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This paper establishes the first analytical formula for nonlinear shrinkage
estimation of large-dimensional covariance matrices. We achieve this by iden-
tifying and mathematically exploiting a deep connection between nonlinear
shrinkage and nonparametric estimation of the Hilbert transform of the sam-
ple spectral density. Previous nonlinear shrinkage methods were of numeri-
cal nature: QuEST requires numerical inversion of a complex equation from
random matrix theory whereas NERCOME is based on a sample-splitting
scheme. The new analytical method is more elegant and also has more poten-
tial to accommodate future variations or extensions. Immediate benefits are
(i) that it is typically 1000 times faster with basically the same accuracy as
QuEST and (ii) that it accommodates covariance matrices of dimension up to
10,000 and more. The difficult case where the matrix dimension exceeds the
sample size is also covered.

1. Introduction. Given that many researchers employ the linear shrinkage estimator of
Ledoit and Wolf (2004) to estimate covariance matrices whose dimensions, p, are commensu-
rate with the sample size, n, attention is naturally turning to the more difficult—but potentially
more rewarding—approach of nonlinear shrinkage estimation, where the transformation ap-
plied to the sample eigenvalues must be optimal not in a space of dimension two (intercept
and slope) but in a much larger space of dimension p (i.e., unconstrained transformation).

So far, there exist two very different nonlinear shrinkage methods that give satisfactory
and largely compatible results. The first method is the indirect approach of Ledoit and Wolf
(2012, 2015). It is indirect because it goes through recovery of the population eigenvalues.
They are not a necessary part of the procedure and are notoriously hard to pin down, so
they can be thought of as nuisance parameters. The method relies on numerical inversion
of a deterministic multivariate function called the Quantized Eigenvalues Sampling Trans-
form (QuEST) function, which essentially maps population eigenvalues into sample eigen-
values. The mathematics come from the field known as random matrix theory, originally from
physics, and involve heavy usage of integral transforms.

The second method, going back to Abadir, Distaso and Žikeš (2014), is much simpler
conceptually. It involves just splitting the sample into two parts: one to estimate the eigenvec-
tors, and the other to estimate the eigenvalues associated with these eigenvectors. Averaging
over a large number of permutations of the sample split makes the method perform well.
Lam (2016) calls this method Nonparametric Eigenvalue-Regularized COvariance Matrix
Estimator (NERCOME). In practice, it requires brute-force spectral decomposition of many
different large-dimensional matrices. The main attraction of NERCOME lies not in the fact
that it would be more accurate or faster, but in the fact that it is decisively simpler and more
transparent, thus providing an independent and easily verifiable confirmation for the mathe-
matically delicate indirect method of QuEST.
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The goal of this paper is to develop a method that combines the best qualities of the three
approaches described above: the speed of linear shrinkage, the accuracy of the QuEST func-
tion and the transparency of NERCOME. We achieve this goal through nonparametric kernel
estimation of the limiting spectral density of the sample eigenvalues and its Hilbert trans-
form. From the QuEST route, we borrow the optimal nonlinear shrinkage formula; from
NERCOME, we imitate the simplicity of interpretation and code (we need just over 20 lines
in Matlab); and from linear shrinkage we borrow the speed, scalability and analytical nature.

We contribute to the existing literature on three levels. At the conceptual level, we show
how the presence of the Hilbert transform in the shrinkage formula is the ingredient that
induces “shrinkage” by attracting nearby eigenvalues toward each other, thereby reducing
cross-sectional dispersion. The Hilbert transform is also what makes shrinkage a local (as
opposed to global) phenomenon, which explains why there are nonlinearities. At the tech-
nical level, we extend the kernel estimator of the limiting spectral density function of large-
dimensional sample covariance matrices developed by Jing et al. (2010) in two important
directions. First, we estimate not just the density but also its Hilbert transform; indeed, from
the point of view of optimal covariance matrix estimation, the Hilbert transform is equally
as important as the density itself. Krantz ((2009), page 17) alludes to this importance being
commonplace in mathematics: “The Hilbert transform is, without question, the most im-
portant operator in analysis. It arises in many different contexts, and all these contexts are
intertwined in profound and influential ways.” Our second extension of the kernel estimator
is that, instead of keeping the bandwidth constant (or uniform) for a given sample size, we
let it vary in proportion to the location of a given sample eigenvalue. This improvement con-
fines the support of the spectral density estimator to the positive half of the real line, as befits
positive-definite matrices; it also reflects the scale-invariance of the problem. Finally, at the
operational level, we make the computer code two orders of magnitude simpler and faster
than the indirect route of numerically inverting the QuEST function. As a result, we can es-
timate covariance matrices of dimension 10,000 and beyond, whereas the largest magnitude
that could be handled by nonlinear shrinkage before was 1000.

The remainder of the paper is organized as follows. Section 2 describes within a finite-
sample framework the basic features of the estimation problem under consideration. Section 3
moves it to the realm of large-dimensional asymptotics and establishes necessary background.
Section 4 develops our proportional-bandwidth estimator for the limiting sample spectral
density and its Hilbert transform. Section 5 runs an extensive set of Monte Carlo simula-
tions. Section 6 concludes. The Supplementary Material (Ledoit and Wolf (2020)) contains
all mathematical proofs, further simulation results, the extension to the singular case, various
robustness checks and our code.

2. Finite samples. In this section, and this section only, the sample size, n, and the
covariance matrix dimension, p, are fixed for expositional purposes. Even though n is tem-
porarily fixed, we still subscript the major objects with n in order to maintain compatibility of
notation with the subsequent sections that let n (and p) go to infinity under large-dimensional
asymptotics.

2.1. Rotation equivariance. Let �n denote a p-dimensional population covariance ma-
trix. A mean-zero independent and identically distributed (i.i.d.) sample of n observa-
tions Yn generates the sample covariance matrix Sn

..= Y ′
nYn/n. Its spectral decomposition

is Sn = Un�nU
′
n, where �n is the diagonal matrix, whose elements are the eigenvalues

λn
..= (λn,1, . . . , λn,p) sorted in nondecreasing order without loss of generality, and an or-

thogonal matrix Un whose columns [un,1 · · ·un,p] are the corresponding eigenvectors. We
seek an estimator of the form �̂n

..= Un�̂nU
′
n, where �̂n is a diagonal matrix whose elements

δ̂n
..= (̂δn,1, . . . , δ̂n,p) ∈ (0,+∞)p are a function of λn. Thus, �̂n = ∑p

i=1 δ̂n,i · un,iu
′
n,i .
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This is the framework of rotation equivariance championed by Stein ((1986), Lecture 4).
Rotating the original set of p variables is viewed as an uninformative linear transformation
that must not contaminate the estimation procedure. The underlying philosophy is that all
orthonormal bases of the Euclidian space R

p are equivalent. By contrast, in the sparsity
literature, the original basis is special because a matrix that is sparse in the original basis is
generally no longer sparse in any other basis. Rotation equivariance does not take a stance on
the orientation of the eigenvectors of the population covariance matrix.

REMARK 2.1. To simplify the notation, we assume that all variables have mean zero.
In many applications, variables do not have mean zero, or at least it is not known whether
they do. In such a setting, it is more common to base the sample covariance matrix on the
demeaned data instead: Sn

..= Ỹ ′
nỸn/(n−1), where Ỹn is obtained from Yn by the operation of

columnwise demeaning. In this case, n needs to be replaced everywhere with the “effective”
sample size n − 1. As shown at the beginning of Section 3 of Silverstein and Bai (1995),
demeaning is a rank-one perturbation which in turn, thanks to Lemma 2.5a of the same paper,
implies that it has no impact on large-dimensional asymptotic convergence results.

2.2. Loss function. A perennial question is how to quantify the usefulness of a covari-
ance matrix estimator. It devolves into asking what covariance matrix estimators are used
for. They are often used to find combinations of the original variables that have minimum
variance under a linear constraint. Important—and mathematically equivalent—examples in-
clude Markowitz (1952) portfolio selection in finance, Capon (1969) beamforming in signal
processing and optimal fingerprinting (Ribes, Azaïs and Planton (2009)) in climate research.
The quality of the covariance matrix estimator is then measured by the true variance of the
linear combination of the original variables: lower variance is better.

On this basis, a metric that is agnostic as to the actual orientation of the linear constraint
vector, and is justified under large-dimensional asymptotics, has been proposed by Engle,
Ledoit and Wolf ((2019), Definition 1). It can be expressed in our notation as

(2.1) LMV
n (�̂n,�n)

..= Tr(�̂−1
n �n�̂

−1
n )/p

[Tr(�̂−1
n )/p]2

− 1

Tr(�−1
n )/p

,

where Tr(·) denotes the trace of a square matrix. LMV
n represents the true variance of the

linear combination of the original variables that has the minimum estimated variance, under
a generic linear constraint, after suitable normalization. Further justification for the mini-
mum variance (MV) loss function is provided by Engle and Colacito (2006) and Ledoit and
Wolf (2017a). The optimal nonlinear shrinkage formula in finite samples is identified by the
following proposition.

PROPOSITION 2.1. An estimator �̂n
..= ∑p

i=1 δ̂n,i · un,iu
′
n,i minimizes the MV loss

function LMV
n defined in equation (2.1) within the class of rotation-equivariant estima-

tors specified in Section 2.1 if and only if there exists a scalar βn ∈ (0,+∞) such that
δ̂n,i = βn · u′

n,i�nun,i , for i = 1, . . . , p.

Among all the possible scaling factors βn ∈ (0,+∞), the default value βn = 1 will be
retained from here onward because

∑p
i=1 u′

n,i�nun,i = Tr(�n). Thus, finite-sample optimal
nonlinear shrinkage replaces the sample eigenvalues λn with the unobservable quantity

(2.2) d∗
n

..= (
d∗
n,1, . . . , d

∗
n,p

)
..= (

u′
n,1�nun,1, . . . , u

′
n,p�nun,p

)
,
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prior to recombining it with the sample eigenvectors to form the (nonfeasible) covariance
matrix estimator

(2.3) S∗
n

..=
p∑

i=1

d∗
n,i · un,iu

′
n,i =

p∑
i=1

(
u′

n,i�nun,i

) · un,iu
′
n,i .

REMARK 2.2. Section 3.1 of Ledoit and Wolf (2012) shows that the same estimator S∗
n

is also finite-sample optimal with respect to the (squared) Frobenius loss function, which is
defined for a generic estimator �̂n as

(2.4) LFR
n (�̂n,�n)

..= 1

p
Tr

[
(�̂n − �n)

2]
.

This is the loss function with respect to which Ledoit and Wolf’s (2004) linear shrinkage
estimator is optimized. Appendix B in the Supplementary Material (Ledoit and Wolf (2020))
contains corresponding Monte Carlo simulations.

3. Large-dimensional asymptotics. Further investigations of the nonlinear shrinkage
formula that maps λn into d∗

n are mathematically arduous or even unattainable in finite sam-
ples, but decisive progress can be made by letting the dimension go to infinity together with
the sample size.

3.1. Assumptions. The major assumptions that define the large-dimensional asymptotic
framework are listed below. They are similar, for example, to the ones made by Ledoit and
Wolf (2018).

ASSUMPTION 3.1 (Dimension). Let n denote the sample size and p ..= p(n) the number
of variables. It is assumed that the “concentration (ratio)” cn

..= p/n converges, as n → ∞,
to a limit c ∈ (0,1) called the “limiting concentration (ratio).” Furthermore, there exists a
compact interval included in (0,1) that contains p/n for all n large enough.

The case c > 1, where the sample covariance matrix is singular, is covered in Appendix C
in the Supplementary Material (Ledoit and Wolf (2020)). The case c = 1 is not covered by
the mathematical (random matrix) theory but is addressed via Monte Carlo simulations at the
end of Appendix C as well.

DEFINITION 3.1. The empirical distribution function (e.d.f.) of a collection of real num-
bers (α1, . . . , αp) is the nondecreasing step function x �−→ ∑p

i=1 1{αi≤x}/p, where 1 denotes
the indicator function.

ASSUMPTION 3.2 (Population covariance matrix).

a. The population covariance matrix �n is a nonrandom symmetric positive-definite ma-
trix of dimension p × p.

b. Let τn
..= (τn,1, . . . , τn,p)′ denote a system of eigenvalues of �n, and Hn the e.d.f. of

population eigenvalues. It is assumed that Hn converges weakly to a limit law H , called the
“limiting spectral distribution (function).”

c. Supp(H), the support of H , is the union of a finite number of closed intervals, bounded
away from zero and infinity.

d. There exists a compact interval [T ,T ] ⊂ (0,∞) that contains {τn,1, . . . , τn,p} for all n

large enough.
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ASSUMPTION 3.3 (Data generating process). Xn is a n × p matrix of i.i.d. random vari-
ables with mean zero, variance one and finite 16th moment. The matrix of observations is
Yn

..= Xn × √
�n. Neither

√
�n nor Xn are observed on their own: only Yn is observed.

REMARK 3.1. The assumption of finite 16th moment is used in Theorem 3 of Jing et al.
(2010), which we will utilize in the proof of our own Theorem 4.1. However, these authors’
Remark 1 conjectures that a finite 4th moment is enough, which is supported by Monte Carlo
simulations we report in Table 4.

The sample covariance matrix Sn, its eigenvalues λn
..= (λn,1, . . . , λn,p) and eigenvectors

Un
..= [un,1 · · ·un,p] have already been defined in Section 2.1. The e.d.f. of sample eigenval-

ues is the function Fn(x) ..= ∑p
i=1 1{λn,i≤x}/p for x ∈R.

3.2. Random matrix theory. The literature on the limiting behavior of the eigenvalues of
the sample covariance matrix under large-dimensional asymptotics is based on a foundational
result by Marčenko and Pastur (1967). It has been strengthened and broadened by subsequent
authors including Silverstein and Bai (1995) and Silverstein (1995), among others. The lat-
ter’s Theorem 1.1 implies that, under Assumptions 3.1–3.3, there exists a limiting sample
spectral distribution F such that ∀x ∈ R, Fn(x)

a.s.−→ F(x). This limiting distribution F is
uniquely determined by c and H ; therefore, we will refer to it as Fc,H

..= F whenever clari-
fication is needed.

Assumptions 3.1–3.3 together with Theorem 1.1 of Bai and Silverstein (1998) imply that
the support of F , denoted by Supp(F ), is the union of a finite number ν ≥ 1 of compact
intervals: Supp(F ) = ⋃ν

k=1[ak, bk], where 0 < a1 < b1 < · · · < aν < bν < ∞.

3.3. Hilbert transform. At this point, it is necessary to introduce an important mathemat-
ical tool called the Hilbert transform, which is defined as convolution with the Cauchy kernel
dt
πt

.

DEFINITION 3.2. The Hilbert transform of a real function g is defined as

(3.1) ∀x ∈ R Hg(x) ..= 1

π
PV

∫ +∞
−∞

g(t)
dt

t − x
.

Here, PV denotes the Cauchy principal value, which is used to evaluate the singular integral
in the following way:

(3.2) PV
∫ +∞
−∞

g(t)
dt

t − x
..= lim

ε→0+

[∫ x−ε

−∞
g(t)

dt

t − x
+

∫ +∞
x+ε

g(t)
dt

t − x

]
.

Recourse to the Cauchy principal value is needed because the Cauchy kernel is singular,
as a consequence of which the integral does not converge in the usual sense.

The intuition behind the Hilbert transform is that it operates like a local attraction force.
It is very positive if there are heavy mass points slightly larger than you, so it pushes you up
(toward them), but very negative if they are slightly smaller, so it pushes you down (also to-
ward them). When the mass points lie far away, it fades out to zero like gravitational attraction
does. These effects can be deduced simply by visual inspection of the Cauchy kernel. Figure 1
confirms them visually by plotting the Hilbert transform of four well-known densities.

Obviously, the regularity of the Hilbert transform is a direct reflection of the regularity
of the underlying density, but the main effects as described above remain true across the
board. The formulas used in Figure 1 come from Erdélyi et al. ((1954), Chapter XV); for
convenience, they are reproduced in Table 1.
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FIG. 1. Hilbert transform of four densities. The transform is strongly positive to the left of the center of mass,
strongly negative to the right and vanishes away from the center of mass.

Theorem 1.1 of Silverstein and Choi (1995) shows that the limiting spectral density
f ..= F ′ exists and is continuous, and that its Hilbert transform Hf exists and is continu-
ous, too. As we shall see below, f and Hf are the two key ingredients in computing the
optimal nonlinear shrinkage formula.

REMARK 3.2. The reason why we use the Hilbert transform is because it is the real
part of the extension to the real line of the Stieltjes (1894) transform, and the vast majority
of the known results on large-dimensional sample covariance matrix eigenvalues have been
couched in terms of the Stieltjes transform ever since the seminal paper of Marčenko and
Pastur (1967). We could have written the whole paper in terms of the Stieltjes transform
instead of the Hilbert transform, but we figured that avoiding an excursion into the complex
plane was clearer and more economical.

TABLE 1
Formulas for various densities and their Hilbert transforms

Density Hilbert transform

Uniform f (x) = 1{0≤x<1} Hf (x) = 1
π log | 1−x

x |
Cauchy f (x) = 1

π(x2+1)
Hf (x) = − x

π(x2+1)

Semicircle f (x) =
√

max{4−x2,0}
2π

Hf (x) = −x+sgn(x)
√

max{x2−4,0}
2π

Arcsine f (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 0,
1

π
√

x(1−x)
, x ∈ (0,1),

0, x > 1

Hf (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
π

√
x(x−1)

, x < 0,

0, x ∈ (0,1),

− 1
π

√
x(x−1)

, x > 1
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3.4. Optimal nonlinear shrinkage formula. We consider the same class of nonlinear
shrinkage estimators as Ledoit and Wolf (2017a). It constitutes the large-dimensional asymp-
totic counterpart to the class of rotation-equivariant covariance matrix estimators introduced
in Section 2.1.

DEFINITION 3.3 (Class of estimators). Covariance matrix estimators are of the type
�̂n

..= Un�̂nU
′
n, where �̂n is a diagonal matrix: �̂n

..= Diag(̂δn(λn,1), . . . , δ̂n(λn,p)), and δ̂n

is a (possibly random) real univariate function which can depend on Sn.

The shrinkage function must be as well behaved asymptotically as the population spectral
e.d.f.

ASSUMPTION 3.4 (Limiting shrinkage function). There exists a nonrandom real univari-
ate function δ̂ defined on Supp(F ) and continuously differentiable such that δ̂n(x)

a.s−→ δ̂(x),
for all x ∈ Supp(F ). Furthermore, this convergence is uniform over x ∈ ⋃ν

k=1[ak +η, bk −η],
for any small η > 0. Finally, for any small η > 0, there exists a finite nonrandom constant K̂

such that almost surely, over the set x ∈ ⋃ν
k=1[ak − η, bk + η], δ̂n(x) is uniformly bounded

by K̂ from above and by 1/K̂ from below, for all n large enough.

Within this framework, the asymptotically optimal nonlinear shrinkage formula is known.

THEOREM 3.1. Define the oracle nonlinear shrinkage function

(3.3) ∀x ∈ Supp(F ) do(x) ..= x

[πcxf (x)]2 + [1 − c − πcxHf (x)]2 .

If Assumptions 3.1–3.4 are satisfied, then the following statements hold true:

(a) The oracle estimator of the covariance matrix

(3.4) So
n

..= UnD
o
nU

′
n where Do

n
..= Diag

(
do(λn,1), . . . , d

o(λn,p)
)

minimizes in the class of nonlinear shrinkage estimators defined in Assumption 3.4 the almost
sure limit of the minimum variance loss function introduced in Section 2.2, as p and n go to
infinity together in the manner of Assumption 3.1.

(b) Conversely, any covariance matrix estimator �̂n that minimize the a.s. limit of the
minimum-variance loss function (2.1) is asymptotically equivalent to So

n up to scaling, in the
sense that its limiting shrinkage function is of the form δ̂ = α do for some positive constant α.

The scaling factor α in part (b) will henceforth be set equal to one in order to ensure that the
estimator has the same trace as the sample covariance matrix and the population covariance
matrix asymptotically.

Note that So
n already represents considerable progress with respect to the finite-sample

optimal estimator S∗
n of equation (2.3): We no longer need to know the full population co-

variance matrix �n (estimating p(p + 1)/2 parameters is hopeless when p is of the same
order of magnitude as n); instead, we just need to know its eigenvalues τn (p parameters
only, which is a priori extractable from a dataset of dimension p × n). The value of equa-
tion (3.3) is that it transforms what was apparently an infeasible problem into one that may
become feasible provided proper techniques are deployed, thereby avoiding the “curse of
dimensionality.”
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REMARK 3.3. The quantities (do(λn,1), . . . , d
o(λn,p)) represent large-dimensional

asymptotic counterparts to the finite-sample optimal quantities (u′
n,1�nun,1, . . . , u

′
n,p�nun,p)

of equation (2.2). Equation (3.3) was first discovered by Ledoit and Péché ((2011), The-
orem 3), based on a generalization of the fundamental equation of random matrix theory
originally due to Marčenko and Pastur (1967). The formula here is the first one expressed
without any reference to complex numbers; previous (mathematically equivalent) versions
used the complex-valued Stieltjes transform instead of the Hilbert transform.

3.5. Shrinkage as local attraction via the Hilbert transform. Equation (3.3) may look
initially daunting, yet intuition can be gleaned by considering a slight modification of the
limiting sample spectral density: ϕ(x) ..= πxf (x). Multiplication by x captures the fact that
larger eigenvalues exert more pull than smaller ones, everything else being equal. Qualita-
tively speaking, ϕ acts as surrogate for the density f , in the sense that it measures where the
influential eigenvalues lie. Its Hilbert transform is Hϕ(x) = 1 + πxHf (x). In terms of the
reweighted density function ϕ, formula (3.3) becomes

(3.5) ∀x ∈ Supp(F ) do(x) = x

1 + c2[ϕ(x)2 + Hϕ(x)2] − 2cHϕ(x)
,

which is easier to interpret. If the limiting concentration ratio c is negligible, then the denomi-
nator is close to one, which would mean no shrinkage: This is why the sample covariance ma-
trix works well under traditional (fixed-dimensional) asymptotics. As c increases, however,
(noticeable) shrinkage must occur. Let us set aside the term c2[ϕ(x)2 +Hϕ(x)2] because it is
negligible for small c and generally innocuous: given that it is always positive, it only serves
to augment the first term 1. The key factor here is sign of the last term 2cHϕ(x). It works
as a local attraction force. From the point of view of any given eigenvalue λn,i , if there is a
heavy mass of other eigenvalues hovering slightly above, 2cHϕ(λn,i) will be strongly posi-
tive, which will push λn,i higher in the direction of its closest and most numerous neighbors.
Conversely, if there are many eigenvalues hovering slightly below λn,i , then 2cHϕ(λn,i) will
be strongly negative, which will pull λn,i lower—also in the direction of its most immediate
neighbors. This attraction phenomenon is intrinsically local because the absolute magnitude
of the Hilbert transform Hϕ(λn,i) fades away as the other eigenvalues become more distant
from λn,i .

The local attraction field generated by the Hilbert transform is why we speak of “shrink-
age”: the spread of covariance matrix eigenvalues reduces when they get closer to one another.
Linear shrinkage is handling this effect at the global level, that is, by shrinking all sample
eigenvalues toward their grand mean. However, given that we now know that the attraction is
essentially a local phenomenon that fades away at great distances, we must shrink any given
eigenvalue toward those of its neighbors that exert the greatest pull. Thus, it could be that it is
optimal to nonlinearly “shrink” a relatively small eigenvalue (i.e., one that is below average)
downward, if there is a sufficiently massive cluster of slightly inferior eigenvalues attracting
it toward them, which cannot happen with linear shrinkage instead: Any eigenvalue below
average will be brought up necessarily. Figure 2 provides a graphical illustration of these
contrasting behaviors.

In this example, the average eigenvalue is equal to 1.25. Sample eigenvalues below the
average but above 1 need to be “shrunk” downward because they are attracted by the cluster
to their immediate left. Similarly, sample eigenvalues above the average but below 1.75 need
to be “shrunk” upwards because they are attracted by the cluster to their immediate right.
Linear shrinkage, being a global operator, is not equipped to sense a disturbance in the force:
It applies the same shrinkage intensity across the board and shrinks all eigenvalues toward
the average of 1.25.
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FIG. 2. Local attraction effect. 2500 population eigenvalues are equal to 0.8, and 1500 are equal to 2. The sam-
ple size is n = 18,000. At the bottom of the figure is a histogram displaying the location of the sample eigenvalues.

3.6. Practical considerations. do
n

..= (do(λn,1), . . . , d
o(λn,p)) represent large-dimen-

sional counterparts of the finite-sample optimal eigenvalues d∗
n = (d∗

n,1, . . . , d
∗
n,p) of equation

(2.2). do
n is an oracle estimator, meaning that it cannot be computed from observable data,

since it depends on the limiting sample spectral density f , its Hilbert transform Hf , and the
limiting concentration ratio c. Nonetheless, it constitutes a useful stepping stone toward the
ultimate objective, which is the construction of a bona fide estimator (i.e., one that is feasible
in practice) with the same asymptotic properties.

REMARK 3.4. Ledoit and Wolf ((2018), Section 4.2) prove that the estimator So
n is also

optimal within the class of rotation-equivariant estimators of Assumption 3.4 with respect to
the Frobenius loss. Intuitively, this is because the two corresponding finite-sample optimal
estimators are identical, as pointed out in Remark 2.2.

There is considerable interest in estimating the nonlinearly shrunk eigenvalues do
n from λn

only. For the limiting concentration ratio c, there is no problem: we can just plug its natural
estimator cn

..= p/n into formula (3.3). Things are more complicated, however, for the lim-
iting sample spectral density f and its Hilbert transform Hf . Given that the sample spectral
e.d.f. Fn converges to F almost surely, the obvious idea would have been to plug its derivative
F ′

n in place of f :

(3.6)
λn,i

[π p
n
λn,iF ′

n(λn,i)]2 + [1 − p
n

− π
p
n
λn,iHF ′

n
(λn,i)]2 .

Unfortunately, this approach cannot work because Fn is discontinuous at every λn,i , so its
derivative does not exist at these points, and a fortiori the Hilbert transform of F ′

n does not
exist either. This problem has been a major stumbling block in the literature. The new solution
that we propose is to use kernel estimators to estimate f and Hf .

4. Asymptotic theory.

4.1. Kernel requirements.

ASSUMPTION 4.1 (Kernel). Let k(x) denote a continuous, symmetric, nonnegative prob-
ability density function (p.d.f.) whose support is a compact interval [−R,R], with mean zero
and variance one. We assume throughout that this kernel satisfies the following conditions:
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1. Its Hilbert transform Hk exists and is continuous on R.
2. Both the kernel k and its Hilbert transform Hk are functions of bounded variation.

4.2. Proportional bandwidth. The approach that we propose uses a variable bandwidth
proportional to the magnitude of a given sample eigenvalue. Thus, the bandwidth applied to
the sample eigenvalue λn,i is equal to hn,i

..= λn,ihn, for i = 1, . . . , p, where hn is a vanishing
sequence of positive numbers to be specified below. In terms of nomenclature, we can call hn

the “global bandwidth” and hn,i a “locally adaptive” bandwidth.
The advantages of the proportional bandwidth relative to the simpler and more common

fixed one are threefold. First, if hn < 1/R, which will be the case for large enough n, then the
support of the kernel estimator will remain in the positive half of the real line. This is desirable
because the covariance matrix is positive definite. Second, estimating a covariance matrix is a
scale-equivariant problem: If we multiply all the variables by some α = 0, then the estimator
should remain exactly the same except for rescaling by the coefficient α2. Using a global
bandwidth that depends solely on n but not on the scale of the eigenvalues would violate this
desirable feature. Third, the mathematical nature of the mapping (c,H) �→ Fc,H is such that
large eigenvalues get smudged more than small ones. Given the somewhat qualitative nature
of this statement, a visual illustration shall suffice.

In Figure 3, the small eigenvalues (to the left) get spread out less than the large ones (to the
right). Indeed, the width of the support interval associated with a given eigenvalue is almost
exactly proportional to the magnitude of the eigenvalue itself. This is why a “one-size-fits-all”
approach to bandwidth selection is ill-suited for the estimation of the spectral density.

Additional justification for proportional bandwidth is given by the “arrow model” of Ledoit
and Wolf (2018). This model shows that, if the largest population eigenvalue τn,p becomes
very large and detaches itself from the bulk of the other population eigenvalues, then the
corresponding sample eigenvalue will also detach itself, and fall somewhere within an interval
of width proportional to τn,p .

A similar phenomenon occurs in the simple case where all but one of the population eigen-
values are equal to zero. Then all sample eigenvalues but one are equal to zero, and the
nonzero eigenvalue behaves like a variance. It is well known that the standard deviation of
the sample variance (based on i.i.d. data) is proportional to the population variance. Under
traditional (finite-dimensional) asymptotics, it has been long known since Girshick ((1939),
page 217) that the limiting standard deviation of a sample eigenvalue is directly proportional
to the eigenvalue itself.

FIG. 3. Limiting sample spectral density f when the population eigenvalues are {1,2, . . . ,5}, each with
weight 1/5.
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4.3. Kernel estimators. The kernel estimator of the sample spectral p.d.f. f is

∀x ∈ R f̃n(x) ..= 1

p

p∑
i=1

1

hn,i

k

(
x − λn,i

hn,i

)
= 1

p

p∑
i=1

1

λn,ihn

k

(
x − λn,i

λn,ihn

)
.

The kernel estimator of its Hilbert transform Hf is

Hf̃n
(x) ..= 1

p

p∑
i=1

1

hn,i

Hk

(
x − λn,i

hn,i

)
= 1

p

p∑
i=1

1

λn,ihn

Hk

(
x − λn,i

λn,ihn

)
= 1

π
PV

∫
f̃n(t)

x − t
dt.

4.4. Uniform consistency. Our main results are as follows. All proofs are in Appendix A
in the Supplementary Material (Ledoit and Wolf (2020)).

THEOREM 4.1. Suppose that the kernel k(x) satisfies the conditions of Section 4.1.
Let hn be a sequence of positive numbers satisfying

(4.1) lim
n→∞nh5/2

n = ∞ and lim
n→∞hn = 0.

Moreover, suppose that Assumptions 3.1–3.3 are satisfied. Then, both

(4.2) sup
x∈Supp(F )

∣∣f̃n(x) − f (x)
∣∣ −→ 0 and sup

x∈Supp(F )

∣∣Hf̃n
(x) −Hf (x)

∣∣ −→ 0

in probability.

The two kernel estimators enable us to shrink the sample eigenvalues nonlinearly as fol-
lows:

(4.3) ∀i = 1, . . . , p d̃n,i
..= λn,i

[π p
n
λn,i f̃n(λn,i)]2 + [1 − p

n
− π

p
n
λn,iHf̃n

(λn,i)]2
.

The shrunk eigenvalues ˜dn
..= (d̃n,1, . . . , d̃n,p)′ are then stacked into the diagonal of the diag-

onal matrix D̃n to generate a covariance matrix estimator

(4.4) S̃n
..= UnD̃nU

′
n =

p∑
i=1

d̃n,i · un,iu
′
n,i .

The covariance matrix estimator based on the kernel method performs as well in the large-
dimensional asymptotic limit as the nonlinear shrinkage estimator of Ledoit and Wolf (2012,
2015) based on the indirect method, as the following corollary attests.

COROLLARY 4.1. Under Assumptions 3.1–3.4, the covariance matrix estimator S̃n min-
imizes in the class of nonlinear shrinkage estimators defined in Assumption 3.4 the limit in
probability of the minimum variance loss function LMV

n , as p and n go to infinity together.

REMARK 4.1. The above statement remains true if the minimum variance loss LMV
n is

replaced with the Frobenius loss LFR
n instead. Indeed, Section 4.2 of Ledoit and Wolf (2018)

proves that the same estimator So
n is also optimal within the class of rotation-equivariant

estimators of Assumption 3.4 with respect to the Frobenius loss.
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4.5. Epanechnikov kernel. The two most popular kernels for density estimation are the
Gaussian kernel and the Epanechnikov (1969) kernel. We choose the latter for four reasons:

Common sense. The support of the Gaussian kernel is the real line, yet covariance matrix
eigenvalues cannot be negative. By contrast, the Epanechnikov kernel has bounded support.

Asymptotic theory. Assumption 4.1 requires a kernel with bounded support for uniform con-
sistency to hold as per Theorem 4.1.

Optimality. The Epanechnikov kernel minimizes mean-squared error, at least for i.i.d. data.

Computation. The Hilbert transform of the Gaussian kernel is the Dawson (1898) integral,
which is a higher-transcendental function extremely slow to compute.

The kernel originally introduced by Epanechnikov ((1969), equation (13)) has unit vari-
ance, support [−√

5,
√

5], and density

(4.5) ∀x ∈ R κE(x) ..= 3

4
√

5

[
1 − x2

5

]+
,

where [ · ]+ denotes the positive part of a real number. This is the default kernel used for uni-
variate density estimation by the popular software STATA, among others. Its Hilbert trans-
form does not appear to have been computed in the literature. We derive it in the following
proposition.

PROPOSITION 4.1.

(4.6) ∀x ∈R HκE (x) =

⎧⎪⎪⎨
⎪⎪⎩

− 3x

10π
+ 3

4
√

5π

(
1 − x2

5

)
log

∣∣∣∣
√

5 − x√
5 + x

∣∣∣∣ if |x| = √
5,

− 3x

10π
if |x| = √

5.

PROPOSITION 4.2. The Epanechnikov kernel satisfies Assumption 4.1.

From this, we deduce for all i = 1, . . . , p

f̃n(λn,i) = 1

p

p∑
j=1

3

4
√

5λn,jhn

[
1 − 1

5

(
λn,i − λn,j

λn,jhn

)2]+
,(4.7)

Hf̃n
(λn,i) = 1

p

p∑
j=1

{
−3(λn,i − λn,j )

10πλ2
n,jh

2
n

+ 3

4
√

5πλn,jhn

[
1 − 1

5

(
λn,i − λn,j

λn,jhn

)2]
(4.8)

× log
∣∣∣∣
√

5λn,jhn − λn,i + λn,j√
5λn,jhn + λn,i − λn,j

∣∣∣∣
}
.

Throughout, the last term in (4.8) is understood to be a zero in the unlikely event that
(λn,i − λn,j )

2 happens to be exactly equal to 5λ2
n,jh

2
n. Alternative kernels are explored as

robustness checks through Monte Carlo simulations in Appendix D in the Supplementary
Material (Ledoit and Wolf (2020)).

4.6. Choice of bandwidth. The most consequential choice relating to the bandwidth has
already been justified in Section 4.2: We introduced a locally adaptive bandwidth proportional
to the magnitude of the sample eigenvalues: hn,i = λn,ihn.

As for the global bandwidth hn, Theorem 4.1 requires it to be a negative exponent of n

strictly less than 2/5. Jing et al. (2010) is the only previous article we are aware of that uses a
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kernel to estimate the limiting sample spectral density. They select the exponent 1/3, which is
the first “simple” fraction below the authorized boundary of 2/5. There is always the potential
for disagreement about what the “right” exponent should be, so to anchor on solid ground we
just follow in their footsteps:

(4.9) hn
..= n−1/3 =⇒ ∀i = 1, . . . , p hn,i

..= λn,ihn = λn,in
−1/3.

The kernel, location- and bandwidth-adjusted for the ith sample eigenvalue,

1

hn,i

κE

(
x − λn,i

hn,i

)
,

has support is [λn,i(1 − √
5n−1/3), λn,i(1 + √

5n−1/3)]. The lower boundary is in the pos-
itive half-line if and only if n > 5

√
5 ≈ 11.2, therefore it is unadvisable to use this large-

dimensional asymptotic procedure when p < 12. Alternative choices of the bandwidth are
explored as robustness checks through Monte Carlo simulations in Appendix D in the Sup-
plementary Material (Ledoit and Wolf (2020)).

4.7. Summary: The analytical nonlinear shrinkage estimator. Compute the spectral de-
composition of the sample covariance matrix as per Section 2.1:

Sn =..

p∑
i=1

λn,i · un,iu
′
n.i .

Choose the global bandwidth as per Section 4.6:

hn
..= n−1/3.

Specify the locally adaptive bandwidth as per Section 4.2:

∀j = 1, . . . , n hn,j
..= λn,jhn.

Estimate the spectral density with the Epanechnikov kernel from Section 4.5:

f̃n(λn,i)
..= 1

p

p∑
j=1

3

4
√

5hn,j

[
1 − 1

5

(
λn,i − λn,j

hn,j

)2]+
,

and its Hilbert transform as per Section 3.3 and Proposition 4.1:

Hf̃n
(λn,i)

..= 1

p

p∑
j=1

{
−3(λn,i − λn,j )

10πh2
n,j

+ 3

4
√

5πhn,j

[
1 − 1

5

(
λn,i − λn,j

hn,j

)2]

× log
∣∣∣∣
√

5hn,j − λn,i + λn,j√
5hn,j + λn,i − λn,j

∣∣∣∣
}
.

Compute the asymptotically optimal nonlinear shrinkage formula as per Section 3.4:

∀i = 1, . . . , p d̃n,i
..= λn,i

[π p
n
λn,i f̃n(λn,i)]2 + [1 − p

n
− π

p
n
λn,iHf̃n

(λn,i)]2
.

Recompose the covariance matrix estimator as per Section 4.4:

S̃n
..=

p∑
i=1

d̃n,i · un,iu
′
n,i .

Computer code for this analytical estimator is in Appendix E in the Supplementary Material
(Ledoit and Wolf (2020)).
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5. Monte Carlo simulations.

5.1. Competitors. We compare the performance of the following six covariance matrix
estimators:

Sample. The sample covariance matrix Sn.

Linear. The linear shrinkage estimator of Ledoit and Wolf (2004).

Analytical. The analytical nonlinear shrinkage estimator S̃n of Section 4.7.

QuEST. The nonlinear shrinkage estimator of Ledoit and Wolf (2015), which is based on
numerical inversion of the QuEST function.

NERCOME. The Nonparametric Eigenvalue-Regularized COvariance Matrix Estimator of
Lam (2016), which is based on sample splitting.

FSOPT. The finite-sample optimal estimator S∗
n defined in equation (2.3) which requires

knowledge of the population covariance matrix �n; therefore, this estimator is not feasible in
the real world but it serves as a useful benchmark in Monte Carlo simulations.

The Matlab code for NERCOME was generously provided by Professor Clifford Lam from
the Department of Statistics at the London School of Economics. The code for the QuEST
package comes from the numerical implementation detailed in Ledoit and Wolf (2017b) and
is freely downloadable from the academic website of the second author.

REMARK 5.1. Corollary 4.1 implies that, under large-dimensional asymptotics, Analyt-
ical and QuEST have the same limiting loss. Therefore, we should expect their performances
to be nearly identical for large (p,n). For small and moderate (p,n), we would expect the
performance of QuEST to be somewhat better because it exploits the feature that f is the
density of a limiting sample spectral distribution F , which is an output of the fundamental
equation of random matrix theory; hence, QuEST can be considered a model-based estima-
tor. By contrast, Analytical does not exploit this feature of f , and thus can be considered
model-free.

5.2. Percentage relative improvement in average loss. The main quantity of interest is
the Percentage Relative Improvement in Average Loss (PRIAL). It is defined for a generic
estimator �̂n as

(5.1) PRIALMV
n (�̂n)

..= E[LMV
n (Sn,�n)] −E[LMV

n (�̂n,�n)]
E[LMV

n (Sn,�n)] −E[LMV
n (S∗

n,�n)] × 100%,

where LMV
n denotes the minimum-variance loss function of Section 2.2, �n denotes the pop-

ulation covariance matrix, and S∗
n denotes the finite-sample-optimal rotation-equivariant esti-

mator of equation 2.3, which is only observable in Monte Carlo simulations but not in reality.
The expectation E[·] is in practice taken as the average across max{100,min{1000,105/p}}
Monte Carlo simulations; for example, in dimension p = 500, we run 200 simulations instead
of 1000. We do so because in higher dimensions the results are more stable across random
simulations, so it is not necessary to run so many.

By construction, PRIALMV
n (Sn) = 0%. It means that the sample covariance matrix rep-

resents the baseline reference against which any loss reduction is measured. An estimator
that has lower (higher) expected loss than the sample covariance matrix will score a positive
(negative) PRIAL.

Also by construction, PRIALMV
n (S∗

n) = 100% because this is the maximum amount of
loss reduction that can be attained by nonlinear shrinkage within the rotation-equivariant
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framework of Section 2.1, as shown in Proposition 2.1. Given that the construction of S∗
n

requires knowledge of the population covariance matrix, 100% improvement represents an
upper limit that is unattainable in reality. The question is how close to the gold standard of
100% a bona fide estimator can get.

Recall that the loss function LMV
n represents the true variance of the linear combination of

the original variables that has minimum estimated variance under generic linear constraint,
suitably normalized. Therefore, the PRIAL measures how much of the potential for variance
reduction is captured by any given shrinkage technique.

5.3. Baseline scenario. The simulations are organized around a baseline scenario, where
each parameter will be subsequently varied in order to assess the robustness of the conclu-
sions. The baseline scenario has the following characteristics:

• the matrix dimension is p = 200;
• the sample size is n = 600; therefore, the concentration ratio p/n is equal to 1/3;
• the condition number of the population covariance matrix is 10;
• 20% of the population eigenvalues are equal to 1, 40% are equal to 3, and 40% are equal

to 10;
• and the variates are normally distributed.

The distribution of the population eigenvalues is a particularly interesting and difficult case
introduced and analyzed in detail by Bai and Silverstein (1998).

Table 2 reports estimator performances under the baseline scenario. Computational times
in milliseconds come from a 64-bit, quad-core 4.00 GHz Windows desktop PC running Mat-
lab R2016a.

The 0% PRIAL for the sample covariance matrix and the 100% PRIAL for the finite-
sample optimal estimator are by construction. Linear shrinkage captures half of the potential
for variance reduction. Nonlinear shrinkage captures 92%–98% of the potential, depending
on the method used (NERCOME/Analytical/QuEST), which is a very satisfactory number.

One key lesson is that the analytical estimator developed in the present paper is faster than
the other two nonlinear shrinkage estimators by two orders of magnitude. Thus, it delivers
the best of both worlds: QuEST-tier variance reduction at Linear-tier speed. Note also that 2
of the 3 milliseconds spent on computing the analytical formula are spent on extracting the
eigenvalues and eigenvectors of the sample covariance matrix, an operation that all nonlinear
shrinkage estimator must perform, even if they use knowledge of the population covariance
matrix (cf. FSOPT).

The only estimator that is in the same ballpark as analytical nonlinear shrinkage in terms
of both speed and accuracy is the finite-sample optimal estimator, which is not feasible in
practice. Among bona fide estimators, the analytical nonlinear estimator is the only one that
comes even close to matching both the speed and accuracy of the finite-sample optimal esti-
mator.

Table 2 demonstrates that applied researchers who are already comfortable with linear
shrinkage and would like to upgrade to nonlinear shrinkage for performance enhancement,

TABLE 2
Simulation results for the baseline scenario

Estimator Sample Linear Analytical QuEST NERCOME FSOPT

Average Loss 2.71 2.10 1.52 1.50 1.58 1.48
PRIAL 0% 50% 97% 98% 92% 100%
Time (ms) 1 2 3 2346 3071 3
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FIG. 4. Evolution of the PRIAL of various estimators as the matrix dimension and the sample size go to infinity
together.

but have been concerned by the numerical complexity of the earlier techniques, can now
safely adopt the analytical estimator.

5.4. Convergence.

5.4.1. Large-dimensional asymptotic performance. Under large-dimensional asymp-
totics, the matrix dimension p and the sample size n go to infinity together, while their
ratio p/n converges to some limit c. In the first experiment, we let p and n vary together,
with their ratio fixed at the baseline value of 1/3. The results are displayed in Figure 4.

The three nonlinear shrinkage estimators perform approximately the same as one another.
They do well even in small dimensions, but do better as the dimension grows large. The
difference between the PRIALs of QuEST and Analytical is never more than 2%, which is
very small.

5.4.2. Speed. Apart from minimizing the asymptotic loss, a key advantage of the analyti-
cal estimator proposed in the present paper is that it is fast regardless of the matrix dimension.
The computation times needed to produce Figure 4 are displayed in Figure 5.

FIG. 5. Computational speed of various shrinkage estimators as the matrix dimension and the sample size go to
infinity together, measured in seconds, with log-scale on the vertical axis.
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TABLE 3
Result of 100 Monte Carlo simulations for dimension p = 10,000 and sample

size n = 30,000

Estimator Sample Linear Analytical FSOPT

Average Loss 2.679 2.086 1.488 1.487
PRIAL 0% 49.74% 99.90% 100%
Time (s) 21 43 113 108

There is a clear gap between, on the one hand, QuEST and NERCOME and, on the other
hand, Analytical, Linear and FSOPT. Analytical nonlinear shrinkage is typically 1000 times
faster than its numerical counterparts.

5.4.3. Ultra-large dimension. The analytical formula enables us to apply nonlinear
shrinkage in much larger dimensions than was previously imaginable within reasonable time.
To prove the point, we reproduce Table 2 for 50-times larger dimension and sample size, with
the fast estimators only. The results are presented in Table 3.

The first item of note is that the PRIAL of the analytical nonlinear shrinkage estimator gets
ever closer to 100%, as expected from theory.

Speed-wise, it takes less than two minutes to compute the analytical nonlinear shrinkage
formula in dimension 10,000. Most of the time is spent computing the sample covariance
matrix (O(p2n) computational cost), extracting its eigenvalues and eigenvectors (O(p3)

cost), and recombining the sample eigenvectors with the shrunk eigenvalues as per (4.4) (also
O(p3) cost). These operations would be necessary for any nonlinear shrinkage estimator—
even if one used knowledge of the population covariance matrix, as evidenced by the FSOPT
speed in the right-most column. The actual computation of the kernel estimator of the Hilbert
transform Hf̃n

as defined in Section 4.3 and of the shrunk eigenvalues themselves (4.3),
which are the only steps specific to this method as opposed to any other nonlinear shrinkage,
just take 4 seconds in total because they require one order of magnitude fewer floating point
operations: only O(p2).

Further (unreported) simulations in dimension p = 20,000 with sample size n = 60,000
show computation times 7.6 to 8.9 times longer for the four estimators of Table 3, which
tightly brackets the theoretical prediction of 23 = 8 based on the reasoning of the previous
paragraph.

5.5. Concentration ratio. We vary the concentration ratio p/n from 0.1 to 0.9 while
holding the product p × n constant at the level it had under the baseline scenario, namely,
p × n = 120,000. The PRIALs are displayed in Figure 6.

Linear shrinkage performs very well in high concentrations but does not beat the sam-
ple covariance matrix for low concentrations. Appendix B.1 in the Supplementary Material
(Ledoit and Wolf (2020)) shows that this finding is due to the fact that linear shrinkage is op-
timized for a different loss function than the minimum variance loss, namely, the Frobenius
loss. Under Frobenius loss, linear shrinkage always beats the sample covariance matrix in the
same simulation experiment.

The three nonlinear shrinkage estimators perform approximately the same as one another,
with Analytical in particular being very close to QuEST and above the 96% mark across
the board.
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FIG. 6. Evolution of the PRIAL of various estimators as a function of the ratio of the matrix dimension to the
sample size.

5.6. Condition number. We start again from the baseline scenario and, this time, vary
the condition number θ of the population covariance matrix. We set 20% of the population
eigenvalues equal to 1, 40% equal to (2θ + 7)/9 and 40% equal to θ . Thus, the baseline
scenario corresponds to θ = 10. In this experiment, we let θ vary from θ = 3 to θ = 30. This
corresponds to linearly squeezing or stretching the distribution of population eigenvalues.
The resulting PRIALs are displayed in Figure 7.

Linear shrinkage performs very well for low condition numbers, but not so well for high
condition numbers; once again, one must bear in mind that this is due to the fact that it is
optimized for a different loss function that the one we use here. Appendix B.2 in the Sup-
plementary Material (Ledoit and Wolf (2020)) verifies this by running the same simulations
again under Frobenius loss and showing that linear shrinkage dominates the sample covari-
ance matrix across the board in this metric.

The three nonlinear shrinkage estimators all capture a very high percentage of the potential
for variance reduction, with Analytical in particular being very close to QuEST and above the
97% mark across the board.

5.7. Nonnormality. In this experiment, we start from the baseline scenario and change
the distribution of the variates. We study the Bernoulli coin-toss distribution, which is the

FIG. 7. Evolution of the PRIAL of various estimators as a function of the condition number of the population
covariance matrix.
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TABLE 4
Simulation results for various variate distributions (PRIAL)

Distribution Linear Analytical QuEST NERCOME

Bernoulli 51% 97% 98% 92%
Laplace 50% 97% 98% 92%
‘Student’ t5 49% 97% 98% 92%

most platykurtic of all distributions, the Laplace distribution, which is leptokurtotic, and the
“Student” t-distribution with 5 degrees of freedom, also leptokurtotic. All of these are suit-
ably normalized to have mean zero and variance one, if necessary. The results are presented
in Table 4.

This experiment confirms that the results of the baseline scenario are not sensitive to the
distribution of the variates.

5.8. Shape of the distribution of population eigenvalues. Relative to the baseline sce-
nario, we now move away from the clustered distribution for the population eigenvalues and
try a variety of continuous distributions drawn from the Beta family. They are linearly shifted
and stretched so that the support is [1,10]. A graphical illustration of the densities of the
various Beta shapes studied below can be found in Ledoit and Wolf ((2012), Figure 7). The
results are presented in Table 5.

Note that the 100% PRIALs are due to rounding effect: no PRIAL ever exceeds 99.8%.
This time, linear shrinkage does much better overall, except perhaps for the bimodal shape
(0.5,0.5). This is due to the fact that, in the seven other cases, the optimal nonlinear shrinkage
formula happens to be almost linear. The three nonlinear shrinkage estimators capture a very
high percentage of the potential for variance reduction in all cases, with Analytical being
virtually indistinguishable from QuEST and above the 97% mark across the board.

5.9. Fixed-dimensional asymptotics. An instructive experiment that falls outside the
purview of large-dimensional asymptotics is to keep the dimension p fixed at the level spec-
ified by the baseline scenario, while letting the sample size n go to infinity. This is standard,
or fixed-dimensional, asymptotics. We let the sample size grow from n = 250 to n = 20,000.
The results are displayed in Figure 8.

Linear shrinkage performs well for small sample sizes but not for large ones. This is to
be expected given Figure 6 because small (large) sample sizes correspond to large (small)

TABLE 5
Simulation results for various distributions of the population eigenvalues

(PRIAL)

Beta parameters Linear Analytical QuEST NERCOME

(1,1) 83% 98% 99% 96%
(1,2) 95% 99% 99% 98%
(2,1) 94% 99% 99% 99%
(1.5,1.5) 92% 99% 99% 98%
(0.5,0.5) 50% 98% 98% 94%
(5,5) 98% 100% 100% 99%
(5,2) 97% 100% 100% 98%
(2,5) 99% 99% 99% 99%
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FIG. 8. Evolution of the PRIAL as the sample size grows toward infinity, while the matrix dimension remains
fixed.

concentration ratios. Appendix B.3 in the Supplementary Material (Ledoit and Wolf (2020))
shows that linear shrinkage does not suffer from any such weakness under the Frobenius loss.

The three nonlinear shrinkage estimators all capture a very high percentage of the potential
for variance reduction, with Analytical in particular being very close to QuEST and above the
96% mark across the board.

5.10. Arrow model. A standard assumption under large-dimensional asymptotics is that
the largest population eigenvalue remains uniformly bounded even as the dimension goes
to infinity. However, in the real world, it is possible to encounter a pervasive factor that
generates an eigenvalue of the same order of magnitude as p. Therefore, it is useful to see
how shrinkage would perform under such a violation of the original assumptions.

Inspired by a factor model where all pairs of variables have 50% correlation and all vari-
ables have unit standard deviation, and by the “arrow model” introduced by Ledoit and Wolf
((2018), Section 7), we set the largest eigenvalue (the “arrow”) equal to 1 + 0.5(p − 1). The
other eigenvalues (the “bulk”) are drawn from the left-skewed Beta(5,2) distribution, shifted
and stretched linearly so that it has support [1,10] (cf. row 7 of Table 5). The results are
displayed in Figure 9, where the matrix dimension varies from p = 50 to p = 500.

FIG. 9. Evolution of the PRIAL as the matrix dimension, the top eigenvalue and the sample size all go to infinity
together.
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Linear shrinkage improves upon the sample covariance matrix, but it overshrinks the arrow
eigenvalue and undershrinks the bulk. The three nonlinear shrinkage estimators do not have
this problem; in particular, Analytical is always above the 94% mark.

5.11. Summary. The results of this extensive set of Monte Carlo simulations are very
consistent. Linear shrinkage does a good job in most cases, and in some cases an excellent
one. Appendix B in the Supplementary Material (Ledoit and Wolf (2020)) shows that any
instance of below-par performance is solely due to the “unfair” choice of a loss criterion with
respect to which it was not optimized.

The three nonlinear shrinkage estimators perform very well across the board. Their per-
formance levels are roughly similar to one another and of high standard. If anything, QuEST
tends to be better than Analytical, which tends to be better than NERCOME, but the differ-
ences are relatively small, and there are exceptions. Between QuEST and Analytical there
is hardly any difference at all. These findings are consistent with our previous expectations
voiced in Remark 5.1; it is reassuring to see that even for small and moderate (p,n), Analyt-
ical performs almost as well as QuEST.

The analytical nonlinear shrinkage estimator is very simple to implement, as proven by the
20-line Matlab code in Appendix E in the Supplementary Material (Ledoit and Wolf (2020)).
It captures 90% or more of the potential for variance reduction that comes from shrinking
the sample eigenvalues. It is typically 1000 times faster than the other nonlinear shrinkage
estimators, and is the only one that can handle ultralarge dimensions up to 10,000 and more
in reasonable time.

5.12. Robustness checks. Appendix D in the Supplementary Material (Ledoit and Wolf
(2020)) presents extensive robustness checks that examine the extent to which the perfor-
mance of the analytical nonlinear shrinkage estimator is sensitive to the choices of kernel and
bandwidth.

This thorough investigation of potential variants to the analytical formula of Section 4.7
reveals that nothing of value can be gained from changing any of the specification choices in
the kernel estimation part. Nothing is lost either by using the triangular or the semicircular
kernel, or by varying the global bandwidth exponent α in the reasonable range of [0.2,0.35].
These findings show that our approach is robust and that its value lies not in some happen-
stance specification of kernel and bandwidth, but in correctly identifying and mathematically
exploiting the deep connection between kernel estimation of the sample spectral density and
optimal nonlinear shrinkage of large-dimensional covariance matrices through the Hilbert
transform.

6. Conclusion. This paper develops the first analytical formula for asymptotically opti-
mal nonlinear shrinkage of large-dimensional covariance matrices. The formula was derived
by introducing kernel estimation, not only of the density itself (which has been done be-
fore), but also of its Hilbert transform as a worthy mathematical procedure. A density and its
Hilbert transform are ‘joined at the hip’ in the sense that they are, respectively, the imaginary
and real part of the unique analytic extension of a real function into the complex plane. Ven-
turing into the complex plane is a technical necessity not only for large-dimensional random
matrix theory but also for signal processing, among other fields.

Another innovation is to estimate the two ingredients in the optimal nonlinear shrink-
age formula, namely, the limiting sample spectral density and its Hilbert transform, with a
proportional-bandwidth kernel estimator reflective of the scale-equivariance of the problem.
The resulting computations are analytical in nature, easy to understand, straightforward to
implement, fast and scalable.
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Extensive Monte Carlo simulations show that the analytical nonlinear shrinkage estimator
captures a very high percentage (typically 96%+) of the potential for variance reduction that
opens up when we shrink the eigenvalues of the sample covariance matrix. This means, in
the context of finance, that one can design investment strategies that are as safe as they could
possibly be, thus overcoming the “curse of dimensionality” which is often associated with
portfolio selection involving large covariance matrices of stock returns.

The dimension of covariance matrices that can be handled successfully now is at least
10,000, one order of magnitude larger compared to the numerical nonlinear shrinkage esti-
mators of Ledoit and Wolf (2015) and Lam (2016), which is an important bonus in the age of
Big Data.
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SUPPLEMENTARY MATERIAL

Mathematical proofs and additional material (DOI: 10.1214/19-AOS1921SUPP; .pdf).
This supplement contains detailed proofs of all mathematical results as well as additional
material.
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