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Computing the Bayes Factor from a Markov
Chain Monte Carlo Simulation of the Posterior

Distribution

Martin D. Weinberg∗

Abstract. Determining the marginal likelihood from a simulated posterior distri-
bution is central to Bayesian model selection but is computationally challenging.
The often-used harmonic mean approximation (HMA) makes no prior assumptions
about the character of the distribution but tends to be inconsistent. The Laplace
approximation is stable but makes strong, and often inappropriate, assumptions
about the shape of the posterior distribution. Here, I argue that the marginal
likelihood can be reliably computed from a posterior sample using Lebesgue in-
tegration theory in one of two ways: 1) when the HMA integral exists, compute
the measure function numerically and analyze the resulting quadrature to control
error; 2) compute the measure function numerically for the marginal likelihood
integral itself using a space-partitioning tree, followed by quadrature. The first
algorithm automatically eliminates the part of the sample that contributes large
truncation error in the HMA. Moreover, it provides a simple graphical test for the
existence of the HMA integral. The second algorithm uses the posterior sample
to assign probability to a partition of the sample space and performs the marginal
likelihood integral directly. It uses the posterior sample to discover and tessellate
the subset of the sample space that was explored and uses quantiles to compute a
representative field value. When integrating directly, this space may be trimmed
to remove regions with low probability density and thereby improve accuracy. This
second algorithm is consistent for all proper distributions. Error analysis provides
some diagnostics on the numerical condition of the results in both cases.

Keywords: Bayesian computation, marginal likelihood, algorithm, Bayes factors,
model selection

1 Introduction

A Bayesian data analysis specifies joint probability distributions that describe the rela-
tionship between the prior information, the model or hypotheses, and the data. Using
Bayes theorem, the posterior distribution is uniquely determined from the conditional
probability distribution of the unknowns given the observed data:

P (θ|M,D) =
P (θ|M)P (D|θ,M)

Z
(1)

where P (θ|M) is the prior distribution, P (D|θ,M) is the likelihood function, and

Z ≡ P (D|M) =
∫

dθ P (θ|M)P (D|θ,M) (2)
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is the marginal likelihood. The symbol M denotes the assumption of a particular model
and the parameter vector θ ∈ Ω. For physical models, the sample space Ω is most often
a continuous space. The posterior may be used, for example, to infer the distribution
of model parameters or to discriminate between competing hypotheses or models. The
latter is particularly valuable given the wide variety of astronomical problems where
diverse hypotheses describing heterogeneous physical systems are the norm (see Gelman
et al. 2003, for a thorough discussion of Bayesian data analysis).

For parameter estimation, one often considers the marginal likelihood P (D|M) to
be an uninteresting normalization constant. However, equation (2) admits a meaningful
interpretation: it is the support for a model given the data. To see this, assume that
the prior probability of some model, Mj , is P (Mj). Then by Bayes theorem, the
probability of the model given the data is P (Mj |D) = P (Mj)P (D|Mj)/P (D). The
posterior odds of Model j = 0 relative to Model j = 1 becomes

P (M0|D)
P (M1|D)

=
P (M0)
P (M1)

P (D|M0)
P (D|M1)

. (3)

If we have information about the ratio of prior odds, P (M0)/P (M1), we should use
it, but more often than not our lack of knowledge forces a choice of P (M0)/P (M1) =
1. Then, we estimate the relative probability of the models given D over their prior
odds by the Bayes factor P (D|M0)/P (D|M1) (see Lavine and Schervish 1999, for a
discussion of additional concerns). When there is no ambiguity, we will omit the explicit
dependence on M of the prior distribution, likelihood function, and marginal likelihood
for notational convenience. The Bayes factor has a number of attractive advantages for
model selection (Kass and Raftery 1995): (1) it is a consistent selector; that is, the ratio
will increasingly favor the true model in the limit of large data; (2) Bayes factors act as
Occam’s razors, preferring simpler models if the fits are similar; (3) Bayes factors do not
require the models to be nested in any way; that is, the models and their parameters
need not be equivalent in any limit; and (4) once computed, a marginal likelihood value
may be used for future model selection.

There is a catch: direct computation of the marginal likelihood (eq. 2) is intractable
for most problems of practical interest. However, recent advances in computing tech-
nology together with developments in Markov chain Monte Carlo (MCMC) algorithms
have the promise to compute the posterior distribution for problems that have been pre-
viously infeasible owing to dimensionality or complexity. Although dimension-switching
algorithms, such as reversible-jump MCMC (Green 1995) incorporate model selection
automatically without a need for Bayes factors, these simulations appear slow to con-
verge for some real-world applications. Moreover, the marginal likelihood has archival
value and may be used for a variety of tests, ex post facto.

Newton and Raftery (1994) presented a formula for estimating Z from a posterior
distribution of parameters. They noted that an MCMC simulation of the posterior
selects values of θ ∈ Ω distributed as

Z × P (θ|D) = P (D|θ)P (θ)
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and, therefore,

Z ×
∫

Ω

dθ
P (θ|D)
P (D|θ) =

∫

Ω

dθ P (θ) = 1 (4)

or
1
Z

=
∫

Ω

dθ
P (θ|D)
P (D|θ) = E

[
1

P (θ|D)

]

P (θ|D)

. (5)

This latter equation says that the marginal likelihood is the harmonic mean of the like-
lihood with respect to the posterior distribution. It follows that the harmonic mean
computed from a sampled posterior distribution is an estimator for the marginal likeli-
hood1, e.g.:

Z̃ =

[
1
N

N∑

i=1

1
P (D|θi)

]−1

. (6)

Unfortunately, this estimator is prone to domination by a few outlying terms with
abnormally small values of P (D|θ) (e.g. see Raftery et al. 2007, and references therein).
Wolpert (2002) describes convergence criteria for equation (6) and Chib and Jeliazkov
(2001) present augmented approaches with error estimates. This paper presents an
easy-to-compute technique for assessing the existence of the integral in equation (5)
using the posterior sample itself and estimating errors in its numerical evaluation (the
Numerical Lebesgue Algorithm, NLA, see Section 2 and the Appendix). In essence, this
algorithm defines a subset Ωs ⊂ Ω that decreases the error in Z̃. To be clear, the NLA
does not and, indeed, cannot circumvent the limitations of the HMA but can easily
diagnose them.

Alternative approaches to computing the marginal likelihood from the posterior dis-
tribution have been described at length by Kass and Raftery (1995). Of these, the
Laplace approximation, which approximates the posterior distribution by a multidi-
mensional Gaussian distribution and uses this approximation to compute equation (2)
directly, is the most widely used. This approach does not suffer from the uncertainty of
existence for the defining integrals, however, one must identify all the dominant modes.
In addition, the modes may not be well-represented by a multidimensional Gaussian
distribution for problems of practical interest, although many promising improvements
have been suggested (e.g. DiCiccio et al. 1997). Alternatively, Trotta (2007) explored
the use of the Savage-Dickey density ratio for cosmological model selection (see also
Trotta 2008, for a full review of the model selection problem for cosmology), which is a
good alternative when the distributions are appropriately separable and nested.

Finally, this paper considers evaluation of equation (2) directly. The MCMC sim-
ulation samples the posterior distribution by design, and therefore, this sample can be
used to construct volume elements in k-dimensional parameter space, dθ, e.g. when
Ω ⊂ Rk. The volume will be sparsely sampled in regions of relatively low likelihood
and the volume size must be chosen to minimize the bias and variance. The often-
used approach from computational geometry, Delaunay triangulation, maximizes the

1We use Ã to denote the computational estimate of A from a point set. This may be either a
statistical estimator or a numerical estimate.
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minimum angle of the facets and thereby yields the “roundest” volumes (e.g. de Berg
et al. 2008). Unfortunately, the standard procedure scales as O(kN2) for a sample of
N points. This can be reduced to O(N log N + Nk/2) using the flip algorithm with
iterative construction (Edelsbrunner and Shah 1966) but this scaling is prohibitive for
large N and k typical of many problems. Rather, in this paper, we consider less optimal
but tractable kd-trees and hyperoctrees for space partitioning (the Volume Tessellation
Algorithm, VTA, see Section 2 and Appendix). However, we will see in Section 2 that
the expression for Z may be reformulated rigorously with an appropriate choice Ωs ⊂ Ω
to exclude the sparsely sampled regions that dominate the variance induced by the
space partition. Together, the NLA and VTA provide robust alternatives to computing
the the marginal likelihood with errors |δ log Z|<∼ 0.5 for models with dimensionality
k ≤ 20. An in-depth report for an astronomically relevant case study—the inference
galaxy image properties—is in preparation.

This paper is organized as follows. In Section 2, we apply Lebesgue integration to
the marginal likelihood computation. This development explores the HMA and direct
evaluation from the numerical standpoint and leads to an improved approach outlined
in Section 3. In short, the proposed approach is motivated by methods of numerical
quadrature rather than sample statistics. Examples in Section 4 compare the application
of the new algorithms to the HMA and the direct integration of equation (2). The overall
results are discussed in Section 5.

2 Numerical evaluation of the marginal likelihood inte-
gral

Consider the integral

I =
∫

Ω

f(θ) dθ (7)

where f(θ) is a density and θ has dimensionality k. Rewritten as a Lebesgue integral,
I becomes

I =
∫ sup{f(θ):θ∈Ω}

0

M(y)dy (8)

where

M(y) =
∫

f(θ)>y

dθ. (9)

The Lebesgue integral (eq. 8) describes the measure M(y) associated with each value of
the density f(θ). We now apply this to the evaluation of the marginal likelihood from
the sampled posterior distribution. We choose a subset Ωs of the original domain Ω
sampled by the Markov chain. The choice for the subset will be motivated by numerical
analysis described below. The integral in equation (2) states that marginal likelihood
is the expectation of the likelihood with respect to the prior distribution. This is the
same as equation (8) with P (θ|M)P (D|θ,M) replacing f(θ). Alternatively, returning
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to equation (4), the integral Z ≡ P (D) is implicitly defined by

P (D)
∫

Ωs

dθ P (θ|D)
P (D|θ) =

∫

Ωs

dθ P (θ) ≡ J. (10)

Since
∫
Ω

dθP (θ) = 1 and Ωs ⊂ Ω, it follows that J ≤ 1. Defining Y ≡ 1/P (D|θ), the
Lebesgue integral on the left-hand-side of equation (10) is

K ≡
∫

Ωs

dθ P (θ|D)
P (D|θ) =

∫ Y1

0

M(Y ) dY =
∫ Y1

Y0

M(Y ) dY + M(Y0)Y0 (11)

with measure function

M(y) =
∫

Y (D|θ)>y

dθ P (θ|D), (12)

Y0 = inf{Y (D|θ) : θ ∈ Ωs}, and Y1 = sup{Y (D|θ) : θ ∈ Ωs}.
The Monte Carlo evaluation of K in equation (11) using a sample from the pos-

terior distribution motivates the HMA. The HMA fails owing to domination by in-
dividual terms with small values of P (D|θ) (i.e. large values of Y ). Appendix 1
demonstrates that M(Y ) ∝ Y −1−b for normally-distributed P (D|θ) and P (θ) where
b = Var[P (D|θ)]/Var[P (θ)]. That is, the integral expression for K will be consistent if
M(Y ) decreases faster than Y −1 as Y → ∞. We conclude that the NLA will be nu-
merically well-conditioned only for problems with informative prior distributions. For
these cases, K may be evaluated numerically with error estimates using the quadrature
rule described in Appendix 2; this is the Numerical Lebesgue Algorithm (NLA). This
appendix further shows that the standard expression for the HMA can be derived from
the NLA.

Because the numerical procedure described in Appendix 2 trims the sample to elim-
inate intervals in Y with large error from equation (11), the evaluation of Z ≡ P (D)
using equation (10) requires an estimate of the integral J over the trimmed domain
Ωs. Appendix 3 describes a volume tessellation algorithm assigning a measure to each
sample from the target distribution as follows: ∪jωjs ⊆ Ωs with ωjs ∩ ωks = ∅, j 6= k.
The resulting integral, then, may be evaluated using the Lebesgue or Riemann theory as
described in Appendix 3; this is the Volume Tessellation Algorithm (VTA). The former
is useful when the smallest cells in the tessellation contain more than a single sample.
The two theories give identical results in the limit of a single sample per cell.

Note that Z may be evaluated directly from its definition using the VTA. Following
the development from equation (10), we have

Z ×
∫

Ωs

dθ P (θ|D) =
∫

Ωs

dθ P (θ)P (θ|D). (13)

The subdomain Ωs is arbitrary but should be chosen to minimize the variance of the
integrals on the right- and left-hand sides of equation (10). The Monte Carlo evaluation
of the integral on the left-hand side is simply the fraction of the posterior sample in Ωs
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relative to Ω: F (Ωs) ≡
∑N

i=1 1θ∈Ωs/N where 1{·} is an indicator function. If Ωs = Ω,
then F (Ωs) = 1. This allows us to write equation (13) in the convenient form:

Z =
1

F (Ωs)

∫

Ωs

dθ P (θ)P (θ|D). (14)

The factor F (Ωs) corrects the normalization Z for the excluded part of the domain. As
in the case of the NLA, the posterior sample may be trimmed to eliminate the very
low density regions of the parameter space that contribute significant variance to the
estimates of the right-hand side. The measure function for the integral on the right-hand
side take the form

M(y) =
∫

P (θ|D)>y

dθ. (15)

This approach to computing Z is consistent for all M(y). For many problems of interest
(e.g. with weakly informative prior distributions), P (θ) will be slowly varying over Ω
while P (θ|D) will be large over a small subset of Ω. Therefore, the numerical evaluation
of J only weakly depends on the details of the tessellation while the evaluation of Z
may depend strongly on the tessellation. Tests suggest that the bias resulting from
the tessellation details decreases slowly with sample size N for Ωs = Ω. Therefore, the
NLA often outperforms the VTA when M(y) decreases fast enough for consistency. The
performance of the VTA may be improved by careful choice of Ωs.

3 The new algorithms

We now present the implementation details of two new algorithms, the Numerical
Lebesgue Algorithm (NLA) and the Volume Tessellation Algorithm (VTA), that im-
plement the strategies described in Section 2 and in Appendix 2 and Appendix 3. The
NLA computes K̃ and VTA computes J̃ from equation (10) and Z̃ from equation (2).
We will assume that the integral K exists and this can be checked empirically by plotting
the partial quadrature sums as shown in Figures 8 and 9.

3.1 Description: NLA

Begin with an MCMC sample of size N from the posterior distribution. Sort the samples
in order of increasing values of likelihood Lj ≡ P (D|θj), and compute ∆j (eq. 28) with
j = 1, . . . , N to find the first value of j = n satisfying ∆j < ε∗. Then, compute the
Mj for j = n, . . . , N using equation (25). This equation estimates M by counting the
fraction of the MCMC sample satisfying the domain restriction in equation (9). One
may estimate the effect of discreteness by computing Mj using both the restriction
P (D|θ) < Lj and P (D|θ) ≤ Lj (or, equivalently, P−1(D|θ) > Yj and P−1(D|θ) ≥ Yj )
to obtain lower and upper estimates for M(Y ). Then, these yield Riemann-like upper
and lower bounds on K̃. The criteria from equation (28) may be applied to identify
and eliminate discontinuities in M(Y ). Excepting the numerical sort, the work required
to implement this algorithm is no harder than the HMA. As described in Section 2
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and Appendix 1, K (eq. 11) will not exist for many common problems, such as a
Gaussian-process likelihood function with an uninformative uniform prior distribution
(see Appendix 1). This algorithm will diagnose this condition directly from the posterior
sample.

3.2 Description: VTA

The VTA uses a spatial partition to estimate the volume ∪jωsj ⊂ Ωs associated with a
sample size m ≤ c. Any cell whose sample count exceeds a predefined value c is further
subdivided (see Appendix 3). We have explored two easy-to-implement trees. The first,
the kd-tree, splits Rk on planes perpendicular to one of the coordinate system axes. Our
implementation splits at the median value along one of the coordinate axes (a balanced
kd-tree). Traditionally, every node of a kd-tree, from the root to the leaves, stores
a point. Here, the points are stored in leaf nodes only, although each splitting plane
still goes through one of the sample points. This choice facilitates the computation of
the volume spanned by the points for each node as follows. Let cj be the number of
parameter-space points θ[n], n = 1, . . . , cj in the jth node. The volume for Node j, Vj ,
is geometrically determined by the splitting planes, or one may take

Vj =
k∏

i=1

[
max(θ[1]

i , . . . , θ
[cj ]
i )−min(θ[1]

i , . . . , θ
[cj ]
i )

]
(16)

where θi is the ith component of the vector θ. For simplicity, one may choose c ≡ cj = 2q

for some fixed integer q to determine an exclusive volume partition of the parameter
space spanned by the point set, the frontier. One chooses the value of q to be large
enough to limit the sampling bias of field quantities in the volume but small enough
to resolve the posterior modes of interest. The values q ∈ [2, . . . , 6] seem to be good
choices for many applications.

The second tree, the hyperoctree (or 2k tree), partitions each node into 2k children
by bisecting the range of the parent node in each dimension. Unlike the kd-tree, all
children need not be and generally will not be branches with leaves. We define a
terminal branch to be a branch with leaves. Since a terminal branch will have between
0 and c leaves, one may estimate that the hyperoctree will have roughly twice the
number of terminal branches than the kd-tree has cells. The volume for ωs at each
terminal branch is uniquely determined by its branching history, and its coordinate
boundaries are uniquely specified by retaining the branching information at each node.
It is convenient to encode the ‘right’ and ‘left’ branching history into a binary sequence
stored as an integer key. Alternatively, one may use equation (16) to assign the volume
for ωs.

I discuss two alternative approaches in Appendix 3 for computing Z or J using the
space partition. The first is based on the Lebesgue integral using equations (8), (31)
and (32) to evaluate the measure function M(Y ). The second is based on the Riemann
integral (eq. 7) using equation (33). Practically, both approaches may be computed for
all evaluations without loss of efficiency since the computational work is dominated by
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the tree construction. For the integral J , Ωs should be chosen to eliminate quadrature
intervals that contribute large error to the result. For the integral in equation (14), Ωs

should be chosen to eliminate regions with very low probability density, if possible.

3.3 Computational performance

As with the NLA, the Lebesgue formulation facilitates performance and error analysis
(see Section 4 for examples). In addition, the bias and variance can be reduced in
some cases by performing a coordinate transformation. For volume tessellation, we
can decrease the volume in the tails of the distribution, which is especially useful for
dimensions with large or infinite domains. This may be accomplished with a careful
choice of Ωs. In most cases, it is sufficient to identify the region of the sample space
with high posterior density and choose Ωs by restricting the range in each dimension
to include this region only. Alternatively, for irregular or complex volumes, I have had
some success with the mapping

x → y ≡ t√
1 + t2

where t =
x− x̄

s
, (17)

x̄ is the mean of the posterior distribution in x, and s2 is the sample variance. Clearly
y ∈ (−1, 1) for x ∈ (−∞,∞).

The NLA begins with a sort of the likelihood sequence {Lj} and this scales as
O(N log N). The computation of the measure function, Mj , followed by the computa-
tion of K̃ is O(N). The sequence {Mj} is also useful for diagnostics as we will explore in
the next section. However, in many cases, we do not need the individual Mj but only the
differential values Mj −Mj+1 to compute K̃, which contains a single term in equation
(25). The values of likelihood might range over many orders of magnitude. Owing to
the finite machine mantissa, the differential value may be necessary to achieve adequate
precision for large N . The algorithm computes the lower, upper, and trapezoid-rule
sums (eq. 26) for the final integral K̃. For large posterior samples, e.g. N > 10000,
the differences between K [l] and K [u] (eq. 26) are small and the error is dominated by
volume tessellation (see below and Appendix 3). Indeed, a more useful error estimate
may be obtained by a random partitioning and subsampling of the original sequence
{Lk} to estimate the distribution of Z̃ (see the examples in Section 4). In practice,
computing K̃ from a posterior sample with N = 400000 takes 0.2 CPU seconds on a
single 2 GHz Opteron processor. Although NLA could easily be parallelized over n
processors to reduce the total run time by 1/n, this seems unnecessary.

For the VTA with a kd-tree, the computational complexity for building the tree
from the N sampled points in parameter space scales asO(N log2 N) using the Quicksort
algorithm at each successive level (this could be improved, see Cormen et al. 2001). The
tree walk required to sum over differential node volumes to obtain the final integral scales
as O(N log N). Similarly, both constructing and walking the hyperoctree to obtain the
final integral requires O(N log N) operations. I confirmed this scaling empirically using
the multidimensional example described in Section 4.3 with dimension k ∈ [1, 40] and
sample size N ∈ [1000, 10000000]. Computing J̃ and Z̃ directly from a posterior sample
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with N = 400000 and k = 10 takes 4.4 CPU seconds on a single 2 GHz Opteron
processor and, therefore, the computation is unlikely to be a computational bottleneck
in the inference overall, even when resampling to produce a variance estimate. The
leading coefficient appears to vary weakly with the underlying distribution, although
there could be undiscovered pathological cases that degrade the performance.

The kd-tree and hyperoctree have different and, in a sense, complementary partition-
ing strategies. The kd-tree ensures that all terminal branch nodes has the same number
of leaves. Consequently, a particular ωs containing points in the tail of the posterior
distribution may have volumes with a large extent in one or more dimensions. The bal-
anced kd-tree used here can make volumes whose aspect ratios are arbitrarily large. In
addition, the kd-tree algorithm divides space into two subregions at each node. There-
fore, a reliable volume partition requires N À 2k points to ensures that each dimension
has been affected by the data distribution. With current hardware, this criterion limits
the dimensionality to k log2(108) ≈ 25. Future improvements in efficient partitioning
of high-dimensional spaces may improve this limitation. Empirically, N = 400000 is
sufficient for k = 20 in the tests below. Batch sample variance requires much larger
chain lengths and, therefore, we resort to bootstrap resampling estimates in the tests
below, especially for k > 10.

The hyperoctree algorithm, conversely, always creates self-similar subvolumes. This
construction better adapts to multimodal distributions and is not adversely affected by
large voids in the sampling of Rk. On the other hand, the hyperoctree is recursively
built with a stopping criterion of leaves per terminal node m ≤ c. This may result
in terminal branches with low volume filling factors which leads to oscillation in the
integral value with sample size (see Appendix 3). This possibility motivates choosing
the largest value c that still resolves the structure in the target distribution. The number
of points required for the hyperoctree is clearly distribution dependent, but empirically,
the criterion N À 2k seems to be a good guide. For both algorithms, the regions of low
posterior probability density lead to large subvolumes. If Ωs may be chosen to eliminate
the low-density regions (e.g. by circumscribing the dominant mode), the error owing to
tessellation variance will be greatly reduced.

4 Tests & Examples

To estimate the marginal likelihood using the methods of the previous section, we may
use either the NLA to estimate K and the VTA to estimate J or use the VTA alone
to estimate Z using equation (14). Examples below explore the performance of these
strategies. The MCMC posterior simulations are all computed using the Bayesian Infer-
ence Engine (BIE, Weinberg and Moss 2010; Weinberg 2012), a general-purpose parallel
software platform for Bayesian computation. All examples simulate the posterior distri-
bution using the parallel tempering scheme (Geyer 1991) with T = 128 and 20 tempera-
ture levels or the differential evolution algorithm (Ter Braak 2006). MCMC convergence
is assessed using the subsampling algorithm described in Giakoumatos et al. (1999), a
generalization of the Gelman and Rubin (1992) test.
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4.1 Fidelity of the NLA and the VTA

For a simple example, let us compute the marginal likelihood for a data sample D of
100 points x ∼ N (0.5, 0.03) modeled by N (θ, 0.03) with a uniform prior distribution
θ ∼ U(−0.2, 1.2). The marginal likelihood Z can be computed analytically from D.
Application of the NLA for K̃ and the VTA for J̃ to 300,000 converged states using the
parallel tempering algorithm gives a value of log Z̃ = 31.31± 0.04 (95% CI), consistent
with the analytic result: log Z = 31.36. The autocorrelation for the posterior sample
drops to zero at a lag of 8. Appendix 2 describes several numerical truncation criterion
for the Riemann sum leading to K̃. Here, I truncate the sum when the logarithmic
spacing in the likelihood exceeds the predefined limit h∗. A value of h∗ = 0.05 seems
appropriate from numerical considerations, although experiments suggest that the al-
gorithm is not sensitive to this choice as long as h∗ is not so small as to decimate the
sample or so large that error-prone outliers are included. Computation of the batched
standard deviation yields equivalent values and 95% CI. The VTA with Ωs = Ω yields
log Z̃ = 31.34 ± 0.01, consistent with the analytic result and with smaller bootstrap
variance than the NLA. The 95% confidence intervals are produced by sampling ensem-
bles of 75,000 states from the converged chain with replacement. Occasional extreme
tail values result in some anomalously small values of log Z̃ for the HMA: 29.24+4.51

−272.6.
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Figure 1: Details of the marginal likelihood computation illustrating the numerical
Lebesgue approach. Panel (a) compares the run of the measure M̃ function with Y ≡
L0/L computed from posterior simulation with N = 400000 elements using the NLA
with the limiting case for existence: M(Y ) ∝ 1/Y . Panel (b) shows the Lebesgue
quadrature term, K̃(Y ) − Y0 from eq. 22. K̃lower/upper − Y0 are the lower and upper
Riemann sums. This illustrates the essence of the algorithm: anomalously small values
of L degrade the fidelity of M̃ at large Y but these same values of M̃ make negligible
contribution to K̃ and, therefore, can be truncated from the quadrature sums.

Figure 1 illustrates the details of the NLA applied to this computation. For ease
of notation, let L ≡ P (D|θ). Panel (a) plots M̃ from equation (25) where Y is the
inverse scaled likelihood, Y ≡ L0/L and L0 = sup{L : θ ∈ R}. With this definition,
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Y0 = 1. The run of M̃ with Y drops more quickly than 1/Y near the posterior mode
and again for very large values of Y (i.e. small likelihood values). The inset in this
figure shows M̃ on a linear scale. The measure function M̃ , and hence the integral K̃,
is dominated by large values of L as long as M decreases sufficiently fast (see Appendix
1). The plot in Figure 1a readily reveals such failures. In this case, Figure 1a suggests
that M(Y ) ∝ 1/Y at moderate values of Y with a fall off at large Y owing to the cutoffs
in the uniform prior distribution. Therefore, the variance of K̃ will be large although
K formally exists (cf. Figs. 8 and 9). Figure 1b plots the cumulative sum defining
the quadrature of Z̃ in equation (26), beginning with the largest values of likelihood
first. The contribution to Z̃ is roughly uniform over the range of log Y , rolling over near
log Y ≈ 6. A more informative prior would increase the domination at smaller values of
log Y as described in Appendix 1. In addition, NLA provides upper and lower bounds,
and thereby some warning when the estimate is poorly conditioned, e.g. owing to an
inappropriate choice for h∗.
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Figure 2: Details of the marginal likelihood computation using the Lebesgue version of
the volume tessellation approach. Panel (a) compares the run of measure function M̃(Y )
and dM̃(Y )/dY scaled by the maximum value, M̃(0). Panel (b) shows the Lebesgue
quadrature term, Z̃(Y ) and dZ̃(Y )/dY from eq. 32. The inset panel shows the scale
absolute error defined in Section 4.3.

The computational details for the VTA are shown in Figure 2. For ease of notation,
let P ≡ P (θ|D). The measure function M(Y ) is computed from equation (32) where Y
for the VTA is the scaled posterior probability: Y ≡ P/P0. In comparison with Figure
1a, note that the ordinate scale is linear and that dM(Y )/dY is peaked at large Y and
not at small Y . This results in a straightforward, stable numerical quadrature owing to
no existence issues. To illustrate the contribution to Z̃, we plot Z̃(Y ) ≡ ∫ Y

0
M(Y ) dY .

The inset in Figure 2b plots the cumulative absolute error from the upper and lower
Riemann estimates using equation (33) for each interval less than Y ; i.e. the quadrature
errors are tiny.

An MCMC posterior sample has dθP (θ|D) = constant (asymptotically), and this
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may result in poorly explored tails. The effect of these tails may be reduced in several
ways. First, as described in Section 2, we may choose a subdomain Ωs that trims
off the regions of low posterior density. If this can be done reliably by restricting
parameter ranges or by a simple transformation, we may compute Z using equation
(14) without further ado. Secondly, if an appropriate Ωs cannot be found easily, the
tails may be improved by sampling from an over-dispersed posterior distribution. For
example, consider sampling from the “powered-up” distribution P (θ|D)1/T . Values
of T > 1 better sample the tails of the distribution and provide better accuracy of the
measure function M(Y ) at small Y but do so at the expense of requiring a larger sample
to sample the modal region (see Appendix 3 for additional discussion). On the other
hand, many advanced MCMC algorithms employ powered-up target distributions to
improve mixing, and their output may be saved and reused for the computation of Z.

A more realistic assessment of the overall variance can be obtained by subsampling.
The CPU time for these algorithms is sufficiently small that I recommend doing this in
general. Consider the following experiment: (1) the posterior is simulated by MCMC
to obtain a chain of 300,000 states; (2) the first half of the chain is discarded; (3)
the second-half is randomly subsampled with replacement to obtain 128 samples of
10,000 states; (4) the marginal likelihood for each is computed using the NLA, VTA
(kd-tree-based Riemann version with median value of the posterior probability in each
subvolume), the Laplace approximation, and the HMA (approximately 2 CPU minutes
in total). For all but the HMA, increasing the number of states decreases the variance
for each distribution; samples with 10,000 states best revealed the differences between
the algorithms on a single scale.

Figure 3 shows the distribution of Z̃ for the resampled ensembles for a sequence of
four different prior distributions, each one successively more informative. Figure 3a is
the model described at the beginning of this section; the range of the prior distribution
is much larger than the values sampled from the posterior distribution. The colors are
composited2 with α = 0.5 (e.g. HMA over VTA is brown, HMA over NLA is purple,
Laplace over HMA is blue-gray, Laplace over VTA is blue-green). In Panel (d), the
range is within the range of values sampled by the posterior in Panel (a). The analytic
value for each panel is shown as a dashed vertical line.

The prior distributions for Panels (a) and (b) are nearly flat over the range of the
posterior samples and the HMA performs poorly as expected (see insets); the truncation
error criterion for the NLA removes the outliers from the HMA but slow decrease of
M(Y ) at large Y results in a tail-heavy biased estimate. As the prior distribution
becomes more informative, the outlier values in the likelihood are less extreme, the
heavy tail is truncated, and the HMA becomes more accurate. Panel (d) shows the
result of a strongly informative prior distribution: the VTA remains the most precise
of the four algorithms, but the HMA and NLA become more precise with a small bias.
The width of the prior distribution in Panel (c) is approximately six times the width
of the likelihood function. This is sufficient to prevent extreme outliers and the wild
estimates of Z̃ by the HMA, but the HMA bootstrap distribution for Z̃ is broad and

2For each color channel, value c1 over c0 yields the new value c = (1− α)c0 + αc1.
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(a) −0.2 < x̄ < 1.2 (b) 0.2 < x̄ < 0.8

(c) 0.4 < x̄ < 0.6 (d) 0.46 < x̄ < 0.54

Figure 3: Histogrammed distributions of Z̃ for the NLA, VTA, HMA, and the Laplace
approximation for 10,000 randomly resampled states of a converged posterior distri-
bution of 200,000 states. The dashed line shows the true value computed by directly
integrating Z from eq. 2. Each panel is labeled by the range of the flat prior distribution
for the position of the normal distribution.
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Figure 4: As in Fig. 3c for NLA and VTA with Ωs ⊂ Ω chosen to include half of the
sample centered on the posterior mode.

biased.

In Panels (a)–(c), the prior distribution places little restriction on the resulting
posterior sample, and since the likelihood function is normally distributed, the Laplace
approximation is a close match to the true distribution. Indeed, it performs better than
the HMA and NLA although it overestimates the marginal likelihood value. One should
not expect such good performance in general. In the final case, Panel (d), the prior is
strongly informative. The related HMA and NLA provide underestimates with similar
overall distributions. The Laplace method performs adequately as expected, although
it retains its upward bias. The VTA provies a narrow estimate with small bias in all
cases.

Recall that the NLA uses the VTA for estimating the right-hand side of equation
(10). These VTA-based estimates often may be further improved by restricting Ωs

as illustrated in Figure 4. This figure repeats the marginal likelhood computation
from Figure 3c with Ωs chosen to include half of the posterior sample by decreasing
the parameter range symmetrically about the modal value. Although the estimate is
biased, the variance is dramatically reduced and the range of the distribution includes
the correct value.
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4.2 Non-nested Linear Regression Models

Here, we test these algorithms on the radiata pine compressive strength data that were
also analyzed by Han and Carlin (2001) and a number of previous authors. We use
the data tabulated by Han and Carlin from Williams (1959). These data describe the
maximum compressive strength parallel to the grain yi, the density xi, and the resin-
adjusted density zi for N = 42 specimens. Carlin and Chib (1995) use these data to
compare the two linear regression models:

M = 1 : yi = α + β(xi − x̄) + εi, εi ∼ N (0, σ2), i = 1, . . . , N

M = 2 : yi = γ + δ(zi − z̄) + εi, εi ∼ N (0, τ2), i = 1, . . . , N

with M = {1, 2}, θ1 = {α, β, σ2}T , and θ2 = {γ, δ, τ2}T . We follow Han and Carlin
(2001) and Carlin and Chib (1995), adopting N ({3000, 185}T ,Diag{106, 104}) priors
on {α, β}T and {γ, δ}T , and IG

(
3, [2 ∗ 3002]−1

)
priors on σ2 and τ2; IG(a, b) is the

inverse gamma distribution with the density function

f(v) =
e−1/(bv)

Γ(a)bava+1

where v > 0 and a, b > 0. Han and Carlin point out that these priors are approximately
centered on the least-squares solution but are otherwise rather vague. Using direct
integration, Green and O’Hagan (1998) find a Bayes factor of about 4862 in favor of
Model 2.

Table 1: Marginal likelihood for non-nested linear regression models

Model log Z(M = 1) log Z(M = 2) B21 ∆%

NLA −317.29+0.08
−0.07 −308.77+0.06

−0.06 5014+101
−50 +3.1

VTA (kd) −308.41+0.02
−0.02 −300.06+0.02

−0.02 4675+173
−166 -1.3

VTA (2k) −309.31+0.01
−0.01 −300.83+0.01

−0.01 4837+73
−110 -0.5

Laplace −306.82+0.03
−0.03 −298.3+0.04

−0.03 5014+310
−339 3.1

The subscripted (superscripted) values show the offset
from median for the 2.5% (97.5%) quantile.

Table 1 describes the results of applying the algorithms from the previous sections
to a converged MCMC chain of 2.4 million states for both models using the differential
evolution algorithm. The quoted value is the median and the bounds are the p = 0.025
and p = 0.975 quantiles computed from 1024 bootstrap subsamples of 200,000 states.
Generally, the variance of the distribution in Z̃ decreases as the sample size increases.
I chose a sample size of 200,000 to achieve a 95% CI of 0.1 or smaller in the logarithm
of the marginal likelihood for both the NLA and the VTA. These estimates are based
on bootstrap resampling. The sample batch variance method again yields comparable
limits; e.g. log Z̃(M = 1) is 308.49 ± 0.016 (95% CI). The autocorrelation drops to
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zero quickly for the chain; the sample autocorrelation at lag 1 is 0.012. The second and
third columns of the table are the values of marginal likelihood for Models 1 and 2 for
each of the three models listed in the first column. The fourth column is the Bayes
factor for Model 2 to Model 1, B21, and the fifth column is the relative difference from
the exact result. The NLA, the VTA with both the kd-tree and hyperoctree spatial
partitions, and the Laplace approximation yield values within a few percent of the true
value of B21. The VTA presents the smallest variance, followed by Laplace and then
NLA. The HMA was computed but the samples were too broadly distributed to be
of use. A recomputation with a smaller volume chosen to reduce the sample by half
yields comparable values for the Bayes factors. Figure 5 shows the distribution of B21

for the samples; counter to the trend from Section 4.1, both the VTA and Laplace
approximation are more biased than the NLA here.

The value h∗ used to compute the NLA will vary with the problem and the sample
size. Therefore, some analysis of Z̃ is required to choose an appropriate value. As an
example, Figure 6 plots the median and 95% confidence region for the bootstrap sampled
marginal likelihood computation as a function of h∗ for the regression problem. The
value of the VTA is shown for reference. The values for Z̃ track each other closely for
0.001 ≤ h∗ ≤ 0.008. For h∗ < 0.001, there are too few states for a reliable computation
of Z̃. For h∗ > 0.008, the NLA values are sensitive to the low-likelihood tail, resulting
in an increasing variance with increasing h∗.

4.3 High-dimension parameter spaces

We adopt a ‘data-free’ likelihood function for the parameter vector θ with rank k:

P (D|θ) = L(θ) =
(
2πσ2

)−k/2
e−

∑k
i=1 θ2

i /2σ2

with σ2 = constant. Further, we assume that each element θj of the vector θ is normally
distributed with a mean of 0 and a variance of 1. The resulting expression for the
marginal likelihood may be directly integrated, yielding P (σ2, k) =

[
2π(1 + σ2)

]k/2.
A straightforward analytic calculation (see Appendix 1) reveals that the integrand in
the integral for J (eq. 10) will increasingly steepen towards large values of 1/L as k
increases with J →∞ as σ2 → 0. This suggests that the quality of the NLA evaluations
will degrade with increasing k.

For each model of dimension k, we compute a Markov chain sample of the posterior
distribution using the Differential Evolution algorithm (DE, Ter Braak 2006). This
algorithm evolves an ensemble of chains with initial conditions sampled from the prior
distribution. A proposal is computed by randomly selecting pairs of states from the
ensemble and using a multiple of their difference; this automatically ‘tunes’ the proposal
width. We have further augmented this algorithm by including a tempered simulation
step (Neal 1996) after every 20 DE steps (see Weinberg and Moss 2010; Weinberg 2012,
for more details).

Each row in Table 2 describes the application of the NLA, VTA (both the Rie-
mann and Lebesgue versions for the kd-tree), and Laplace approximation to a model
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Figure 5: The histogrammed distribution of Bayes factors for the 1024 samples using
the NLA, VTA, and Laplace approximation. Although the variance for the NLA is
larger than the VTA or Laplace approximation, its bias is small.

of dimension k. The MCMC simulations produce approximately 1.4 million converged
states. The convergence is tested using the Gelman-Rubin statistic. Each converged
chain is resampled with replacement to provide 1024 subsamples of n states. The value
N ∈ [10000, 400000] is chosen to achieve 95% confidence intervals of approximately 1%
of Z̃ or smaller. The 95% confidence intervals on Z̃ are indicated as sub- and super-
scripts. The Riemann VTA determines volume ωs spanning c samples and approximates
the integral by multiplying the volume by the median value of the sample. Finally, for
each algorithm, the table presents the relative error: ∆% ≡ |log Z̃− log Z|/| log Z|×100.
The batched standard deviation was computed for k = 1, 2, 5, and 10 and yields bounds
consistent with the bootstrap-resampled values listed in Table 2; the chain size is pro-
hibitively large for the VTA at k = 20 for a reliable computation of the batched standard
deviation.

As expected, the NLA performs poorly for large k owing to the increasingly larger
dependence on small values of the likelihood. The VTA results are very encouraging:
the relative error is within a few percent for 1 ≤ k ≤ 40. For k = 40, I computed Z̃ with
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Figure 6: Comparison of the NLA and VTA as a function of h∗ for Models 1 and 2. The
upper panel shows the run of Z̃ for increasing h∗; the lower panel shows the number of
states out of 100,000 that meet the h∗ threshold criterion. The median (95% confidence
region) is shown as a solid line (shaded band).

sample sizes of 400,000 states. Both the NLA and VTA tend to slightly overestimate Z
for large k. It is surprising and encouraging that the accuracy of the VTA results exceeds
the accuracy of the Laplace approximation for multivariate normal distributions.

Figure 7 depicts the intermediate numerical steps in computing Z̃ by the Lebesgue
construction for the kd-tree and hyperoctree for the eight-dimensional normal distribu-
tion with varying sample size N . In each panel, the plotted quantities are defined as
follows. M̃(P ) is the measure function defined by equation (9). The second two plots
illustrate the contributions to the integral Z̃:

Z̃(P ) =
∫ Pmax

Pmin≈0

dP M̃(P ) =
∫ log(Pmax)

log(Pmin)

d(log P ) M̃(P )P.

Each panel summarizes sixteen uncorrelated samples for each value of N . The solid
line and bands in each plot show the mean and extrema values, respectively, for each
quantity. The top plot (blue) shows the volume associated with points with values of
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Table 2: Test of high-dimensional marginal likelihood
Model NLA VTA Laplace

k Exact log Z̃ ∆% log Z̃Riemann ∆% log Z̃Lebesgue ∆% log Z̃ ∆%

1 -1.468 −1.54+0.01
−0.01 -5.0 −1.49+0.06

−0.00 -1.4 −1.49+0.00
−0.00 -1.4 −1.39+0.00

−0.00 +5.1

2 -2.936 −3.20+0.03
−0.03 -9.0 −2.94+0.29

−0.00 -0.1 −2.95+0.00
−0.00 -0.4 −2.67+0.01

−0.01 +9.1

5 -7.34 −7.75+0.01
−0.01 -5.5 −7.29+0.47

−0.00 +0.6 −7.40+0.01
−0.01 -0.8 −6.88+0.02

−0.01 +6.3

10 -14.68 −23.61+0.05
−0.03 -60.8 −14.45+0.02

−0.01 +1.6 −14.70+0.02
−0.01 +1.6 −11.00+0.08

−0.11 +25.1

20 -29.36 −39.63+0.06
−0.06 -35.0 −32.40+0.32

−0.30 -10.4 −28.51+0.05
−0.02 +2.9 −18.15+0.09

−0.14 +38.2

probability greater than P , the middle plot (red) shows the contribution of that volume
between probabilities P and P +dP to the marginal likelihood integral, and the bottom
plot (green) shows the contribution to the marginal likelihood integral for all probability
values smaller than P . In all cases, the dominant contribution to Z̃ comes from neither
tail but rather the mid-range values of probability. The computation with both trees
exhibits shifts in Z̃ that are much larger than the sample variance. This is caused
by the changing distribution of cell volumes for ωs with changing sample size. The
number of volume bisections for the kd-tree and the fraction of smaller volume cells
for the hyperoctree increases with sample. A thresholding effect becomes increasingly
apparent for small values of c. The mixture of differing volume sizes for the hyperoctree
partition causes the multiple peaks in the run M̃(P )P . Despite these differences, both
trees yield results of comparable accuracy.

4.4 A multimodal example

All of the examples up to this point have been unimodal. We now explore a mixture of
three normal distributions in four dimensions. Each component has equal probability:
w = 1/3. The centers of each of the three components are xc = [x0, x1, x2, x3] =
[1/2,−1/2, 0, 0], [−1/2,−1/2, 0, 0], [0, 0, 1/2, 0] with σ2 = 0.032 for each. We sample
N = 384 points from this model and infer the three centers (x)c and weights w. The
likelihood function becomes

P (D|θ) =
N∏

i=1




3∑

j=1

wj
exp(−(xi − xc j)2/2σ2)

(2πσ2)2


 . (18)

Since
∑3

j=1 wj = 1, there are 14 independent variables. We assume a Dirichlet prior
with a shape parameter of α = 4 suppresses domination by a single component. The
prior distribution for the center is uniform in [−1, 1] in each dimension xj .

When the separation between the components is much larger than σ, as it is in this
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kd-tree, N = 3× 105 hyperoctree, N = 3× 105

kd-tree, N = 106 hyperoctree, N = 106

kd-tree, N = 3× 106 hyperoctree, N = 3× 106

Figure 7: Illustration of the the measure function and the cumulative integral Z̃(P ) as
a function of log P for the VTA algorithm using kd-trees and hyperoctrees for various
sample sizes N as labeled. Although the hyperoctree is prone to oscillation owing to the
correlation of occupation fraction with cell size, this tree yields more accurate results
for the same eight dimensional normally distributed samples.
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Table 3: Comparison of NLA and VTA for a multimodal model in 14 dimensions

.

c NLA ∆ VTA (Riemann) ∆ VTA (Lebesgue) ∆

8 2783.4+1.0
−1.0 −3.0 2780.1+0.8

−0.8 −6.3 2782.4+1.0
−1.1 −4.0

16 2785.7+0.7
−0.8 −0.7 2781.8+0.7

−0.5 −4.6 2784.2+0.8
−0.7 −2.2

32 2787.3+0.6
−0.5 +0.8 2783.1+10.3

−0.4 −3.3 2785.6+0.7
−0.5 −0.8

64 2788.6+7.9
−0.4 +2.2 2784.1+10.1

−0.3 −2.3 2786.9+7.6
−0.5 +0.48

128 2789.6+8.6
−0.4 +3.2 2784.9+10.0

−0.2 −1.5 2788.0+8.0
−0.4 +1.6

256 2790.5+8.7
−0.3 +4.1 2785.5+10.0

−0.2 −0.92 2789.0+8.3
−0.4 +2.6

case, the likelihood function is well-approximated by

P (D|θ) ≈
3∏

j=1

Nj∏

ij=1

wj
e−(xi−xc j)

2/2σ2

(2πσ2)2

= (2πσ2)−2N
3∏

j=1

w
Nj

j e−(x̄j−xc j)
2/2σ2

e−(Nj−1)s2
j/2σ2

, (19)

where Nj is the number of points in component j and x̄j is the mean for the Nj points
with j = 1, 2, 3. Similarly, s2

jk is the sample variance for dimension k for each component
j with s2

j =
∑3

k=0 s2
jk. Using equation (19), the marginal likelihood may be evaluated

analytically. For our particular data sample, Z = 2786.42.

The posterior distribution is sampled using the tempered differential evolution algo-
rithm described in Section 4.3. From the approximately 2 million converged states, 400
samples of 100,000 are randomly selected and the NLA and the Riemann and Lebesgue
variants of the kd-tree VTA are applied. The results for the NLA and the Riemann and
Lebesgue variants of the VTA are as listed and compared with the analytic result in
Table 3. The systematic bias in computing the volume from the tessellation is readily
apparent. For small values of c and the smallest cell volumes, the volume is slightly
underestimated and the resulting estimates of Z are underestimated. As c increases,
the estimate of Z approaches the exact value, but the subsample variance increases as
well. This is caused by the increasing inhomogeneity of the sampled points across the
volume. As described in Appendix 3, this suggests that one should select c and the
subvolume to be as large as one can to reduce the variance of the probability estimate
within the subvolume but not so large so that the bootstrap variance is large owing to
inhomogeneity. Referring to Table 3, this is c = 16 or 32. This strategy mildly prefers
the Lebesgue variant of the VTA; it has the smallest difference from the analytic value
on either side of the optimal choice, c = 32. Overall, both algorithms perform well here;
the Lebesgue version of the VTA is slightly better on average.
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5 Summary and Discussion

This paper presents two new algorithms for computing the marginal likelihood, Z,
from an MCMC-sampled posterior distribution. Methods for sampling the posterior
distribution with MCMC are well-developed, and robust techniques for evaluating Z
will extend the utility of the often expensive-to-compute posterior sample. Standard
techniques are either limited to low dimensionality, such as direct quadrature, or nearly
normally-distributed samples, such as Laplace approximation. The harmonic mean
approximation (HMA) has the further limitation of non-existence for a number of often
used models (see Appendix 1). An obvious advantage of using the posterior sample
is that the volume of the high-dimensional parameter space is naturally explored in
regions where the posterior density is significant. The methods proposed here borrow
techniques from numerical analysis and Lebesgue theory to compute this integral in
high-dimensional parameter vectors θ with continuous values, e.g. θ ∈ Ω ⊂ Rk.

The first algorithm follows from a Lebesgue reformulation of the HMA (Newton
and Raftery 1994). This development reveals that the integral on the left-hand side
of equation (4) will fail to exist if the measure function M(Y ) where Y = L−1 from
equation (12) decreases too slowly (Appendix 1). Most importantly, the numerical
computation of M(Y ) for a posterior sample can be used to diagnose the lack of existence
of the left-hand side of equation (10) and motivate the choice of a more informative
prior or another evaluation method. Having verified existence, the truncation error
can dominate the quadrature of the left-hand side of equation (4) unless the sample
is appropriately truncated. The Numerical Lebesgue Algorithm (NLA) addresses this
problem by determining a well-sampled subset Ωs ⊂ Ω from the MCMC sample, ex post
facto (eqs. 10 and 11).

The second algorithm, the Volume Tessellation Algorithm (VTA), partitions the sub-
set Ωs ⊆ Ω in parameter space for evaluating the measure function (eq. 9) for both J
(eq. 10) and Z (eq. 2) using a space partitioning tree. Such trees recursively partition a
k-dimensional parameter space into convex subspaces. The VTA is implemented with a
kd-tree (Cormen et al. 2001) for simplicity. The proposed algorithms are a bit more dif-
ficult to implement and have a higher computational complexity than the simple HMA,
but the overall CPU time is rather modest compared to the computational investment
required to produce the MCMC-sampled posterior distribution itself. For a sample
of size N , the sorting required by NLA and VTA has an approximate computational
complexity of O(N log N) rather than O(N) for the harmonic mean. Nonetheless, the
computational time is a fraction of second to minutes for typical values of 105 < N < 108

(see Section 3). Even with this directed sampling approach to numerical quadrature,
the sample size required to resolve features of the same linear scale grows exponentially
with dimensionality k. Nonetheless, these algorithms, and VTA in particular, promise
estimates of the marginal likelihood with sufficient accuracy to compute useful Bayes
factors for model spaces with dimensionality k < 25.

For dimensionality k > 5, our tests favor the VTA over the NLA unless the prior
distribution is strongly informative. Similarly, the VTA is as good as or better than the
Laplace approximation, even for multivariate Gaussian posterior distributions. Tests
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show that the Lebesgue variant of the VTA (using eqs. 31–32) has a smaller variance
than the Riemann variant (eq. 33) owing to its use of sampled values within the small-
est subvolumes. Conversely, because these algorithms exploit the additional structure
implied by smooth, well-behaved likelihood and prior distribution functions, the algo-
rithms developed here will be inaccurate and possibly fail miserably for wild density
functions. So far, no such failures have appeared in practice. Based on current results, I
tentatively recommend relying preferentially on VTA for the following reasons: 1) there
is no concern over the existence of the integral defining the HMA; and 2) it appears
to do well even in a high-dimensional parameter space. Additional real-world testing,
especially on high-dimensional multimodal posteriors, will provide more insight. We are
currently testing these algorithms for astronomical inference problems too complex for
a simple example; the results will be reported in future papers. An implementation of
these algorithms will be provided in the next release of the Bayesian Inference Engine
(BIE, Weinberg and Moss 2010; Weinberg 2012). A stand-alone C++ implementation
of these algorithms is available from the author upon request.

There are several natural algorithmic extensions and improvements not explored
here. One may generalize the stepwise construction of Mi defined in Section 2 to
a smoothed approximation for the computation of M(Y ). The direct integration of
equation (2) using the Riemann variant of the VTA currently ignores the location of
field values in each cell volume. At the expense of CPU time, the accuracy might be
improved by fitting the sampled points with low-order multinomials and using the fits
to derive a cubature algorithm for each cell. A similar generalization of equation (31)
may benefit the Lebesgue version of the VTA. Philippe and Robert (2001) describe
a number of useful techniques for computing MCMC-based Riemann sums and these
may improve the VTA further. In addition, a more sophisticated tree structure may
decrease the potential for bias by providing a tessellation with “rounder” cells with more
adaptivity than the hyperoctree. Lastly, identifying primary modes and restricting Ωs

to the vicinity of these modes using equation (14) may eliminate the need for improved
tree structures as long as the cardinality of Ωs remains large.
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Appendix 1 Consistency of K

The evaluation of K (eq. 11) suffers from unacceptably large errors in common usage.
As an example of the latter, consider the textbook inference of an unknown mean θ
from a sample of N normally distributed points x ∼ N (θ, σ2

x). The likelihood function
is

L ≡ P (D|θ) =
N∏

i=1

e−(xi−θ)2/2σ2
x√

2πσ2
x

= L0e
−(x̄−θ)2N/2σ2

x (20)

where L0 = sup{L : θ ∈ R} and x̄ is the sample mean. Let the prior distribution for θ
be N (θ0, σ

2
θ). Assume that we have used an MCMC algorithm to sample the posterior

distribution of θ.
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Now, let us evaluate K using Lebesgue integration for this example. To compute the
measure function, M(Y ), we solve equation (20) for θ = θ(L), noting that the solution
has two branches. After some algebra, one finds

M(Y ) = 1− 1
2


Φ


 x̄− ȳ + ∆(Y )√

2σ2
p


− Φ


 x̄− ȳ −∆(Y )√

2σ2
p





 (21)

where Φ(·) is the standard normal CDF and

ȳ ≡ σ2
xθ0/N + σ2

θ x̄

σ2
x/N + σ2

θ

, σ2
p ≡

σ2
θσ2

x/N

σ2
x/N + σ2

θ

=
(

1
σ2

θ

+
N

σ2
x

)−1

,

Y ≡ L−1, Y0 ≡ L−1
0 , ∆(Y ) ≡

√
2σ2

x

N
log(Y/Y0).

The values ȳ and σ2
p are the posterior mean and posterior variance of θ respectively. The

value Y0 is the minimum value of Y and ∆(·) describes the offset of θ with increasing
Y . Note that ∆(Y0) = 0 and ∆(Y ) increases monotonically with Y .

Generally, the sample will not cover [Y0,∞) but will be limited from above by the
smallest sampled value of the likelihood Ymax = L−1

min. We define this limited value of
the integral K as

K(Y ) ≡
∫ Y

Y0

dY M(Y ) + M(Y0)Y0 =
∫ Y

Y0

dY M(Y ) + Y0 (22)

where the last equality uses M(Y0) = 1. Clearly K = K(∞) > K(Ymax). The mag-
nitude of the truncation owing to finite sampling, K(∞) − K(Ymax) depends on the
width of the likelihood distribution relative to the prior distribution: b ≡ σ2

x/(Nσ2
θ).

The condition limY→∞[K(∞) − K(Ymax)] → 0 requires that M(Y ) decreases faster
than Y −1−ε for some ε > 0. For b = 0 and large Y ,

∫ Y
dY M(Y ) increases as log(log Y ).

For b > 0,
∫ Y

dY M(Y ) decreases at least as fast Y −b. Figure 8 shows K(∞)−K(Y0)
as a function of b and suggests that b > 0.1 is sufficient to obtain sufficient numerical
convergence for practical values of N . Qualitatively, a prior distribution that limits Y
from above (or, equivalently, L from below) truncates the heavy tail that gives rise to
the non-existence of K.

Similar asymptotic expressions for K(Y ) may be derived for multivariate normal
distributions. Assume that data are i.i.d. in each of k dimensions and that true mean
equals the sample mean. Then

M(Y ) = Γ
(

k

2
, (1 + b) log(Y/Y0)

)
/Γ

(
k

2

)
(23)

where Γ(a, x) is the upper incomplete gamma function and Γ(a) is the complete gamma
function. Using the standard asymptotic formula for Γ(a, x) in the limit of large Y , one
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Figure 8: The integral K(Y )−K(Y0) is shown as a function of Y/Y0 for various values
of the variance ratio b ≡ σ2

x/(Nσ2
θ). For an uninformative prior distribution σθ À σx/N

and b → 0 and K(Y ) increases without bound for increasing Y/Y0. For an informative
prior distribution O(b) ∼ 1 and K(Y ) approaches a constant value with Y/Y0.

finds that

M(Y ) → 1
Γ(k/2)

[√
1 + b2 log

(
Y

Y0

)]k/2−1 (
Y

Y0

)−1−b

for Y À k/2. (24)

This expression reduces to equation (21) when k = 1, but more importantly, this shows
that the tail magnitude of M(Y ) increases with dimension k. Figure 9 illustrates this
for various values of k and b.

In summary, limσ2
θ→∞K → ∞ for a normally distributed likelihood function with

an uninformative prior. Moreover, Figures 8 and 9 further demonstrate that b = O(1)
for successful numerical evaluation. In other words, the HMA/NLA construction should
not be used for problems with weakly informative priors. Intuitively, the cause is clear:
if the Markov chain never samples the wings of the prior distribution which still make
a significant contribution to K, then K will increase with sample size. As described at
the beginning of Section 2, this failure is caused by the measure function decreasing too
slowly as Y increases.
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Figure 9: As in Figure 8, the integral K(Y )−K(Y0) is shown as a function of Y/Y0 for
the ratio b = 0.2, 0.6 for k-dimensional normal data distributions. The integral K(Y )
converges more rapidly with increasing b (as in Fig. 8) but increasingly slowly with k.
The run of K(Y )−K(Y0) is normalized to 1 at Y = ∞ to facilitate comparison.
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Appendix 2 Truncation error in estimating K from
a Markov chain

We assume that M(Y ) approaches zero sufficiently fast as described in Appendix 1
and, therefore, that limN→∞ K̃ = L < ∞. Then, the ranked values of Y = 1/L for
the MCMC-obtained posterior sample provide a natural, albeit irregular, grid for the
numerical evaluation of K using standard quadrature algorithms. Even if P (θ|D) is
smooth and continuous in θ, the mapping Y → θ may be less well behaved. For ex-
ample, consider M(Y ) for a one-dimensional unimodal distribution P (θ|D): it will be
smooth and continuous. However, if we add secondary modes, discontinuities in the first
derivative of M(Y ) will appear at the extremal values of each secondary mode. Fortu-
nately, many practical problems are dominated by a small number of modes. Therefore,
we expect the standard quadrature algorithms to be satisfactory.

To derive an algorithm, begin with the grid defined by the ordered set {Yi} induced
by the MCMC sample. The Monte Carlo expression of equation (9) is

M
[l]
i ≡ 1

N

N∑

j=1

1{Yj>Yi}, or M
[u]
i ≡ 1

N

N∑

j=1

1{Yj≥Yi}, or Mi ≡ M
[l]
i + M

[u]
i

2
, (25)

The indicator function includes a contribution from the index j only if {Yj > Yi} or
{Yj ≥ Yi} for the lower and upper form, respectively. Similarly, we may evaluate K
from {Mi} by upper and lower Riemann sums:

K [l] ≡
N∑

j=1

(
hjMj−1 + M(Y0)Y0 + δ

[l]
j

)
or K [u] ≡

N∑

j=1

(
hjMj + M(Y0)Y0 + δ

[u]
j

)

(26)
with K ≡ (K [l] + K [u])/2, hj ≡ Yj − Yj−1, and

δ
[l]
j ≡ h2

j

2
M ′(Yj−1) ≈

h2
j

2

(
Mj −Mj−2

Yj − Yj−2

)
, δ

[u]
j ≡ h2

j

2
M ′(Yj) ≈

h2
j

2

(
Mj+1 −Mj−1

Yj+1 − Yj−1

)
.

(27)
The term-by-term relative errors are then

∆[l]
j = δ

[l]
j /(hjMj−1), ∆[u]

j = δ
[u]
j /(hjMj). (28)

The values of both δj and ∆j can be used to eliminate terms in the sums of equation (26)
with large errors, e.g. those with ∆j ≡ max(|∆[l]

j |, |∆[l]
j |) > ε∗ for some modest value of

ε∗ ¿ 1. Large errors will tend to occur for extremal values of Y or discontinuities from
the multimodal nature of the posterior. In the large Y tail of the distribution, equation
(28) is approximately ln Yj − ln Yj−1 = ln Lj−1 − ln Lj . This suggests an easy-to-apply
stopping criterion for the sums in equation (26): ln Yj − ln Yj−1 > h∗. In words, h∗ is
the maximum mesh spacing in log likelihood.

If we do not trim the sample using equation (27), we may recover the HMA from
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K [l] (eq. 26) as follows:

K [l] ≡
N∑

j=0

(
1
Lj

− 1
Lj−1

)
Mj−1 +

M0

L0

=
N∑

j=1

Mj−1

Lj
−

N∑

j=1

Mj

Lj
=

N∑

j=1

1
Li

(Mi−1 −Mi) =
1
N

N∑

i=1

1
Li

. (29)

In deriving equation (29), the term M(Y0)Y0 is absorbed into the sum and we use
MN = M(YN ) = 0. Assuming that J = 1 in equation (10) and using equation (29)
yields

Z̃ ≡ P̃ (D) = J̃/K̃ =


 1

N

∑

j

1
Lj



−1

. (30)

Appendix 3 Evaluation of J and Z from the Markov chain

Consider the integral I described by equations (7) and (8) over the domain Ωs. This
expresses both integrals J and Z with f(θ) = π(θ) and f(θ) = P (θ)P (D|θ), respectively.
We use the sampled posterior distribution to estimate the sampled volume for each
subset needed to compute M(Y ) (eq. 9). This is then followed by a simple quadrature
to compute

∫
dY M(Y ). The volume may be estimated straightforwardly using a space

partitioning structure. A computationally efficient structure is a space partitioning tree,
which divides a region of parameter space into some number of subregions at each node.
The most easily implemented tree of this type for arbitrary dimension is the kd-tree
(short for k-dimensional tree). Each leaf in the tree has zero volume. Each non-leaf
node has the minimum volume enclosing the points in the node by coordinate planes.
We partition Ωs into exclusive subsets {ωs} containing a fixed number of leaves c and
let v(ωs) be the volume enclosing each subset ωs as determined by the partition. We
also implemented the hyperoctree, a space partitioning tree structure which divides
each parent volume into 2k subvolumes by bisecting the coordinate domain in each
dimension.

Assume that the tree has been constructed. Let f(θi) denote P (θi) or P (θi|D) for the
evaluation of MJ(y) or MZ(y), respectively for θi ∈ ωs. Let fmin = inf {f(θi) : θi ∈ ωs}
and fmax = sup {f(θi) : θi ∈ ωs}. Order the set {f(θi)} from largest to smallest with
i ∈ [1, c]. Then, the volume contribution from each ωs to M(y) is:

v(y, ωs) = v(ωs)





0 if y ≥ fmax

1 if y ≤ fmin
[f(θj)−y](c−j)+[y−f(θj+1)](c−j−1)

[f(θj)−f(θj+1)][c−1] s.t. f(θj+1) ≤ y ≤ f(θj).
. (31)

In equation (31), the index j takes the values [1, c− 1]. Altogether, we have

M(y) ≈
∑

ωs∈Ωs

v(y, ωs). (32)
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The density f(θ) and the value of y may be replaced by g(f(θ)) and g(y), respectively,
where g(·) is a monotonic function. Ideally, g(·) is chosen to make g(f(θ)) linear with
sample number (e.g. g(·) = Φ−1(f) might be a good choice).

Alternatively, we can evaluate J or Z as a Riemann sum, multiplying v(ωs) by some
representative value of the prior probability, f∗(ωs), for each element of ωs (such as a
p-quantile or mean value) and then sum the contributions for all ωs:

I ≈
∑

ωs∈Ωs

v(ωs)f∗(ωs). (33)

However, the error estimates resulting from the quadrature in the Lebesgue approach
provide a useful check on the quality of the results. In addition, equation (31) provides
additional precision since it exploits the information about the distribution of the values
of f(ω) in each ωs. Since the MCMC chain provides the values of π(θ) and P (θ|D) =
P (θ)P (D|θ), we may use the same tree to evaluate both J̃ and Z̃ over the sampled
volume Ωs. The converged Markov chain samples the domain Ω proportional to the
integrand of equation (2), and therefore, we expect

lim
N→∞

∫

Ωs

dθπ(θ)P (D|θ) À lim
N→∞

∫

Ω\Ωs

dθP (θ)P (D|θ) → 0

for large sample size by construction.

Figure 10 illustrates the tree construction for a single k = 2 sample. Each two-
dimensional cell is colored by the median value of the posterior probability for the
c = 32 points in each cell and scaled to the peak value of posterior probability P for the
entire sample. A careful by-eye examination of the cell shape reveals a preponderance
of large axis-ratio rectangles; this is a well-known artifact of the algorithm. Conversely,
all cells in the hyperoctree are squares. For large values of P , the volume elements are
small, and with a sufficiently large sample, the gradient in P across the volume is small.
For small values of P , the volume elements are large, the gradients are large, and the
large-axis ratio rectangles distort the reconstructed shape of the true posterior. The
error from this feature of the partition can be reduced by restricting Ωs to exclude the
poorly sampled tails or by using an over-dispersed target distribution as described in
Section 4.1. Alternatively, one may scale some or all of the dimensions using equation
(17) to decrease the volume in the tails of the posterior distribution. The Jacobian
of the transformation increases the weight of the probability value in the cells without
improving the sampling, so this is not a guaranteed or generally recommended strategy.

There is a variance–bias trade off in choosing c, the number of leaves per subset ωs.
In tails of the sample, the variance (bias) in the volume estimate increases (decreases)
as the number of sample points per subset ωs increases (decreases). In other words, a
different sample will have different outliers and lead to large changes in the volume of
the partition owing to the sparse sampling. The converse applies to the estimation of the
probability values in each subvolume. For the hyperoctree, the number of levels in the
tree will increase with increasing sample size discretely. Therefore, the number of leaves
per ωs will tend to oscillate with increasing sample size. The oscillation amplitude will
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kd-tree hyperoctree

Figure 10: Two-dimensional illustration of the domain decomposition for the Gaussian
likelihood example described in Section 4.3. The cells are colored according to posterior
probability on a linear scale from 0 to sup{P}.

decrease with increasing c. This suggests using c as large as possible while continuing
to resolve the target distribution. For high-dimensional distributions, large c may be
prohibitively expensive. Using small values of c introduces biases of unity order, but
this may be suitable for many applications.

Tests to date suggest that the sensitivity to c is reduced by using the Lebesgue
form for Z owing to the reduced bias from the posterior probability values. The prior
probability value will be slowly varying over the posterior sample for a typical likelihood-
dominated posterior distribution, so the bias in J̃ will be smaller than that in Z̃. This
suggests that a smaller number of points per cell is better for the evaluation of J and
that a larger number is better for Z. I recommend the sensitivity to c be investigated
anew for each problem of interest. Some practical examples suggest that the resulting
estimates are not strongly sensitive to the number of points per cell; c = 8, 16 or 32
appears to be a good compromise.

Finally, note that the VTA applies to importance sampled distributions as well. That
is, suppose one samples the target distribution P (θ|D) using the sampling distribution
Q(θ|D). Then, the marginal likelihood integral becomes

Z =
∫

dQ

∫

Q(θ|D)>Q

dθ
P (θ|D)
Q(θ|D)

≡
∫

dQM(Q). (34)

The measure function M(Q) reduces to the standard expression (eq. 9) when Q = P .
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For the powered-up sampling function discussed in Section 4.1, Q = P 1/T for T > 1
and the measure function for this choice becomes

M(Q) =
∫

P (θ|D)1/T >Q

dθ P (θ|D)1−1/T .

As the temperature T increases and the sampling function becomes increasingly broad
in the parameter space, the measure function becomes a step function whose full value
is the marginal likelihood. Presumably, each problem has an optimal value of T that
minimizes the overall error in Z̃.
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