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We propose a new Monte Carlo method for sampling from multimodal
distributions. The idea of this technique is based on splitting the task into two:
finding the modes of a target distribution π and sampling, given the knowl-
edge of the locations of the modes. The sampling algorithm relies on steps of
two types: local ones, preserving the mode; and jumps to regions associated
with different modes. Besides, the method learns the optimal parameters of
the algorithm, while it runs, without requiring user intervention. Our tech-
nique should be considered as a flexible framework, in which the design of
moves can follow various strategies known from the broad MCMC literature.

In order to design an adaptive scheme that facilitates both local and jump
moves, we introduce an auxiliary variable representing each mode, and we
define a new target distribution π̃ on an augmented state space X × I, where
X is the original state space of π and I is the set of the modes. As the al-
gorithm runs and updates its parameters, the target distribution π̃ also keeps
being modified. This motivates a new class of algorithms, Auxiliary Variable
Adaptive MCMC. We prove general ergodic results for the whole class before
specialising to the case of our algorithm.

1. Introduction. Poor mixing of standard Markov chain Monte Carlo (MCMC) meth-
ods on multimodal target distributions with isolated modes is a well-described problem in
statistics. Due to their dynamics these algorithms struggle with crossing low-probability
barriers separating the modes and, thus, take a long time before moving from one mode
to another, even in low dimensions. Sequential Monte Carlo (SMC) has often empirically
proven to outperform MCMC on this task; its robust behaviour, however, relies strongly on
the good between-mode mixing of the Markov kernel used within the SMC algorithm (see
[31]). Therefore, constructing an MCMC algorithm which enables fast exploration of the
state space for complicated target functions is of great interest, especially as multimodal dis-
tributions are common in applications. The examples include, but are not limited to, problems
in genetics [12, 24], astrophysics [14, 15, 39] and sensor network localisation [21].

Moreover, multimodality is an inherent issue of Bayesian mixture models (e.g., [23]),
where it may be caused by label-switching or, more generally, by model identifiability is-
sues or model misspecification (see [13]).

Designing MCMC algorithms for sampling from a multimodal target distribution π on a
state space X needs to address three fundamental challenges:

(1) Identifying high probability regions where the modes are located.
(2) Moving between the modes by crossing low-probability barriers.
(3) Sampling efficiently within the modes by accounting for inhomogeneity between them

and their local geometry.
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Existing MCMC methodology for multimodal distributions usually identifies these chal-
lenges separately and a systematic way of addressing (1)–(3) is not available. In this paper
we introduce a unifying framework for responding to challenges (1)–(3) simultaneously via
a novel design of Auxiliary Variable Adaptive MCMC. The framework allows us to split
the sampling task into mode finding, between-region jump moves and local moves. In addi-
tion, it incorporates parameter adaptations for optimisation of the local and jump kernels and
identification of local regions.

1.1. Other approaches. Numerous MCMC methods have been proposed to address the
issue of multimodality. The most popular approach is based on tempering. The idea behind
this type of methods relies on an observation that raising a multimodal distribution π to the
power β ∈ (0,1) makes the modes “flatter,” and, as a result, it is more likely to accept moves
to the low probability regions. Hence, it is easier to explore the state space and find the regions
where the modes of π are located, addressing challenge (1) above, and also to move between
these regions, addressing challenge (2). The examples of such methods, which incorporate
πβ by augmenting the state space, are parallel tempering proposed by [18] and its adap-
tive version [27], simulated tempering [26], tempered transitions [29] and the equi-energy
sampler [24]. Despite their popularity, tempering-based approaches, as noticed by [45], tend
to mix between modes exponentially slowly in dimension if the modes have different local
covariance structures. Addressing this issue is an area of active research [40].

Another strand of research is optimisation-based methods which address challenge (1) by
running preliminary optimisation searches in order to identify local maxima of the target
distribution. They use this information in their between-mode proposal design to overcome
challenge (2). A method called Smart Darting Monte Carlo, introduced in [2], relies on moves
of two types: jumps between the modes, allowed only in nonoverlapping ε-spheres around
the local maxima identified earlier; and local moves (Random Walk Metropolis steps). This
technique was generalised in [38] by allowing the jumping regions to overlap and have an ar-
bitrary volume and shape. The authors of [1] went one step further by introducing updates of
the jumping regions and parameters of the proposal distribution at regeneration times, hence,
the name of their method—Regeneration Darting Monte Carlo (RDMC). This includes a
possibility of adding new locations of the modes at regeneration times if they are detected by
optimisation searches running on separate cores. Another optimisation-based method, Worm-
hole Hamiltonian Monte Carlo, was introduced by [25] as an extension of Riemanian Mani-
fold HMC. As before, updates of the parameters of this algorithm are allowed at regeneration
times.

We will see later that the algorithm we propose also falls into the category of optimisation-
based methods.

The Wang–Landau algorithm [43, 44] or its adaptive version proposed by [10] belong to
the exploratory strategies that aim to push the algorithm away from well-known regions and
visit new ones, hence, addressing challenge (1). The multidomain sampling technique, pro-
posed in [46], combines the idea of the Wang–Landau algorithm with the optimisation-based
approach. This algorithm relies on partitioning the state space into domains of attraction of
the modes. Local moves are Random Walk Metropolis steps proposed from a distribution
depending on the domain of attraction of the current state. Jumps between the modes fol-
low the independence sampler scheme, where the new states are proposed from a mixture of
Gaussian distributions approximating π .

Other common approaches include the localised normal-symmetric Random Walk Metro-
polis algorithm [5], MultiNest algorithms based on nested sampling [14, 15] and Metropolis–
Hastings algorithms with a special design of the proposal distribution accounting for the
necessity of moving between the modes [39, 41].
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1.2. Contribution. The importance of addressing challenge (3) stems from the fact that,
when modes have distinct shapes, different local proposal distributions will work well in
regions associated with different modes. However, the majority of the methods described
above only employ a single transition kernel, regardless of the region.

In applied problems optimal parameters of the MCMC kernels are unknown; therefore,
recent approaches involve tuning them while the algorithm runs. In case of unimodal target
distributions, Adaptive MCMC techniques prove to be useful [5, 19, 36]. The parameters of
the involved transition kernels can be learned on the fly as the simulation progresses, based on
the samples observed so far. The adaptive algorithms remain ergodic under suitable regularity
conditions [3, 7, 11, 16, 35].

In case of multimodal distributions, an analogous idea would be to apply these Adap-
tive MCMC methods separately to regions associated with different modes, to improve the
within-mode mixing. Note that in order to sample from different proposal distributions in
regions associated with different modes, one needs to control at each step of the algorithm
to which region the current state belongs. Besides, adapting parameters of the local proposal
distributions on the fly must be based on samples that actually come from the corresponding
region.

The multidomain sampler [46] discussed earlier has a mechanism of assigning samples to
regions. However, in their setting keeping track of the regions requires running a gradient
ascent procedure at each MCMC step which imposes a high computational burden on the
whole algorithm. Other optimisation-based approaches known in the literature (e.g., [38] and
[1]) tend to ignore the necessity of assigning samples to regions and the possibility of moving
between the modes via local steps.

Another issue is that adaptive optimisation-based methods presented above, such as those
of [1] and [25], allow for adaptations only at regeneration times. In high dimensions regener-
ations happen rarely which, in practice, makes the adaptive scheme prohibitively inefficient.
Besides, identifying regeneration times using the method of [28], as authors of both algo-
rithms propose, requires case-specific calculations which precludes any generic implementa-
tion.

We aim to remedy these shortcomings by proposing a framework for designing an adaptive
algorithm on an augmented state space X × I , where I = {1, . . . ,N}, and the auxiliary vari-
able i of the resulting sample (x, i) encodes the corresponding region for x. Local MCMC
kernels update x only, while jump kernels that move between the modes update x and i si-
multaneously. Furthermore, the design of the target distribution on the augmented state space
prevents the algorithm from moving to a region associated with a different mode via local
steps. In the sequel we make specific choices for the adaptive scheme, the local and jump
kernels as well as the burn-in routine used for setting up initial values of the parameters of
the algorithm. However, the design is modular and different approaches can be incorporated
in the framework. Besides, it allows for a multicore implementation of a large part of the
algorithm.

This approach motivates introducing a new class of algorithms, Auxiliary Variable Adap-
tive MCMC, where not only transition kernels are allowed to be modified on the fly but also
the augmented target distributions. It turns out that, apart from our method, there is a wide
range of algorithms that belong to this class, including adaptive parallel tempering or adap-
tive versions of pseudo-marginal MCMC. Thus, our general ergodicity results, proved for the
whole class under standard regularity conditions, can potentially be useful for analysing other
methods.

The remainder of the paper is organised as follows. In Section 2 we present our algo-
rithm, the Jumping Adaptive Multimodal Sampler (JAMS), and discuss its properties. In Sec-
tion 3 we define the Auxiliary Variable Adaptive MCMC class and establish convergence
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in distribution and a Weak Law of Large Numbers for this class, under the uniform and the
nonuniform scenario. We present theoretical results specialised to the case of our proposed
algorithm in Section 4. Ergodicity is derived here from the analogues of the Containment and
Diminishing Adaptation conditions introduced in [35], as opposed to identifying regenera-
tion times which allow us to circumvent the issues described above. The proofs of all our
theorems along with some additional comments about the theoretical results are gathered in
Supplementary Material A [32]. Section 5 demonstrates the performance of our method on
two synthetic and one real data example. Additional details of our numerical experiments are
available in Supplementary Material B [32]. We conclude with a summary of our results and
a discussion in Section 6.

2. Jumping Adaptive Multimodal Sampler (JAMS).

2.1. Main algorithm. Let π be the multimodal target distribution of interest defined on
(X ,B(X )). We introduce a collection of target distributions {π̃γ }γ∈Y on the augmented state
space X × I , where I := {1, . . . ,N} is a finite set of indices of the modes of π . We defer the
discussion about finding the modes to Section 2.2. Here, γ denotes the design parameter of
the algorithm that may be adapted on the fly. For a fixed γ ∈ Y , π̃γ is defined as

(2.1) π̃γ (x, i) := π(x)
wγ,iQi(μi,�γ,i)(x)∑

j∈I wγ,jQj (μj ,�γ,j )(x)
,

where Qi(μi,�γ,i) is an elliptical distribution (such as the normal or the multivariate t dis-
tribution) centred at μi with covariance matrix �γ,i . We shall think of {μi}i∈I and {�γ,i}i∈I
as locations and covariances of the modes of π , respectively. First, notice that construct-
ing a Markov chain targeting π̃γ provides a natural way of identifying the mode at each
step by recording the auxiliary variable i. Besides, for each B ∈ B(X ) and γ ∈ Y we have
π̃γ (B ×I) = π(B). Hence, π is the marginal distribution of π̃γ for each γ ∈ Y ; so, sampling
from π̃γ can be used to generate samples from π .

The sampling algorithm that we propose is summarised in Algorithm 1. The method relies
on MCMC steps of two types, performed with probabilities 1 − ε and ε, respectively:

• Local move: Given the current state of the chain (x, i) and the current parameter γ , a
local kernel P̃γ,L,i invariant with respect to π̃γ is used to update x, while i remains fixed;
hence, the mode is preserved.

• Jump move: Given the current state of the chain (x, i) and the current parameter γ , a
new mode k is proposed with probability aγ,ik . Then, a new point y is proposed using a
distribution Rγ,J,ik(x, ·). The new pair is accepted or rejected using the standard Metropolis–
Hastings formula such that the jump kernel is invariant with respect to π̃γ .

Our choice for the local kernel is Random Walk Metropolis (RWM) with proposal
Rγ,L,i(x, ·) that follows either the normal or the t distribution. This allows us to employ
well-developed adaptation strategies for RWM and to build on its stability properties to es-
tablish ergodicity of JAMS in Section 4. The acceptance probability formula for local moves
is given by

(2.2) αγ,L

(
(x, i) → (y, i)

) = min
[
1,

π(y)Qi(μi,�γ,i)(y)

π(x)Qi(μi,�γ,i)(x)

∑
j∈I wγ,jQj (μj ,�γ,j )(x)∑
j∈I wγ,jQj (μj ,�γ,j )(y)

]
.

As for the jump moves, we consider two different methods of proposing a new point y

associated with mode k. The first one, which we call independent proposal jumps, is to draw
y from an elliptical distribution centred at μk with covariance matrix �γ,k , independently
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from the current point (x, i). Since there is no dependence on x and i, in case of indepen-
dent proposal jumps the proposal distribution to mode k will be denoted by Rγ,J,k(·). For
independent proposal jumps, the acceptance probability is equal to

αγ,J

(
(x, i) → (y, k)

) = min
[
1,

π̃γ (y, k)

π̃γ (x, i)

aγ,kiRγ,J,i(x)

aγ,ikRγ,J,k(y)

]
.(2.3)

Alternatively, given that the current state is (x, i), we can propose a “corresponding” point
y in mode k such that the Mahalanobis distance between the point and its corresponding
mode is preserved, that is

(x − μi)
T �−1

γ,i (x − μi) = (y − μk)
T �−1

γ,k(y − μk).

The required equality is satisfied for

(2.4) y := μk + �γ,k�
−1
γ,i(x − μi),

where

�γ,i = �γ,i�
T
γ,i and �γ,k = �γ,k�

T
γ,k.

Herein, this method will be called deterministic jumps. The acceptance probability is then
given by

(2.5) αγ,J

(
(x, i) → (y, k)

) = min
[
1,

π̃γ (y, k)

π̃γ (x, i)

aγ,ki

√
det�γ,k

aγ,ik

√
det�γ,i

]
.

In both cases the design of the jump moves takes into account the shapes of the two
modes involved which helps achieving high acceptance rates and, consequently, improves
the between-mode mixing.

As presented in Algorithm 1, the method involves learning the parameters on the fly. We
design an adaptation scheme of three lists of parameters: covariance matrices (used both for
adapting the target distribution π̃γ and the proposal distributions), weights wγ,i and proba-
bilities aγ,ik of proposing mode k in a jump from mode i. Hence, formally, Y refers to the
product space of �γ,i , wγ,i and aγ,ik for i, k ∈ {1, . . . ,N} restricted by

∑
j∈I wγ,j = 1 and∑

k∈I aγ,ik = 1 for each γ ∈ Y and each i ∈ I . An adaptive scheme for wγ,i and aγ,ik that
follows an intuitive heuristic is discussed briefly in Supplementary Material B [32].

Our method of adapting the covariance matrices �γ,i is presented in Algorithm 2. For ev-
ery i ∈ I, the matrix �γ,i is based on the empirical covariance matrix of the samples from the
region associated with mode i obtained so far. This is possible in our framework by keeping
track of the auxiliary variable i. Updates are performed every certain number of iterations
(denoted by AC2 in Algorithm 2). This method follows the classical Adaptive Metropolis
methodology (cf. [20, 36]) applied separately to the covariance structure associated with each
mode. For the local proposal distributions the covariance matrices are additionally scaled by
the factor 2.382/d which is commonly used as optimal for Adaptive Metropolis algorithms
[33, 34]. Since representing a covariance matrix in high dimensions reliably typically requires
a large number of samples, we do not apply this method straightaway. Instead, we perform
adaptive scaling, aiming to achieve the optimal acceptance rate (typically fixed at 0.234; see
[33, 34]) for local moves, until the number of samples observed in a given mode exceeds a
prespecified constant (denoted by AC1 in Algorithm 2).

It is worth outlining that this special construction of the target distribution π̃γ makes it
unlikely for the algorithm to escape via local steps from the mode it is assigned to and settle
in another one. Indeed, if a proposed point y is very distant from the current mode μi and
close to another mode μk , the acceptance probability becomes very small due to the expres-
sion Qi(μi,�γ,i)(y) in the numerator of (2.2) and Qk(μk,�γ,k)(y) in the denominator, as
Qi(μi,�γ,i)(y) will typically be tiny in such case and Qk(μk,�γ,k)(y) will be large.



ADAPTIVE MCMC FOR MULTIMODAL DISTRIBUTIONS 2935

Algorithm 1 JAMS: main algorithm, iteration n + 1
1: Input: current point (xn, in), list of modes {μ1, . . .μN }, constant ε ∈ (0,1), parameter

γn = {�γn,i,wγn,i, aγn,ik}i,k∈{1,...,N}, empirical means m1, . . . ,mN and covariance matri-
ces S1, . . . , SN .

2: Generate u ∼ U [0,1].
3: if u > ε then
4: Local move:
5: Propose a new value y ∼ Rγn,L,in(xn, ·).
6: Accept y with probability αγn,L((xn, in) → (y, in)).
7: if y accepted then
8: (xn+1, in+1) := (y, in).
9: else

10: (xn+1, in+1) := (xn, in).
11: end if
12: else
13: Jump move:
14: Propose a new mode k ∼ (aγn,i1, . . . , aγn,iN ).
15: Propose a new value y ∼ Rγn,J,ik(xn, ·).
16: Accept (y, k) with probability αγn,J ((xn, in) → (y, k)).
17: if (y, k) accepted then
18: (xn+1, in+1) := (y, k).
19: else
20: (xn+1, in+1) := (xn, in).
21: end if
22: end if
23: Update the empirical mean min+1 and covariance matrix Sin+1 by including xn+1.
24: Update the parameter γn to γn+1 according to Algorithm 2.
25: return New sample (xn+1, in+1), parameter γn+1, min+1 and Sin+1 .

2.2. Burn-in algorithm. Algorithm 1 takes mode locations {μ1, . . . ,μN } and initial val-
ues of the matrices {�γ0,1, . . . ,�γ0,N } as input. Since further improvements in the estima-
tion of �γ,i are possible only after some samples in mode i have been observed, matrices

Algorithm 2 Updating the parameters, iteration n + 1
1: Input: (in addition to the parameters of iteration n + 1 of the main algorithm) number

of samples observed so far in each mode n1, . . . , nN , auxiliary matrices �̃1, . . . , �̃N ,
positive integers AC1 and AC2, constants α,αopt ∈ (0,1), β > 0.

2: if nin+1 < AC1 then
3: if Local move then
4: �̃in+1 := exp(n−α

in+1
(αγn,L − αopt))�̃in+1 .

5: �γn+1,in+1 := �̃in+1 + βId .
6: end if
7: else
8: if nin+1 is divisible by AC2 then
9: �γn+1,in+1 := Sin+1 + βId .

10: Update wγn,i and aγn,ik to wγn+1,i and aγn+1,ik for i, k = 1, . . . ,N .
11: end if
12: end if
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{�γ0,1, . . . ,�γ0,N } need to represent well the shapes of the corresponding modes so that
jumps to all the modes are accepted reasonably quickly. We address the issue of setting up
these values by introducing a burn-in algorithm which runs before the main MCMC sampler
(Algorithm 1) is initiated. Alternatively, one may prefer a version of this method in which
the burn-in routine continues running in parallel to the main sampler on multiple cores, for
example, to include modes possibly missed in the initial run. We sketch different stages of
the burn-in routine below; additional details are given in Supplementary Material B [32].

2.2.1. Starting points for the optimisation procedure. We sample the starting points for
optimisation searches uniformly on a compact set, which is a product of intervals [L1,U1] ×
· · · × [Ld,Ud ], provided by the user. Note that if the domain of attraction of each mode
overlaps with [L1,U1]× · · · × [Ld,Ud ], then, asymptotically, all modes will be found, as we
will have at least one starting point in each domain.

When dealing with Bayesian models, one can, alternatively, sample the starting points
from the prior distribution.

2.2.2. Mode finding via an optimisation procedure. The BFGS optimisation algorithm
[30] is initiated from every starting point. The BFGS method method provides the optimum
point and the Hessian matrix at this point which is particularly useful in the next step of mode
merging.

For numerical reasons, instead of working directly with π , we typically use the BFGS
algorithm to find the local minima of − log(π).

2.2.3. Mode merging. Starting the optimisation procedure from different points belong-
ing to the same basin of attraction will take us to points which are close to the true local
maxima but numerically different, an issue that seems to be ignored in optimisation-based
MCMC literature.

We deal with this by classifying two vectors, mi and mj , as corresponding to the same
mode if the squared Mahalanobis distance between them is smaller than some prespecified
value. If we let Hi and Hj denote the Hessian matrices of − log(π) at mi and mj , respec-
tively, the above Mahalanobis distance is calculated for H−1

i and H−1
j (for symmetry, we

average over these two values). This method is scale invariant as the Hessian captures the
local shape and scale.

2.2.4. Initial covariance matrix estimation. In order to find initial covariance matrix es-
timates �γ0,1, . . . ,�γ0,N that accurately reflect the geometry of different modes, we employ
the augmented target machinery of Algorithm 1 in the following way. We run Algorithm 1
without jumps, that is, with ε = 0, in parallel, starting from each of the modes μ1, . . . ,μN .
This implies that we run N chains, and each of them adapts only the matrix �i corresponding
to the mode μi which was its starting point. We make a number of rounds of this procedure,
and after each round we update the target distribution π̃ by exchanging the knowledge about
the adapted covariance matrices between cores. The final covariance matrices passed to the
main MCMC sampler are calculated based on the samples collected in all rounds.

The reason why we exchange information between rounds, despite the additional cost of
communication between cores, is that we want the sampler adapting �k,i to know where
the regions associated with other modes are so that it is less likely to visit those regions and
contaminate the estimate. Essentially, the initial covariance estimation revisits the problem of
collecting samples only from the corresponding regions, discussed earlier.

The initial value of the matrix corresponding to mode i is the inverse of the Hessian eval-
uated at μi . The values of wγ,i and aγ,ik are set to 1/N and not updated during those runs.
In Supplementary Material B [32] we propose a method of choosing the number of rounds
automatically based on monitoring the inhomogeneity factor (see [36] and [37]).
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2.3. Further comments. It is important to point out that the auxiliary variable approach
presented above should be thought of as a flexible framework rather than one specific method.
The BFGS algorithm used for mode finding could be replaced with another optimisation pro-
cedure. Similarly, instead of the Random Walk Metropolis algorithm, local moves could be
performed with a different MCMC sampler, such as HMC or MALA. One could also con-
sider another scheme for updating the parameters, for example, combining adaptive scaling
with covariance matrix estimation (see [42]).

3. Auxiliary Variable Adaptive MCMC. We introduce a general class of Auxiliary
Variable Adaptive MCMC algorithms, as follows.

Recall that π(·) is a fixed target probability density on (X ,B(X )). For an auxiliary pair
(	,B(	)), define X̃ := X × 	, and, for an index set Y , consider a family of probability
measures {π̃γ (·)}γ∈Y on (X̃ ,B(X̃ )) such that

(3.1) π̃γ (B × 	) = π(B) for every B ∈ B(X ) and γ ∈ Y.

Let {P̃γ }γ∈Y be a collection of Markov chain transition kernels on (X̃ ,B(X̃ )) such that each
P̃γ has π̃γ as its invariant distribution and is Harris ergodic.

To define the dynamics of the Auxiliary Variable Adaptive MCMC sequence
{(X̃n,
n)}∞n=0 where 
 represents a random variable taking values in (Y,B(Y)), denote
its filtration as Gn := σ {X̃0, . . . , X̃n,
0, . . . ,
n}. The conditional distribution of 
n+1, given
Gn, will be specified by the adaptive algorithm being used, such as Algorithm 1, while the
dynamics of the X̃ coordinate follows

(3.2) P[X̃n+1 ∈ B̃|X̃n = x̃, 
n = γ,Gn−1] = P̃γ (x̃, B̃)

for x̃ ∈ X̃ , γ ∈ Y, B̃ ∈ B(X̃ ). Note that, depending on the adaptive update rule for 
n, the
sequence {(X̃n,
n)}∞n=0, defined above, is not necessarily a Markov chain. By Ãn(·) denote
the distribution of the X̃ -marginal of {(X̃n,
n)}∞n=0 at time n, conditionally on the starting
points, that is,

Ãn(B̃) := P[X̃n ∈ B̃|X̃0 = x̃, 
0 = γ ] for B̃ ∈ B(X̃ ).

By An(·) denote the further marginalisation of Ãn(·) onto the space of interest X , namely,

An(B) := Ãn(B × 	) for B ∈ B(X ).

Finally, in order to define ergodicity of the Auxiliary Variable Adaptive MCMC, let

Tn(x̃, γ ) := ∥∥An(·) − π(·)∥∥TV = sup
B∈B(X )

∣∣An(B) − π(B)
∣∣.

DEFINITION 3.1. We say that the Auxiliary Variable Adaptive MCMC algorithm gener-
ating {(X̃n,
n)}∞n=0 is ergodic, if

lim
n→∞Tn(x̃, γ ) = 0 for all x̃ ∈ X̃ , γ ∈ Y.

It can be easily checked that JAMS belongs to the class defined above. There exist other
algorithms falling into this category; therefore, the results presented in this paper, in partic-
ular Theorems 3.2, 3.3 and 3.4, may be useful for analysing their ergodicity. Examples of
other algorithms in this class include adaptive parallel tempering [27] and adaptive versions
of pseudo-marginal algorithms [4, 6]. A more detailed discussion on this may be found in
Supplementary Material A [32].
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3.1. Theoretical results for the class. The two main approaches to verifying ergodicity of
Adaptive MCMC are based on martingale approximations [3, 7, 16] or coupling [35]. Here,
we extend the latter to the Auxiliary Variable Adaptive MCMC class by constructing explicit
couplings. In particular, ergodicity of this class of algorithms will be verified for the uniform
and the nonuniform case, providing results analogous to Theorems 1 and 2 of [35].

For the uniform case analogues of the usual conditions of Simultaneous Uniform Ergodic-
ity and Diminishing Adaptation will be required.

THEOREM 3.2 (Ergodicity—uniform case). Consider an Auxiliary Variable Adaptive
MCMC algorithm on a state space X̃ = X × 	, following dynamics (3.2) with a family of
transition kernels {P̃γ }γ∈Y satisfying (3.1) and such that P̃γ is π̃γ -ergodic for each γ ∈ Y .
If conditions (a) and (b) below are satisfied, then the algorithm is ergodic in the sense of
Definition 3.1:

(a) (Simultaneous Uniform Ergodicity) For all ε > 0, there exists N = N(ε) ∈ N such that∥∥P̃ N
γ (x̃, ·) − π̃γ (·)∥∥TV ≤ ε, for allx̃ ∈ X̃ and γ ∈ Y.

(b) (Diminishing Adaptation) The random variable

(3.3) Dn := sup
x̃∈X̃

∥∥P̃
n+1(x̃, ·) − P̃
n(x̃, ·)∥∥TV

converges to 0 in probability.

In fact, assumption (a) of Theorem 3.2 can be relaxed. To this end, define the ε-
convergence time as

(3.4) Mε(x̃, γ ) := inf
{
k ≥ 1 : ∥∥P̃ k

γ (x̃, ·) − π̃γ (·)∥∥TV ≤ ε
}
.

It is enough that the random variable Mε(X̃n,
n) is bounded in probability. Precisely, the
following ergodicity result holds for the nonuniform case.

THEOREM 3.3 (Ergodicity—nonuniform case). Consider an Auxiliary Variable Adap-
tive MCMC algorithm, under the assumptions of Theorem 3.2, and replace condition (a) with
the following:

(a) (Containment) For all ε > 0 and all δ̃ > 0, there exists N = N(ε, δ̃) such that

(3.5) P
(
Mε(X̃n,
n) > N |X̃0 = x̃, 
0 = γ

) ≤ δ̃ for all n ∈ N.

Then, the algorithm is ergodic in the sense of Definition 3.1.

In our proofs of Theorems 3.2 and 3.3, we introduce two auxiliary processes
{(X̃m

n ,
m
n )}∞n=0 and {(X̃i

n,

i
n)}∞n=0 on X × 	, to be thought of as “Markovian” and “in-

termediate.” The latter interpolates between the Markovian one and the original adaptive
process. Crucial for our proof is the coupling construction which shows that the total vari-
ation distance between the two pairs of processes goes to 0. We then observe that the total
variation distance between processes on X × 	 bounds from above the distance between
their marginalisations onto X . Finally, we use the triangle inequality to conclude ergodicity
of the adaptive process. All the processes are constructed explicitly on the same probability
space which makes our proofs adaptable to other cases.

We use the same coupling construction to establish the Weak Law of Large Numbers for
the class of Auxiliary Variable Adaptive MCMC algorithms for both the uniform and the
nonuniform case. By letting 	 be a singleton, our result applies to the standard Adaptive
MCMC setting and extends the result of [35] where the WLLN was provided for the uniform
case only.
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THEOREM 3.4 (WLLN). Consider an Auxiliary Variable Adaptive MCMC algorithm,
as in Theorem 3.3, together with assumptions a) and b) of this theorem. Let g : X → R be a
bounded measurable function. Then,

∑n
i=1 g(Xi)

n
→ π(g) in probability as n → ∞.

While Containment is a weaker condition than Simultaneous Uniform Ergodicity, it is less
tractable, and in the standard Adaptive MCMC setting drift conditions are typically used to
verify it [9, 35]. Lemma 3.5 helps verifying Containment via geometric drift conditions in
the Auxiliary Variable framework.

LEMMA 3.5. Assume that the following conditions are satisfied:

(a) For each γ ∈ Y ‖P̃ k
γ (x̃, ·) − π̃γ (·)‖TV → 0 as k → ∞.

(b) There exists λ < 1, b < ∞ and a collection of functions Vπ̃γ
: X̃ → [1,∞) for γ ∈ Y

such that the following simultaneous drift condition is satisfied:

(3.6) P̃γ Vπ̃γ
(x̃) ≤ λVπ̃γ

(x̃) + b for all x̃ ∈ X̃ and γ ∈ Y,

where for x̃ ∈ X̃

P̃γ Vπ̃γ
(x̃) := E

(
Vπ̃γ

(X̃n+1)|X̃n = x̃, 
n = γ
)
.

Moreover, Vπ̃γ
(x̃) is bounded on compact sets as a function of (x̃, γ ).

(c) There exist δ > 0, v > 2n0b/(1−λn0) and a positive integer n0 such that the following
minorisation condition holds: for each γ ∈ Y we can find a probability measure νγ on X̃
satisfying

(3.7) P̃ n0
γ (x̃, ·) ≥ δνγ (·) for all x̃ with Vπ̃γ

(x̃) ≤ v.

(d) Y is compact in some topology.
(e) There exists a compact set A such that if Xn /∈ A, then 
n+1 = 
n.
(f) EVπ̃
0

(X̃0) < ∞.

Then, the Containment condition (3.5) holds.

Lemma 3.5 bears resemblance to Theorem 3 of [35]. However, in our setting drift functions
need to depend on the target distribution π̃γ , which modifies the form of the standard drift
condition, and, as a consequence, we cannot use the proof of this theorem directly to obtain
our result. In particular, our lemma additionally assumes that the adaptation happens on a
compact set only.

3.2. Adaptive Increasingly Rarely version of the class. Adaptive Increasingly Rarely
(AIR) MCMC algorithms were introduced in [11] as an alternative to classical Adaptive
MCMC methods. While they share the same selftuning properties, their ergodic properties
are mathematically easier to analyse, and their computational cost of adaptation is smaller.

The key idea behind the AIR algorithms is to allow for updates of parameters only at
prespecified times Nj with an increasing sequence of lags nk between them. For the sequence
{nk}k>1, [11] proposed using any scheme that satisfies c2k

κ ≥ nk ≥ c1k
κ for some positive

c1, c2 and κ . In order to ensure that the random variable Dn defined by (3.3) converges to 0
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in probability, that is, diminishing adaptation holds, the following modification is introduced.
The updates happen at times N∗

j , where

N∗
j =

j∑
k=1

n∗
k with N∗

0 = 0 and

n∗
k = nk + Uniform

[
0,

⌊
kκ∗⌋]

for some κ∗ ∈ (0, κ) and n∗
0 = 0.

Observe that Dn is only positive if n + 1 ∈ {N∗
j }j≥1. Besides, if n + 1 > Nk , then

P(Dn > 0) ≤ 1

kκ∗� ; so, in particular, Dn goes to 0 as n tends to infinity.

We apply the same idea to Auxiliary Variable Adaptive MCMC algorithms, by adapting
the parameters of the transition kernels and the target distributions only at times N∗

j , as de-
scribed above, so that Diminishing Adaptation is automatically satisfied for these algorithms.
In Section 4 we study in detail an AIR version of JAMS.

4. Ergodicity of the Jumping Adaptive Multimodal Sampler. The main results of this
section are stated in Theorems 4.1 and 4.2 which establish convergence of our algorithm to
the correct limiting distribution under the uniform and the nonuniform scenario, respectively.
To prove these theorems, we will use our results from Section 3.

4.1. Overview of the assumptions. In order to prove ergodic results for JAMS, we con-
sider a slightly modified version of Algorithm 1, called mJAMS herein. While being easier
to analyse mathematically, it inherits the main properties of Algorithm 1. The modifications
are twofold:

1. We update the parameters only if the most recent sample (xn, in) is such that xn belongs
to some fixed compact set Ain .

2. We adapt the parameters “increasingly rarely” (see Section 3.2).

In Supplementary Material A [32] we present the pseudocode of the resulting algorithm and
make a remark on how to choose the compact sets A1, . . . ,AN . If jumps are proposed deter-
ministically, we additionally assume that they are allowed only on “jumping regions” JRγ,i

defined as

(4.1) JRγ,i = {
x ∈ X : (x − μi)

T �−1
γ,i (x − μi) ≤ R

}
for i ∈ I and some R > 0. Note that equation (2.4) ensures that if x belongs to JRγ,i and we
propose a deterministic jump from (x, i) to (y, k), then y must be in JRγ,k . Thus, the detailed
balance condition is satisfied. The reasons for these modifications will become clearer when
we present the proofs of the ergodic theorems.

Observe that each matrix �γ,i is based on samples belonging to a compact set Ai ; so, these
matrices are bounded from above. Since we keep adding βId to the covariance matrix at each
step, they are also bounded from below. Consequently, there exist positive constants m and
M for which

(4.2) mId � �γ,i,� MId for all γ ∈ Y and i ∈ I.

As for the adaptive scheme for wγ,i and aγ,ik , we only require that these values be bounded
away from 0, that is, there exist εa and εw such that

(4.3) wγ,i > εw and aγ,ik > εa for all γ ∈ Y and i, k ∈ I.

Therefore, the parameter space Y may be considered as compact.
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4.2. Theoretical results for JAMS. We begin with the case when the jump moves are
proposed independently from distributions Rγ,J,i with heavier tails than the tails of the target
distribution π for all i ∈ I and γ ∈ Y , that is,

(4.4) sup
x∈X

sup
γ∈Y

π(x)

Rγ,J,i(x)
< ∞ for each i ∈ I.

We prove that, under this assumption, Simultaneous Uniform Ergodicity is satisfied for
mJAMS and, consequently, by Theorem 3.2 the algorithm is ergodic.

THEOREM 4.1. Consider the mJAMS algorithm, and assume that the relationship be-
tween the target distribution π and the proposal distributions Rγ,J,i satisfies (4.4). Then,
mJAMS is ergodic.

When the tails of the distribution π are heavier, then the tails of the proposal distributions
Rγ,J,i , or, when the jumps follow the deterministic scheme, Simultaneous Uniform Ergod-
icity does not hold. However, it turns out that, under some additional regularity conditions,
mJAMS is still ergodic, as it satisfies the assumptions of Lemma 3.5.

THEOREM 4.2. Consider the mJAMS algorithm, and assume that the following condi-
tions are satisfied:

(a) For each i ∈ I, γ ∈ Y , the proposal distribution for local moves Rγ,L,i follows
an elliptical distribution parametrised by �γ,i . Furthermore, the family of distributions,
Rγ,L,i(0, ·), γ ∈ Y , has uniformly bounded probability density functions, and, for any com-
pact set C ⊂ X , we have

(4.5) inf
x,y∈C

inf
γ∈Y Rγ,L,i(x, y) > 0 for each i ∈ I.

(b) Let rγ,i(x) be the rejection set for local moves, that is, rγ,i(x) := {y ∈ X : π̃γ (y, i) <

π̃γ (x, i)}. We assume that

(4.6) lim sup
|x|→∞

sup
γ∈Y

∫
rγ,i (x)

Rγ,L,i(x, y) dy < 1 for each i ∈ I.

(c) The target distribution π is superexponential, that is, it is positive with continuous first
derivatives and satisfies

(4.7) lim|x|→∞
x

|x| · ∇ logπ(x) = −∞.

(d) Every Qi , i ∈ I , is an elliptical distribution parametrised by �γ,i positive on X and,
additionally, the following condition is satisfied:

(4.8) sup
x∈X

Qi(μi,�γ1,i )(x)

Qk(μk,�γ2,k)(x)
< ∞ for all i, k ∈ I and γ1, γ2 ∈ Y.

Additionally, one of the following two conditions for jump moves holds:

(e1) Jump moves follow the procedure for deterministic jumps, as described in Section 2.1.
(e2) Jump moves follow the independent proposal procedure, as described in Section 2.1.

The proposal distributions for jumps have uniformly bounded probability density functions
and satisfy

(4.9) inf
x∈B(μi,r)

inf
γ∈Y Rγ,J,i(x) > 0 for each i ∈ I and some r > 0,
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where B(μi, r) is a ball of radius r and centre μi . Moreover, the relationship between the
target distribution Rγ,J,i is given by

(4.10) sup
x∈X

sup
γ∈Y

Rγ,J,i(x)

π(x)sJ
< ∞ for each i ∈ I and some sJ ∈ (0,1].

Then, mJAMS is ergodic.

The most challenging part of the proof is verifying drift condition (3.6), which we do
for Vπ̃γ

((x, i)) = cπ̃γ (x, i)−s, c > 0, s ∈ (0,1), separately for local and jump kernels. When

proving the result for local moves, we show that lim sup|x|→∞ supγ∈Y
P̃γ,L,iVπ̃γ ((x,i))

Vπ̃γ ((x,i))
< 1,

following the proof of Theorem 4.1 of [22]. That is, we consider analogues of the regular-
ity conditions of this theorem (assumptions (b) and (c) above), and we split the state space
X into three disjoint sets, like in [22], to show that, for large x, the value of the integral of

Rγ,L,i(x, y)min[1,
π̃γ (y,i)

π̃γ (x,i)
]Vπ̃γ ((y,i))

Vπ̃γ ((x,i))
with respect to y is arbitrarily small on each set. The

main difference between our approach and that of [22] is that we work with adaptive kernels
and target distributions which necessitates bounding the suprema of the involved expressions
over γ ∈ Y . Besides, assumption (d) is introduced to ensure that π̃γ does not “deviate too
much” from π . This condition can be easily verified if every Qi , i ∈ I follows the t distribu-
tion with the same number of degrees of freedom.

For the jump kernels the idea is to show that supγ∈Y Vπ̃γ
((y, k)) is “not too large” when the

algorithm jumps to (y, k). For deterministic jumps performed on jumping regions, it follows
from the boundedness of Vπ̃γ

((x, i)) on compact sets. For independent proposal jumps, we
show that under (4.10) supγ∈Y

∫
X Rγ,J,k(y)Vπ̃γ

((y, k)) dy < ∞.
Note that condition a) holds automatically for our algorithm if we assume that the pro-

posal distributions for local moves follow either the normal or the t distribution (see Sec-
tion 2.1) and when (4.2) holds. Condition (4.9) is satisfied if the proposal distributions for
jumps follow, for example, the normal distribution. The following lemmas are useful in veri-
fying assumption b) of Theorem 4.2:

LEMMA 4.3. Let r(x) := {y ∈ X : π(y) < π(x)} and a(x) := {y ∈ X : π(y) ≥ π(x)}.
Consider mJAMS together with conditions a), c) and d) of Theorem 4.2. Assume, additionally,
that for some γ ∗ ∈ Y

(4.11) lim sup
|x|→∞

∫
r(x)

Rγ ∗,L,i(x, y) dy < 1 for each i ∈ I.

Then, condition (4.6) holds.

LEMMA 4.4. Consider mJAMS together with conditions (a), (c) and (d) of Theorem 4.2.
Additionally, assume that the target distribution π satisfies

(4.12) lim sup
|x|→∞

x

|x| · ∇π(x)

|∇π(x)| < 0.

Then, condition (4.6) holds.

The following corollary shows that mJAMS in a standard setting is successful at targeting
mixtures of normal distributions:
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COROLLARY 4.5. Let the target distribution π be given by

π(x) ∝ w1 exp
(−p1(x)

) + · · · + wn exp
(−pn(x)

)
,

where wi > 0 and pi is a polynomial of order ≥ 2 for each i = 1, . . . , n. Additionally, if Qi

for i ∈ I follows the multivariate t distribution with the same number of degrees of freedom
and Rγ,L,i(0, ·) follows the normal distribution, the assumptions of Lemma 4.4 are satisfied.

The result stated below is a corollary from Theorem 3.4 and establishes the Weak Law of
Large Numbers for our algorithm.

THEOREM 4.6. Consider mJAMS, and assume that conditions of either Theorem 4.1 or
Theorem 4.2 are satisfied. Then, the Weak Law of Large Numbers holds for all bounded and
measurable functions.

REMARK 4.7. Note that Theorems 4.1, 4.2 and 4.6 are based on an assumption that the
list of modes is fixed. Let us now consider mJAMS in the version with mode finding running
in parallel to the main MCMC sampler. Assume, additionally, that P(τ < t) → 1 as t → ∞,
where τ is the time of adding the last mode. In this case Theorems 4.1, 4.2 and 4.6 still hold.
Indeed, as the parallel burn-in algorithm runs independently of mJAMS, we can rephrase
all the probabilistic limiting statements in the proofs on the set Ct := {τ < t} and then let
t → ∞.

An important question to ask is how the performance of the algorithm changes with the
dimension of the state space. In case of (nonadaptive) MCMC methods this is typically mea-
sured by the rate at which the spectral gap of a transition kernel decreases. In Supplementary
Material A [32] we analyse the spectral gap of an individual JAMS kernel. To obtain a formal
result, we consider the following target density:

(4.13) π(x) = 1

2
N

(− (1, . . . ,1)︸ ︷︷ ︸
d

, σ 2
1 Id

) + 1

2
N

(
(1, . . . ,1)︸ ︷︷ ︸

d

, σ 2
2 Id

)
.

Parallel tempering is known to mix torpidly on this example (see [45]) for any choice of
temperatures when σ1 �= σ2. We show that, given the locations of the modes and a certain rate
of approximation of the proposal covariance matrices to the true ones, an individual JAMS
kernel with independent proposal jumps mixes rapidly on this target density. The proof of this
result relies on observing that the jump kernel following the independent proposal scheme is,
in fact, an independence sampler kernel; thus, we can use a result from [17] to obtain its
spectral gap.

We also argue, without proving a formal result, why the number of iterations of covariance
matrix estimation in the burn-in algorithm required to obtain the above rate of approximation
is polynomial with respect to the dimension. Hence, given the locations of the modes, this
would give an overall polynomial time of an algorithm composed of the covariance matrix
estimation in the burn-in algorithm, followed by a nonadaptive version of JAMS targeting
(4.13).

5. Examples. In this section we present empirical results for our method (Algorithm 1
preceded by the burn-in algorithm). We test its performance on three examples: the first one is
a mixture of two Gaussians motivated by [45]; the second one is a mixture of 15 multivariate
t distributions and five banana-shaped ones; the third one is a Bayesian model for sensor
network localisation. Our implementation admits three versions, varying in the way the jumps
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between modes are performed. In particular, we consider here the deterministic jump and two
independent proposal jumps with Gaussian and t-distributed proposals.

Additionally, we compare the performance of our algorithm against adaptive parallel tem-
pering [27], which was chosen here as it is the refined version of the most commonly used
MCMC method for multimodal distributions (parallel tempering). What is more, this algo-
rithm has a generic implementation, where the user only needs to provide the target density
function. In order to make a comparison between the efficiency of these algorithms, among
other things, we analyse the Root Mean Square Error (RMSE) divided by the square root
of the dimension of the state space, given a computational budget. We measure the com-
putational cost by the number of evaluations of the target distribution (and its gradient, if
applicable), as this is typically the dominating factor in real data examples. Herein, we define
RMSE as the Euclidean distance between the true d-dimensional expected value (if known)
and its empirical estimate based on MCMC samples.

In order to depict the variability in the results delivered by both methods, each simula-
tion was repeated 20 times. For exact settings of the experiments as well as some additional
results, we refer the reader to Supplementary Material B [32].

5.1. Mixture of Gaussians. We looked at the results for the target distribution (4.13)
in several different dimensions, d , ranging between 10 and 200, for σ 2

1 = 0.5
√

d/100 and
σ 2

2 = √
d/100. The results for our method shown below are based on 500,000 iterations of

the main algorithm, preceded by the burn-in algorithm including 1500 BFGS runs, started
from points sampled uniformly on [−2,2]d .

The length of the covariance matrix estimation was chosen automatically using the rule de-
scribed in Supplementary Material B [32] and varied between 3000 (for d = 10) to 1,023,000
iterations (for d = 200) per mode. For dimensions d = 10 and d = 20, we ran also the
adaptive parallel tempering (APT) algorithm, with 700,000 iterations and five temperatures.
Overall, this requires 3,500,000 evaluations of the target density that cannot be performed in
parallel, despite the name of the method, as the communication between chains running at
different temperatures is needed after every iteration. In the light of the tendency of the par-
allel tempering algorithm to stay in wider modes, each time the APT algorithm was started
in − (1, . . . ,1)︸ ︷︷ ︸

d

∈ R
d . In order to base our analysis on the same sample size of 500,000 for

the two methods, in case of adaptive parallel tempering we applied an initial burn-in period
of 200,000 steps.

The results presented in the boxplots of Figure 1, as well as the upper panel of density plots
(Figure 3), show that our method outperforms adaptive parallel tempering on this example,
even when the latter method is given a much larger computational budget. The summary of
the acceptance rates of the jump moves presented in Table 1 demonstrates that the algorithm
preserves good mixing between the modes in all its jump versions up to dimension 80. It
is remarkable that the deterministic jump ensures excellent mixing even in much higher di-
mensions, outperforming the remaining two methods (see Figure 2 and the lower panel of
Figure 3), with the acceptance rate between 0.64 and 0.97 in dimension 200.

5.2. Mixture of t and banana-shaped distributions. In order to test our method on a mul-
timodal target with highly nonelliptical modes, we used a modified and more challenging
version of a classic example introduced in [24] (a mixture of 20 bivariate Gaussian distribu-
tions), also studied later by [27] and [39].

In our case, instead of the Gaussian distribution, modes 1–5 follow the banana-shaped
distribution with t tails, where the shape of the banana for mode k is present in the projection
onto coordinates 1 and 2k. The remaining ones follow the multivariate t distribution with
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FIG. 1. Boxplots of the values of RMSE/
√

d for the mixture of Gaussians across 20 runs of the experiment,
dimensions 10 and 20. We compare the results of APT with the three JAMS versions: deterministic, Gaussian and
t-distributed jumps. Note different scales on the y-axis.

seven degrees of freedom and the covariance matrices 0.01
√

dId , where d is the dimension.
The weights are assumed to be equal to 0.05. We consider dimensions d = 10 and d = 20 by
repeating the original coordinates of the centres of the modes five and 10 times, respectively.

The results below are based on 500,000 iterations, preceded by 40,000 BFGS runs. The
starting points for these runs were sampled uniformly on [−2,12]d . The number of iterations
of the covariance matrix estimation varied between 7000 and 15,000 steps per mode for
dimension d = 10 and between 15,000 and 63,000 steps per mode for dimension d = 20. For
adaptive parallel tempering we used 2,100,000 iterations and five temperatures. We applied an
initial burn-in period of 600,000 steps, and we thinned the chain keeping every third sample.

In Supplementary Material B [32] we present results for the same example obtained using
JAMS in dimensions d = 50 and d = 80 assuming that the modes of the target distribution
are known, since mode finding (in particular, getting to each basin of attraction) is the main
bottleneck for this example.

For dimensions d = 10 and d = 20, all modes were found by the BFGS runs in each of
the 20 simulations. Figure 4 illustrates that the empirical means based on JAMS samples
approximate well the true expected value of the target distribution, consistently across all
experiments and that our method significantly outperforms APT with a smaller computational

TABLE 1
The lowest and the highest value (across 20 runs of the experiment) of the acceptance rates of jump moves

between the two modes for the mixture of Gaussians for different jump methods and dimensions

Deterministic Gaussian t-distributed

Lowest Highest Lowest Highest Lowest Highest

d = 10 0.98 0.99 0.85 0.87 0.71 0.73
d = 20 0.98 0.99 0.79 0.83 0.66 0.68
d = 80 0.91 0.98 0.23 0.41 0.24 0.39
d = 130 0.72 0.98 0.04 0.13 0.06 0.15
d = 160 0.79 0.97 0.01 0.07 0.03 0.07
d = 200 0.64 0.97 0.01 0.05 0.02 0.06
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FIG. 2. Boxplots of the values of RMSE/
√

d for the mixture of Gaussians across 20 runs of the experiment,
dimensions 80 and 200. Note different scales on the y-axis.

FIG. 3. Density plots for the mixture of Gaussians in dimensions 10, 20, 80 and 200. The upper panel shows a
comparison between APT and the three JAMS versions. The simulations chosen for the analysis correspond to the
median value of RMSE across 20 experiments (the tenth largest value of RMSE).

FIG. 4. Boxplots of the values of RMSE/
√

d for the mixture of banana-shaped and t-distributions across 20
runs of the experiment, dimensions 10 and 20. We compare the results of APT with the three JAMS versions:
deterministic, Gaussian and t-distributed jumps. Note different scales on the y-axis.
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FIG. 5. Scatterplots of the first and second coordinate of the mixture of t and banana-shaped distributions
in dimension 20. Recall that modes 1–5 follow the banana-shaped distribution with t tails, where the shape of
the banana for mode k is present in the projection onto coordinates 1 and 2k. The blue numbers denote the
centres of the modes. We compare the results obtained using JAMS (with t-distributed jumps) and APT against
samples generated from the true distribution. The simulations chosen for the analysis correspond to the median
or maximum (“worst”) value of RMSE across 20 experiments.

cost. Figure 5 shows that APT struggles with identifying some of the banana-shaped modes,
whereas JAMS mixes well between all the modes and reflects well the shape of the true
distribution. Due to Gaussian local proposal, both methods exhibit slightly lighter tails than
the true distribution. Good between-mode mixing properties of JAMS are confirmed by the
results gathered in Table 2.

5.3. Sensor network localisation. We consider here an example from [21], analysed later
by [1, 25] and, in a modified version, by [39]. There are 11 sensors with locations x1, . . . , x11
scattered on a space [0,1]2. The locations of sensors x1, . . . , x8 are unknown; the remaining
three locations are known. For any two sensors i and j , we observe the distance yij between

them with probability exp(−‖xi−xj‖2

2×0.32 ). Once observed, the distance yij follows the normal

distribution given by yij ∼ N(‖xi − xj‖,0.022). Let wij be equal to 1 when yij is observed
and 0 otherwise, and denote y := {yij } and w := {wij }. The goal of the study is to make

TABLE 2
The lowest and the highest value (across 20 runs of the experiment) of the acceptance rate of jumps from a given

mode, in dimensions 10 and 20, for the mixture of banana-shaped and t-distributions

Deterministic Gaussian t-distributed

Lowest Highest Lowest Highest Lowest Highest

d = 10 0.27 0.77 0.12 0.52 0.20 0.65
d = 20 0.20 0.75 0.09 0.35 0.11 0.48
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FIG. 6. Black triangles and dots denote true locations of the sensors with known and unknown locations, re-
spectively. Top left panel: dashed lines represent observed distances between sensors. Top right panel: posterior
samples obtained using JAMS (with Gaussian jumps) for locations x1, . . . x8. Bottom panels: posterior samples
using APT for two different starting points.

inference about the unknown locations xi = (zi1, zi2) for i = 1, . . .8 given y and w. Follow-
ing [1] and [25], we put a uniform prior on [0,1] for each of the coordinates zi1 and zi2 for
i = 1, . . .8. The resulting posterior distribution is given by

π(x1, . . . x8|y,w) ∝ ∏
j=2,...,11
i=1,...,8

i<j

fij (xi, xj |yij ,wij ) where

fij (xi, xj |yij ,wij ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(
−‖xi − xj‖2

2 × 0.32

)
exp

(
−(yij − ‖xi − xj‖)2

2 × 0.022

)
if wij = 1,

1 − exp
(
−‖xi − xj‖2

2 × 0.32

)
otherwise.

Since there are few observed distances with known locations (see top left panel of Figure 6),
the model is nonidentifiable which results in multimodality of the posterior distribution. We
ran JAMS on this example for 500,000 iterations of the main algorithm. This was preceded
by 10,000 BFGS runs (with starting points for optimisation sampled from the prior) and
covariance matrix estimation (between 7000 and 15,0000 iterations per mode). For parallel
tempering we used 700,000 iterations (with a burn-in period of 200,000) and four tempera-
tures. If JAMS is implemented on eight cores, this means that running an APT simulation is
about twice as costly as running a JAMS one (see Supplementary Material B [32] for details).

Despite the fact that for all 20 APT experiments the acceptance rates at all temperature
levels, as well as for between-temperature swaps, converged to the optimal acceptance rate
0.234 (see [8]), the behaviour of this algorithm was unstable. As shown in Figure 6, in case
of APT the estimation of the location of sensor 1 depends on the starting point. In case of
JAMS, both modes for x1 (in red) are represented. Figure 7 illustrates stability of JAMS across
all experiments and jump methods. In Supplementary Material B [32] we assign an even
higher computational budget to adaptive parallel tempering allowing for five temperatures



ADAPTIVE MCMC FOR MULTIMODAL DISTRIBUTIONS 2949

FIG. 7. A boxplot of the mean value of the first coordinate of sensor 1 for 20 runs of the experiment for APT
(with four temperature levels) and three versions of JAMS.

and observe a substantial improvement in mixing and stability, but the results are still worse
than those of JAMS.

6. Summary and discussion. The framework we proposed here is based on three fun-
damental ideas. First, we split the task into mode finding and sampling from the target dis-
tribution. This allows the user to choose freely the best optimisation algorithm available.
Second, we base our approach on local moves responsible for mixing within the same mode
and jumps that move between the modes. Finally, we account for inhomogeneity between the
modes by using different proposal distributions at each mode and adapting their parameters
separately.

To develop a methodological approach and prove ergodic results for our algorithm, we
introduced the Auxiliary Variable Adaptive MCMC class. There are other adaptive algorithms
falling in this category; so, our theoretical results may potentially be useful beyond the scope
of JAMS. We have shown that the Auxiliary Variable Adaptive MCMC methods enjoy robust
ergodicity properties analogous to those of Adaptive MCMC.

We believe that our approach overcomes, to a large extent, deficiencies of tempering-based
methods. Its important advantage is an inbuilt mechanism of remembering the locations of
the modes identified, so far, by including them in the augmented target distributions. Hence,
in contrast to the tempering-based methods, it does not need to “re-discover” a mode each
time in order to move there, which is of particular importance when some basins of attraction
are much smaller than the others. By analysing the spectral gap of a single JAMS kernel (with
independent proposal jumps) and commenting on the rate of convergence of the estimation
of covariance matrices during the burn-in algorithm, we have argued why, for a mixture
of Gaussians with known locations of the modes, the required number of iterations should
depend polynomially on the dimension. A very interesting research avenue, suggested by the
reviewers, would be establishing formal results on the performance of our adaptive algorithm
as a function of dimension, possibly also for a larger class of target distributions and the
deterministic jump scheme.

Currently, the main bottleneck of the method is mode finding and, in particular, sampling
starting points for optimisation runs in such a way that there is at least one point in the
basin of attraction of each mode. As well as other optimisation-based algorithms, in cases
when a mode is missed by optimisation runs, JAMS will inherit the properties of the standard
Random Walk Metropolis algorithm on the region associated with this mode. A potential
remedy to this issue could be replacing with certain probability standard RWM with Gaussian
or t-distributed proposals with local samplers being Metropolis–Hastings algorithms, using a
special design of the proposal distribution, which facilitates crossing low-probability barriers,
for example, [39]. Improving the way of sampling the starting points for optimisation runs as
well as investigating different strategies of exploring well the state space, even when some
modes have been missed, is an area of future work.
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SUPPLEMENTARY MATERIAL

Supplement to “A framework for adaptive MCMC targeting multimodal distribu-
tions” (DOI: 10.1214/19-AOS1916SUPP; .pdf). In Supplementary Material A we present
the proofs of our theoretical results of Section 3 and Section 4. We discuss also the depen-
dence of the performance of the algorithm on the dimension by analysing the spectral gap
of an individual JAMS kernel, and comment on other algorithms in the Auxiliary Variable
Adaptive MCMC class. Supplementary Material B contains details of the implementation
of our method, an additional simulation example (a multimodal posterior distribution for a
Bayesian hierarchical model) and settings of our numerical experiments.
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