to large and positive. The results are reported only for
n = 11, 101 because the impact of the prior specification is less interesting for n = 400.

With respect to table 3, we note that, as expected, when the guess σ2
0 is exactly

equal to σ2 there are large gains in efficiency relative to the parallel results in table 1.
The gains are larger for k = M than for k = 0.5M . To better appreciate the size of
these gains, the MSEs and biases should also be compared with those of θ̂Zel from table
1, whose MSEs represent a lower bound.

When k = 0.5M , there is much less sensitivity to wrong guesses for σ2 than when
k = M . As anticipated in Section 4.2 this finding is explained by the prior becoming
peaked and the prior coefficient of variation decreasing dramatically when k gets close
to its upper bound. We observe this decreased sensitivity for both under- and over-
statement of σ2. Specifically, when σ2

0 = 0.4σ2, the prior implied by k = 0.5M is
more diffuse, which compensates for its expectation being farther to the right than in
the case of k = M . For values of the guess close to σ2, a more peaked distribution
leads to estimators that behave better. However, as soon as the prior expected value
exceeds the underlying true value (when σ2

0 = 1.2σ2, for example), we start to observe
an increase in the MSE and a switch in the sign of the bias (from negative to positive)
for the estimators associated with k = M . For larger positive errors in guessing σ2, the
properties of these estimators deteriorate fast and dramatically.

For k = 0.5M , we observe a smoother behavior. The estimators with the best MSE
are not those where σ2

0 = σ2. This result is due to E(σ2) = kσ2
0 which implies that a

value of σ2 moderately greater than σ2 yields a prior with an expected value closer to
σ2. It is also unwise in this situation to intentionally overstate σ2. From the case of
σ2

0 = 2σ2, we may observe that the properties of θ̂QB when k = 0.5M also deteriorate
when there is gross positive error in guessing the population variance.

We conclude that when a reasonable prior guess for σ2 is available, the efficiency of
the θ̂QB Bayes estimators may be improved. Except for the case of k close to the upper
limit of its admissible range, these improvements are substantial and can be obtained
with a reasonable level of robustness with respect to guessing errors. Concerning the
choice of k, we presented empirical results for k = 0.5M that represent the best perfor-
mance for the simulation setting considered here and also for others we do not report
for the sake of brevity. A smaller k tends to reproduce the results we have seen for the
choices of prior parameters discussed in Section 4.1 while a larger k shares, although to
a lesser degree, the problems illustrated for k = M .

6 An application to a real environmental problem

The statistical assessment of data collected from contaminated sites is a major task for
environmental agencies. Contaminant concentration data quite often appear to follow
a positively skewed distribution and the log-normal is frequently used as a reference
model. In the US, the Environmental Protection Agency (EPA) recommends basing
remediation decisions on the estimation of the upper confidence limit (UCL) for the
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Table 3: Comparison of alternative estimators: prior incorporating guesses of σ2.
MSE Bias

n σ2 = 1 σ2 = 5 σ2 = 20 σ2 = 1 σ2 = 5 σ2 = 20
σ2

0 = 0.4σ2

k = .5M 11 0.101 0.521 0.988 -0.157 -0.638 -0.994
k = M 11 0.110 0.593 0.995 -0.227 -0.743 -0.997
k = .5M 101 0.014 0.137 0.792 -0.031 -0.226 -0.873
k = M 101 0.023 0.309 0.973 -0.117 -0.540 -0.986

σ2
0 = 0.8σ2

k = .5M 11 0.097 0.474 0.977 -0.121 -0.564 -0.987
k = M 11 0.091 0.432 0.952 -0.140 -0.564 -0.974
k = .5M 101 0.014 0.127 0.736 -0.021 -0.181 -0.830
k = M 101 0.013 0.131 0.772 -0.052 -0.310 -0.876

σ2
0 = σ2

k = .5M 11 0.096 0.453 0.963 -0.101 -0.515 -0.979
k = M 11 0.088 0.377 0.875 -0.092 -0.421 -0.913
k = .5M 101 0.014 0.123 0.680 -0.015 -0.149 -0.779
k = M 101 0.011 0.067 0.324 -0.013 -0.106 -0.498

n σ2
0 = 1.2σ2

k = .5M 11 0.096 0.438 0.940 -0.080 -0.455 -0.964
k = M 11 0.091 0.406 0.986 -0.040 -0.227 -0.701
k = .5M 101 0.014 0.120 0.609 -0.009 -0.109 -0.693
k = M 101 0.013 0.131 2.934 0.029 0.189 1.238

σ2
0 = 1.6σ2

k = .5M 11 0.099 0.457 0.876 -0.036 -0.296 -0.879
k = M 11 0.117 1.316 80.534 0.074 0.401 2.648
k = .5M 101 0.014 0.132 0.683 0.005 -0.004 -0.281
k = M 101 0.030 1.845 3483.366 0.124 1.236 52.430

σ2
0 = 2σ2

k = .5M 11 0.108 0.627 1.666 0.012 -0.069 -0.539
k = M 11 0.181 6.355 13668.7 0.204 1.573 44.9
k = .5M 101 0.015 0.188 5.421 0.019 0.141 1.067
k = M 101 0.074 13.207 2684534 0.238 3.463 1468.1
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mean of a log-normal population. The reference method for this estimation is based on
Land’s H statistic (EPA 2002), although it has been criticized as it is liable to lead to
overestimation of the actual UCL. The issue is discussed in Singh et al. (2002), that
also provide real data sets that we use to apply our method.

In this section, for two data sets considered in Singh et al. (2002), we calculate
estimates of the log-normal mean using all estimators considered in section 5 along with
the maximum likelihood estimator and θ̂qb introduced in (15); θ̂Zel is not considered as
σ2 is unknown. Moreover we consider the problem of estimating the UCL at the 0.95
confidence level. We propose to use the 95-th percentile of the posterior p(θ1,0.5|data)

as we found by simulation that the posterior tracks the sampling distribution of θ̂QB1,0.5

very well. Unfortunately, for the choice of hyperparameters discussed in section 4.1,
the frequentist coverage is less than 0.95; the reason is that the MSE-optimal θ̂QB1,0.5 is
a negatively biased estimator. So, for the purpose of the UCL estimator we introduce
an alternative choice of the prior parameter λ that leads to a UCL that guarantees a
frequentist coverage close to 0.95.

For the new choice of λ we proceed as follows. As we base the interval estimator
on the percentile of the posterior distribution, we can consider p(η1,0.5|data) instead of

p(θ1,0.5|data); we choose hyperparmeters in order to have Es(η̂
QB
1,0.5) ∼= ξ + 1

2σ
2 (with

Es denoting the expectation with respect to the sampling distribution and η̂QB =
E(η1,0.5|data)); exp{q0.95(η1,0.5|data)} will then be our estimate of the UCL at the 0.95
level. Using theorem 3.1 and approximation (23) we have that

η̂QB1,0.5 = E(η1,0.5|data) ∼= µ̄+ β̄

{
λ̄+

√
λ̄2 + δ̄2γ̄2

γ̄2

}
.

Because
√
m2

1 +m2
∼= |m1|+ m2

2|m1| for a positive m2, assuming λ̄ < 0 we obtain:

η̂QB1,0.5
∼= X̄ +

Y 2 + δ2

2(n− 1− 2λ)
.

If we assume δ2 positive but very small as suggested in section 4.1 we have that for
λ = 0, Es(η̂

QB
1,0.5) ∼= ηQB1,0.5. It may be shown using the same simulation of section 5

that for this new choice of λ, our estimator of the UCL yields a frequentist coverage
of the associated interval very close to 0.95 whenever the coefficient of variation of the
underlying log-normal population is lower or equal than 2.5, as will be the case for the
data sets considered in this section.

We compare our estimate of the UCL to the method based on the H statistic, three
others recommended by Singh et al. (2002) (jackknife, standard bootstrap, Chebychev
inequality) and the upper limit of the bootstrap based confidence iterval associated with

θ̂SBZ (see Shen et al. (2006)).

The data set we consider is the concentration of aluminium and manganese at the
Naval Construction Battalion Center (example 4.6). For both contaminants we have
two samples of size n = 17, with log-normality not rejected using a Shapiro-Wilks test
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Table 4: Estimates for the log-normal means: Naval Construction Battalion Center
data.

θ̂ML θ̂ES θ̂SBZ θ̂Ru θ̂RQB θ̂qb θ̂QB

al 2002.7 1704.8 1214.6 1449.9 1476.9 1570.8 1339.7
mn 1262.6 1100.9 819.4 951.6 1004.1 1016.5 892.1

Table 5: Estimates for the UCL (95% confidence): Naval Construction Battalion Center
data.

jaccknife bootstrap Chebychev H-Stat SBZ QB
al 3283.34 3663.20 5314.99 9102.73 6286.47 3757.57
mn 1889.52 1821.55 3291.95 5176.16 3671.14 2375.48

at the 0.1 confidence level. The following data are observed: al=(71, 71, 107, 113, 125,
163, 164, 264, 290, 527,586, 979, 2640, 2660, 3560, 5920, 13200) and mn=(15.8, 28.2,
85.6, 90.6, 150.0, 199.0, 259.0,281.0, 390.0, 777.0, 824.0, 838.0, 1010.0, 1350.0, 1490.0,
3250.0, 4300.0). Note that the alluminium data are more skewed than the manganese
data (CV (al) = 1.81, CV (mn) = 1.32).

Point estimates of the log-normal means are reported in table 4. The various es-
timators applied to the same data lead to different estimated values, with differences
increasing with σ2 and thus with the skewness of the distribution. Note that θ̂ML returns
the largest estimate in both cases, while θ̂SBZ the smallest. The fact that θ̂SBZ < θ̂QB

is consistent with the larger negative bias of the first we noted in the previous section.
Less efficient estimators tend to produce larger estimates.

Estimates of the UCL (95% confidence level) are reported in table 5. The estimates
of the 95-th percentile of p(θ1,0.5|data) are based on the ghyp package of R (Breymann
and Lüthi 2010). As expected, we note that the estimates based on the H statistic

and the bootstrap interval for θ̂SBZ described in Shen et al. (2006) produce very large
estimates: between the second largest and the largest observed value in the case of al

and larger than the observed maximum for the case of mn. Estimates based on our
method are smaller, close to those based on resampling methods for the al sample,
between those and the method based on Chebychev inequality for the mn sample.

7 Conclusions and future work

In this paper, we considered the popular log-normal model and the specific problems
associated with estimating many of its parameters (including mean, median and mode).
These problems are caused by the fact that log-t and other distributions that are typ-
ically associated with the analysis of the log-normal model have no finite moments.
Our approach is Bayesian but parallel problems arise from a frequentist perspective.
Specifically we wanted to continue using the popular quadratic loss function to sum-
marize the posterior distribution. We found that a generalized inverse gamma prior for
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the population variance allows formally stating the conditions on the prior parameters
that lead to posterior distributions with finite moments; moreover, the Bayes estima-
tors of log-normal parameters associated with the quadratic loss function have desirable
frequentist properties.

Further developments of this research are possible in many directions. We are in-
terested in applying generalized inverse gamma priors to the variance components in
normal mixed models specified for the log of Poisson means that are commonly used
(for example) in epidemiology. An extension of this methodology may also be applied to
prediction problems in finite population modeling where normal models on the log-scale
are popular.
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