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Nonparametric Bayesian Segmentation of a
Multivariate Inhomogeneous Space-Time

Poisson Process

Mingtao Ding ∗, Lihan He †, David Dunson ‡ and Lawrence Carin §

Abstract. A nonparametric Bayesian model is proposed for segmenting time-
evolving multivariate spatial point process data. An inhomogeneous Poisson pro-
cess is assumed, with a logistic stick-breaking process (LSBP) used to encourage
piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially
contiguous segments, and infers the number of segments based on the observed
data. The temporal dynamics of the segmentation and of the Poisson intensities
are modeled with exponential correlation in time, implemented in the form of a
first-order autoregressive model for uniformly sampled discrete data, and via a
Gaussian process with an exponential kernel for general temporal sampling. We
consider and compare two different inference techniques: a Markov chain Monte
Carlo sampler, which has relatively high computational complexity; and an ap-
proximate and efficient variational Bayesian analysis. The model is demonstrated
with a simulated example and a real example of space-time crime events in Cincin-
nati, Ohio, USA.

Keywords: Bayesian hierarchical model, spatial segmentation, temporal dynamics,
Gaussian process, logistic stick breaking process, inhomogeneous Poisson process

1 Introduction

1.1 Motivating application

Assume access to the locations of various types of crimes occurring in a given city, as
a function of time. As a motivating example, in Figure 1(a) data are shown for 3090
crimes (of 17 crime types) in Cincinnati in Jan 2008. Our focus is on obtaining a spatial
segmentation, such as that shown in Figure 1(b). In addition to the spatial dependence
of point process data, we wish to simultaneously explore time dynamics. For example,
in the crime data analysis, the crime intensity in summer may be different statistically
from that in winter, and this intensity may change smoothly over seasons; consequently,
the spatial segmentation of the city may also vary smoothly over time.

The analysis of time dynamics helps to discover the temporal pattern of the events
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(a) Crime events in Cincinnati during Jan.,
2008
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(b) Segmentation of Cincinnati

Figure 1: Crime events and the segmentation of the city. In (a) 3090 crime events
are shown as black dots; in (b) each color indexes a segment with associated crime
intensities in 17 crime types (see Section 4 for details).

and to predict the spatial segmentation at an unobserved time instance or in the future.
We desire that the analysis provide a simple summary that is useful to police forces
and city planners in targeting resources, as well as to researchers in studying crime
trends. We would like to obtain this space-time segmentation quickly, utilizing data
from different types of events, while allowing temporal interpolation and forecasting.

1.2 Summary of proposed model

Consider the data D = {si,vit}i=1,...,M, t=1,...,T , where vit is a d-dimensional vector of
the counts of d types of events, occurring in a (small) spatial region ∆(si), with the
center of the region being si ∈ R2. In the context of Figure 1, we are interested in
d types of crime. The contiguous grid of spatial regions ∆(·) is fixed in advance, and
the size of ∆(·) is very small relative to the size of the entire spatial domain, providing
justification for an approximation in which we index regions by the center point and
assume homogeneity within regions (using the model developed below, in the limit
∆ → 0 we have a Poisson process). There are T time points at which data are observed,
not necessarily uniformly spaced in time. Although not done here, one may envision
aligning the grid ∆(·) with the geometry of the terrain (e.g., roads).

The proposed space-time model may be summarized as

vit ∼
d∏

j=1

Poisson(λijt), λit ∼
K∑

k=1

wk(si; θkt)δλ∗kt
(1)

where wk(si; θkt) ≥ 0,
∑K

k=1 wk(si;θkt) = 1 for all si, δλ∗kt
is a unit measure concen-

trated at λ∗kt, and λijt is the jth component of λit. This corresponds to a mixture
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model, with space-time varying mixture weights wk(si; θkt) and time-varying atoms
λ∗kt.

Expression wk(s; θkt) represents a general parametric function capable of modeling
the probability of cluster k at spatial location s. In the details of the proposed model, one
of the {wk(s; θkt)}k=1,K is likely to be dominant (large probability) over a contiguous
region, yielding a segmentation. Since the parameters θkt change in general with time
t, a probabilistic space-time segmentation is manifested. Within the proposed model,
the prior encourages that {θkt} and λ∗kt vary smoothly as a function of time, and hence
the model imposes smooth space-time variation in the shape/form of the segments, and
smooth temporal variation of the Poisson rates associated with a given segment.

Two methods are considered for imposing temporal smoothness, representing two
perspectives on imposing the same temporal structure. For discrete-time data with
uniform temporal spacing, it is natural to consider the first-order autoregressive model,
i.e., AR(1), as θkpt ∼ N (ζθkp(t−1), α

−1
0 ), with θkpt the pth component of θkt, ζ the

AR(1) coefficient (with |ζ| < 1), and α0 a precision to be inferred (ζ and α0 could also
be extended to depend on k and p). The log of each component of λ∗kt may be similarly
modeled.

We also consider a Gaussian process (GP) model (Rasmussen and Willams 2006) in
time for each component θkpt, and for the log of each component of λ∗kt, thus allowing
non-uniform temporal sampling. To make the AR(1) and GP models consistent, we as-
sume an exponential model for the GP covariance between times ti and tl, c0c

|ti−tl|
1 , with

c1 playing a role analogous to ζ in the AR(1) model, and the variance c0 corresponding
to [(1 − ζ2)α0]−1 from the AR(1) model. The AR(1) and chosen GP representations
are therefore essentially different means of imposing the same temporal prior, with the
former restricted to uniform temporal sampling.

In addition to developing a new model for multivariate inhomogeneous space-time
Poisson process data, a contribution of this paper concerns computations, in the form of
a detailed comparison of Markov chain Monte Carlo (MCMC) and variational Bayesian
(VB) inference for this class of models. The former is widely used, but it can be
computationally prohibitive for the motivating large-scale problems considered here.
Computations based on VB are attractive for large-scale modeling studies, but many
simplifying assumptions must be made.

1.3 Related research

A natural model for exploiting spatial information, and to model point process data,
is the inhomogeneous Poisson process (Diggle 2003),(Møller and Waagepetersen 2004).
Researchers have recently studied nonparametric Bayesian approaches for such applica-
tions. One of these approaches models the Poisson intensity function by a variation of
a Gaussian process (GP) (Adams et al. 2009; Rathbun and Cressie 1994; Møller et al.
1998). The log-Gaussian Cox process (Møller et al. 1998), corresponding to an intensity
function modeled as an exponentiated GP, has proven highly successful in point process
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(Hossain and Lawson 2009) and geostatistical modeling (Diggle et al. 2010; Pati et al.
2010). Mixture models provide another approach to representing the Poisson intensity
function (Wolpert and Ickstadt 1998). Kottas and Sansó (2007) proposed a Dirichlet
process (DP) mixture model of bivariate beta densities to model heterogeneity in inten-
sity functions. Dirichlet process mixture models of multivariate normal densities can be
also found in (Ji et al. 2009; Chakraborty and Gelfand 2010).

In Taddy (2008, 2010); Taddy and Kottas (2012) a dynamic model was proposed for
Poisson point processes, based on a novel version of the dependent Dirichlet process.
Models of this type have been applied to the data considered in Figure 1, although the
problem of segmentation was not considered. In Achcar et al. (2011) a time inhomoge-
neous Poisson model was proposed, with change-points to estimate the number of times
that a given environmental standard is violated in a time interval of interest.

Rather than modeling the Poisson intensity via a GP or a DP mixture model, the
model in (1) constitutes a mixture model with space-time mixture weights, and the
spatial locations {si} of the grid are modeled as covariates. The details of how wk(s; θkt)
is modeled encourages contiguous regions in space and time for which a single component
(cluster) dominates, encouraging a piecewise-constant Poisson intensity function. In
Heikkinen and Arjas (1998) the authors similarly build a piecewise constant prior model
for spatial Poisson intensities, using Voronoi tessellations. We model wk(s;θkt) via an
extension of the logistic stick-breaking process (LSBP) (Ren et al. 2011). The region
of interest is partitioned into a set of contiguous small square cells, with related ideas
considered in Hossain and Lawson (2009). Within the context of the aforementioned
GP construction for the temporal dependence of θkt, related ideas were presented in the
context of factor analysis (Luttinen and Ilin 2009), where GPs were used to describe the
smoothness of both spatial locations and time. An AR model for temporal dynamics
was considered in Taddy (2008, 2010).

2 Model Details

2.1 Basic construction

The proposed space-time model for data D = {si, vit}i=1,...,M,t=1,...,T is summarized as

vit ∼
d∏

j=1

Poisson(λijt), λit ∼
K∑

k=1

wk(sit)δλ∗kt
(2)

wk(sit) = pk(sit)
k−1∏

h=1

[1− ph(sit)] (3)

pk(sit) = σ(gk(sit)), for k = 1, ..., K − 1, pK(sit) = 1 (4)

gk(sit) =
J∑

j=1

βkjtK(sit, s̃j ; ψk) + βk0t (5)
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where (2) is repeated here from (1), for convenience. Below we explain and motivate
each term in this construction. Parameters θkt from the Introduction correspond here
to {βkjt}j=0,J and ψk. In what follows, the notation sit is meant to assign statistics to
spatial location si at time t; for example, wk(sit) is the kth mixture weight as observed
at si and time t. The spatial grid defining the regions {∆(si)}i=1,M is not changing
with time.

The expression in (3), with pk(sit) ∈ [0, 1] for all sit, is suggestive of the stick-
breaking representation of the Dirichlet process (Sethuraman 1994). The function
σ(x) = exp(x)/(1 + exp(x)) is associated with a logistic model, and pK(sit) = 1 such
that

∑K
k=1 wk(sit) = 1 for all sit. By the construction of gk(sit) in (5), the probabil-

ities pk(sit) have space-time variation, with such variation transferred to the mixture
weights wk(sit) via (3). Therefore, via mixture weights wk(sit) in (2) we constitute a
multivariate Poisson mixture model, with weights that vary as a function of sit.

Function K(s, s̃j ; ψk) denotes a kernel with parameter ψk. Here we employ the radial
basis function K(s, s̃j ;ψk) = exp(−‖s − s̃j‖22/ψk), with J predefined kernel centers
{s̃j}j=1,J ; for convenience these J centers are here aligned with the centers of the
spatial grid defined by ∆(s̃j) (recall discussion in the Introduction). The appropriate
kernel parameters {ψk} will be inferred. To ease computations, we assume a discrete set
of parameters {ψ∗1 , . . . , ψ∗L} over which a uniform prior is placed; each kernel parameter
ψk is assumed drawn from this finite library of parameters.

The space-time dependence of the model is manifested in how {βkjt}j=0,J and {λ∗kt}
are modeled.

2.2 Temporal modeling

When the data are sampled uniformly in time, an autoregressive (AR) temporal model
is natural. Specifically, we consider

βkjt ∼ N (ζβkj(t−1), α
−1
β ) , j = 0, . . . , J (6)

log λ∗kjt ∼ N (ξ log λ∗kj(t−1), α
−1
λ ) , j = 1, . . . , J (7)

with βkj0 = log λ∗kj0 = 0. Gamma priors are placed on αβ and αλ. Further, ζ and ξ are
drawn from a truncated normal N(0,1)(0, 1) with 0 < ζ, ξ < 1.

The collection of data may be expensive, and there may be situations for which
nonuniform temporal sampling is desired (e.g., to provide fine-scale sampling in partic-
ular regions – seasons – of time that may be interesting). This suggests using a Gaussian
process (GP) model (Rasmussen and Willams 2006) for the temporal variation of βkjt

and log λ∗kjt.

For the kth mixture component, we let

Bk ∼ N (Bk|0,Ωk) =
J∏

j=0

N (βkj:|0,Σkj), [Σkj ]il = c0c1
|ti−tl| (8)



818 Bayesian Segmentation of Space-Time Poisson Process

where βkj: = [βkj1, ..., βkjT ]T , and Bk ∈ RT (J+1) denotes a vector formed by con-
catenating βkj: for j = 0, ..., J . The covariance Ωk is a block-diagonal matrix of size
T (J +1)×T (J +1), and each block Σkj is a T ×T covariance matrix; the entry at row
i and column l, denoted as [Σkj ]il, is evaluated using the GP covariance function with
the hyperparameters {c0, c1}. A gamma prior is placed on c0. Since c1 plays the same
role as ζ, we also draw c1 from the truncated normal N(0,1)(0, 1) with 0 < c1 < 1.

The Gaussian process priors are also placed on log λ∗kjt. For mixture component k

log(λ∗kj:) ∼ N (0,Γkj), [Γkj ]il = d0d1
|ti−tl| (9)

where log(λ∗kj:) = [log(λ∗kj1), ..., log(λ∗kjT )]T , and the covariance matrix Γkj ∈ RT×T ,
with the entries defined by the GP covariance function with the hyperparameters
{d0, d1}. A gamma prior and truncated normal prior are placed on d0 and d1. As
discussed in the Introduction, the considered AR(1) and GP priors are consistent, and
provide different modeling strategies for the same imposed temporal dynamics.

2.3 Model interpretation

Equations (3)-(5) are of the form of the logistic stick-breaking process (LSBP) intro-
duced in Ren et al. (2011); however, that paper did not consider Poisson data, and
space-time processes were not addressed. Recall that σ(x) ≈ 1 for x > 4; we refer to
this as the “clipping” property of the logistic, as all x larger than about 4 contribute
effectively in the same manner to σ(x); one may alternatively use a probit model, to
achieve the same end. If βkjt > 4, then pk(s) ≈ 1 for ‖s− s̃j‖22 < ψk. This implies via
(3) that within region ‖s− s̃j‖22 < ψk, if βkjt > 4 mixture component k is highly prob-
able (assuming that other clusters k′ 6= k do not have large pk′(s) in the vicinity of s̃j).
The “clipping” nature of the logistic function, and large values of βkjt > 4, encourage
contiguous regions for which a given cluster k has high space-time probability of being
manifested (all locations s at which gk(s) > 4 have similarly high probability of being
associated with cluster k, regardless of the exact value of gk(s)). The weights {βkjt}
play the role of assigning which regions in space-time are most likely to be associated
with a given cluster k, and ψk defines the size scale of the cluster. Note that while we
truncate the model to K mixture components, this does not mean that all components
need actually be used to represent the data. For example, if a given βk0t is large and
negative, then the kth mixture component is unlikely to be utilized at all spatial lo-
cations at time t; K is simply an upper bound on the number of mixture components
(segment types).

3 Posterior inference

The posterior distribution of the model parameters is inferred via an MCMC sampler
and via variational Bayesian (VB) inference (Beal 2003). The VB inference typically
converges quickly and is computationally efficient; by contrast, MCMC convergence may
be difficult to diagnose, and a large number of iterations is required to collect samples
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representing the joint posterior distribution. The detailed MCMC and VB update
equations are provided in the Appendix (we provide equations for the GP model, with
minor changes manifested for the AR case). Since VB analysis is not as widely used in
the statistics literature, for completeness we provide details on its modeling assumptions.

Let Θ represent a vector of all model parameters; the goal is to infer the posterior
p(Θ|D). The likelihood of the data is represented by p(D|Θ) and the prior on the
model parameters is denoted by p(Θ). Let q(Θ;Γ) be a parametric distribution with
hyperparameters Γ, and consider the variational expression

F(Γ) =
∫

dΘq(Θ;Γ)ln
q(Θ;Γ)

p(D|Θ)p(Θ)
= DKL[q(Θ;Γ)‖p(Θ|D)]− lnp(D). (10)

In VB analysis the goal is to optimize the hyperparameters Γ to minimize the
Kullback-Leibler divergence between q(Θ;Γ) and the true posterior p(Θ|D); this corre-
sponds to adjusting Γ in q(Θ;Γ) such that F(Γ) is minimized. Note that∫

dΘq(Θ;Γ)ln q(Θ;Γ)
p(D|Θ)p(Θ) is only a function of the likelihood p(D|Θ) and the prior p(Θ),

and not the unknown posterior; with careful selection of q(Θ;Γ), numerical techniques
akin to expectation-maximization (EM) (Beal 2003) can be employed to minimize F(Γ),
with assurance of convergence to a local-optimal solution.

Focusing on the GP temporal model (the AR case is very similar), the model pa-
rameters are

Θ = {{λ∗kj:}j=1,...,d,
k=1,...,K

, {Bk}k=1,...,K , {Zk(sit)}t=1,...,T,
i=1,...M,
k=1,...,K

, c0, c1, d0, d1} (11)

where Zk(sit) ∼ Bernoulli(pk(sit)), with pk(sit) defined in (4). Completing the genera-
tive process, vit ∼

∏d
j=1 Poisson(λ∗

k̂jt
) if Zk(sit) = 0 for k < k̂ and Zk̂(sit) = 1; λ∗

k̂jt
is

the jth component of vector λ∗
k̂t

.

In VB one typically assumes a factorized form for q(Θ;Γ), i.e.,
q(Θ;Γ) =

∏
l ql(Θl;Γl), where Θl represents the lth set of model parameters and

ql(Θl;Γl) is a parametric density function with hyperparameters Γl; the union of all Θl

corresponds to Θ. Through careful selection of ql(Θl;Γl) one may iteratively optimize
the variational expression F(Θ).

For the proposed model, q(Bk) is a multivariate normal distribution, q(Zk(sit)) is
Bernoulli (with Bernoulli probability defined by a logistic function), q(ψk) is multinomial
based upon a finite library of possible parameters {ψ∗l }l=1,L, and q(c0) and q(d0) are
gamma distributions. It is not possible to define a q(λ∗kj:) that yields closed-form
updates. Therefore, the parameters λ∗kj: within the VB analysis are also approximated
at each iteration via a point estimate that maximizes the functional F(Γ). Similarly,
q(c1) and q(d1) cannot be obtained in closed form. The parameters c1 and d1 are
updated on each VB iteration by defining parameters that maximize the functional
F(Γ).
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4 Example Results

While the proposed model may appear relatively complicated, the number of hyperpa-
rameters that need be set is actually modest. We compare the AR-LSBP and GP-LSBP
models for imposing a prior on the temporal dependence with a simpler model in which
the priors for each time point t are independent. In the context of this independent
LSBP (ind-LSBP), we impose

βkjt ∼ N (0, α−1
kjt) , αkjt ∼ Gamma(a0, b0) (12)

and we set a0 = b0 = 10−6 as in the relevance vector machine (RVM) (Tipping 2001).
The same gamma priors are placed on αβ and αλ for the AR-LSBP model, and on c0

and c1 for the GP-LSBP model. In all examples the truncation level on the LSBP was
set at K = 20, and the results are insensitive to this parameter, as long as it is large
relative to the actual number of clusters/segments inferred by the model. Finally, we
must specify the library for kernel parameters {ψk}k=1,K ; the manner in which these
are specified is discussed when presenting the specific examples.

For uniform temporal sampling, the AR(1) and GP imposition of temporal dynam-
ics are theoretically identical, for the imposed GP covariance. Nevertheless, even for
uniform temporal sampling we show results for both of these implementations, because
the details of the numerics dictates that the two models are slightly different in prac-
tice. Specifically, within the GP model a point estimate is employed for the kernel
hyperparameters, with this obviously unnecessary for the direct AR(1) model. The
comparison allows examination of the accuracy of this approximation within the GP
inference, relative to the direct AR(1) implementation; this sheds light on the quality
of the computations for non-uniform temporal sampling, where the GP implementation
is required.

4.1 Simulation Example

We assume the data are constructed by a total of 9 equally spaced time instances,
t = 1, 2, ..., 9. At each time we randomly draw 50 spatial locations in one-dimensional
space from a uniform distribution with support [0, 20], denoted as sit ∼ Uniform[0, 20],
i = 1, ..., 50, t = 1, ...9. For each location, we draw an event count vit from a Poisson
distribution with the intensity parameter λit. To represent the time dynamics, we let
λit = 20 when 5 + 5

8 (t− 1) ≤ sit ≤ 10 + 5
8 (t− 1), and λit = 1 otherwise. By this setting

the high-intensity window moves gradually from [5,10] to [10, 15] when time t increases.
Note that here sit ∈ R1 and vit ∈ R1. The kernel centers are defined as s̃j = 0.5(j − 1)
for j = 1, ..., J . The data are depicted in Figure 2. Within the analysis, the library of
kernel parameters is the union of the following two sets: {0.05, 0.1, 0.05, . . . , 0.5} and
{0.5, 1, 1.5, . . . , 5}.

The mean results from VB are shown in Figure 3, in which the inferred Poisson rate
is constituted; for these and all VB results the computations were stopped when the
change in the variational bound changed by 10−4. Further, all VB results are initialized
at random. The VB results presented below represent a local-optimal solution, which
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Figure 2: Simulation example. The high-intensity window moves gradually from [5,10]
to [10, 15] when time increases.

forms one source of error, and this is compounded by the factorized approximation to the
posterior. Nevertheless, the VB implementation of the GP-LSBP and AR-LSBP model
yields results comparable to that of the MCMC implementation. When implementing
MCMC, a total of 10,000 iterations are run, with the first 1000 discarded as burn-
in. On the same PC (and both codes written in Matlab), the VB GP-LSBP and AR-
LSBP results required approximately 158 seconds of CPU time, while the VB ind-LSBP
results required approximately 96 seconds. In contrast, the GP-LSBP and AR-LSBP
results based on the MCMC sampler required 6517 seconds, and ind-LSBP required
2913 seconds (109 and 48 minutes, respectively). The software was not optimized, and
these numbers therefore represent a relative view of computational expense of the VB
and MCMC solutions.

From Figure 3 it is observed that, for the VB solution, incorporation of tempo-
ral smoothness in the GP-LSBP model yields significant improvements in the inferred
Poisson rate, as compared to the VB ind-LSBP solution (with temporal dependence not
accounted for in the prior); the AR-LSBP model performed similarly to GP-LSBP. It
appears that the prior constraint imposed by GP/AR within the VB solution plays an
important role in mitigating the underlying VB approximations. By contrast, for the
MCMC results improvements are manifested via GP-LSBP and AR-LSBP relative to
ind-LSBP, but in this case the differences are less dramatic (plots of MCMC results are
not shown, for brevity).
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(a) GP-LSBP inferred based on VB
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(b) ind-LSBP inferred based on VB

Figure 3: Segmentation and latent intensity inferred by VB: Comparison between GP-
LSBP and ind-LSBP, considering the simulated-data example. The AR-LSBP results
are similar to the GP-LSBP results, and are omitted for brevity.
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We next examine the generative performance of the proposed model. After the model
has been learned, either via VB or MCMC, we randomly generate 100 new test data,
following the same procedure that generated the training data. We then compute the
average log-likelihood and the accuracy rate of segmentation from the learned GP-LSBP,
AR-LSBP and ind-LSBP models. The accuracy rate of segmentation is defined as the
number of test data points segmented correctly as a fraction of the total number of test
data points. The results are summarized in Table 1. We find that the GP-LSBP and
AR-LSBP models achieve a higher likelihood and accuracy of segmentation compared
to the ind-LSBP. Note that the differences between GP-LSBP, AR-LSBP and ind-LSBP
are relatively modest for the MCMC solution, while there are again marked advantages
in the GP-LSBP and AR-LSBP solutions relative to ind-LSBP when employing VB
inference.

Table 1: Comparison of generative performance between AR-LSBP, GP-LSBP and ind-
LSBP, on simulated data.

Average log-likelihood Accuracy rate of segmentationMethod
VB MCMC VB MCMC

AR-LSBP -3.702 -1.749 0.9796 0.9801
GP-LSBP -3.882 -2.082 0.9765 0.9757
ind-LSBP -15.544 -2.274 0.9478 0.9741

Table 2: Comparison of prediction performance between AR-LSBP, GP-LSBP and
ind-LSBP.

Average log-likelihood
Nmiss AR-LSBP GP-LSBP ind-LSBP

VB MCMC VB MCMC VB MCMC
1 -3.948 -1.975 -4.102 -2.123 -21.194 -2.641
2 -4.211 -2.241 -4.526 -2.473 -27.195 -3.077
3 -4.468 -2.573 -4.718 -2.652 -27.776 -3.507
4 -4.882 -2.740 -5.133 -3.108 -26.682 -3.963
5 -5.801 -3.014 -5.987 -3.521 -31.217 -4.316

Accuracy rate of segmentation
Nmiss AR-LSBP GP-LSBP ind-LSBP

VB MCMC VB MCMC VB MCMC
1 0.9792 0.9794 0.9767 0.9758 0.7165 0.9545
2 0.9787 0.9786 0.9761 0.9754 0.6669 0.9581
3 0.9787 0.9785 0.9763 0.9752 0.6458 0.9379
4 0.9780 0.9783 0.9752 0.9740 0.6647 0.9274
5 0.9763 0.9770 0.9741 0.9633 0.6131 0.9066

Finally we test the prediction performance of the model. We first generate data
D = {si, vit}i=1,...,50, t=1,...,9 as discussed above, and then randomly select Nmiss time
instances t̂1, ..., t̂Nmiss from t = 1, ..., 9, and this constructs our test data Dtst; the train-
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ing data Dtrn is composed of the data in D but not in Dtst. We learn the model based
on VB or MCMC analysis with Dtrn, and predict the kernel weights β̂kjt̂ and Poisson
intensities λ̂∗

kt̂
at time t̂. The average log-likelihood and accuracy of segmentation are

evaluated based on the prediction results of Dtst, given only the spatial locations ŝit̂.
We perform 100 trials, and at each trial Nmiss time instances are selected randomly to
construct Dtst. The average results are shown in Table 2.

Only the GP-LSBP results are fully principled in this analysis, where we use the
learned parameters of the GP covariance matrix to interpolate to new time points (Ras-
mussen and Willams 2006). The AR model implicitly assumes that the data are sampled
uniformly in time, while the ind-LSBP has no principled means of interpolating to miss-
ing time points. Nevertheless, as a comparison, for the AR-LSBP computations in this
test the AR component was simply applied to consecutive observed time points, essen-
tially assuming that the temporal variation was smooth, even if not sampled uniformly.
To interpolate to new points using the learned AR-LSBP and ind-LSBP results, to ob-
tain model parameters at any new point t̂, we average the learned model parameters
from the two closest observed points, before and after t̂. From Table 2 it is observed that
again for the VB solution, there is a marked advantage manifested via the GP-LSBP
and AR-LSBP priors, as compared to ind-LSBP. For the MCMC solution, there is also
a noticeable advantage manifested via the GP-LSBP and AR-LSBP solutions, partic-
ularly for segmentation accuracy for relatively large Nmiss. Based upon the average
log-likelihood, we note a small but consistent advantage of the AR-LSBP model over
the GP-LSBP counterpart, for both VB and MCMC computations. This observation
on simulated data will carry over to the analysis of real data.

4.2 Crime Data

We investigate crime events in Cincinnati, Ohio, USA; the data are available online at
http://www.cincinnati-oh.gov. The data include the date, time, location and other
information of all reported crimes in Cincinnati since 2006. This data set was first
studied in Taddy (2008, 2010), where a mixture of beta distributions was employed to
model the event density ν(s), and to discover the evolution of the density with time. In
our problem we seek to segment the city into contiguous regions, with crime events at
each region characterized by a common constant Poisson intensity vector.

We consider 117,314 crime events within the city, reported from January 2006 to
December 2008. Each crime is assigned a uniform crime reporting (UCR) code. In total
more than 170 different UCR codes describe a variety of crimes. These crime events can
be categorized into 17 different crime types, based on the prefix of their UCR codes.
They are: 1) murder, 2) rape, 3) robbery, 4) assault with weapon, 5) burglary, 6)
nonvehicle theft, 7) vehicle theft, 8) general assault, 9) arson, 10) forgery, 11) fraud,
12) receiving stolen property 13) vandalism, 14) weapons related but no physical harm,
15) sexual crime, 16) children related, 17) general harassment. As an example, the
locations (latitude and longitude coordinates) of the 3090 crime events in January 2008
are shown in Figure 1(a). Based on the locations of all the 117,314 crime events, the

http://www.cincinnati-oh.gov�


M. Ding, L. He, D. Dunson and L. Carin 825

observation window is considered within a rectangular region of [39.06◦, 39.24◦] latitude
and [-84.70◦, -84.35◦] longitude.

We construct the data D = {si,vit}i=1,...,M, t=1,...,T as follows. The total crime
events within one month are considered as one time instance, and therefore there are
in total 36 time points. At each time, the observation window is divided into 15,750
small square grids (90 rows by 175 columns) of size 0.002◦ × 0.002◦, and the event
location sit is defined as the center of each small square area, with this denoted as
∆(si). The count vijt is then the number of Type j crimes within ∆(si) over the
corresponding month indexed by t. This produces a 17-dimensional count vector vit at
si for i = 1, ..., 15750 and t = 1, ..., 36. Related research in Taddy (2008, 2010) applied
marked Poisson processes to address the crime types, regarding each crime type at sit

as a random mark. Here we attempt to segment the city by considering all the crime
types within a local region ∆(sit) as a correlated variable (a vector), instead of treating
each event as a random type.

The proposed GP-LSBP, AR-LSBP and ind-LSBP models are inferred via VB and
MCMC, with truncation level K = 20. The kernel centers are uniformly spaced every
0.04◦ (latitude and longitude) in the observation window, with a total of 60 kernel cen-
ters defined. The library of kernel parameters {ψ∗l }l=1,L is the union of the following
sets: {0.006◦, 0.012◦, 0.018◦, . . . , 0.06◦} and {0.06◦, 0.12◦, 0.18◦, . . . , 0.6◦}. On the same
PC, the VB GP-LSBP and AR-LSBP results require approximately 2.8 hours of CPU
time, while the VB ind-LSBP results required approximately 1.3 hours. By contrast,
due to the large size of the data, 3000 MCMC samples are employed, with 1000 dis-
carded as burn-in. With the same PC, the MCMC GP-LSBP and AR-LSBP results
required approximately 47.5 hours. We also considered 10,000 MCMC samples, with
1000 discarded as burn-in (at very significant computational cost), with little change in
the results relative to those presented below.

Figure 4(a) shows the VB-based segmentation of the entire spatial observation win-
dow at 36 time instances, using GP-LSBP (similar results were found using AR-LSBP,
omitted for brevity). The city is segmented into 4 regions (inferred by the model), and
the segmentation changes smoothly with time. For comparison, Figure 4(b) shows the
segmentation results obtained by applying an independent LSBP (VB computations) at
each time instance. It is observed that with GP priors the proposed model presents a
spatial segmentation more consistently over time and spatially more contiguously than
ind-LSBP.

We are also interested in examining the clustering manifested by the MCMC com-
putations, with this complicated by label switching between samples. We compute an
MCMC clustering that may be compared to the VB results as follows. We consider
one spatial location from Segment 1 in Figure 4, denoted s∗1. Based upon the MCMC
collection samples, for each other spatial location in the scene s 6= s∗1, we compute
the probability that position s and s∗1 are in the same cluster. All positions s with
high probability of such clustering should (ideally) constitute a spatial region similar
to Segment 1 inferred via VB. In Figure 5(a) we show MCMC results for Segment 1,
and the high-probability regions (red) do indeed align well with the VB results in Fig-



826 Bayesian Segmentation of Space-Time Poisson Process

ure 4. In Figure 5(b) we compute similar MCMC results for Segment 2, and in this
case the high-probability spatial locations are aligned well with the VB results for Seg-
ment 2 in Figure 4. We found in general good agreement between the VB and MCMC
segmentation results for GP-LSBP and AR-LSBP for these data.

Figures 6(a)-(d) show the dynamic change of the VB-inferred Poisson intensities
for each segment. To make the figure easier to read, we only plot components 3, 5
and 6 from the 17-dimensional vector λ∗kt; these components correspond to crime types
“robbery”, “burglary”, and “nonvehicle theft”, respectively. From these figures we
observed that in all segments the crime intensities fluctuated periodically over season.
Generally in summer there were more crime events of all types than than in winter. The
overall crime intensities varied with regions. Segment 4 was in the downtown region,
and had much more crime events compared to other regions. In all four regions Type 6
crime (nonvehicle theft) was dominant. In addition, the crime patterns were different in
different regions. For example, Segment 4 had relatively less Type 5 crime (burglary),
while in other 3 segments, the intensity of Type 5 crime was almost half of Type 6 crime.
In Segment 4, Type 3 crime (robbery) was prevalent, while Segment 1 had relatively less
Type 3 crime. For a comparison, we also present the MCMC-inferred Poisson intensities
of Segment 3, as a representative (typical) example. It is observed that the MCMC and
VB results are in generally good agreement for the GP-LSBP and AR-LSBP models.

These results may be used by police to assign resources (personnel) to segmented
regions in a consistent manner, to address varying levels of crimes. The segments
typically change with season, and the spatial distribution of resources may be temporally
adjusted as well. By relating the demographics of regions to the spatial segments (we
didn’t have access to such demographics), one may deduce relationships between types
of crimes and the types of people living and working in given regions, of interest to
criminologists and city planners.

Following the same procedure as in the simulated example, we now examine the
prediction performance of our model for the crime data. We randomly select Nmiss

time instances to construct a test set, and let the remaining data be the training set.
Ten random trials are performed and the comparison of average log-likelihood between
GP-LSBP, AR-LSBP and ind-LSBP inferred by VB is shown in Table 3. Since in
this real application there is no ground truth, we cannot evaluate the accuracy rate
of segmentation as done in the simulated example. From Table 3 GP-LSBP and AR-
LSBP consistently achieve higher likelihood than the independent LSBP for various
Nmiss values. Note also that for these real data there is less of a difference between the
AR/GP-LSBP and ind-LSBP results for the VB solution, as compared to the synthetic
data considered above. We do not perform this experiment for MCMC inference, as the
computational requirements needed to perform this many experiments are prohibitive
with this large data set (however, in isolated tests, the results were slightly better than
the VB-based GP-LSBP and AR-LSBP models, consistent with the simulated example
above).
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Figure 4: Comparison of spatial segmentation for crime data in Cincinnati, Ohio from
January 2006 to December 2008 (VB results). Each color represents a segment with an
associated intensity vector λ∗kt, and there are a total of four segments inferred: 1 - dark
blue, 2 - light blue, 3 - yellow, and 4 - dark red. (a) GP-LSBP, (b) ind-LSBP.
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Figure 5: Comparison of spatial segmentation for crime data in Cincinnati, Ohio from
January 2006 to December 2008 (MCMC results). (a) Segment 1, (b) Segment 2, where
these segments are related to the results in Figure 4(a). The color scale is the same in
(a) and (b).
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(a) Segment 1: Dark blue region in Fig. 4(a)
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(b) Segment 2: Light blue region
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(d) Segment 4: Dark red region

0 3 6 9 12 3 6 9 12 3 6 9 12
0

2

4

6

8

10

12

14

Month

In
te

ns
ity

(e) Segment 3 inferred by MCMC

Figure 6: Inferred intensity vector λ∗kt associated with the segments shown in Figure
4(a). Only 3 crime types are shown here to make the figure easy to read.
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Table 3: Comparison of average log-likelihood in the prediction for the crime data (VB
inference).

Nmiss 1 2 3 4 5 6
AR-LSBP -6.131 -6.352 -7.204 -7.631 -7.957 -8.338
GP-LSBP -6.570 -6.762 -7.713 -7.965 -8.426 -8.721
ind-LSBP -8.666 -9.247 -9.595 -8.840 -9.848 -8.762

4.3 Pearson residuals

Following Taddy (2010), we check model quality via computation of Pearson residuals
(see Turner et al. (2005) for a detailed discussion of residuals for spatial point processes).
For the modeling framework considered here, the Pearson residual reduces to

R(∆(sit), λ̂it) =
nit√
λ̂it

−
√

λ̂it (13)

where nit is the number of events in region ∆(sit) and λ̂it is the inferred Poisson rate
parameter in small region ∆(sit). Ideally the residual should be close to zero, if the
underlying Poisson assumption is valid. Note that within the proposed model we have a
vector of counts vit, and therefore we may compute the residual for each of the different
types of crimes.

From Figure 7, which is based upon VB inference, we observe that the Pearson resid-
uals tend to decrease substantially based upon a model that explicitly imposes temporal
smoothness (note that the residuals are significantly lower for GP-LSBP and AR-LSBP,
relative to ind-LSBP). Further, the AR-LSBP residuals are smaller than those of the
GP-LSBP. Although we omit the MCMC results for brevity, similar phenomena were
observed in that case. The residuals tend to be small, in the range [-2,2], with the larger
values manifested on the edges of segments, as might be expected (segment interfaces
are characterized typically by abrupt changes in statistical properties).

5 Conclusions

A Bayesian hierarchical model has been presented for segmenting time-evolving point
process data, when the events are in vector form. The spatial-dependent point process
is modeled using a generalization of a Poisson process, with piecewise constant Poisson
intensities defined within the observation window. The logistic stick-breaking process is
employed to favor spatially contiguous segments, and GP and AR models are considered
for imposition of temporal smoothness of the segmentation and the Poisson intensity.

In addition to developing the model, a contribution of this paper concerns a detailed
comparison between MCMC sampling and a VB approximation. For both the synthetic
and real data, it was found that the GP-LSBP and AR-LSBP results computed via
VB and MCMC were in close agreement, and the imposition of temporal smoothness
manifested via GP/AR (compared to treating the different temporal samples indepen-
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Figure 7: Pearson residuals for “nonvehicle theft,” using VB inference; best viewed
electriconically, zoomed in. (a) ind-LSBP, (b) GP-LSBP, (c) AR-LSBP.
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dently) yielded significant improvements in the VB results. While the VB results are
approximate, and are subject to local-optimal solutions (although the GP/AR models
seemed to mitigate this to some extent), the VB approach provides significant advan-
tages with regard to computations. For the large crime data set considered, while the
MCMC results are in principle convergent, if run for enough samples, this attractive-
ness is tempered by the very significant computation time required to realize a number
of collection samples to assure that we are indeed sampling from the posterior. Given
that computational requirements will in practice mitigate the ability to collect as many
MCMC samples as desired (and therefore MCMC is also an approximation), the VB
solution appears to be an attractive option. However, the results presented here indi-
cate that imposition of as much information as possible (here smoothness via GP/AR)
is desirable. In future research it is of interest to consider online VB analysis (Hoffman
et al. 2010), which provides further acceleration for large datasets, and it is appropriate
for time-dependent data observed in an online/sequential manner, like the time-evolving
crime data considered here.

Appendix: MCMC and VB Update Equations

A.1 MCMC Inference

The MCMC computations are performed using Gibbs sampling where the conditional
density functions are analytic, and samples are drawn from the conditional density func-
tions via Metropolis-Hastings when not analytic. The update equations are summarized
as follows.

� Sample λ∗kj: from their respective posteriors conditional on {Zk (sit)} and {νijt}:

p
(
λ∗kj:

∣∣−) ∝
T∏

t=1

M∏

i=1

Poisson
(
νijt|λ∗kjt

)I(ci=k) lnN (
λ∗kj:

∣∣ 0,Γkj

)
. (14)

It is not possible to sample λ∗kj: from the full conditionals. We update each λ∗kj:

by the Metropolis-Hastings algorithm. When updating λ∗kj:, the proposed λ
∗(τ+1)
kj:

is generated from the following distribution

q
(
ln λ

∗(τ+1)
kj: | ln λ

∗(τ)
kj:

)
= N

(
ln λ

∗(τ)
kj: , (d0 + d2)IT

)
(15)

where IT is the T × T identity matrix, and T denotes the number of time points.
The acceptance probability for the proposed λ

∗(τ+1)
kj: is min

(
1, α

(
λ
∗(τ+1)
kj: ,λ

∗(τ)
kj:

))
,

where
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α
(
λ
∗(τ+1)
kj: , λ

∗(τ)
kj:

)
= exp

(
−1

2
(λ∗(τ+1)

kj: )T Γ−1
kj λ

∗(τ+1)
kj: +

1
2
λ
∗(τ)T
kj: Γ−1

kj λ
∗(τ)
kj:

)
·

T∏
t=1




(
λ
∗(t+1)
kjt

λ
∗(t)
kjt

) M∑
i=1

wk(sit)υij1−1

exp

[
M∑

i=1

wk(sit)
(
λ
∗(τ+1)
kjt − λ

∗(τ)
kjt

)]

 . (16)

� Sample βk:i from their respective posteriors conditional on {Zk (sit)}:

p (Bk| −) ∝
T∏

t=1

M∏

i=1

p (Zk (sit)|Bk)
J∏

j=1

N (βkj:|0,Σkj). (17)

Reorder the entries of Bk (and the associated Ωk) in (8) such that
Bk = [βk:1, · · · ,βk:T ]T , then we obtain

p (Bk| −) ∝ exp

{
−

T∑
t=1

M∑

i=1

f (ηkit)βT
k:tϕkitϕ

T
kitβk:t

}

× exp

{
−1

2
BT

k Ω−1
K Bk +

T∑
t=1

M∑

i=1

(2Zk (sit)− 1)ϕT
kitβk:t

}
.(18)

So, Bk can be drawn from a normal distribution as

p (Bk| −) = N
(
Bk;

(
Ω−1

k + Uk

)−1
Yk,

(
Ω−1

k + Uk

)−1
)

, (19)

where Uk is a (J + 1) T × (J + 1) T block-diagonal matrix with the t-th (J + 1)×
(J + 1) block expressed as ukt = 2

M∑
i=1

f (ηkit) φkitφ
T
kit and Yk is a (J + 1) T × 1

vector formed by concatenating the T vectors ykt =
M∑
i=1

(
Zk (sit)− 1

2

)
φkit, t =

1, · · · , T . In these expressions φkit = [1,K (sit, s̃1; ψk) , · · · ,K (sit, s̃J ; ψk)]T . The
parameter f (ηkit) = ϕT

kitβk:t.

� Sample Zk (sit) from their respective posteriors conditional on Bk and {νijt}.
According to the definition of LSBP,

p (Zk (sit) = 1| −)

=

{
σ(gk(sit))p(νit|λ∗kt)

σ(gk(sit))p( vit|λ∗kt)+σ(−gk(sit))p(νit|λ∗k′t)
, if Zl (sit) = 0 for l < k

σ (gk (sit)) , if ∃ l < k, such that Zl (sit) = 1
(20)
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where k′ is the first integer larger than k, associated with non-zero indicator. The
equation can be expressed as

p (Zk (sit) = 1| −) =
1

1 + exp (−ρkit)
, (21)

with

ρkit =
∏

l<k

(1− Zl (sit)) log p (νit|λ∗kt)−
∑

k′>k

Zl (sit)
∏

l<k′
l 6=k

(1− Zl (sit)) log p ((νit|λ∗k′t)) + ϕT
kitβk:t. (22)

� With a uniform prior assumed on the kernel parameter library (a predefined finite
set), the posterior distribution for each ψk can be represented as

p(ψk = ψ∗l ) ∝
T∏

t=1

M∏

i=1

σ(gl
k(sit))

wk(sit)
T∏

t=1

M∏

i=1

∏

k′>k

(1− σ(gl
k(sit)))wk′ (sit). (23)

For each specific k from k = 1, ..., K, we have the following update equation

ψk = ψ∗rk
, rk ∼ Mult (pk1, ..., pkL) , pkj =

p(ψk = ψ∗j )
∑L

l=1 p(ψk = ψ∗l )
. (24)

We sample the kernel parameters based on the multinomial distributions from a
given discrete set in each MCMC iteration.

� Sample c0 from its posteriors conditional on {Bk} and {a0, b0}:

p(c0) ∝ Gamma (c0; a0, b0)
K∏

k=1

N (Bk;0,Ωk) . (25)

Therefore, c0 can be drawn from a Gamma distribution

p(c0) = Gamma
(
c0; ã0, b̃0

)
, (26)

where ã0 = a0+0.5KT (J +1) and b̃0 = b0 +0.5
K∑

k=1

J∑
j=0

βT
kj:Σ̃

−1
kj βkj: with [Σ̃kj ]il =

c1
|ti−tl|.

� Sample c1 from its posterior conditional on {Bk}:

p(c1) ∝ N(0,1)(c1; 0, 1)
K∏

k=1

N (Bk;0,Ωk) . (27)
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When updating c1, the proposed c
(τ+1)
1 is generated from the following distribu-

tion:

q
(
c
(τ+1)
1 |cτ

1

)
= N(0,1)

(
c
(τ+1)
1 ; cτ

1 , 1
)

. (28)

The acceptance probability for the proposed c
(τ+1)
1 is min

(
1, α(c(τ+1)

1 , cτ
1)

)
, where

α(c(τ+1)
1 , cτ

1) =
|Σ−1

kj (cτ
1)|K(J+1)

2

|Σ−1
kj (c(τ+1)

1 )|K(J+1)
2

exp
{

1
2

(
c
(τ+1)
1

2 − c
(τ+1)
1

2)}

× exp





1
2




K∑

k=1

J∑

j=0

βT
kj:Σ

−1
kj (cτ

1)βkj: −
K∑

k=1

J∑

j=0

βT
kj:Σ

−1
kj (c(τ+1)

1 )βkj:






 .(29)

� Similarly, d0 can be drawn from a Gamma distribution

p(d0) = Gamma
(
d0; ã0, b̃0

)
, (30)

where ã0 = a0 + 0.5dKT and b̃0 = b0 + 0.5
K∑

k=1

d∑
j=1

lnλ∗Tkj:Γ̃
−1
kj lnλ∗kj: with [Γ̃kj ]il =

d1
|ti−tl|.

� Similar to c1, we update d1 by the Metropolis-Hastings algorithm. The proposed
d
(τ+1)
1 is generated from the following distribution:

q
(
d
(τ+1)
1 |dτ

1

)
= N(0,1)

(
d
(τ+1)
1 ; dτ

1 , 1
)

. (31)

The acceptance probability for the proposed d
(τ+1)
1 is min

(
1, α(d(τ+1)

1 , dτ
1)

)
, where

α(d(τ+1)
1 , dτ

1) =
|Γ−1

kj (cτ
1)| dK

2

|Γ−1
kj (c(τ+1)

1 )| dK
2

exp
{

1
2

(
d
(τ+1)
1

2 − d
(τ+1)
1

2)}

×exp





1
2




K∑

k=1

d∑

j=1

lnλ∗Tkj:Γ
−1
kj (dτ

1)lnλkj: −
K∑

k=1

d∑

j=1

lnλ∗Tkj:Σ
−1
kj (d(τ+1)

1 )lnλkj:






 . (32)

A2. VB inference

The log-normal priors placed on the Poisson intensities introduce non-conjugacy, which
results in difficulty for VB inference. Therefore, we employ a point estimate for the
Poisson intensities, by maximizing the lower bound F . For the GP hyperparameters c1

and d1, the truncated normal prior also introduces non-conjugacy. Their posteriors are
also inferred from point estimation by maximizing the VB lower bound. The update
equations of the posterior inference of Θ are summarized below. In our model,

Θ = {{λ∗kj:}j=1,...,d,
k=1,...,K

, {Bk}k=1,...,K , {Zk(si,t)}t=1,...,T,
i=1,...M,
k=1,...,K

, c0, c1, d0, d1}.
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� The lower bound for the Poisson intensity λ∗kj: may be derived as

F(λ∗kj:) ∝ −1
2
ΛT

k,jΓ
−1
kj Λkj −QT

kje
Λkj + RT

kjΛkj + constant (33)

where Λkj = log(λ∗kj:), Rkj = [
∑M1

i=1〈wk(si1)〉νij1 − 1, · · · ,
∑M

i=1〈wk(siT )〉νijT −
1]T , and Qkj = [

∑M1
i=1〈wk(si1)〉, · · · ,

∑M
i=1〈wk(siT )〉]T , with 〈·〉 denoting the ex-

pectation such that 〈wk(sit)〉 = q(wk(sit) = 1) (see Section 2 for detail of wk(sit)).
The point estimate for λ∗kj: can be updated at each VB iteration by maximizing
the lower bound F(λ∗kj:). One may easily examine that F(λ∗kj:) is a concave
function, and therefore a global maximum can be obtained by any appropriate
convex optimization method. Note that if Γ−1

kj → 0 (setting large variance for
the prior distribution), by taking the derivative of (33) and setting it to zero, we
have λ∗kj: = eΛkj → Rkj/Qkj , which is consistent with the update equation if
independent gamma priors are placed on λ∗kjt for t = 1, ..., T . Therefore, the GP
priors represented in Γkj introduce the correlation among the components of λ∗kj:.

� To update the variational distribution for the kernel weights βkjt, note that the
logistic link function σ(·) is not within the exponential family and therefore intro-
duces the nonconjugacy. We here follow Jaakkola and Jordan (1998) by introduc-
ing a variational bound using the inequality

σ(y)z[1− σ(y)]1−z = σ(x) ≥ σ(η) exp(
x− η

2
− f(η)(x2 − η2))

where x = (2z− 1)y, f(η) = tanh(η/2)
4η , and η is a variational parameter. An exact

bound is achieved as η = ±x.

If we reorder the entries of Bk (and the associated Ωk) in (8) such that Bk =
[βk:1, ..., βk:T ]T , the update equation for Bk can be expressed as

q(Bk) = N (
(Ω−1

k + Uk)−1Yk, (Ω−1
k + Uk)−1

)
(34)

where Uk is a (J+1)T×(J+1)T block-diagonal matrix with the tth (J+1)×(J+1)
block expressed as

ukt = 2
M∑

i=1

f(ηkit)φkitφ
T
kit

and Yk is a (J + 1)T × 1 vector formed by concatenating the T vectors

ykt =
M∑

i=1

(
〈Zk(sit)〉 − 1

2

)
φkit, t = 1, ..., T.

In the above expressions φkit = [1,K(sit, s̃1; ψk), ...,K(sit, s̃J ;ψk)]T .

The variational parameters ηkit are then updated as

η2
kit = φT

kit〈βT
k:tβk:t〉φkit (35)

where 〈βT
k:tβk:t〉 = COV (βk:t,βk:t) + 〈βk:t〉〈βk:t〉T and it may be evaluated from

q(Bk) with the mean and variance associated with time t.



M. Ding, L. He, D. Dunson and L. Carin 837

� The variational distribution for the binary indicator Zk(sit) may be updated as

q (Zk(sit) = 1) =
1

1 + exp(−ρkit)
(36)

with

ρkit =
∏

l<k

(1− 〈Zl(sit)〉) log p(νit|λ∗kt)

−
∑

k′>k

〈Zk′(sit)〉
∏

l<k′
l 6=k

(1− 〈Zl(sit)〉) log p(νit|λ∗k′t)

+
J∑

j=1

〈βkjt〉K(sit, s̃j ; ψk) + 〈βk0t〉

where log p(νit|λ∗kt) is the data log-likelihood from the Poisson distribution such

that log p(vit|λ∗kt) = log
(∏d

j=1 Poisson(νijt|λ∗kjt)
)
, and the expectation 〈βkjt〉 can

be obtained from q(Bk).

� Due to the non-conjugacy of the sigmoid function, we cannot acquire a variational
distribution for ψk. However, we can sample it from its posterior distribution by
establishing a discrete set of potential kernel widths {ψ∗l }l=1,··· ,L. The posterior
distribution for each ψk is represented as

p(ψk = ψ∗l ) ∝ exp{
T∑

t=1

M∑

i=1

〈wk(sit)〉〈log σ
(
gl

k(sit)
)〉}

× exp{
T∑

t=1

M∑

i=1

∑

k′>k

〈wk′(sit)〉〈log
(
1− σ

(
gl

k(sit)
))〉}, (37)

where gl
k(sit) =

∑J
j=1 βkjtK(sit, s̃j ; ψ∗l ) + βk0t. The detailed calculations of

〈log σ
(
gl

k(sit)
)〉 and 〈log

(
1− σ

(
gl

k(sit)
))〉 can be found in Ren et al. (2011).

� The variational distribution for c0 may be updated as

q(c0) = Gamma
(
c0; ã0, b̃0

)
, (38)

with ã0 = a0 +0.5KT (J +1) and b̃0 = b0 +0.5
K∑

k=1

J∑
j=0

T∑
i=1

T∑
l=1

[Σ̃−1
kj ]il〈βkjiβkjl〉 with

[Σ̃kj ]il = c1
|ti−tl|.

� The VB lower bound for c1 may be derived as

F(c1) = logN(0,1)(c1; 0, 1) +
K∑

k=1

logN (Bk;0,Ωk) + constant. (39)

The point estimate for c1 can be updated at each VB iteration by maximizing the
lower bound F(c1).
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� Since a point estimate of λkj: is employed at each VB iteration, the variational
distribution for d0 may be the same as (30)

q(d0) = Gamma
(
d0; ã0, b̃0

)
, (40)

where ã0 = a0 + 0.5dKT and b̃0 = b0 + 0.5
K∑

k=1

d∑
j=1

lnλ∗Tkj:Γ̃
−1
kj lnλ∗kj:.

� Similarly, the lower bound for d1 is

F(d1) = logN(0,1)(d1; 0, 1) +
K∑

k=1

d∑

j=1

logN (Λkj ;0,Γkj) + constant. (41)

and the point estimation for d1 is obtained by maximizing F(d1).

By following (33)-(41), the model parameters and GP hyperparameters can be up-
dated iteratively until convergence. In our experiment, we observed fast convergence;
typically the relative change of the lower bound reduces to 10−4 within 100 iterations.
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