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Flexible Bayesian Human Fecundity Models

Sungduk Kim ∗, Rajeshwari Sundaram †, Germaine M. Buck Louis ‡ and Cecilia Pyper §

Abstract. Human fecundity is an issue of considerable interest for both epidemi-
ological and clinical audiences, and is dependent upon a couple’s biologic capacity
for reproduction coupled with behaviors that place a couple at risk for pregnancy.
Bayesian hierarchical models have been proposed to better model the conception
probabilities by accounting for the acts of intercourse around the day of ovulation,
i.e., during the fertile window. These models can be viewed in the framework of
a generalized nonlinear model with an exponential link. However, a fixed choice
of link function may not always provide the best fit, leading to potentially biased
estimates for probability of conception. Motivated by this, we propose a general
class of models for fecundity by relaxing the choice of the link function under the
generalized nonlinear model framework. We use a sample from the Oxford Con-
ception Study (OCS) to illustrate the utility and fit of this general class of models
for estimating human conception. Our findings reinforce the need for attention to
be paid to the choice of link function in modeling conception, as it may bias the
estimation of conception probabilities. Various properties of the proposed models
are examined and a Markov chain Monte Carlo sampling algorithm was developed
for implementing the Bayesian computations. The deviance information criterion
measure and logarithm of pseudo marginal likelihood are used for guiding the
choice of links. The supplemental material section contains technical details of the
proof of the theorem stated in the paper, and contains further simulation results
and analysis.

Keywords: Conception, Fecundity, Generalized t-distribution, Generalized nonlin-
ear model, Markov chain Monte Carlo, Menstrual Cycle, Posterior distribution

1 Introduction

Human fecundity, defined as the biologic capacity of men and women for reproduction
irrespective of pregnancy intentions, is of considerable interest to epidemiologists, clin-
icians and couples interested in becoming pregnant. Motivation for such studies ranges
from ascertaining the causes of infertility to assessing the effects of stress and chemical
toxicants such as polychlorinated biphenyls and organochlorine pesticides on human fe-
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cundity. Examples of such studies include the Oxford Conception Study (OCS) and the
Eunice Kennedy Shriver National Institute of Child Health and Human Development’s
recently completed LIFE Study (Buck Louis et al. 2011). Thus, there remains interest in
developing statistical models for analyzing fecundity data (Dunson and Stanford 2005;
Dunson and Weinberg 2000; Dunson et al. 2001; Dunson and Zhou 2000; Ecochard 2006;
Scheike and Jensen 1997; Sundaram et al. 2011; Weinberg and Gladen 1986; Zhou et al.
1996), particularly in concert with the biology of human reproduction.

Quantitatively, human fecundity is measured by estimating the probability of con-
ception per menstrual cycle for a non-contracepting sexually active couple (Gini 1926).
This definition can be expanded to denote the day-specific probability of conception
within the estimated fertile window. Barrett and Marshall (1969) first proposed a
model for fecundity that was later extended by Schwartz et al. (1980). Consequently,
most approaches for estimating day-specific probabilities of conception have focused on
the model proposed by Schwartz et al. (1980):

P (Yij = 1|Xij) = ω

{
1−

∏

k

(1− λ∗k)Xijk

}
. (1)

Here Yij indicates whether or not conception occurred in cycle j for woman i and
Xij = (Xij1, . . . , XijK)′ is the vector of intercourse indicators over the fertile window of
cycle j for couple i. Furthermore, K denotes the length of a fertile window, ω denotes
the probability of cycle viability, and λ∗k denotes the probability of conception in a
viable cycle with intercourse only on day k in a fertile window. Various generalizations
of the above model have been proposed in the literature. Specifically, Weinberg et al.
(1994) incorporated cycle-specific covariates into models while Zhou et al. (1996) and
Dunson and Zhou (2000) incorporated within-woman dependency into models; Royston
and Ferreira (1999) have proposed an alternative to the Schwartz et al. (1980) model,
where only the intercourse acts during the most fertile day contributes to conception.
Dunson (2001) proposed a Bayesian hierarchical modeling approach to accommodate
day-specific covariates and heterogeneity among women. Subsequently, Dunson and
Stanford (2005) extended their model by allowing the day-specific probability λ∗k to
be woman-specific, as well as cycle-specific. Sundaram et al. (2011) have proposed a
survival analysis approach to assess day-specific conception probabilities while relaxing
the independence assumption of fertilizing ability of acts of intercourse on different
days for conception that is inherent in the Schwartz et al. (1980) class of models for
day-specific probabilities of conception.

In this paper, we propose a general class of conception models for a binary pregnancy
outcome by casting it in the framework of generalized nonlinear models (GNLM). Our
proposed class of models includes several conception models available in the literature
as special cases. For instance, the Schwartz et al. (1980) class of models corresponds to
a choice of an exponential link function in the generalized linear model (GLM) setup.
As is usual in practice, a fixed choice of link function may not always provide the best fit
for a given data set. Furthermore, it is well known that an incorrect link function may
lead to a substantial bias in the mean response estimates (Czado and Santner 1992).
In the context of the conception model, this may yield biased estimated probabilities
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of conception per menstrual cycle. Furthermore, there is a rich literature on Bayesian
approaches that allow an unknown link function in the model. For example Mallick and
Gelfand (1994) proposed to use a mixture of betas for the cumulative density function
corresponding to the transformation from the real line to the unit interval. Newton
et al. (1996) used a Dirichlet process for the unknown link. Chen et al. (1999) proposed
a flexible class of parametric links allowing skewness. However, the model proposed
by Chen et al. (1999) has the limitation that the intercept term is confounded with
the skewness parameter. To overcome the identifiability problem, Kim et al. (2008)
proposed generalized skewed t-link models for binary response data. We propose to use
a flexible generalized t-link for a binary pregnancy outcome in this paper (Kim et al.
2008).

The paper is organized as follows. Section 2 provides a detailed development of the
flexible human fecundity model and examines various properties of the related concep-
tion models with the proposed model. In Section 3, we discuss the likelihood function,
prior, and posterior distribution, and examine the properties of the resulting posterior
distribution along with a discussion of its computation. We demonstrate the perfor-
mance of the proposed methodologies using a large scale simulation study in Section 4.
In Section 5, we apply our methods to the Oxford Conception Study. We conclude the
paper with a brief discussion in Section 6.

2 The Models

2.1 Preliminary Findings

Suppose that i denotes a specific couple, j denotes a specific menstrual cycle, and k
denotes a day within the fertile window of a menstrual cycle. We assume that there are I
couples in the study, and each couple i contributes ni cycles (i = 1, . . . , I). Let Yij denote
a 0/1 binary outcome variable, where a 1 denotes that the conception occurred during
j-th menstrual cycle for i-th couple, and a 0 indicates otherwise. Let Xijk denote the
binary intercourse indicator variable, where Xijk = 1 denotes that intercourse occurred
on day k of menstrual cycle j for couple i, and 0 otherwise. Let Xij = (Xij1, . . . , XijK)′,
and λij = (λij1, . . . , λijK)′ for j = 1, . . . , ni and i = 1, . . . , I. As mentioned in the
previous section, the most general extension of Schwartz et. al. model is that proposed
by Dunson and Stanford (2005). They modeled the probability of conception in a
menstrual cycle j by the i-th couple as follows:

P (Yij = 1|Xij) = 1−
∏

k

(1− λ∗ijk)Xijk . (2)

Using the following parametrization, λijk = − log(1 − λ∗ijk), the above model can be
expressed as follows:

Pr(Yij = 1|Xij ,λij) =
∫ ∑

k:Xijk=1 λijk

0

exp (−w∗) dw∗, (3)
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where 0 ≤ λijk < ∞ since λ∗ijk denotes the day-specific probability of conception in cycle
j for couple i given that the intercourse occurs only on day k. We note here that in the
special case of λ∗ijk = λ∗k for all i, j, the conception model in (3) simplifies to the Barrett
and Marshall (1969) model. Consequently, we have the following characterization of the
conception model in (3). Observe that under conception model (3),

(i) The probability of conception in cycle j for couple i can be represented as the
cumulative distribution function (cdf) of the exponential distribution with mean
1.

(ii) The conception model is the exponential link model in the generalized linear model
(GLM) setup.

Furthermore, Dunson and Stanford (2005) incorporate a woman-specific frailty and the
day-specific covariates through the day-specific conception probabilities, λ∗ijk in (2) using
a complementary log-log link. The most popular choices for modeling the day-specific
probability of conception, λ∗ijk, are the logit link, probit link, and complementary log-log
link. However as noted above (3), the choice of link for the probability of conception in
a cycle is an exponential link. Thus, the collection of available models can be viewed as
the exponential link conception model with various links for λ∗ijk. Our motivation for
an extension is that this fixed choice of an exponential link may not always provide the
best fit for a given dataset. In such situations, the conception model is mis-specified,
which may yield substantial bias for mean response estimates (Czado and Santner 1992).
As an extension of the exponential link conception model in (3), the following flexible
conception model is proposed as

P (Yij = 1|Xij ,λij) = F ∗


 ∑

k:Xijk=1

λijk


 , (4)

where F ∗ is a cumulative distribution function with positive support of R+ = (0,∞).
Note that one can consider several distributions for F ∗ such as exponential, Weibull,
extreme value, gamma, and log normal. In Section 2.2, we propose a class of Bayesian
conception models using the latent variable approach, which relaxes the restriction of
support of F ∗ from the positive real line to all of the real line. This formulation allows
the development of an efficient Markov chain Monte Carlo (MCMC) algorithm using
the conception model in (4).

2.2 The Flexible Human Fecundity Models

In this subsection, we extend the conception model in (3) to a general class of conception
models for a binary pregnancy outcome. To this end, we reparametrize w = log w∗ in
(3). Then, we propose the flexible conception model for cycle j of couple i as follows:

Pr(Yij = 1|Xij ,λij) = F


log

∑

k:Xijk=1

λijk


 , (5)
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where F is the cdf with a support of R = (−∞,∞). Note that F is the link function in
the GNLM setup. So, some choices for F are logistic, normal or Student t-distribution.
To build a regression model, we introduce covariates through λijk and model λijk =
λk exp

(
Z ′

ijkβ
)
, where Zijk = (Zijk1, . . . , Zijkp)′ denotes the covariate vector on day

k for the jth cycle of couple i, and β = (β1, . . . , βp)′ is the corresponding vector of
regression coefficients, k = 1, . . . ,K, j = 1, . . . , ni, and i = 1, . . . , I. This relationship
between λijk and β is equivalent to a canonical link for λijk in the setting of generalized
linear models. With this relationship, the day-specific conception probability in cycle
j from couple i with intercourse only on day k can be represented as λ∗ijk = 1 −
exp(−λk exp(Z ′

ijkβ)), which is the same as that of Dunson and Stanford (2005) without
the random effects.

Using the latent variable approach of Albert and Chib (1993), the binary conception
regression model in (5) can be viewed as follows. Let wij be a latent variable such that

Yij =

{
1 if wij > 0
0 if wij ≤ 0

and wij = αi + log
∑

k:Xijk=1

λk exp
(
Z ′

ijkβ
)

+ εij , (6)

where λk > 0, αi ∼ G, εij ∼ F , and αi is a couple-specific frailty. Note that 1−exp(−λk)
can be considered a baseline day-specific conception probability. The model in (6)
has several nice properties. Observe that the proposed model in (6) has a Bayesian
generalized nonlinear model structure. This formulation allows the distribution F to
have support of the whole real line. In this case, the covariate Zijk does not depend on
day k for all i and j, the underlying latent variable has a mixed-effects model structure
such as wij = αi + Z ′

ijβ + log
∑

k:Xijk=1 λk + εij . This representation facilitates an
easy implementation of the Gibbs sampling algorithm. Furthermore, (6) defines a rich
class of conception models by varying the distribution F . For example, F could belong
to a class of scale mixtures of normal distributions (see Chen and Dey (1998)). Also,
one can easily express the marginal probability of conception by integrating over the
couple-specific frailty αi in (6) as follows:

Pr(Yij = 1|Xij ,Zij ,λ) =
∫ ∞

−∞
F


αi + log

∑

k:Xijk=1

λk exp
(
Z ′

ijkβ
)

 g(αi)dαi, (7)

where g(αi) is the probability density function (pdf) of αi. In this paper, we assume
that F is a symmetric distribution (symmetric link). Observe that for the same choice
of Λ =

∑
k:Xijk=1 λijk, the probability of conception varies for different choices of F . In

Figure 1, we display the probability of conception, Pr(Yij = 1|Xij ,λij), as a function
of

∑
k:Xijk=1 λijk for the exponential link and generalized t-link with various degrees of

freedom (df). This figure suggests that if the true model is a generalized t-link model
for a given data set, then the exponential link model will lead to either underestimation
or overestimation of conception probabilities.

Motivated by the flexibility and other nice properties of the generalized t-distribution,
we consider the generalized t-distribution as a choice for the distribution F in (7). The
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conception model (7) corresponding to the generalized t-link for F will, henceforth, be
referred to as the generalized t-link conception model. The generalized t-distribution
has the following probability density function. Let fgt,ν1,ν2(w) denote the probability
density function of the generalized t-distribution as introduced by Arellano-Valle and
Bolfarine (1995). It is given by

fgt,ν1,ν2(w) =
1√
π

Γ
(

ν1+1
2

)
√

ν2 Γ
(

ν1
2

) × 1
(
1 + w2

ν2

) ν1+1
2

. (8)

Here ν1 is a shape parameter (or degrees of freedom) and ν2 is a scale parameter. Note
that when ν1 = ν2 = ν, (8) reduces to a Student t-distribution with ν degrees of freedom.
The probability density function of a generalized t-distribution is symmetric about zero
and bell-shaped, with a small value of ν1 corresponding to a heavy tailed distribution.
The introduction of the second parameter ν2 offers some additional properties. For
instance, by varying the choice of the parameters (ν1 and ν2), the density corresponding
to the generalized t-distribution may or may not cross the standard normal density. In
fact, it may even cross twice. In other words, the distribution has varied shapes. Note
that fixing the scale parameter allows the shape parameter to purely control the tails
of the link. Further details concerning the generalized t-distribution may be found in
Kim et al. (2008). As noted in Figure 1, the generalized t-link conception model allows
for various shapes of the link functions.
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Figure 1: Conception probability plots based on exponential link and generalized t-link
(GT link) with degrees of freedom ν1 = 0.5, 1, 3, and 7, where Λ =

∑
k:Xijk=1 λijk.
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3 Posterior Properties and Computation

In this section, we present the details of our estimation procedure including the speci-
fication of the priors and the posterior computations.

We first begin by presenting the observed likelihood. Without loss of generality, we
assume ν2 = 1. Let α = (α1, . . . , αI)′ and Dobs = (Y ,X, Z). The observed likelihood
based on Dobs is given by

L(λ,β, ν1, σ
2
α|Dobs)

=
I∏

i=1

∫ ni∏

j=1


Fgt,ν1,ν2=1


αi + log

∑

k:Xijk=1

λk exp
(
Z ′

ijkβ
)






Yij

×

1− Fgt,ν1,ν2=1


αi + log

∑

k:Xijk=1

λk exp
(
Z ′

ijkβ
)






1−Yij

×N(αi; 0, σ2
α)dαi, (9)

under the assumption of a zero mean normal distribution with variance σ2
α for αi. In

general, the likelihood function L(λ, β, ν1, σ
2
α|Dobs) is analytically intractable. However,

it can be computed using a Monte Carlo algorithm. The computational development
for L(λ, β, ν1, σ

2
α|Dobs) is discussed below. But, we first introduce the priors.

We assume that λ, β, ν1, and σ2
α are independent a priori. Thus, the joint prior for

(λ, β, ν1, σ
2
α) is of the form π(λ,β, ν1, σ

2
α) = π(λ)π(β)π(ν1)π(σ2

α). We further assume

β ∼ Np(0, cIp), π(λ) ∝
K∏

k=1

λa0−1
k e−b0λk ,

π(ν1) ∝ νa1−1
1 e−b1ν1 , and π(σ2

α) ∝ (σ2
α)−(a2+1)e−b2/σ2

α , (10)

where c, a0, b0, a1, b1, a2, and b2 are the pre-specified hyperparameters. In Sections 4
and 5, we use c = 1000 for π(β), a0 = 1 and b0 = 0.1 for π(λ), a1 = 1 and b1 = 0.1
for π(ν1), and a2 = 2 and b2 = 1 for π(σ2

α). These priors, though informative, are
widely dispersed. Further, we can consider the following shrinkage prior distribution
for a wider fertile window instead of the gamma prior distribution for λ in (1): Let
λk = exp(δk), δ = (δ1, . . . , δK)′, and V = diag{ξ2

1 , . . . , ξ2
K}. We also assume the prior

distribution for δ as follows:

δ|ξ ∼ NK(0, V ) and π(ξ2
k) ∝ (

ξ2
k

)a0−1
exp(−b0ξ

2
k), (11)

where a0 and b0 are the pre-specified hyperparameters. We note that this allows the
individual elements ξ2

k, k = 1, . . . , K, to be independently updated towards 0 which
eventually results in shrinkage of the δk to a point mass at zero.

Based on the prior distributions specified above, the joint posterior distribution of
λ, β, ν1, and σ2

α based on the observed data Dobs is thus given by

π(λ, β, ν1, σ
2
α|Dobs) ∝ L(λ,β, ν1, σ

2
α|Dobs)π(λ)π(β)π(ν1)π(σ2

α), (12)
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where L(λ, β, ν1, σ
2
α|Dobs) is given in (9). Next, we establish the propriety of the pos-

terior distribution in (12) using the prior π(λ,β, ν1, σ
2
α) = π(λ)π(ν1)π(σ2

α).

Suppose that intercourse occurs at least once in the fertile window of menstrual cycle
j for couple i. That is, Xijk = 1 for a day k in 1, · · · ,K for j = 1, . . . , nI and i = 1, . . . , I.
Let cij = 1 if Yij = 0 and cij = −1 if Yij = 1. Also let Z∗

ij = cij1(Xijk = 1)Zijk

for k, where 1(·) denotes the indicator function, and Z∗
i = (Z∗

i1, . . . , Z
∗
ini

)′. Define
Z∗l,m = (Z∗

i , l < i < m) as the (m − l) × p matrix with rows Z∗
i , l < i ≤ m, where

0 ≤ l < m ≤ I.

Theorem 3.1. Assume that π(β) ∝ 1. Suppose that

(C1) there exist h > p, 0 = m0 < m1 < · · · < mh ≤ I, and positive vectors d1, d2, . . . , dh

such that Z∗ml−1,ml
is of full rank and d′lZ

∗
ml−1,ml

= 0 for l = 1, 2, . . . , h;

(C2) π(ν1) is bounded with π(ν1) = 0 for ν1 < a = p/h.

(C3)
∑

k Xijk > 0 for j = 1, . . . , nI and i = 1, . . . , I;

(C4) a0 > 0 and b0 > 0, a1 > 0 and b1 > 0, and a2 > 0 and b2 > 0 in (1).

Then the posterior distribution π(λ, β, ν1, σ
2
α|Dobs) in (12) is proper.

The proof of the above theorem is provided in the supplementary section. The
sufficient conditions stated in the theorem for the propriety of the posterior distribution
are quite general, and are typically satisfied by most data. Theorem 3.1 guarantees
propriety of the posterior distribution in (12) of β using an improper uniform prior.
Theorem 3.1 also implies that the regression coefficients β are identifiable under the
generalized t-link conception model. The result established in Theorem 3.1 enables us
to carry out Bayesian inference with an improper prior for the regression coefficients.

We next discuss the proposed efficient MCMC algorithm to carry out posterior
computations. The form of the joint posterior distribution of (β, λ, ν1, σ

2
α) given in (12)

does not lend itself to explicit analytic evaluation. Here, we propose an efficient Markov
chain Monte Carlo sampling algorithm to sample from this joint posterior distribution.
Since it is difficult to work directly with the generalized t-distribution, we express the
generalized t-distribution as a gamma mixture of normal distributions. We introduce
a mixing variable τij such that εij |τij ∼ N

(
0, 1

τij

)
, τij ∼ Gamma

(
ν1
2 , 1

2

)
. Let w =

(wij ; j = 1, . . . , ni, i = 1, . . . , I)′ and τ = (τij ; j = 1, . . . , ni, i = 1, . . . , I)′. Then the
joint posterior distribution of (w, τ , α, λ, β, ν1, σ

2
α) based on the observed data Dobs is
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given by

π(w, τ ,α,λ,β, ν1, σ
2
α|Dobs)

∝
I∏

i=1

ni∏

j=1

[
1(Yij = 0)1(wij ≤ 0) + 1(Yij = 1)1(wij > 0)

]

×τ
1/2
ij exp


−τij

2


wij − αi − log

∑

k:Xijk=1

λk exp
(
Z ′

ijkβ
)



2



× (
σ2

α

)− 1
2 exp

(
− α2

i

2σ2
α

)
×

(
1
2

) ν1
2

Γ
(

ν1
2

)τ
ν1
2 −1

ij e−
τij
2

×
K∏

k=1

λa0−1
k e−b0λk × exp

(
−β′β

2σ2
β

)
× νa1−1

1 e−b1ν1

× (
σ2

α

)−(a2+1)
exp

(
− b2

σ2
α

)
. (13)

The sample from the joint posterior π(w, τ ,α, λ, β, ν1, σ
2
α|Dobs) given in (13) can be

achieved by sampling from the following conditional distributions: (i) [w|τ , α,λ,β, ν1,
σ2

α, Dobs]; (ii) [α, σ2
α|w, τ , λ, β, ν1, Dobs]; and (iii) [τ , λ,β, ν1|w, α, σ2

α, Dobs]. We briefly
discuss how to sample from each of the above conditional posterior distributions.

For (i),

wij |τ , α, λ, β, ν1, σ
2
α, Dobs ∼ N


αi + log

∑

k:Xijk=1

λk exp
(
Z ′

ijkβ
)
,

1
τij




×
[
1(Yij = 0)1(wij ≤ 0) + 1(Yij = 1)1(wij > 0)

]
.

Sampling wij from the conditional distributions wij |τ ,α, λ,β, ν1, σ
2
α, Dobs is straight-

forward.

For (ii), we apply the collapsed Gibbs technique of Liu (1994) via the following
identity:

[α, σ2
α|w, τ ,λ,β, ν1, Dobs] = [α|w, τ , λ,β, ν1, σ

2
α, Dobs][σ2

α|w, τ ,λ, β, ν1, Dobs]. (14)

That is, we sample σ2
α after collapsing out α. Then

αi|w, τ ,λ,β, ν1, σ
2
α, Dobs ∼ N

(
µαi , σ

2
αi

)
,

where σ2
αi

=
(∑

j τij + 1
σ2

α

)−1

and µαi = σ2
αi
×∑

j τij

(
wij − log

∑
k:Xijk=1 λkeZ

′
ijkβ

)

for i = 1, 2, . . . , I. Therefore, for i = 1, . . . , I, sampling αi from the conditional distri-
butions αi|w, τ , λ, β, ν1, σ

2
α, Dobs is straightforward. In (14), the conditional posterior
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density for [σ2
α|w, τ ,λ,β, ν1, Dobs] has the form

[σ2
α|w, τ , λ,β, ν1, Dobs]

∝
I∏

i=1


1 +

∑

j

τijσ
2
α



− 1

2

exp


1

2

σ2
α

{∑
j τij

(
wij − log

∑
k:Xijk=1 λkeZ

′
ijkβ

)}2

(
1 +

∑
j τijσ2

α

)




× (
σ2

α

)−(a2+1)
exp

(
− b2

σ2
α

)
.

We use the Metropolis-Hastings algorithm (Hastings 1970) to sample σ2
α from the con-

ditional distribution [σ2
α|w, τ , λ, β, ν1, Dobs].

For (iii), we also apply the collapsed Gibbs technique of Liu (1994) via the following
identity:

[τ , λ, β, ν1|w,α, σ2
α, Dobs] = [τ |w, α,λ, β, ν1, σ

2
α, Dobs][λ,β, ν1|w, α, σ2

α, Dobs]. (15)

That is, we sample λ, β, and ν1 after collapsing out τ . Given w, α, λ, β, ν1, σ2
α, and

Dobs, the τij ’s are conditionally independent and

τij |w, α,λ,β, ν1, σ
2
α, Dobs ∼ Gamma

(
aτij , bτij

)
,

where aτij = ν1+1
2 and bτij = 1

2

(
1 +

[
wij − αi − log

∑
k:Xijk=1 λk exp

(
Z ′

ijkβ
)]2

)
for

i = 1, 2, . . . , I and j = 1, 2, . . . , ni. Therefore, we sample τij from a gamma distribution.
In (15), the conditional posterior density for [λ|w, α, β, ν1, σ

2
α, Dobs] has the form

[λk|w, α, β, ν1, σ
2
α, Dobs] ∝

I∏

i=1

ni∏

j=1


1 +



wij − αi − log

∑

k:Xijk=1

λkeZ
′
ijkβ





2



− ν1+1
2

×
K∏

k=1

λa0−1
k e−b0λk ,

for k = 1, 2, . . . , K. Thus, we use the Metropolis-Hastings algorithm (Hastings 1970) to
sample λk from conditional distribution [λk|w, α, β, ν1, σ

2
α, Dobs]. From (15), given λ,

ν1, w, α, σ2
α, and Dobs, we have the conditional form for β as follows:

[β|w,α, λ, ν1, σ
2
α, Dobs] ∝

I∏

i=1

ni∏

j=1


1 +



wij − αi − log

∑

k:Xijk=1

λkeZ
′
ijkβ





2



− ν1+1
2

× exp

(
−β′β

2σ2
β

)
.



S. Kim, R. Sundaram, G. M. Buck Louis, and C. Pyper 781

We also use the Metropolis-Hastings algorithm to sample β from the conditional dis-
tribution [β|w, α,λ, ν1, σ

2
α, Dobs]. Further, from (15), the conditional posterior density

for [ν1|w, α, λ, β, σ2
α, Dobs] has the form

[ν1|w,α, λ,β, σ2
α, Dobs]

∝
I∏

i=1

ni∏

j=1

Γ
(

ν1+1
2

)

Γ
(

ν1
2

)


1 +



wij − αi − log

∑

k:Xijk=1

λkeZ
′
ijkβ





2



− ν1
2

× νa1−1
1 e−b1ν1 .

To sample ν1 from [ν1|w, α, λ, β, σ2
α, Dobs], we use the Metropolis-Hastings algorithm.

2

4 A Simulation Study

We present an extensive simulation study to illustrate our proposed human fecundity
model based on the generalized t-distribution introduced in (8). The covariates vector
Zijk = (Zijk1, Zijk2)′ was generated from Zijk1 ∼ Bernoulli(0.3) and Zijk2 ∼ N(0, 1),
k = 1, . . . ,K, j = 1, . . . , nI , and i = 1, . . . , I, respectively. The maximum follow-up
time was for J = 6 cycles and the length of the fertile window was assumed to be
K = 6 days reflecting the typical length usually assumed in the literature. Further, we
choose λ = (0.10, 0.20, 0.15, 0.35, 0.30, 0.15)′, β = (−0.3, 0.2)′, ν1 = 1.5, and σ2

α = 1.0,
respectively. Let µ = (µ1, . . . , µ6)′ and θ = (θ1, θ2)′. The intercourse variable Xijk was
generated using an independent Bernoulli(pijk) distribution with

pijk =
µk exp(θ1Zijk1 + θ2Zijk2)

1 + µk exp(θ1Zijk1 + θ2Zijk2)

with µ = (0.30, 0.35, 0.32, 0.45, 0.42, 0.40)′ and θ = (0.2,−0.1)′. We simulated N =
1000 samples of size n = 300 reflecting the typical size in the literature based on each
combination of (λ, β, ν1, σ

2
α,µ, θ). The prior distributions used were as specified in

Section 3. The simulation results are given in Table 1 under the proposed generalized
t-link conception model. Table 1 presents mean, standard deviation (SD), and empirical
95% interval for each of the parameters based on their estimated posterior means, along
with the coverage probability (CP) of the 95% highest posterior density intervals (HPD).
Observe that all the parameter estimates of λ, β, ν1, and σ2

α are close to their true
values. The variation in the estimates of λ, β, ν1, and σ2

α across the 1000 replicates of
simulated samples is small. We also note that the coverage probabilities are reasonably
close to the nominal level.

Summary information concerning the performance of the estimation of baseline and
overall day-specific conception probabilities is presented in Table I and II of the sup-
plemental material section. Figure 1 (a) shows the baseline day-specific conception
probability under the proposed generalized t-link conception model, indicating that the
estimates are close to the true values. To further investigate the performance of the
estimation procedure, we estimated the subject-specific probabilities of conception for
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Table 1: Summary of simulation results

Parameter True value Mean SD 95% interval CP of 95% HPD
λ1 0.10 0.110 0.041 ( 0.040, 0.190) 0.979
λ2 0.20 0.198 0.059 ( 0.089, 0.311) 0.942
λ3 0.15 0.151 0.050 ( 0.061, 0.246) 0.956
λ4 0.35 0.348 0.062 ( 0.228, 0.462) 0.975
λ5 0.30 0.300 0.061 ( 0.183, 0.416) 0.976
λ6 0.15 0.151 0.046 ( 0.067, 0.239) 0.959
β1 -0.3 -0.301 0.102 (-0.511, -0.113) 0.972
β2 0.2 0.201 0.092 ( 0.029, 0.384) 0.981
ν1 1.5 1.494 0.201 ( 1.144, 1.934) 0.968
σ2

α 1.0 1.101 0.393 ( 0.508, 2.083) 0.959

each observed cycle for the individual. Figure 1 (b) reports the box-plots compar-
ing the true subject-specific probabilities of conception with the estimated ones. Note
that the estimated conception probabilities are close to the true values. Furthermore,
throughout our estimation procedure, we observe little bias. The results presented in
this section are based on 20,000 Gibbs samples to compute all the estimates, including
the mean, standard deviation, and 95% intervals using a burn-in of 10,000 iterations.
The convergence of the Gibbs sampler was checked using several diagnostic procedures
as recommended by Cowles and Carlin (1996). The computer codes were written in
FORTRAN 95 using IMSL subroutines with double precision accuracy.
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Figure 2: (a) Plot of baseline day-specific conception probabilities under the generalized
t-link conception model; (b) Box-plots of true and estimated subject and cycle specific
conception probabilities under the generalized t-link conception model.
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5 Analysis of the Oxford Conception Study

We now present the analysis for a subset of women who participated in the Oxford Con-
ception Study (Pyper et al. 2006), which is a prospective cohort comprising women aged
18-40 years who were attempting to become pregnant after being recruited via various
media campaigns in the United Kingdom. Following a baseline interview, women were
instructed in the use of home fertility monitors that track urinary reproductive hor-
mones including luteinizing hormone, a proxy for impending ovulation, and also home
pregnancy test kits for detection of human chorionic gonadotropin confirmed pregnancy.
Women completed daily diaries on menstruation, sexual intercourse and lifestyle factors
presumed relevant for human fertility (i.e., cigarette smoking, alcohol consumption).
We were able to estimate ovulation for development of our conception probability mod-
els using two approaches: 1) using the first day of the menstrual cycle on which the
fertility monitor detected luteinizing hormone (LH) indicative of impending ovulation
and 2) using the observed and expected dates of menstruation from the daily diaries
based upon the Ogino-Knaus (OK) Method. Specifically, the OK method estimates
ovulation by counting back 14 days from the first day of menses (Knaus 1929; Ogino
1930), or using the expected first day of menses based upon the previous cycle’s data
if the woman conceives in that cycle. Both methods are proxies of ovulation, given the
absence of a biomarker of ovulation for population research. The gold standard requires
vaginal ultrasound verification. We defined the fertile window to be day −5 throught
+1, with 0 denoting the day of ovulation for both approaches. The analysis was based
upon 306 women with LH measurements and 324 women for the Ogino-Knaus method.
Our biologic covariates included age (years) and parity defined as a previous live birth
(yes/no), while our behavioral covariates included daily usage of cigarettes, alcohol con-
sumption, and caffeine consumption as derived from daily diaries. The covariate age is
continuous while smoking, alcohol, caffeine, and parity are binary covariates, where 0
and 1 denote no and yes, respectively. To help the numerical stability in the implemen-
tation of the MCMC sampling algorithm, all covariates were standardized. We present
here the analysis based on the fertile window defined according to the LH surge. As
a sensitivity analysis of our findings, we also reanalyzed the data based on the Ogino-
Knauss algorithm for identifying ovulation; the results are presented as supplementary
material.

As discussed in Section 2, we considered regression conception models with random
effects under different choices of the link functions. We first considered the exponential
link conception models with the complementary log-log link (Dunson and Stanford
(2005) model, ECLLR) and logit link (ELogitR) for day-specific conception probability
λ∗ijk in (3), respectively. Next, we considered the Probit link (ProbitR), Cauchy link
(CauchyR), and generalized t-link with ν1 and ν2 = 1 (GTR) for F in (5). Note that the
ECLLR and ELogitR models are the exponential link conception models with different
links for the day-specific conception probabilities λ∗ijk.

Finally, we also carried out a formal comparison of all the above models via the
Deviance Information Criterion (DIC) as proposed by Speigelhalter et al. (2002). The
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DIC is defined as follows:

DIC = D(θ̄) + 2p
D

, (16)

where θ is the vector of all model parameters, D(θ) is a deviance function and θ̄ =
E[θ|Dobs] is the posterior mean of θ. In (16), p

D
is the effective number of model

parameters, which is calculated as p
D

= D(θ) − D(θ̄), where D(θ) = E[D(θ)|Dobs]
and D(θ) = −2 log L(θ|Dobs), where L(θ|Dobs) is given in (9). We also considered the
logarithm of pseudo marginal likelihood (LPML) (Ibrahim et al. 2001) as well. LPML
is a well established Bayesian model comparison criterion based on the conditional
predictive ordinate (CPO) statistics. Let CPOij denote the CPO statistic in a menstrual
cycle j by i-th couple. LPML is defined as

LPML =
I∑

i=1

ni∑

j=1

log(CPOij). (17)

The larger the LPML, the better the fit of a given model.

Table 2: Model comparison based on LH method

Link D(θ) PD DIC LPML
ECLLR 836.43 13.10 862.64 -429.64
ELogitR 835.02 11.50 858.02 -424.21
Probit 845.19 12.16 869.51 -433.75
Cauchy 829.18 11.41 851.98 -419.17
GTR 825.84 10.77 847.37 -417.44

Table 2 reflects an interesting pattern for the values of DIC and LPML for various
conception models with different links based on the LH method. Both the DIC and
LPML indicate that the exponential conception models with logit link (ELogitR) fit
data better than the exponential conception models with complementary log-log link
(ECLLR) for the OCS. These two models are commonly used in the analysis of binary
pregnancy outcomes. This is possible as they can both be viewed as exponential concep-
tion models with logit and complementary log-log link for the day-specific conception
probabilities λ∗ijk. Furthermore, the ELogitR model fits data better than the probit link
(ProbitR) for the OCS. The cauchy link model (CauchyR) seems to fit better than EL-
ogitR, ECLLR, and ProbitR. Also, the generalized t-link model (GTR) fits the data best
among all the models considered. Overall, Table 2 reveals that the generalized t-link
conception (GTR) model fits this data set better than the Dunson and Stanford (2005)
(ECLLR) model. Also from Table 2, we see that the exponential link conception model
with the logit link and complementary log-log link for λ∗ijk does not fit the data well.
The probit link conception link model fits the data worst. Therefore, it is important to
consider various choices of links in analyzing the binary pregnancy outcome.
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Table 3 reflects the posterior means, the posterior standard deviations (SD), and the
95% highest posterior density (HPD) intervals of the parameters of the regression model
with the covariates smoking, alcohol, caffeine, parity, and age under the generalized t-
link model based on the LH method for identifying ovulation. Table 3 indicates that
the posterior estimates of regression coefficients for smoking, caffeine, and parity are
positive, while the posterior estimates of regression coefficients for alcohol and age are
negative. The 95% HPD intervals in the table indicate that parity is a significant
predictor, while smoking, alcohol, caffeine, and age were not under the LH method.
Further, the value of ν1 is less than 1, which implies that the conception model based
on the generalized t-link has a heavy tail. We also report the summary statistics for
the overall day-specific conception probability in the supplementary section, Table VI.
In Figure 3, we present the plot of posterior mean day-specific conception probability
comparing the effect of parity. We can see that the day-specific conception probability is
highest on day one (-1) based upon the LH method, but two days (-2) prior to estimated
ovulation based on the OK method (supplementary section). This suggests that the LH
surge is a better marker for identifying the day of ovulation.

Table 3: Posterior estimates under the generalized t-link model with random effect
based on the LH method

Posterior Posterior 95% HPD
Variable Mean SD Interval

λ1 0.06526 0.04782 ( 0.00006, 0.15702)
λ2 0.10277 0.07231 ( 0.00031, 0.23941)
λ3 0.08989 0.05998 ( 0.00017, 0.20384)
λ4 0.06068 0.04386 ( 0.00024, 0.14486)
λ5 0.20189 0.09540 ( 0.03340, 0.38498)
λ6 0.05534 0.04234 ( 0.00001, 0.13792)
λ7 0.09741 0.06225 ( 0.00133, 0.21445)

Smoking (Y/N) 0.21562 0.21177 (-0.20945, 0.62885)
Alcohol (Y/N) -0.08846 0.24334 (-0.57446, 0.38627)

Caffeine 0.33029 0.25554 (-0.14684, 0.85784)
Parity (Y/N) 0.65516 0.25771 ( 0.17685, 1.17149)
Age (Y/N) -0.35461 0.23926 (-0.83310, 0.10492)

ν1 0.95699 0.16500 ( 0.65626, 1.29075)
σ2

α 5.48909 3.17916 ( 1.20135, 11.62307)

In our analysis, we find that the generalized t-link seems to provide the best fit
based upon the DIC and LPML values. However, the Schwartz et al. (1980) model that
corresponds to an exponential link based conception model does not seem to provide
a good fit based upon the DIC and LPML. As mentioned previously, an improper
choice of link function leads to bias in the estimation of the mean response (Czado and
Santner 1992). Recall that in the case of the conception model, the mean response
corresponds to the probability of conception in a cycle. In Figure 4, we present box-
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Figure 3: Plots of estimated day-specific conception probability comparing the effect of
parity under the generalized t-link model with random effect (GTR model) for the LH
method.

plots of estimated conception probability under various conception models with different
links for the LH method. In Figure 4, we see that the the conception probability of the
Dunson and Stanford (2005) model (ECLLR) tends to be underestimated compared to
the exponential link conception models with logit (ECLL) link and the generalized t-link
(GTR) model. We further see that the variations in conception probability estimates
from the exponential link conception models with complementary log-log (ECLL) link
and logit (ECLL) link for λ∗ijk are greater than the generalized t-link (GTR) model. In
Figure 5, we present box-plots of estimated conception probabilities by cycles under the
generalized t-link conception model with a random effect (GTR model), and the Dunson
and Stanford (2005) model (ECLLR model) based on the LH method. From Figure 5,
we see that the variation of the estimated conception probability under generalized t-link
conception model (GTR model) is smaller than that based on the Dunson and Stanford
(2005) model by cycle for the LH method, and that the variation for the Dunson and
Stanford (2005) model is much greater than that of generalized t-link conception model.

Note that ν1 = .96 for the generalized t-link conception model based upon the LH
method for the OCS versus ν1 = .8 for the OK method. From Figure 1, we see that the
rate approaching 1 under the generalized t-link conception model is slower than that
of the exponential link conception model after a certain point for these values of the
parameter ν1. Consequently, the conception probability under the generalized t-link
conception model is very different from that of the exponential link conception model.
In conclusion, our analysis indicates that a flexible link function results in a better
model fit. Thus, investigators have a prior for analysis in keeping with their research
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Figure 4: Box-plots of estimated conception probability for various conception models
for the LH method.
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Figure 5: Box-plots of estimated subject-specific conception probability by cycles under
the generalized t-link conception model with random effect (GTR) and the Dunson and
Stanford (2005) model (ECLLR) for the LH method.
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aims.

The computations presented here were based on 20,000 of the 100,000 Gibbs samples.
These 20,000 iterations were selected based on a burn-in of 5,000 iterations with every
fifth iterations being selected for computation. The computer codes were written in
FORTRAN 95 using IMSL subroutines with double-precision accuracy. The convergence
of the Gibbs sampler was checked using several diagnostic procedures as recommended
by Cowles and Carlin (1996). Approximate convergence is reached after 2000 iterations.

6 Discussion

The early origins of health and disease (DOHaD hypothesis, Hanson and Gluckman
(2008)) posits that exposures during sensitive windows of human development perma-
nently reprogram the developing conceptus or fetus for extrauterine life. Such repro-
gramming may be associated with susceptibility for diminished fecundity or greater risk
of chronic disease. To this end, it is imperative to delineate the timing and variability
of the fertile window to facilitate accurate estimation of conception. This would be a
first step for eventual quantification of exposures during sensitive windows of human
development. In so doing, it is imperative to build biologically plausible models for
estimating conception.

To identify the day of ovulation, we used urinary LH surge as a biomarker of ovula-
tion. A World Health Orgaization (WHO) Task Force (WHO 1980a,b) has shown the
surge in LH to be the best available marker of impending ovulation in absence of a gold
standard or serial ultrasonography. Further, it has been shown in the literature that the
length of the fertile window is 6 days ending on the day of ovulation (Weinberg et al.
1995; Dunson et al. 1999; Royston and Ferreira 1999; Dunson et al. 2001; Scarpa and
Dunson 2007) using LH surge as a marker of ovulation. However, our methods can be
applied to longer fertile windows using a shrinkage prior distribution.

We have proposed a class of flexible human fecundity models for analyzing a binary
pregnancy outcome, and developed an efficient MCMC algorithm. The proposed con-
ception models provide choices for modeling fecundity data, while ensuring the best fit.
The proposed flexible models illustrated that the generalized t-distribution (5) provided
a better fit than the exponential link in both analyses using the LH method for identi-
fying the day of ovulation, as well as the Ogino-Knaus approach of identifying the day
of ovulation (presented in the Supplementary Section). This framework of modeling
conception in the GNLM set up lends itself to Bayesian variable selection for high di-
mension data where covariates do not depend on day k such as chemical toxicants (e.g.,
polychlorinated biphenyls). This extension is currently under investigation.
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7 Supplementary Materials

7.1 Proof of Theorem 1 (propriety of posterior distribution):

Let w ∼ fgt,ν1,ν2=1(w). For 0 < a < 1, using a result on the beta function given in
Section 6.2 of Abramowitz and Stegun (1972) and after some algebra, we obtain that

E (|w|a) =
Γ(a+1

2 )Γ( ν1−a
2 )√

πΓ(ν1
2 )

≤ K(a) (18)

for ν1 > a, where K(a) is a finite positive constant depending only on a. Using (18)
and conditions (C2) and (C4), we have

∫ ∞

0

E (|w|a) π(ν1|a0, b0) dν1 =
Γ(a+1

2 )√
π

∫ ∞

0

Γ(ν1−a
2 )

Γ( ν1
2 )

π(ν1|a1, b1) dν1

≤ K(a)
∫ ∞

0

π(ν1|a1, b1) dν1 < ∞. (19)

Let w∗ = (c11w11, . . . , cI,nI wI,nI )
′, α∗ = (c11α1, . . . , cI,nI αI)′, and λ∗ = (c111(X11k =

1) log λk, . . . , cI,nI
1(XI,nI ,k = 1) log λk)′ for k. Using Fubini’s theorem, we obtain

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫

Rp

L(β,λ, ν1, σ
2
α|Dobs) π(λ) π(ν1)π(σ2

α) dβ dλ dν1dσ2
α

=
∫ ∞

0

∫

RI

∫ ∞

0

∫ ∞

0

∫

Rp

E
[
1
{

cijwij > cij

(
αi + log

∑

k:Xijk=1

λk exp(Z ′
ijkβ)

)
,

1 ≤ j ≤ ni, 1 ≤ i ≤ I
}]

× π(λ) π(ν1)π(σ2
α) dβ dλ dν1 dG(α)dσ2

α

≤ K0

∫ ∞

0

∫

RI

∫ ∞

0

∫ ∞

0

∫

Rp

E
[
1
{

cijwij > cijαi + cij1(Xijk = 1) log λk

+ cij1(Xijk = 1)Z′
ijkβ, 1 ≤ j ≤ ni, 1 ≤ i ≤ I

}]

× π(λ) π(ν1)π(σ2
α) dβ dλ dν1 dG(α)dσ2

α

= K0

∫ ∞

0

∫

RI

∫ ∞

0

∫ ∞

0

E
[ ∫

Rp

1
{

cij1(Xijk = 1)Z ′
ijkβ < cijwij − cijαi

− cij1(Xijk = 1) log λk, 1 ≤ j ≤ ni, 1 ≤ i ≤ I
}

dβ
]

× π(λ) π(ν1)π(σ2
α) dλ dν1 dG(α)dσ2

α

= K0

∫ ∞

0

∫

RI

∫ ∞

0

∫ ∞

0

E
[ ∫

Rp

1{Z∗β < w∗ −α∗ − λ∗}dβ
]

× π(λ) π(ν1)π(σ2
α) dλ dν1 dG(α)dσ2

α. (20)

Under condition (C1), it directly follows from Lemma 4.1 of Chen and Shao (2001) that
there exists a constant K1 such that ‖β‖ ≤ K1 min1≤l≤h(maxml−1<i≤ml

|ui|) whenever
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Z∗β ≤ u, where u = (u1, u2, . . . , uI)′. Hence, from (20), we have
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫

Rp

L(β, λ, ν1, σ
2
α|Dobs) π(λ) π(ν1)π(σ2

α) dβ dλ dν1dσ2
α

≤ K0

∫ ∞

0

∫

RI

∫ ∞

0

∫ ∞

0

E
[ ∫

Rp

1{‖β‖ ≤ K1 min
1≤l≤h

max
ml−1<i≤ml

|w∗i − α∗i − λ∗i |}dβ
]

× π(λ) π(ν1)π(σ2
α) dλ dν1 dG(α)dσ2

α

≤ K0K1

∫ ∞

0

∫

RI

∫ ∞

0

∫ ∞

0

h∏

l=1

E
(

max
ml−1<i≤ml

|w∗i − α∗i − λ∗i |
p
h

)

× π(λ) π(ν1)π(σ2
α) dλ dν1 dG(α)dσ2

α

≤ 2pK0K1

∫ ∞

0

∫

RI

∫ ∞

0

∫ ∞

0

h∏

l=1

∑

ml−1<i≤ml

E
(
|w∗i |

p
h + |α∗i |

p
h + |λ∗i |

p
h

)

× π(λ) π(ν1)π(σ2
α) dλ dν1 dG(α)dσ2

α

< ∞,

by conditions (C1), (C2), (C3), and (C4), which completes the proof. 2

7.2 Simulation results

Table I. Summary of baseline day-specific probabilities of conception

Day True value Mean SD 95% interval
-5 0.095 0.103 0.036 (0.039, 0.173)
-4 0.181 0.178 0.048 (0.085, 0.268)
-3 0.139 0.139 0.043 (0.059, 0.218)
-2 0.295 0.293 0.044 (0.204, 0.370)
-1 0.259 0.258 0.045 (0.167, 0.340)
0 0.139 0.139 0.039 (0.065, 0.213)

Table II. Summary of overall day-specific probabilities of conception

Day True value Mean SD 95% interval
-5 0.140 0.151 0.048 (0.060, 0.244)
-4 0.241 0.239 0.053 (0.132, 0.338)
-3 0.194 0.195 0.053 (0.090, 0.287)
-2 0.353 0.351 0.042 (0.261, 0.422)
-1 0.319 0.319 0.045 (0.224, 0.399)
0 0.194 0.195 0.047 (0.105, 0.282)
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7.3 Analysis of Oxford data based on Ogino-Knaus method for iden-
tifying ovulation

We present the re-analysis of the Oxford data introduced in Section 5. Here the fertile
window is identified as day −5 through day +1 where the day of ovulation 0 is identified
based on the Ogino-Knaus method. We first present the DIC and LPML values for
various conception models as discussed in Section 5. Notice that the findings are similar
to those of the LH method. Also, the generalized t-link conception (GTR) model fits
the data the best. Furthermore, the Schwartz et al. (1980) model that corresponds to an
exponential link based conception model does not seem to provide a good fit based upon
the DIC and LPML. We next present the parameter estimates and note findings similar
to those in Section 5. Parity is significantly associated with probability of conception.

Table III. DIC and LPML values based on the OK method

Link D(θ) PD DIC LPML
ECLLR 938.58 13.15 964.88 -483.37
ELogitR 937.35 11.82 960.98 -477.48
Probit 955.56 12.34 980.24 -492.16
Cauchy 919.64 10.62 940.89 -467.48
GTR 916.76 10.30 937.37 -463.65

Table IV. Posterior estimates under the generalized t-link model with random effect
based on the OK method

Posterior Posterior 95% HPD
Variable Mean SD Interval
λ1 0.08581 0.06257 ( 0.00057, 0.20490)
λ2 0.06236 0.05707 ( 0.00001, 0.17358)
λ3 0.09436 0.05938 ( 0.00481, 0.20903)
λ4 0.12531 0.07726 ( 0.00561, 0.27294)
λ5 0.08816 0.05888 ( 0.00188, 0.20065)
λ6 0.06536 0.04626 ( 0.00021, 0.15424)
λ7 0.04798 0.03840 ( 0.00002, 0.12284)
Smoking (Y/N) 0.31020 0.24377 (-0.17002, 0.79821)
Alcohol (Y/N) -0.09172 0.25773 (-0.60690, 0.40591)
Caffeine (Y/N) 0.03267 0.26221 (-0.48413, 0.56172)
Parity 0.69538 0.29250 ( 0.14843, 1.28020)
Age -0.34032 0.27528 (-0.89737, 0.18799)
ν1 0.78917 0.12443 ( 0.55301, 1.03225)
σ2

α 7.56416 4.36351 ( 1.53295, 16.22523)

In Tables V and VI, we present the day-specific probabilities for both data sets (OK
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method and LH method). Also, Figure I represents the effect of parity on day-specific
probabilities of conception.

Table V. Day-specific conception probabilities under the generalized t-link with
random effect based on the OK method

Posterior Posterior 95% HPD
Day Mean SD Interval

Overall -5 0.24286 0.08160 (0.08020, 0.39645)
-4 0.20307 0.09285 (0.01986, 0.36780)
-3 0.25687 0.07265 (0.11599, 0.39977)
-2 0.28727 0.07537 (0.13874, 0.43273)
-1 0.24917 0.07592 (0.09641, 0.39148)
0 0.21784 0.07597 (0.06935, 0.36424)

+1 0.18748 0.07379 (0.04044, 0.32325)
Parity=0 -5 0.18567 0.07393 (0.04634, 0.33060)

-4 0.15339 0.08112 (0.00445, 0.29930)
-3 0.19752 0.06878 (0.06108, 0.32853)
-2 0.22433 0.07307 (0.08011, 0.36424)
-1 0.19107 0.07061 (0.05620, 0.33055)
0 0.16429 0.06798 (0.03554, 0.29606)

+1 0.13918 0.06497 (0.01889, 0.26182)
Parity=1 -5 0.32526 0.10223 (0.11986, 0.51702)

-4 0.27494 0.11653 (0.04315, 0.48514)
-3 0.34233 0.08961 (0.16556, 0.51525)
-2 0.37793 0.09095 (0.20190, 0.55499)
-1 0.33296 0.09404 (0.15007, 0.51624)
0 0.29513 0.09653 (0.09901, 0.47383)

+1 0.25727 0.09442 (0.07425, 0.43841)

Figures II and III indicate similar findings to those presented in Section 5. We further
see that the box-plot for the generalized t-link (GTR) has smaller variation that those
of the Dunson and Stanford (2005) model (ECLLR) and similar results for box-plots
of estimated conception probability by cycles under the generalized t-link conception
model (GTR model) and Dunson and Stanford (2005) model (ECLLR model) based on
the OK method. Furthermore, the estimated ν1 = .8 for the GTR model. In Figure IV,
we present a comparison between the generalized t-link with ν1 = .8 and exponential
link and note the differences in their shape. Consequently, using the exponential link
in this situation would potentially have led to an underestimation or overestimation of
the probability of conceptions in each cycle.
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Table VI. Day-specific conception probabilities under the generalized t-link with
random effect based on the LH method

Posterior Posterior 95% HPD
Day Mean SD Interval

Overall -5 0.19376 0.07827 (0.03823, 0.33895)
-4 0.24019 0.08544 (0.06730, 0.39814)
-3 0.22737 0.08039 (0.06837, 0.37935)
-2 0.18850 0.07630 (0.03842, 0.33239)
-1 0.33275 0.06645 (0.19982, 0.45911)
0 0.17833 0.07548 (0.02833, 0.31889)

+1 0.23814 0.07470 (0.09140, 0.38232)
Parity=0 -5 0.14140 0.06629 (0.01666, 0.26613)

-4 0.18015 0.07494 (0.03184, 0.31917)
-3 0.16905 0.07016 (0.03381, 0.30220)
-2 0.13715 0.06475 (0.01649, 0.26007)
-1 0.26067 0.06584 (0.13104, 0.38884)
0 0.12871 0.06268 (0.01205, 0.24745)

+1 0.17805 0.06643 (0.04824, 0.30536)
Parity=1 -5 0.26746 0.10226 (0.06375, 0.45834)

-4 0.32429 0.10870 (0.10871, 0.52963)
-3 0.30892 0.10302 (0.10313, 0.50330)
-2 0.26069 0.09970 (0.06031, 0.44507)
-1 0.43471 0.08104 (0.27657, 0.59151)
0 0.24816 0.10004 (0.04962, 0.43815)

+1 0.32320 0.09553 (0.13739, 0.51048)
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Figure I: Plots of estimated day-specific conception probability comparing the effect of
parity under the generalized t-link model (GTR model), for the OK method
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Figure II: Box-plots of estimated conception probability for various conception models
for the OK method.
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Figure III: Box-plots of estimated conception probability by cycles under the generalized
t-link conception model with random effect (GTR) and Dunson and Stanford (2005)
model (ECLLR) based on the OK method.
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Figure IV: Comparison of the exponential link conception model with the generalized
t-link conception model (GT link) with ν1 = 0.8, where Λ =

∑
k:Xijk=1 λijk.
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