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We develop a semiparametric Bayesian approach for estimating the mean
response in a missing data model with binary outcomes and a nonparamet-
rically modelled propensity score. Equivalently, we estimate the causal ef-
fect of a treatment, correcting nonparametrically for confounding. We show
that standard Gaussian process priors satisfy a semiparametric Bernstein–
von Mises theorem under smoothness conditions. We further propose a
novel propensity score-dependent prior that provides efficient inference un-
der strictly weaker conditions. We also show that it is theoretically preferable
to model the covariate distribution with a Dirichlet process or Bayesian boot-
strap, rather than modelling its density.

1. Introduction. In many applications, one wishes to make inference concerning the
causal effect of a treatment or condition. Examples include healthcare and assessing the im-
pact of public policies amongst many others. The available data are often observational rather
than the result of a carefully planned experiment or trial. The notion of “causal” then needs
to be carefully defined and the statistical analysis must take into account other possible ex-
planations for the observed outcomes.

A common framework for causal inference is the potential outcome setup [23, 32]. In
this framework, every individual possesses two “potential outcomes”, corresponding to the
individual’s outcomes with and without treatment. The treatment effect, which we wish to
estimate, is thus the difference between these two potential outcomes. Since we only ob-
serve one out of each pair of outcomes, and not the corresponding “counterfactual” outcome,
we do not directly observe samples of the treatment effect. Because in practice, particularly
in observational studies, individuals are assigned treatments in a biased manner, a simple
comparison of actual cases (i.e., treated individuals) and controls may be misleading due to
selection bias. A typical way to overcome this is to gather the values of covariate variables
that influence both outcome and treatment assignment (“confounders”) and apply a correc-
tion based on the “propensity score”, which is the conditional probability that a subject is
treated as a function of the covariate values. Under the assumption that outcome and treat-
ment assignment are independent given the covariates, the causal effect of treatment can be
identified from the data. Popular estimation methods include “propensity score matching”
[38, 40] and “double robust methods” [32, 37, 39, 41]. In this paper, we follow the approach
of nonparametrically modelling the propensity score function and posing the estimation of the
treatment effect as a problem of estimation of a functional on a semiparametric model [6, 43,
48]. Our methodological novelty is to follow a semiparametric Bayesian approach, putting
nonparametric priors on the propensity score and/or on the unknown response function and
the covariate distribution, possibly incorporating an initial estimator of the first function.

For notational simplicity, we in fact consider the missing data model which is mathemat-
ically equivalent to observing one arm of the causal setup. The model is also standard and

Received August 2018; revised August 2019.
MSC2020 subject classifications. Primary 62G20; secondary 62G15, 62G08.
Key words and phrases. Bernstein–von Mises, Gaussian processes, propensity score-dependent priors, causal

inference, Dirichlet process.

2999

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/19-AOS1919
http://www.imstat.org
mailto:kolyan.ray@imperial.ac.uk
mailto:avdvaart@math.leidenuniv.nl
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


3000 K. RAY AND A. VAN DER VAART

widely studied on its own in biostatistical applications, where response variables are fre-
quently missing, and is a template for a number of other models [33, 44]. For a recent review
on estimating an average treatment effect over a (sub)population, a problem that has received
considerable attention in the econometrics, statistics and epidemiology literatures; see Athey
et al. [4].

Suppose that we observe n i.i.d. copies X1, . . . ,Xn of a random variable X = (Z,R,RY),
where R and Y take values in the two-point set {0,1} and are conditionally independent
given Z. We think of Y as the outcome of a treatment and are interested in estimating its
expected value EY . The problem is that the outcome Y is observed only if the indicator
variable R takes value 1, as otherwise the third component of X is equal to 0. Whether
the outcome is observed or not may well be dependent on its value, which precludes taking a
simple average of the observed outcomes as an estimator for EY . The covariate Z is collected
to correct for this problem; it is assumed to contain exactly the information that explains why
the response Y is not observed except for purely random causes, so that the outcome Y and
missingness indicator R are conditionally independent given Z, that is, the outcomes are
missing at random (relative to Z).

The connection to causal inference is that we may think of Y as a “counterfactual” out-
come if a treatment were assigned (R = 1) and its mean as “half” the treatment effect
under the assumption of unconfoundedness. More precisely, if Y 1 and Y 0 denote the po-
tential outcomes when treated or not treated, then in the causal model one would observe
(Z,R,Y 1R,Y 0(1−R)) and be interested in estimating EY 1 −EY 0 under the assumption that
Y 0, Y 1 are conditionally independent of R given Z. One can think of the missing data prob-
lem as simplifying this to observing (Z,R,Y 1R) and estimating EY 1. To estimate the causal
effect, one could apply the missing data problem a second time, to the data (Z,R,Y 0(1−R)),
to estimate EY 0, or do a simultaneous analysis. In the nonparametric setup, there will be no
essential difference between the two.

The model for a single observation X can be described by the distribution of Z and the two
conditional distributions of Y and R given Z. In this paper, we model these three components
nonparametrically. We investigate a Bayesian approach, putting a nonparametric prior on
the three components, in particular Gaussian process and Dirichlet process priors. We then
consider the mean response EY as a functional of the three components and study the induced
marginal posterior distribution of EY from a frequentist perspective. The aim is to derive
conditions under which this marginal posterior distribution satisfies a Bernstein–von Mises
theorem in the semiparametric sense, thus yielding recovery of the mean response at a

√
n-

rate and asymptotic efficiency in the semiparametric sense.
In recent years, Bayesian approaches have become increasingly popular due to their ex-

cellent empirical performance for such problems [1, 2, 15, 19–22, 42, 54]. However, despite
their increasing use in practice, there have been few corresponding theoretical results. Indeed,
early work on semiparametric Bayesian approaches to this specific missing data problem
produced negative results, proving that many common classes of priors, or more generally
likelihood-based procedures, produce inconsistent estimates assuming no smoothness on the
underlying parameters; see the results and discussion in [30, 36]. We attempt to shed light on
this apparent gap between the excellent empirical performance observed in practice and the
potentially disastrous theoretical performance.

The structured nature of the model, with three parameters (response function, propensity
score and covariate distribution), requires careful consideration of prior distributions. As the
likelihood factorizes over the three parameters, choosing these a priori independent will lead
to a product posterior. We show that this can lead to efficient estimation of EY , but only under
unnecessarily harsh smoothness requirements on the parameters. This is in agreement with
the discussion in [30, 36], which applies to likelihood-based methods in general, including
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semiparametric maximum likelihood [24]. Within our Bayesian setup, it is possible to correct
this (partly) by modelling the response function and propensity score as a priori dependent,
thus allowing the components to share information, despite the factorisation in the likelihood.
In particular, we propose a novel Gaussian process prior that incorporates an estimate of the
propensity score function, and show that it performs efficiently under strictly weaker con-
ditions than for standard product priors (see [27] for an empirical investigation). Unlike for
these latter priors, extra regularity of the binary regression function can compensate for low
regularity of the propensity score, that is one direction of so-called “double robustness” [8,
39]. A related construction using Bayesian additive regression trees (BART) has been shown
to work well empirically [20]. It can thus be both practically and theoretically advantageous
to employ propensity score-dependent priors.

For the estimation of EY at
√

n-rate, smoothness of the distribution of the covariate Z

is not needed. In our main result, we therefore model this distribution by the standard non-
parametric prior for a distribution: the Dirichlet process. In our concrete examples, the prior
modelling thus consists of a combination of Gaussian and Dirichlet processes. In the Supple-
mentary Material [28], we also consider modelling the covariate density, for instance by an
exponentiated Gaussian process. Our result seems to indicate that even when the smoothness
of the density is modelled correctly, this approach can induce a nonvanishing bias in the pos-
terior distribution of EY , an effect that becomes more pronounced with increasing covariate
dimension.

The papers [33, 35] consider estimation of EY under minimal smoothness conditions on
the parameters. Using estimating equations, the authors construct estimators that attain an
optimal rate of convergence slower than

√
n in cases where the component parameters have

low smoothness. Furthermore, they construct estimators that attain a
√

n-rate under minimal
smoothness conditions, less stringent than in earlier literature, using higher order estimating
equations. It is unclear whether similar results can be obtained using a Bayesian approach.
The constructions in the present paper can be compared to the estimators obtainable for lin-
ear (or first order) estimating equations. It remains to be seen whether Bayesian modelling
is capable of performing the bias corrections necessary to handle true parameters of low
smoothness levels in a similar manner as higher order estimating equations.

For smooth parametric models, the theoretical justification for posterior based inference
is provided by the Bernstein–von Mises theorem or property (hereafter BvM). This property
says that as the number of observations increases, the posterior distribution is approximately
a Gaussian distribution centered at an efficient estimator of the true parameter and with co-
variance equal to the inverse Fisher information; see Chapter 10 of [48]. While such a result
does not hold in full generality in infinite dimensions [14], semiparametric analogues can es-
tablish the BvM property for the marginal posterior of a finite-dimensional parameter in the
presence of an infinite-dimensional nuisance parameter [7, 10, 11, 31]. In such cases, care
is required in the choice of prior assigned to the nonparametric part, as oversmoothing may
induce a bias in the posterior distribution of the finite-dimensional parameter.

Our main results are two theorems for general priors on the response function and/or
propensity score, followed by corollaries for Gaussian process priors. In both cases, we com-
bine these with a Dirichlet process prior on the covariate distribution. While the first theorem
is in the spirit of earlier work, it is novel in its extension to a structured semiparametric
model and its combination with the Dirichlet process, in both a modelling and a technical
sense. The second theorem is innovative in its investigation of “half of double-robustness”,
as indicated in the preceding, and by showing that incorporating a prior perturbation in the
least favourable direction can remove potential bias from the posterior. The latter device takes
care of the usual “prior invariance condition” and has consequences beyond the model in this
paper. The corollaries for Gaussian process priors illustrate the conditions of the main results,
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and give concrete examples of inference. In the Supplementary Material [28], we present a
third theorem, which covers the case that the covariate density, rather than the distribution, is
modelled, which is again illustrated by Gaussian process priors.

An important consequence of the semiparametric BvM is that credible sets for the func-
tional are asymptotically confidence regions with the same coverage level. The Bayesian ap-
proach thus automatically provides access to uncertainty quantification once one can sample
from the posterior distribution. Obtaining confidence statements for average treatment effects
is a current area of research and there has been recent progress in this direction, for example
using random forests and regression trees [3, 53]. Our results show that Bayesian approaches
can also yield valid frequentist uncertainty quantification in this setting.

The paper is structured as follows. In Section 2, we provide a review of the model, in-
cluding the relevant semiparametric theory. Section 3 contains the two main theorems and
their corollaries, with discussion in Section 4 and the main proofs in Section 5. The remain-
ing sections are given in the Supplementary Material [28]. Section 6 gives the third theorem,
with a joint prior on the propensity score, response function and covariate density. Technical
results, auxiliary results and posterior contraction results are deferred to Sections 7, 8 and 9,
respectively.

1.1. Notation. The notation � denotes inequality up to a multiplicative constant that
is fixed throughout and �x� is the largest integer strictly smaller than x. The symbol � is
used for the logistic function given by �(x) = 1/(1 + e−x). We abbreviate

∫
f dP by Pf .

For probability densities f and g with respect to some dominating measure ν, h(f, g) =
(
∫
(f 1/2 −g1/2)2dν)1/2 is the Hellinger distance, K(f,g) is the Kullback–Leibler divergence

and V (f,g) = ∫
(log(f/g))2 dF . We denote by Hs = Hs([0,1]d) and Cs = Cs([0,1]d) the

L2-Sobolev and Hölder spaces, respectively. For i.i.d. random variables X1, . . . ,Xn with
common law P the notation Pn[h] = n−1 ∑n

i=1 h(Xi) and Gn[h] = √
n(Pn − Ph) are the

empirical measure and process, respectively. The notation L(Z) denotes the law of a random
element Z. We often drop the index n in the product measure P n

η , writing Pη, and write P0
instead of Pη0 , where η0 is the true parameter for the data generating distribution. The ε-
covering number of a set � for a semimetric d , denoted N(�,d, ε), is the minimal number
of d-balls of radius ε needed to cover � and N[](�,d, ε) is the minimal number of brackets
of size ε needed to cover a set of functions �.

2. Model details. Recall that we observe i.i.d. copies X1, . . . ,Xn of a random variable
X = (Z,R,RY), where R and Y take values in the two-point set {0,1} and are condition-
ally independent given Z, which itself takes values in a given measurable space Z . Denote
the full sample by X(n) = (X1, . . . ,Xn). This model can be parameterized via the marginal
distribution F of Z and the conditional probabilities a(z)−1 = P(R = 1|Z = z), called the
propensity score, and b(z) = P(Y = 1|Z = z), the regression of Y on Z. The distribution of
an observation X is thus fully described by the triple (a, b,F ). If F has a density f , then we
may also use the triple (a, b, f ).

For prior construction it will be useful to transform the parameters by a link function.
Most smooth maps from R to (0,1) may be used, but for definiteness we choose the logistic
function �(t) = 1/(1 + e−t ), and consider the reparametrization

ηa = �−1(1/a), ηb = �−1(b),(2.1)

and write η = (ηa, ηb). If a density f of Z exists, then we define in addition

ηf = logf,

and write by a slight abuse of notation η = (ηa, ηb, ηf ).
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The density p(a,b,f ) = pη of X can now be given as

pη(x) =
(

1

a(z)

)r(
1 − 1

a(z)

)1−r

b(z)ry
(
1 − b(z)

)r(1−y)
f (z).(2.2)

Note that this factorizes over the parameters. If the covariate is not assumed to have a density
and η = (ηa, ηb), we use the same notation pη, but then the factor f (z) is understood to be 1,
and the expression is the conditional density of (R,RY) given Z = z. Since pη factorizes
over the three (or two) parameters, the log-likelihood based on X(n) separates as

(2.3) �n(η) =
n∑

i=1

logp(a,b,f )(Xi) = �a
n

(
ηa) + �b

n

(
ηb) + �f

n

(
ηf )

,

where each term is the logarithm of the factors involving only a or b or f , and �
f
n (ηf ) is

understood to be absent when existence of a density f is not assumed. The functional of
interest is the mean response EηY = Eηb(Z), which can be expressed in the parameters as

χ(η) =
∫

b dF =
∫

�
(
ηb)

(z)eηf (z) dz,

where the second representation is available if F has a density.
Estimators that are

√
n-consistent and asymptotically efficient for χ(η) have been con-

structed using various methods, but only if a or b (or both) are sufficiently smooth. In the
present context, under the assumption that a ∈ Cα and b ∈ Cβ , Robins et al. [35] have con-
structed estimators that are

√
n-consistent if (α + β)/2 ≥ d/4, where d is the dimension of

the covariates. They have also shown that the latter condition is sharp: the minimax rate be-
comes slower than 1/

√
n when (α + β)/2 < d/4 (see [34]). The estimators in [35] employ

higher order estimating equations to obtain better control of the bias. First-order estimators,
based on linear estimators or semiparametric maximum likelihood, have been shown to be√

n-consistent only under the stronger condition

α

2α + d
+ β

2β + d
≥ 1

2
;(2.4)

see, for example, [37, 39]. In both cases, the conditions show a trade-off between the smooth-
ness levels of a or b: higher α permits lower β and vice versa. This trade-off results from
the multiplicative form of the bias of linear or higher-order estimators. So-called double ro-
bust estimators are able to exploit this structure, and work well if either a or b is sufficiently
smooth. (More generally, it suffices that the parameters a and b can be estimated well enough,
where the combined rates are relevant. The inequalities even remain valid with α = 0 or β = 0
interpreted as the existence of

√
n-consistent estimators of a or b, as would be the case given

a correctly specified finite-dimensional model.) We shall henceforth also assume that the pa-
rameters a and b are contained in Hölder spaces Cα and Cβ , respectively. See [41] for a
recent discussion of double robustness.

For estimation of EY at
√

n-rate the covariate density f need not be smooth, which makes
sense intuitively, as the functional can be written as an integral relative to the corresponding
distribution F . (Counter to this intuition [34, 35] show this to be false for optimal estimation
at slower than

√
n-rate.) This may motivate modelling F nonparametrically, in the Bayesian

setting for instance with a Dirichlet process prior.
All these observations are valid only if the estimation problem is not affected by the pa-

rameters a, b or f taking values on the boundary of their natural ranges. For simplicity, we
make the following assumption throughout.

ASSUMPTION. The true functions 1/a0 and b0 are bounded away from 0 and 1 and f0 is
bounded away from 0 and ∞.
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2.1. Semiparametric information and least favourable direction. We finish by reviewing
the tangent space and information distance of the model, which is well known to play an
important role in semiparametric estimation theory [5, 6, 43], and enters the Bayesian deriva-
tions through the “least favourable submodel”. (See [10] or Chapter 12 of [16] for general
reviews in the context of Bayesian estimation.)

With regards to the parametrization (2.1), consider the one-dimensional submodels t �→ ηt

induced by the paths

1

at

= �
(
ηa + ta

)
, bt = �

(
ηb + tb

)
, dFt = dFetf

(∫
etf dF

)−1

for given directions (a,b, f) with
∫
fdF = 0, and given “starting” point η = η0. Inserting

these paths in the likelihood (2.2), and computing the derivative d
dt |t=0 logpηt (x) of the log

likelihood, we obtain the “score function” at η = η0 in the direction (a,b, f). This can be
easily computed to be the sum of the score functions when varying the three parameters
separately, which are given by

Ba
ηa(X) =

(
R − 1

a(Z)

)
a(Z),

Bb
ηb(X) = R

(
Y − b(Z)

)
b(Z),

Bf
η f(X) = f(Z).

The operators Ba
η , Bb

η , B
f
η are the score operators for the three parameters. The overall score

Bη(a,b, f)(X) when perturbing the three parameters simultaneously is the sum of the three
terms in the previous display. The efficient influence function of the functional χ at the point
η is known to take the form (see Example 25.43 of [48] with χ̇Q(y) the current y −χ(η) and
φ(y,0) the current (R,Z), or the derivation below)

χ̃η(X) = Ra(Z)
(
Y − b(Z)

) + b(Z) − χ(η).

We can verify that this is the correct formula by verifying that this function has the two
properties defining an efficient influence function ([48], p. 426). First, the derivative at t = 0
of the functional along a path t �→ ηt = (at , bt , ft ) as previously, is the inner product of the
influence function with the score function of that path: d

dt |t=0χ(ηt ) = Pηχ̃η(X)Bη(a,b, f)(X)

for every path t �→ pηt of the above form. Second, the function χ̃η is contained in the closed
linear span of the set of all score functions. Indeed, in the present case we have, for all x,

(2.5) χ̃η(x) = Bηξη(x) = Bb
ηa(x) + Bf

η

(
b −

∫
b dF

)
(x),

where ξη is the least favourable direction given by

ξη = (
0, ξb

η , ξf
η

) =
(

0, a, b −
∫

b dF

)
.

The function ξη is the score function for the submodel t �→ ηt corresponding to the perturba-
tions in the directions of (0, a, b − ∫

b dF) on (a, b,F ). The latter submodel is called least
favourable, since t �→ pηt has the smallest information about the functional of interest at
t = 0. According to semiparametric theory (e.g., Chapter 25 of [48], in particular formula
(25.22)) a sequence of estimators χ̂n = χ̂n(X

(n)) is asymptotically efficient for estimating
χ(η) at the true parameter η0 if and only if

(2.6) χ̂n = χ(η0) + 1

n

n∑
i=1

χ̃η0(Xi) + oPη0

(
n−1/2)

.
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The sequence
√

n(χ̂n − χ(η0)) is then asymptotically normal with mean zero and variance
Pη0 χ̃

2
η0

, which is the smallest possible in a local minimax sense.
For a direction v = (a,b, f), the information norm corresponding to the score operator (or

LAN norm in the language of [10, 11, 31]) equals

‖v‖2
η := Pη

[
(Bηv)

]2 =
∫ [

1

a

(
1 − 1

a

)
a2 + b(1 − b)

a
b2 + (f− F f)2

]
dF

=: ‖a‖2
a + ‖b‖2

b + ‖f‖2
F .

It may be noted that the three components of the score operator are orthogonal, which is a
consequence of the factorization of the likelihood. The minimal asymptotic variance Pη0 χ̃

2
η0

for estimating χ(η) can be written in terms of the information norm as

‖ξη0‖2
η0

= Pη0(Bη0ξη0)
2 = Pη0 χ̃

2
η0

=
∫

a0b0(1 − b0) dF0 +
∫

b2
0 dF0 − χ(η0)

2.
(2.7)

3. Results. We put a prior probability distribution  on the parameter (ηa, ηb,F ) or
η = (ηa, ηb, ηf ), and consider the posterior distribution (·|X(n)) based on the observation
X(n) = (X1, . . . ,Xn). This induces posterior distributions on all measurable functions of η,
including the functional of interest χ(η).

We write L(
√

n(χ(η) − χ̂n)|X(n)) for the marginal posterior distribution of
√

n(χ(η) −
χ̂n), where χ̂n is any random sequence satisfying (2.6). We shall be interested in proving
that this distribution asymptotically looks like a centered normal distribution with variance
‖ξη0‖2

η0
. For a precise statement of this approximation, let dBL be the bounded Lipschitz

distance on probability distributions on R (see Chapter 11 of [12]).

DEFINITION 1. Let X(n) = (X1, . . . ,Xn) be i.i.d. observations with Xi = (Zi,Ri,RiYi)

arising from the density pη0 in (2.2), whose distribution we denote by P0 = Pη0 . We say that
the posterior satisfies the semiparametric Bernstein–von Mises (BvM) if, for χ̂n satisfying
(2.6) and ‖ξη0‖η0 given by (2.7), as n → ∞,

dBL
(
L

(√
n
(
χ(η) − χ̂n

)|X(n)),N(
0,‖ξη0‖2

η0

)) →P0 0.

In Sections 3.2 and 3.3, we present two general results for priors on the parameters (a, b),
combined with an independent Dirichlet process prior on F . In Section 3.2, the prior on the
pair (a, b) is general, whereas in Section 3.3 we construct a prior on b using an estimator of
the propensity score 1/a, thus linking the two parameters. Following these general results we
specialize to Gaussian process priors and obtain concrete results in Section 3.4.

An alternative to using the Dirichlet process on F is to put a prior on the triple (a, b, f ),
for f a density of F . A general result can be found in Section 6 below, but it requires stronger
conditions for the BvM theorem to hold. Putting a prior on f introduces the additional bias
term (6.6), whose vanishing becomes more restrictive as the covariate dimension increases
and can be problematic in even moderate dimensions. Thus it appears preferable to directly
model the distribution F .

3.1. Posterior distribution relative to Dirichlet process prior. Since the covariates
Z1, . . . ,Zn are fully observed and the functional of interest χ(η) is an integral relative to
their distribution F , intuitively the estimation problem should not depend too much on prop-
erties of the covariate distribution. For

√
n-estimation, this intuition is shown to be correct

in [35]. In our Bayesian setup, this suggests to put a prior on F that does not limit this
distribution.
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The standard “nonparametric prior” on the set of probability distributions on a (Polish)
sample space is the Dirichlet process prior [13]. This distribution is characterized by a base
measure ν, which can be any finite measure on the sample space. It is well known that in
the model consisting of sampling F from the Dirichlet process prior and next sampling ob-
servations Z1, . . . ,Zn from F , the posterior distribution of F given Z1, . . . ,Zn is again a
Dirichlet process with updated base measure ν + nFn, where Fn is the empirical distribution
of Z1, . . . ,Zn. (For full definitions and properties, see the review in Chapter 4 of [16].)

We utilize the Dirichlet process prior on F together with an independent prior on the re-
maining parameters (a, b), constructed from a prior on (ηa, ηb) using the logistic link func-
tion (2.1). Because the Dirichlet process prior does not give probability one to a dominated
set of measures F , the resulting posterior distribution of (a, b,F ) cannot be derived using
Bayes’s formula. However, we can obtain a representation as follows. The parameters and
the data are generated through the hierarchical scheme:

• F ∼ DP(ν) independent from η = (a, b) ∼ .
• Given (F, a, b) the covariates Z1, . . . ,Zn are i.i.d. F .
• Given (F, a, b,Z1, . . . ,Zn) the pairs (Ri, Yi) are independent from products of binomial

distributions with success probabilities 1/a(Zi) and b(Zi).
• The observations are X(n) = (X1, . . . ,Xn) with Xi = (Zi,Ri,RiYi).

From this scheme, it follows that F and (R(n), Y (n)) are independent given (Z(n), a, b), and
also that F and (a, b) are conditionally independent given X(n). We can then conclude that the
posterior distribution of F given X(n) is the same as the posterior distribution of F given Z(n),
which is the DP(ν +nFn) distribution. Furthermore, the posterior distribution of (a, b) given
(F,X(n)) can be derived by Bayes’s rule from the binomial likelihood of (R(n),R(n)Y (n))

given Z(n), which is dominated. Thus the posterior distribution is given by


(
(a, b) ∈ A,F ∈ B|X(n))
=

∫
B

∫
A

∏n
i=1 p(a,b)(Ri,RiYi |Zi) d(a, b)∫ ∏n
i=1 p(a,b)(Ri,RiYi |Zi) d(a, b)

d
(
F |Z(n)),(3.1)

where p(a,b) is the conditional density of (R,RY) given Z, given by (2.2) with f deleted or
taken equal to 1, and (F ∈ ·|Z(n)) is the DP(ν + nFn)-distribution. This formula remains
valid if ν = 0, which yields the Bayesian bootstrap; see Chapter 4.7 of [16], and is also
covered in the theorems below. We suspect that the theorems extend to other exchangeable
bootstrap processes, as considered in [25] (see [47], Section 3.7.2).

3.2. General prior on (a, b) and Dirichlet process prior on F . Define ηt (η) = ηt (η;
n, ξη0) to be a perturbation of η = (ηa, ηb) in the least favourable direction, restricted to the
components corresponding to a and b:

(3.2) ηt (η) =
(
ηa, ηb − t√

n
ξb
η0

)
.

THEOREM 1. Consider a prior  consisting of an arbitrary prior on η = (ηa, ηb) and
an independent Dirichlet process prior on F . Assume that there exist measurable sets Hn of
functions η = (ηa, ηb) satisfying


(
η ∈Hn|X(n)) →P0 1,(3.3)

sup
b=�(ηb):η∈Hn

‖b − b0‖L2(F0)
→ 0,(3.4)

sup
b=�(ηb):η∈Hn

∣∣Gn[b − b0]
∣∣ →P0 0.(3.5)
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If for the path ηt (η) in (3.2) and every t ,∫
Hn

∏n
i=1 pηt (η)(Ri,RiYi |Zi) d(η)∫

Hn

∏n
i=1 pη(Ri,RiYi |Zi) d(η)

→P0 1,(3.6)

then the posterior distribution (3.1) satisfies the BvM theorem.

Conditions (3.3)–(3.5) permit to control the remainder terms in an expansion of the likeli-
hood. They require that the posterior distribution of b concentrates on shrinking neighbour-
hoods about the true parameter b0 (with no similar requirement for a), and hence mostly
require consistency.

The uniformity in b required in (3.5) is unpleasant, as it will typically require that the class
of b supported by the posterior distribution is not unduly large. The condition is linked to
using the likelihood and similar conditions arise in maximum likelihood based estimation
procedures, although (3.5) seems significantly weaker, as the uniformity is required only on
the essential support of the posterior distribution, which might be much smaller than the full
parameter space. The use of estimating equations can avoid uniformity conditions by sample
splitting [35]. In the Bayesian framework, one might similarly base posterior distributions of
different parameters on given subsamples, but this is unnatural so that we do not pursue this
route here.

Under (3.4) a sufficient condition for (3.5) is that the class of functions b in the condition is
contained in a fixed F0-Donsker class (see Lemma 3.3.5 of [52]). In particular, it suffices that
the posterior concentrates on a bounded set in Hs for s > d/2. While this condition is easy
to establish for certain priors, such as uniform wavelet priors [17], for the Gaussian process
priors considered below we employ relatively complicated arguments using metric entropy
bounds to verify the condition.

Condition (3.6) measures the invariance of the prior for the full nuisance parameter under
a shift in the least favourable direction ξb

η0
. It is a structural condition on the combination

of prior and model, and if not satisfied may destroy the
√

n-rate in the BvM theorem (see
[10] or [16] for further discussion). Although we shall verify the condition for several priors
of interest below, this condition may impose smoothness conditions on the parameters, and
prevent so-called “double robustness”. We shall remove this condition for special priors in
Theorem 2 below.

The invariance involves the component ξb
0 only, and not the other nonzero component ξ

f
0

of the least favourable direction. In contrast, in Theorem 3, which puts a prior on the covariate
density f , the invariance involves the full least favourable direction (see (6.1)). Intuitively,
the Dirichlet process is a fully nonparametric prior that never causes this type of bias.

Since ξb
η0

= a0, Theorem 1 implicitly requires conditions on a0 through (3.6), even though
a does not appear in the functional χ(η). Such conditions become explicit for concrete priors
below.

REMARK 1. If the quotient on the left-hand side of (3.6) is asymptotic to eμnt (1 +
oP0(1)) for some possibly random sequence of real numbers μn, then the assertion of the
BvM theorem is still true, but the normal approximation N(0,‖ξη0‖2

η0
) must be replaced by

N(μn,‖ξη0‖2
η0

). See [11, 31] for further discussion. The same is true for all other results in
the following.

REMARK 2. If the supremum in (3.5), or similar variables below, is not measurable, then
we interpret this statement in terms of outer probability.



3008 K. RAY AND A. VAN DER VAART

Formula (3.1) shows that a draw from the posterior distribution of the functional of interest
χ(η) = ∫

b dF is obtained by independently drawing b from its posterior distribution and
F from the DP(ν + nFn)-distribution, and next forming the integral

∫
b dF . The posterior

distribution of b is constructed from the conditional likelihood of (R(n),R(n)Y (n)) given Z(n)

without involving F or its prior distribution. Instead of a Bayesian-motivated or bootstrap
type choice for F , which requires randomization given Z(n), one could also directly plug in
an estimator of F based on Z(n) and randomize only b from its posterior distribution. The
empirical distribution Fn is an obvious choice. The proof of Theorem 1 suggests that for this
choice, under the conditions of the theorem,

dBL
(
L

(√
n
(
χ(η) − χ̂n

)|X(n)),N(
0,

∥∥ξb0
η0

∥∥2
b0

)) →P0 0.

Compared to the BvM theorem, this suggests a normal approximation with the same cen-
tering, but a smaller variance, since the variance in the BvM theorem is the sum ‖ξb0

η0 ‖2
b0

+
‖ξf0

η0 ‖2
F0

. The lack of posterior randomization of F thus results in an underestimation of the
asymptotic variance. Using credible sets resulting from this “posterior” would give overcon-
fident (wrong) uncertainty quantification. Since our focus is on the Bayesian approach, we
do not purse such generalizations further.

3.3. Propensity score-dependent priors. To reduce unnecessary regularity conditions, it
can be useful to use a preliminary estimate ân of the inverse propensity score [35, 37, 39]. In
a Bayesian setting, [20] suggest adding an estimate of the propensity score evaluated at the
data as an additional covariate when using BART for causal inference [22]. In this section,
we employ preliminary estimators ân to augment the prior on b with the aim of weakening
the conditions required for a semiparametric BvM.

Suppose we have a sequence of estimators ân of the inverse propensity score satisfying

‖ân − a0‖L2(F0)
= OP0(ρn)(3.7)

for some sequence ρn → 0. Since the propensity score is just a (binary) regression function
of R onto Z, standard (adaptive) smoothing estimators satisfy this condition with rate ρn =
n−α/(2α+d) if the propensity score is assumed to be contained in Cα([0,1]d), which is the
minimax rate over this space (note that ân − a0 = âna0(1/a0 − 1/ân) will attain at least the
rate of an estimator of the propensity score 1/a0 itself). Consider the following prior on b:

(3.8) b(z) = �
(
Wb

z + λân(z)
)
,

where Wb is a continuous stochastic process independent of the random variable λ, which
follows a prior N(0, σ 2

n ) distribution for given variance σ 2
n (potentially varying with n, but

fixed is allowed). The additional parameter λ has the role of making the prior link between
the parameters b and a flexible; the variance σ 2

n will be required not too small below.
We assume that ân is based on observations that are independent of X1, . . . ,Xn, the ob-

servations used in the likelihood to obtain the posterior distribution. Otherwise, the prior
(3.8) becomes data-dependent, which significantly complicates the technical analysis. This
independence seems, however, unnecessary in practice. The analogous prior to (3.8) for a
continuous regression model is investigated empirically in the companion paper [27], where
it performs well when 1/ân is trained on the same data as the posterior.

We may think of ân as a degenerate prior on a, and then by the factorization of the like-
lihood the part of the likelihood involving a cancels from the posterior distribution (3.1) if
marginalized to (b,F ) (and hence χ(η)). Of course, the same will happen if we assign an
independent prior to a. Thus in both cases it is unnecessary to further discuss a prior on a.
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THEOREM 2. Given independent estimators ân satisfying (3.7) and having ‖ân‖∞ =
OP0(1), consider the prior (3.8) for b with the stochastic process Wb and random variable
λ ∼ N(0, σ 2

n ) independent, and assign F an independent Dirichlet process prior. Assume
that there exist measurable sets Hb

n of functions satisfying, for every t ∈ R and some numbers
un, ε

b
n → 0,


(
λ : |λ| ≤ unσ

2
n

√
n|X(n)) →P0 1,(3.9)


(
(w,λ) : w + (

λ + tn−1/2)
ân ∈ Hb

n|X(n)) →P0 1,(3.10)

sup
b=�(ηb):ηb∈Hb

n

‖b − b0‖L2(F0)
≤ εb

n,(3.11)

sup
b=�(ηb):ηb∈Hb

n

∣∣Gn[b − b0]
∣∣ →P0 0.(3.12)

If nσ 2
n → ∞ and

√
nρnε

b
n → 0, then the posterior distribution satisfies the semiparametric

BvM theorem.

The advantage of this theorem over Theorem 1 is that (3.6) does not appear in its con-
ditions. (The theorem adds (3.9) and (3.10), but these are relatively mild.) As noted above,
condition (3.6) requires a certain invariance of the prior of b in the the least favourable di-
rection ξb

η0
= a0, and typically leads to smoothness requirements on a. In contrast, we show

below that Theorem 2 can yield the BvM theorem for propensity scores 1/a of arbitrarily
low regularity. Thus the theorem is able to achieve what could be named single robustness.
Whether “double robustness”, the ability of also handling response functions b of arbitrarily
low smoothness, is also achieved remains unclear. Specifically, we have not been able to ver-
ify condition (3.12) without assuming that the smoothness of b is above the usual threshold
(d/2 in d dimensions).

The single robustness is achieved by perturbing the prior process for b in the least
favourable direction using the auxiliary variable λ. Since the least favourable direction a0
is unknown, this is replaced with an estimate ân.

Condition (3.9) puts a lower bound on the variability of the perturbation, that is, on the
standard deviation σn of λ. An easy method to ascertain this condition is to show that the
prior mass of the set λ in the left-hand side is exponentially small and next invoke Lemma 4.
Specifically, by the univariate Gaussian tail bound the prior mass of {λ : |λ| > unσ

2
n

√
n} is

bounded above by e−u2
nσ 2

n n/2. If the Kullback–Leibler neighbourhood in Lemma 4 has prior
probability at least e−n(εb

n)2
, then the lemma gives the sufficient condition u2

nσ
2
n � (εb

n)
2 for

(3.9), that is, σn  εb
n.

3.4. Specialization to Gaussian process priors. In this section, we specialize Theorems 1
and 2 to Gaussian process priors. In all examples, the priors on the three parameters a, b and
F are independent. Since a does not appear in χ(η) and the likelihood (2.2) factorizes over
a, b and F , the a terms cancel from the marginal posterior distribution of χ(η). Thus the
prior on a is irrelevant, and it is not necessary to consider it.

For simplicity, we take the covariate space to be the unit cube Z = [0,1]d . Given a
mean-zero Gaussian process Wb = (Wb

z : z ∈ [0,1]d), we consider both the propensity score-
dependent prior for b given by (3.8) and the more simple prior

b(z) = �
(
Wb

z

)
.(3.13)

There are a great variety of Gaussian processes, and their success in nonparametric estima-
tion is known to depend on their sample smoothness, as measured through their small ball
probability (see [45, 46, 49, 51]). We derive a proposition on general Gaussian processes and
consider the following specific examples.
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EXAMPLE (Riemann–Liouville). In dimension d = 1, the Riemann–Liouville process
released at zero of regularity β̄ > 0 is defined by

Wb
z =

�β̄�+1∑
k=0

gkz
k +

∫ z

0
(z − s)β̄−1/2 dBs, z ∈ [0,1],(3.14)

where the (gk) are i.i.d. standard normal random variables and B is an independent Brownian
motion. This process is appropriate for nonparametric modelling of Cβ̄([0,1])-functions. We
shall investigate the effect of the smoothness parameter β̄ on the BvM theorem.

EXAMPLE (Gaussian series). Another commonly used Gaussian process prior consists
of a finite series expansion with Gaussian coefficients. Let {ψjk : j ≥ 1, k = 0, . . . ,2jd − 1}
denote a sufficiently regular boundary-adapted Daubechies wavelet basis of L2([0,1]d). We
assume it is regular enough for the decay of the wavelet coefficients to characterize all the
relevant Besov Bs∞∞-norms (which are equal to the Cs-Hölder norms for s /∈ N. For details
on such wavelets and Besov spaces, see Chapter 4.3 of [18].) Consider the prior

(3.15) Wb
z =

Jβ̄∑
j=1

2jd−1∑
k=0

σjgjkψjk(z), gjk ∼i.i.d. N(0,1),

where 2Jβ̄ ∼ n1/(2β̄+d), which tends to infinity with n, is the optimal dimension of a finite-
dimensional model if the true parameter is known to be β̄-smooth and σj = 2−j (r+d/2) for
r ≥ 0. Since we wish to perform the prior regularization via the truncation level Jβ̄ rather

than the scaling coefficients σj , we restrict to considering r ≤ β ∧ β̄ , for instance r = 0.

We can view both processes as Borel-measurable maps in the Banach space C([0,1]d),
equipped with the uniform norm ‖ · ‖∞. In the following proposition, we consider a general
zero-mean Gaussian process of this type. Such a process determines a so-called reproducing
kernel Hilbert space (RKHS) (Hb,‖ · ‖Hb ), and a “concentration function” at ηb

0, defined as,
for ε > 0,

φηb
0
(ε) = inf

h∈Hb:‖h−ηb
0‖∞<ε

‖h‖2
Hb − logP

(∥∥Wb
∥∥∞ < ε

)
.(3.16)

For standard statistical models, the posterior contraction rate εb
n for such a Gaussian process

prior is linked to the solution of the equation

φηb
0

(
εb
n

) ∼ n
(
εb
n

)2
.(3.17)

For details, see [50] and [49].

PROPOSITION 1. Consider the prior (3.13) on b for a Gaussian process Wb with values
in C([0,1]d) combined with an independent Dirichlet process prior on F . Let εb

n → 0 satisfy
(3.17). Suppose there exist sequences ξn ∈H

b and ζ b
n → 0 such that

(3.18)
∥∥ξb

n − ξb
η0

∥∥∞ ≤ ζ b
n ,

∥∥ξb
n

∥∥
Hb ≤ √

nζb
n ,

√
nεb

nζ
b
n → 0.

Suppose further that there exist measurable sets Hb
n of functions ηb such that (ηb ∈

(Hb
n − tξ b

n /
√

n)|X(n)) →P0 1 for every t ∈ R and (3.5) holds. Then the posterior distribu-
tion satisfies the semiparametric BvM theorem.

For the examples of the Riemann–Liouville process and finite Gaussian series prior the
preceding proposition implies the following.
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COROLLARY 1. Suppose a0 ∈ Cα([0,1]d), b0 ∈ Cβ([0,1]d) and consider the prior
(3.13) on b with Wb the random series (3.15) combined with an independent Dirichlet pro-
cess prior on F . If α,β > d/2 and d/2 < β̄ < α + β − d/2, then the posterior distribution
satisfies the semiparametric BvM theorem. Moreover, when d = 1 the same result holds with
Wb the Riemann–Liouville process (3.14) with parameter β̄ .

For α,β > d/2, the parameter β̄ can always be chosen to satisfy the remaining condition in
the corollary, in which case the BvM theorem holds. The values α,β > d/2 are one particular
pair satisfying (2.4). However, when using product priors, it does not seem possible to use
extra smoothness in one parameter to offset low regularity in the other as in (2.4). To remedy
this, we consider the propensity score-dependent prior (3.8).

COROLLARY 2. Suppose a0 ∈ Cα([0,1]d) and b0 ∈ Cβ([0,1]d). Let ân be an indepen-
dent estimator satisfying ‖ân‖∞ = OP0(1) and (3.7) for some ρn → 0. Consider the prior
(3.8) for b, where Wb is the random series (3.15) combined with an independent Dirichlet
process prior on F . If β ∧ β̄ > d/2 and

(n/ logn)−(β∧β̄)/(2β̄+d) � σn � 1,
√

nρn(n/ logn)−(β∧β̄)/(2β̄+d) → 0,

then the posterior distribution satisfies the semiparametric BvM. Moreover, when d = 1 the
same result holds with Wb the Riemann–Liouville process (3.14) with parameter β̄ .

If β̄ = β and ρn = (logn)κn−α/(2α+1) is the minimax rate of estimation, possibly up to
a logarithmic factor, then the above conditions reduce to β > d/2 and (2.4). If β is near the
lower limit d/2, then the latter condition requires that α be bigger than nearly d/2 as well, but
if β is large, then the latter condition will be satisfied for α close to zero. Thus the estimation
method is able to exploit extra smoothness in b0 to offset lower regularity in a0, in particular
if 0 < α ≤ d/2, unlike the standard product Gaussian process priors, where we required both
α,β > d/2. Since it is still needed that β > d/2, the preceding corollary does not give full
“double robustness” in also taking advantage of extra regularity in a0 if 0 < β ≤ d/2. The
technical reason is requirement (3.5), which is present in all our theorems, and used in the
proofs to establish the LAN expansion of the model. Whether this is a fundamental limitation
of the Bayesian approach or a purely technical artefact is unclear.

If Wb is a mean-zero Gaussian process with covariance kernel KWb(z, z′) = EWb
z Wb

z′ , then
the term Wb +λân in (3.8) is also a mean-zero Gaussian process with data-driven covariance

E
[
Wb

z + λân(z)
][

Wb
z′ + λân

(
z′)] = KWb

(
z, z′) + σ 2

n ân(z)ân

(
z′).

In this case, the propensity score-dependent prior corresponds to an easy to implement correc-
tion to the prior covariance function. In particular, one can use standard methods for Gaussian
process posterior computation, such as Laplace or sparse approximations [26]. In practice, we
would also suggest to truncate the estimator 1/ân away from 0 for numerical stability. Com-
putational and empirical aspects of this new prior are investigated in the continuous regres-
sion model in a companion paper [27], where it is found that incorporating an estimator of
the propensity score in this way significantly improves the performance of Gaussian process
priors.

4. Discussion. A key technical difficulty for establishing semiparametric BvM results
is controlling the ratio (3.6) (or (6.7)). While one can use the Cameron–Martin theorem for
Gaussian priors, such results are typically more involved outside the Gaussian setting. The
hyper parameter λ in the prior (3.8) removes this obstacle, allowing results for a much wider
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class of priors. For instance, one may select Wb in (3.8) to be a truncated prior or sieve prior,
without having to establish (3.6) directly for those priors.

Such a prior construction generalizes to other models and functionals. Consider a model
P = (Pη : η ∈ H) and a parameter χ(η). For a prior of the form η = W + λξ̂n, where W is
a continuous stochastic process, λ ∼ N(0, σ 2

n ) and ξ̂n is an estimate of the least favourable
direction ξη0 of χ at η0 in the model P , similar results to the above should hold. We em-
phasize, however, that such a prior is designed for semiparametric estimation of the specific
functional χ and will not perform any better for any other functional. It is thus suitable for
estimating a functional of interest in the presence of a high or infinite-dimensional nuisance
parameter that can have a significant impact, as in the model we study here.

5. Proofs of the main results.

5.1. Proof of Theorem 1: General prior on b and Dirichlet process prior. PROOF OF

THEOREM 1. The total variation distance between the posterior distributions based on the
prior  and the prior n(·) := (·∩Hn)/(Hn), which is  conditioned to Hn, is bounded
above by 2(Hc

n|X(n)) (e.g., p. 142 of [48]). Since this tends to zero in probability by as-
sumption and the total variation topology is stronger than the weak topology, it suffices to
show the desired result for the conditioned prior n instead of .

Let χ̂n = χ(η0) + Pnχ̃η0 , so that it satisfies (2.6) with the remainder term identically zero.
The posterior Laplace transform of the variable

√
n(χ(η) − χ̂n) is given by, for t ∈ R,

In(t) = E
n

[
et

√
n(χ(η)−χ̂n)|X(n)]

=
∫ ∫

Hn

et
√

n
∫
(b dF−b0 dF0)−tGn[χ̃η0 ]+�b

n(η)−�b
n(ηt )e�b

n(ηt )∫
Hn

e�b
n(η′) d(η′)

d(η)d
(
F |X(n)),

in view of (3.1) and the factorization of the likelihood over a and b. This is (obviously) true
for any ηt , in particular for the path ηt = ηt (η) defined in (3.2). We shall show that In(t)

tends in probability to exp(t2‖ξη0‖2
η0

/2), which is the Laplace transform of a N(0,‖ξη0‖2
η0

)

distribution, for every t in a neighbourhood of 0. Since convergence of conditional Laplace
transforms in probability implies conditional convergence in distribution in probability (see
Lemma 14 below), this would complete the proof.

At the end of the proof, we shall show that, uniformly in η ∈ Hn,

�b
n(η) − �b

n(ηt ) = tGn

[
χ̃b

η0

] + t
√

n

∫
(b0 − b)dF0 + t2

2

∥∥ξb
η0

∥∥2
b0

+ oP0(1),(5.1)

where χ̃b
η = Bb

ηa is the component of the efficient influence function in the b direction (see
(2.5)). Inserting this Taylor expansion in the preceding display, we see that

In(t) =
∫ ∫

Hn

et
√

n
∫
(b dF−b0 dF0)+t

√
n

∫
(b0−b)dF0e�b

n(ηt )∫
Hn

e�b
n(η′) d(η′)

d(η)d
(
F |X(n))

× e
−tGn[χ̃f

η0 ]+ t2
2 ‖ξb

η0
‖2
b0

+oP0 (1)
,

where χ̃
f
η0 = χ̃η0 − χ̃b

η0
= b0 − χ(η0). Note that the integral in the denominator is a constant

relative to η and F , since all variables are integrated out. By Fubini’s theorem, the double
integral without the normalizing constant equals∫

Hn

e�b
n(ηt )

∫
et

√
n

∫
bd(F−F0) d

(
F |X(n))d(η).
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Let Fn = n−1 ∑n
i=1 δZi

denote the empirical distribution of the covariates. By assumption
(3.5), we certainly have that sup{|(Fn − F0)b| : b = �(ηb), η ∈ Hn} tends to zero in prob-
ability. Therefore, Lemma 1 below yields that for every t in a neighbourhood of zero, the
preceding display equals

eoP0 (1)
∫
Hn

e�b
n(ηt )et

√
n

∫
bd(Fn−F0)e

t2
2 ‖b−F0b‖2

L2(F0) d(η).

Since ‖b − b0‖L2(F0)
→ 0 uniformly on Hn and

√
n

∫
bd(Fn − F0) = Gn[b0] + oP0(1) by

assumption (3.5), the previous display equals

e
tGn[b0]+ t2

2 ‖b0−F0b0‖2
L2(F0)

+oP0 (1)
∫
Hn

e�b
n(ηt ) d(η).

We insert this in the expression for In(t), combine the two exponential terms using that
χ̃

f
η0 = b0 − χ(η0) and ‖b0 − F0b0‖L2(F0)

= ‖ξf
η0‖F0 , and invoke assumption (3.6), to see

that In(t) tends to e
t2‖ξη0‖2

η0
/2 in probability. The theorem then follows by the convergence of

Laplace transforms.
We conclude by a proof of (5.1). This entails an expansion of the log likelihood �b

n(η) −
�b
n(ηt ) along the submodel ηt . We can decompose

�b
n(η) − �b

n(ηt ) = tGn

[
χ̃b

η0

] + √
nGn

[
logpη − logpηt − t√

n
χ̃b

η0

]

+ nPη0[logpη − logpηt ].
(5.2)

We shall show that the second term on the right tends to zero in probability, while the third
term tends to the quadratic t2‖a0‖2

b0
/2, where a0 = ξb

η0
.

The definition ηu := (ηa, ηb
u) with ηb

u = ηb − tuξb
η0

/
√

n, for u ∈ [0,1], gives a path from
ηu=0 = η (not η0!) to ηu=1 = ηt , so that logpη − logpηt = g(0) − g(1) for g(u) = logpηu .
We shall replace this difference in both terms on the right of (5.2) by the Taylor expansion
g(0)− g(1) = −g′(0)− g′′(0)/2 − θ , where |θ | ≤ ‖g′′′‖∞. The expansion will be uniform in
η ∈Hn, although the dependence of g and θ on η is not indicated in the notation.

By explicit calculations, the derivatives of g can be seen to be

g′(u) = − t√
n
Bb

ηu
a0 = − t√

n
r
(
y − �

(
ηb

u

))
a0,

g′′(u) = − t2

n
r� ′(ηb

u

)
a2

0, g′′′(u) = t3

n3/2 r� ′′(ηb
u

)
a3

0,

where we have omitted the function arguments (r, y, z). Since |θ | ≤ ‖g′′′‖∞ � n−3/2, it fol-
lows that both

√
nGnθ and nP0θ tend to zero in probability, uniformly in η ∈ Hn. Since

Bb
η0

a0 = χ̃b
η0

,

g′(0) = − t√
n
Bb

ηa0 = − t√
n
χ̃b

η0
+ t√

n
r(b − b0)a0,

g′′(0) = − t2

n
r� ′(ηb)

a2
0 = − t2

n
r� ′(ηb

0
)
a2

0 − t2

n
r
(
b(1 − b) − b0(1 − b0)

)
a2

0

for b = �(ηb), since � ′ = �(1 − �).
By assumption (3.5) and Lemma 11, applied with Hn,1 the set of functions

√
n(b − b0)

and Hn,2 = {r}, we have that Gn[r(b − b0)a0] → 0 in probability, uniformly in {b = �(ηb) :
η ∈ Hn}, whence

√
nGng

′(0) = −tGn[χ̃b
η0

] + oP0(1), uniformly in η ∈ Hn. By again as-
sumption (3.5) and Lemma 11, Gn[r(b(1 − b) − b0(1 − b0))a

2
0] → 0 in probability, whence
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√
nGng

′′(0) = OP0(n
−1/2) → 0 in probability. We conclude that the second term on the right

in (5.2) tends to zero in probability, uniformly in η ∈ Hn.
Since � ′(ηb

0) = b0(1 − b0) and
∫

b0(1 − b0)a0 dF0 = ‖ξb
η0

‖2
b0

,

−nPη0g
′(0) = t

√
n

∫
(b0 − b)dF0,

−nPη0g
′′(0) − t2∥∥ξb

η0

∥∥2
b0

= t2Pη0

[
r
(
b(1 − b) − b0(1 − b0)

)
a2

0
]

� Pη0

[
r|b − b0|a2

0
] ≤ ‖b − b0‖L1(F0)

‖a0‖∞.

Therefore, nPη0[−g′(0) − g′′(0)/2] is equal to t
√

n
∫
(b0 − b)dF0 + t2‖ξb

η0
‖2
b0

/2 + oP0(1).
The third term on the right of (5.2) is equivalent to the same expression. This concludes the
proof of (5.1). �

The preceding proof makes use of the following lemma, which can be considered a BvM
theorem for the Laplace transform of the Dirichlet posterior process. A proof of the lemma
can be found in [29].

Let Fn be the empirical distribution of an i.i.d. sample Z1, . . . ,Zn from a distribution F0
on a Polish sample space (Z,C), and given Z1, . . . ,Zn let Fn be the distribution of a draw
from the Dirichlet process with base measure ν + nFn. Thus ν is a finite measure on (Z,C),
and Fn|Z1, . . . ,Zn ∼ DP(ν + nFn) is the posterior distribution obtained when equipping
the distribution of the observations Z1,Z2, . . . ,Zn with a Dirichlet process prior with base
measure ν. The case ν = 0 is allowed.

LEMMA 1. Suppose Gn are separable classes of measurable functions such that
supg∈Gn

|Fng − F0g| → 0 in probability and have envelope functions Gn satisfying νGn =
O(1) and F0G

2+δ
n = O(1) for some δ > 0. Then for every t in a sufficiently small neighbour-

hood of 0, in probability,

sup
g∈Gn

∣∣E[
et

√
n(Fng−Fng)|Z1, . . . ,Zn

] − et2F0(g−F0g)2/2∣∣ → 0.

5.2. Proof of Theorem 2: Propensity score-dependent prior. PROOF OF THEOREM 2.
For the propensity score-dependent prior (3.8), the posterior distribution for

√
n(χ(η) − χ̂n)

is dependent both on the data X(n) and the estimator ân, and hence the bounded Lipschitz
distance between this posterior distribution and the approximating normal distribution in
Definition 1 is a function H(X(n), ân) of this pair of stochastic variables. By the assumed
stochastic independence of X(n) and ân, the expectation of this distance can be disintegrated
as EH(X(n), ân) = ∫

EH(X(n), a) dP ân(a), where the expectation inside the integral is rela-
tive to X(n) only and concerns the “ordinary” posterior distribution relative to the prior (3.8)
with ân set equal to the deterministic function a, that is, the posterior distribution for the prior
of the form �(w + λa) on b, for a fixed function a and (w,λ) following their prior. Since
the bounded Lipschitz distance is bounded, EH(X(n), ân) certainly tends to zero if for every
η > 0 there exist sets An with Pr(ân ∈ An) > 1 − η such that EH(X(n), a) → 0, uniformly
in a ∈ An.

In view of (3.10), there exist sets An with Pr(ân ∈ An) → 1 and E((w,λ) : w + (λ +
tn−1/2)a ∈ Hb

n|X(n)) → 1, uniformly in a ∈ An (see the lemma below for details). Since
we assume that ‖ân‖∞ = OP0(1) and (3.7), we can further reduce these sets to An = {a ∈
An : ‖a‖∞ ≤ M,‖a − a0‖L2(F0)

≤ Mρn}, and then show that EH(X(n), a) → 0 uniformly
in a ∈ An, for (every) fixed M > 0. Thus in the remainder of the proof we fix ân to be a
deterministic sequence an in An.
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We verify the conditions of Theorem 1. By (3.9)–(3.12), conditions (3.3)–(3.5) are met by
Hn = {η : ηb = w + λan, (w,λ) ∈ Bn}, for

Bn = {
(w,λ) : w + λan ∈ Hb

n, |λ| ≤ 2unσ
2
n

√
n
}
.

It therefore remains only to control the change of measure (3.6). We need only consider the
b part of the integrals, as the a part cancels. Because the assumptions become “more true”
if un is replaced by a bigger sequence and nσ 2

n → ∞, we may assume that un → 0 and
unnσ 2

n → ∞.
For the b term, (3.6) equals∫

Bn
e�b

n(w+λan−ta0/
√

n)φσn(λ) dλd(w)∫
Bn

e�b
n(w+λan)φσn(λ) dλd(w)

,(5.3)

where φσ denotes the probability density function of a N(0, σ 2) random variable. By
Lemma 3, applied with An = {w + λan : (w,λ) ∈ Bn}, ξn = an, ξ0 = a0, ζn = Mρn, wn

the constant M in the definition of An and εn = εb
n,

sup
(w,λ)∈Bn

∣∣∣∣�b
n

(
w + λan − t√

n
a0

)
− �b

n

(
w +

(
λ − t√

n

)
an

)∣∣∣∣ = oP0(1).

Furthermore, for |λ| ≤ 2unσ
2
n

√
n, we have for the log likelihood ratio of two normal densities∣∣∣∣log
φσn(λ)

φσn(λ − t/
√

n)

∣∣∣∣ ≤ |tλ|√
nσ 2

n

+ t2

2nσ 2
n

→ 0.

Consequently, the numerator of (5.3) equals

eoP0 (1)
∫
Bn

e�b
n(w+(λ−t/

√
n)an)φσn(λ − t/

√
n)dλd(w).

By the change of variables λ− t/
√

n � λ′ the ratio (5.3) therefore equals, for Bn,t = {(w,λ) :
(w,λ + t/

√
n) ∈ Bn},

eoP0 (1)

∫
Bn,t

e�b
n(w+λ′an)φσn(λ

′) dλ′ d(w)∫
Bn

e�b
n(w+λan)φσn(λ) dλd(w)

= eoP0 (1) (Bn,t |X(n))

(Bn|X(n))
.

Since (Bn|X(n)) = 1 − oP0(1), it remains to show that (Bn,t |X(n)) = 1 − oP0(1).
The set Bn,t is the intersection of the sets in assumptions (3.10) (with ân = an) and (3.9),

except that the restriction on λ in Bn,t is |λ+ t/
√

n| ≤ 2un

√
nσ 2

n , whereas in (3.9) the restric-
tion is |λ| ≤ un

√
nσ 2

n . Since t/
√

n � un

√
nσ 2

n by construction, the latter restriction implies
the former, and hence (Bn,t |X(n)) = 1 − oP0(1) by assumption. �

LEMMA 2. For given v define An(v) to be the set of all a such that E((w,λ) : w +
(λ + tn−1/2)a ∈ Hb

n|X(n)) > 1 − v. If (3.10) holds, then there exists vn ↓ 0 such that Pr(ân ∈
An(vn)) → 1.

PROOF. For given a and x, define

Gn(a, x) = 
(
(w,λ) : w + (

λ + tn−1/2)
a ∈Hb

n|X(n) = x
)
.

Then the given expectation is Hn(a) := EGn(a,X(n)) and An(v) = {a : Hn(a) > 1 − v}. By
(3.10), the dominated convergence theorem and the independence of ân and X(n), we have
EHn(ân) = EGn(ân,X

(n)) → 1. Since 0 ≤ Hn(a) ≤ 1, this implies that Hn(ân) →P 1. Then
Pr(Hn(ân) > 1 − vn) → 1, for vn ↓ 0 sufficiently slowly by a standard argument. �
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5.3. Proofs for Section 3.4: Gaussian process priors. PROOF OF PROPOSITION 1. We
verify the conditions of Theorem 1. By Lemma 16 with norm ‖ ·‖∞, the posterior distribution
of b contracts about b0 at rate εb

n in L2(F0). For Hb
n the sets as in the statement of the

proposition, define

Hn = {(
ηa, ηb) : ηb ∈ Hb

n,
∥∥�(

ηb) − b0
∥∥
L2 ≤ εb

n

}
.

Then (Hn|X(n)) →P0 1 as n → ∞, by assumption. It follows that Hn satisfies conditions
(3.3)–(3.4), while (3.5) is satisfied by assumption.

It remains to verify (3.6). Following [10], we first approximate the perturbation ηb
t by

an element in the RKHS H
b and then apply the Cameron–Martin theorem. Let ξb

n ∈ H
b

satisfy (3.18), and set ηn,t = ηn,t (η
b) = ηb − tξb

n /
√

n. By the Cameron–Martin theorem (see
Lemma 13), the distribution n,t of ηn,t if ηb is distributed according to the prior  has
Radon–Nikodym density

dn,t

d

(
ηb) = e

tUn(ηb)/
√

n−t2‖ξb
n ‖2

Hb /(2n)
,

where Un(η
b) is a centered Gaussian variable with variance ‖ξb

n‖2
Hb if ηb ∼ , and ‖ · ‖Hb is

the RKHS norm of the Gaussian process ηb. By the univariate Gaussian tail bound,

(5.4) 
(
ηb : ∣∣Un

(
ηb)∣∣ > M

√
nεb

n

∥∥ξb
n

∥∥
Hb

) ≤ 2e−M2n(εb
n)2/2.

Consequently, by Lemma 4 the posterior measure of the set in the display tends to 0 in
probability, for large enough M . Hence the sets

Bn = {
ηb : |Un

(
ηb)| ≤ M

√
nεb

n

∥∥ξb
n

∥∥
Hb

} ∩Hb
n

also satisfy (Bn|X(n)) → 1 in probability. On the sets Bn, in view of (3.18),∣∣∣∣log
dn,t

d

(
ηb)∣∣∣∣ ≤ M|t |√nεb

nζ
b
n + t2

2

(
ζ b
n

)2 → 0.(5.5)

Furthermore, by Lemma 3 applied with An = Bn, ξ0 = ξb
η0

, εn = εb
n, ζn = ζ b

n and wn a suffi-
ciently large fixed constant, we have

sup
ηb∈Bn

∣∣�b
n(ηn,t ) − �b

n

(
ηb

t

)∣∣ = oP0(1).

(Note that condition (7.1) holds by assumption (3.12) and Lemma 10.) By the last display
followed by the change of integration variable ηb − tξb

n /
√

n� v,∫
Bn

e�b
n(ηb

t ) d(ηb)∫
Bn

e�b
n(ηb) d(ηb)

=
∫
Bn

e�b
n(ηn,t ) d(ηb)∫

Bn
e�b

n(ηb) d(ηb)
eoP0 (1) =

∫
Bn,t

e�b
n(v) dn,t (v)∫

Bn
e�b

n(ηb) d(ηb)
eoP0 (1),

where Bn,t = Bn − tξ b
n /

√
n. By (5.5), we can next replace n,t in the numerator by 

at the cost of another multiplicative 1 + oP0(1) term. This turns the quotient into the ratio
(Bn,t |X(n))/(Bn|X(n)). We have already shown that (Bn|X(n)) = 1 − oP0(1), so it suf-
fices to show the same result holds true for the numerator. Now

Bc
n,t = {

v : v + tξb
n /

√
n /∈ Hb

n

} ∪ {
v : ∥∥�(

v + tξb
n /

√
n
) − b0

∥∥
L2(F0)

> εb
n

}
∪ {

v : ∣∣Un

(
v + tξb

n /
√

n
)∣∣ > M

√
nεb

n

∥∥ξb
n

∥∥
Hb

}
.

The posterior probability of the first set tends to zero in probability by assumption. Since
‖�(ηb + tξb

n /
√

n) − �(ηb)‖L2(F0)
� ‖ξb

n /
√

n‖L2(F0)
� 1/

√
n, the second set is contained

in {ηb : ‖�(ηb) − b0‖L2(F0)
> εb

n − C/
√

n}, which has posterior probability oP0(1) by
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Lemma 16, possibly after replacing εb
n by a multiple of itself. For the third set, we use that

Un(η
b + tξb

n /
√

n) ∼ N(−t‖ξb
n‖2

H
/
√

n,‖ξb
n‖2

H
) if ηb is distributed according to the prior, by

Lemma 13. Since the mean t‖ξb
n‖2

H
/
√

n of this variable is negligible relative to its standard
deviation, (|Un(η

b + tξb
n /

√
n)| > M

√
nεb

n‖ξb
n‖Hb ) differs not substantially from the left-

hand side of (5.4), whence it is also exponentially small, so that again Lemma 4 applies to
see that the posterior probability tends to zero. �

PROOF OF COROLLARY 1. The proof follows by verifying the conditions of Proposi-
tion 1, separately for the two prior processes.

Series prior (3.15): Using the form of the concentration function in the proof of Theo-
rem 4.5 of [49], we see that (3.17) is satisfied for

εb
n = n

− β∧β̄

2β̄+d logn.

Condition (3.5) is verified in Lemma 6, under the assumption β ∧ β̄ > d/2.
It thus remains only to establish (3.18), the approximation by elements of the RKHS. Write

J = Jβ̄ and define VJ = span(ψjk : j ≤ J, k). Recall that the RKHS of the Gaussian series
prior (3.15) equals

(5.6) H
b =

{
w ∈ VJ : ‖w‖2

Hb := ∑
j≤J

∑
k

σ−2
j

∣∣〈w,ψjk〉L2
∣∣2 < ∞

}
.

From the computations in Theorem 4.5 of [49], one gets that for ξb
η0

= a0 ∈ Cα and any

ζ b
n � n−α/(2β̄+d),

inf
ξ :‖ξ−a0‖∞≤ζ b

n

‖ξ‖Hb �

⎧⎨
⎩

(
ζ b
n

)− r−α+d/2
α

∧0 if r − α + d/2 �= 0,

log
(
1/ζ b

n

)
if r − α + d/2 = 0.

(5.7)

If follows that (3.18) is satisfied if we can choose ζ b
n → 0 so that the right-hand side of the

display is bounded above by
√

nζb
n and

√
nεb

nζ
b
n → 0.

• If r − α + d/2 > 0, then (5.7) is bounded by
√

nζb
n for ζ b

n � n−α/(2r+d). Since we also
require ζ b

n � n−α/(2β̄+d), we may take ζ b
n ∼ n−α/(2β̄+d) ∨ n−α/(2r+d) = n−α/(2β̄+d) since

r ≤ β ∧ β̄ by assumption. Then
√

nεb
nζ

b
n → 0 for β ∧ β̄ > d/2 + β̄ − α.

• If r − α + d/2 < 0, then (5.7) is bounded by
√

nζb
n and also ζ b

n � n−α/(2β̄+d) for the
choice ζ b

n ∼ n−1/2 ∨ n−α/(2β̄+d). If 1/2 ≤ α/(2β̄ + d), then
√

nεb
nζ

b
n ∼ εb

n → 0. If 1/2 >

α/(2β̄ + d), then
√

nεb
nζ

b
n ∼ n(β̄+d/2−β∧β̄−α)/(2β̄+d)(logn) → 0 for β ∧ β̄ > d/2 + β̄ − α.

• If r −α +d/2 = 0, then one takes ζn ∼ [(logn)1/2n−1/2]∨n−α/(2β̄+d). This is the same
as the previous case apart from the extra logarithmic factor, so

√
nεb

nζ
b
n → 0 under exactly

the same conditions.

Examining all the cases, the above can be summarized as (3.18) holds if β ∧ β̄ > [β̄ − α +
d/2] ∨ 0. Together with the condition β ∧ β̄ > d/2 needed to verify (3.5) above, this is
equivalent to α,β > d/2 and d/2 < β̄ < α + β − d/2.

Riemann–Liouville prior (3.14): The proof follows in much the same way. Using the form
of the concentration function in Theorem 4 of Castillo [9], we see that (3.17) is satisfied for

εb
n = n

− β∧β̄

2β̄+1 (logn)κ,

where κ is function of (β, β̄), given explicitly in [9]. Condition (3.5) is verified in Lemma 5,
under the assumption β ∧ β̄ > 1/2.
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It thus remains to establish (3.18). Recall that the RKHS of the Riemann–Liouville process
is the Sobolev space Hβ̄+1/2. From the computations in Theorem 4 of [9], one gets that for
ξb
η0

= a0 ∈ Cα , as ζ b
n → 0,

inf
ξ :‖ξ−a0‖∞≤ζ b

n

‖ξ‖Hb �
(
ζ b
n

)− β̄−α+1/2
α

∧0
.

If follows that (3.18) is satisfied if we can choose ζ b
n so that the right-hand side of the display

is bounded above by
√

nζb
n and

√
nεb

nζ
b
n → 0. If β̄ ≤ α − 1/2, simply set ξb

n = ξb
η0

and

ζ b
n = n−1/2‖ξb

η0
‖Hb . If β̄ > α − 1/2, take ζ b

n = n
− α

2β̄+1 , so that
√

nεb
nζ

b
n → 0 for β ∧ β̄ >

1/2 + β̄ − α. A careful analysis of all cases shows that these inequalities, together with the
requirement β ∧ β̄ > 1/2, are equivalent to α,β > 1/2 and 1/2 < β̄ < α + β − 1/2. �

PROOF OF COROLLARY 2. We verify the conditions of Theorem 2, where we replace
ân by a deterministic sequence with ‖an‖∞ = O(1) as explained in the proof of Theorem 2.
Since εb

n = n−(β∧β̄)/(2β̄+d)(logn)κ solves (3.17) (see proof of Corollary 1), the contraction
rate follows from Lemma 17. Together with Lemmas 7 and 8 for the Riemann–Liouville and
series priors, respectively, this verifies conditions (3.10)–(3.12). To verify (3.9), we use the
Gaussian tail inequality to see that (|λ| ≥ unσn

√
n) ≤ 2e−u2

nnσ 2
n /2. This is bounded above

by e−Ln(εb
n)2

for un → 0 sufficiently slowly, since εb
n = o(σn) by assumption. Lemma 4 now

implies (3.9). �
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SUPPLEMENTARY MATERIAL

Supplement to “Semiparametric Bayesian causal inference” (DOI: 10.1214/19-
AOS1919SUPP; .pdf). In the supplement, we present an additional theorem, putting a general
prior on (a, b, f ), and we provide the missing proofs. We linearly continue the numbering
scheme for sections, lemmas, etc., from the main document in the supplement, and items
referred to which do not appear in the main article can be found in the supplement (e.g.,
Lemma 3).
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