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High dimensional statistics deals with the challenge of extracting struc-
tured information from complex model settings. Compared with a large num-
ber of frequentist methodologies, there are rather few theoretically optimal
Bayes methods for high dimensional models. This paper provides a unified
approach to both Bayes high dimensional statistics and Bayes nonparametrics
in a general framework of structured linear models. With a proposed two-step
prior, we prove a general oracle inequality for posterior contraction under an
abstract setting that allows model misspecification. The general result can
be used to derive new results on optimal posterior contraction under many
complex model settings including recent works for stochastic block model,
graphon estimation and dictionary learning. It can also be used to improve
upon posterior contraction results in literature including sparse linear regres-
sion and nonparametric aggregation. The key of the success lies in the novel
two-step prior distribution: one for model structure, that is, model selection,
and the other one for model parameters. The prior on the parameters of a
model is an elliptical Laplace distribution that is capable of modeling sig-
nals with large magnitude, and the prior on the model structure involves a
factor that compensates the effect of the normalizing constant of the ellipti-
cal Laplace distribution, which is important to attain rate-optimal posterior
contraction.

1. Introduction. Theory for posterior distribution has been extensively investigated in
Bayes nonparametrics recently. Important works such as [6, 7, 15, 26, 27, 29, 51, 57] es-
tablished that the posterior distribution contracts to a small neighborhood of the truth under
proper conditions on likelihood functions and priors. These works bridge the gap between
frequentist and Bayesian views of statistics from a fundamental perspective.

Despite the success of theoretical advancements of Bayes nonparametrics, there are not
many theories developed for Bayes high dimensional statistics. A few exceptions are [17] on
the sparse Gaussian sequence model, [4] on bandable precision matrix estimation and [24] on
sparse PCA. Recently, [16] established posterior contraction rates for sparse linear regression
with a spike and slab prior under comparable assumptions for theoretical justification of the
Lasso estimator [9, 52]. The results of [16] include posterior contraction rates for prediction
error, estimation error, oracle inequalities and model selection consistency. However, sparse
linear regression is just one example of high dimensional statistics. There is an indispensable
demand of a Bayes theory on more complicated model settings such as dictionary learning,
stochastic block model, multitask learning, etc. It is not clear whether the theory in [16] can
be extended to these more complex settings.

This paper provides a unified methodology and theory for both Bayes high dimensional
statistics and Bayes nonparametric statistics in a general framework of structured linear mod-
els. We first introduce a unified view of various high dimensional and nonparametric models,
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and then propose a single prior distribution for all models considered in our framework. Op-
timal rates of convergence of the posterior distributions are established under appropriate
conditions. The results directly lead to exact minimax posterior contraction rates in stochas-
tic block model, biclustering, sparse linear regression, regression with group sparsity, mul-
titask learning and dictionary learning. Moreover, we also derive a general posterior oracle
inequality that allows arbitrary model misspecification. Applications of the posterior oracle
inequality help us obtain posterior contraction rates even for models that are not included in
our framework of structured linear models. Examples considered in this paper include non-
parametric graphon estimation, various forms of nonparametric aggregation, linear regression
with approximate sparsity and wavelet estimation under Besov spaces.

In the heart of the general theory is a novel two-step prior distribution, which naturally
accommodates the structured linear model by first modeling the structure and then modeling
the parameters. This two-step modeling strategy was first investigated by [17] for Gaussian
sequence models. A key ingredient of the prior distribution is that the tail of the distribu-
tion on the model parameter cannot be too light [16, 17], which motivates [16, 17] to use
the independent Laplace prior on the parameter. Though the prior distribution leads to opti-
mal posterior contraction rates in Gaussian sequence model [17], it requires some excessive
assumptions on the design matrix when it is applied to sparse linear regression [16]. The
proposal in this paper is an elliptical Laplace prior. With this choice, not only are we able
to weaken the assumptions in [16], but we can also solve a more general class of prob-
lems in a unified way. To compensate the influence of the normalizing constant of the el-
liptical Laplace distribution, a correction factor on the prior mass is added in the model
selection step. Without this correction factor, the posterior contraction rate would be sub-
optimal.

The paper is organized as follows. Section 2 introduces the general framework of struc-
tured linear models. A general prior distribution is proposed in Section 3. Section 4 presents
the main results of the paper including a rate optimal posterior oracle inequality and a pos-
terior rate of contraction. The main results are illustrated by ten examples ranging from non-
parametric estimation to high dimensional statistics in Section 5. In Section 6, we present
further results on sparse linear regression. All technical proofs are gathered in Section 7 and
the supplement [23].

We close this section by introducing some notation. Given an integer d , we use [d] to de-
note the set {1,2, . . . , d}, and [d]n to denote {(i1, . . . , in) ∈ R

n : i1, . . . , in ∈ [d]}. For a set S,
|S| denotes its cardinality and IS denotes the indicator function. For a vector u = (ui), ‖u‖ =√∑

i u
2
i denotes the �2 norm. For a matrix A = (Aij ) ∈ R

n×p , and a subset T ⊂ [n] × [p],
AT denotes the array {At }t∈T . For any I ⊂ [n] and J ⊂ [p], we let AI∗ = AI×[p] and

A∗J = A[n]×J . The Frobenius norm, �1 norm and �∞ norm are defined by ‖A‖F =
√∑

ij A2
ij ,

‖A‖1 = ∑
ij |Aij | and ‖A‖∞ = maxij |Aij |, respectively. When A = AT ∈ R

p×p is symmet-
ric, the operator norm ‖A‖op is defined by its largest singular value and the matrix �1 norm
‖A‖�1 is defined by the maximum row sum. The inner product is defined by 〈u, v〉 = ∑

i uivi

when applied to vectors and is defined by 〈A,B〉 = ∑
ij AijBij when applied to matrices.

Given two numbers a, b ∈ R, a ∨ b = max(a, b) and a ∧ b = min(a, b). The floor function
�a� is the largest integer no greater than a, and the ceiling function a� is the smallest integer
no less than a. For two positive sequences {an}, {bn}, an � bn means an ≤ Cbn for some
constant C > 0 independent of n, and an � bn means an � bn and bn � an. The symbols P

and E denote generic probability and expectation operators whose distribution is determined
from the context.
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2. Structured linear models. Consider the following structured linear model:

(1) Y = XZ(Q) + W ∈R
N,

where W ∈ R
N is a noise vector and XZ(·) is a linear operator. The signal XZ(Q) has two

elements, the parameter Q and the structure/model Z that indexes the linear operator XZ(·).
In the example of sparse linear regression Y = Xβ + W with a sparse regression coefficient
β = (βT

S ,0T
Sc)

T for some subset S, we have Q = βS , Z = S and XZ(·) = X∗S . This gives
the representation Xβ = X∗SβS = XZ(Q). In the general theory, the structure Z is in some
discrete space Zτ , which is further indexed by τ ∈ T for some finite set T . For sparse linear
regression, Zτ is the set of models of size τ . We introduce a function �(Zτ ) to denote the
dimension of the parameter Q. In other words, Q ∈ R

�(Zτ ), and �(Zτ ) is referred to as the
intrinsic dimension of the structured linear model. The complexity of the model is defined by
the quantity

(2) �(Zτ ) + log |Zτ |,
the sum of the intrinsic dimension and the logarithmic cardinality of the structure space. The
definition of (2) has a frequentist root (see, e.g., [5, 10, 62]). As we are going to show later,
(2) will be the posterior contraction rate that we target at. Moreover, in all the examples
considered in the paper, (2) will be the minimax rate under the prediction loss. We require
linearity of the operator XZ(·). That is, given any Z ∈ Zτ with any τ ∈ T , we have

(3) XZ(Q1 + Q2) = XZ(Q1) + XZ(Q2), for all Q1,Q2 ∈ R
�(Zτ ).

Therefore, we can also view XZ as a matrix in R
N×�(Zτ ). From now on, whenever we apply

a matrix operation with XZ , the operator XZ is understood to be a matrix with slight abuse
of notation.

The above framework of structured linear models includes many examples. In this paper,
we consider only the following six representative instances:

1. Stochastic block model. Consider XZ(Q) ∈ [0,1]n×n to be the mean matrix of a
random graph with specification [XZ(Q)]ij = Qz(i)z(j). The object z ∈ [k]n is the labels of
the graph nodes. Moreover, it is easy to see that the parameter Q is of dimension k2, when
we do not impose symmetry for Q. Therefore, stochastic block model is a special case of our
general framework in view of the relation Z = z, τ = k, T = [n], Zk = [k]n and �(Zk) = k2.

2. Biclustering. For a matrix XZ(Q) ∈ R
n×m, a biclustering model means that both

rows and columns have clustering structures. That is, [XZ(Q)]ij = Qz1(i)z2(j) for some z1 ∈
[k]n and z2 ∈ [l]m. The parameter Q has dimension kl. Thus, biclustering model is a special
case of our general framework by the relation Z = (z1, z2), τ = (k, l), T = [n] × [m], Zk,l =
[k]n × [l]m and �(Zk,l) = kl.

3. Sparse linear regression. A p-dimensional sparse linear regression model refers to
Xβ , where β ∈ R

p has a subset of nonzero entries and it can be represented by βT =
(βT

S ,0T
Sc) for some subset S ⊂ [p]. In other words, Xβ = X∗SβS . It can be represented in

a general way by letting Z = S, τ = s, T = [p], Zs = {S ⊂ [p] : |S| = s}, �(Zs) = s and
Q = βS . Moreover, XZ(Q) = X∗SβS .

4. Multiple linear regression with group sparsity. It refers to the model XB with
B ∈ R

p×m being a coefficient matrix with nonzero rows in some subset S ⊂ [p]. It can be
represented in a general form similarly as the sparse linear regression with �(Zs) = ms.

5. Multitask learning. Similar to the last example, multitask learning is the collection of
m regression problems. We consider XB for some B ∈ R

p×m. The j th column of B can be
represented as B∗j = Q∗z(j) for some z ∈ [k]m and Q ∈ R

p×k . Thus, it is a special case of
our general framework by letting Z = z, τ = k, T = [m], Zk = [k]m and �(Zk) = pk.
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6. Dictionary learning. Consider the model XZ(Q) = QZ ∈ R
n×d for some Z ∈

{−1,0,1}p×d and Q ∈ R
n×p . Each column of Z is assumed to be sparse. Therefore, dic-

tionary learning can be viewed as sparse regression without knowing the design. It can
be written in a general form by letting τ = (p, s), T = {(p, s) ∈ [n ∧ d] × [n] : s ≤ p},
Zp,s = {Z ∈ {−1,0,1}p×d : maxj∈[d] | supp(Z∗j )| ≤ s} and �(Zp,s) = np.

In several examples above, Q or XZ(Q) can be a matrix instead of a vector. Alternative
definitions of these examples in the general framework are available by vectorization and
Kronecker products. For example, in dictionary learning, the linear operator XZ : Q �→ QZ

is from matrix to matrix. By the formula vec(QZ) = (ZT ⊗ In)vec(Q), the linear operator
XZ can be identified with the matrix ZT ⊗ In ∈R

nd×np , which is also a linear operator from
R

np to R
nd . Similar rearrangements apply to other examples as well.

In addition to the six examples above, we have four more examples that can be well ap-
proximated by the general structured linear models.

7. Nonparametric graphon estimation. For an undirected graph, the distribution of its
adjacency matrix {Aij } ∈ {0,1}n×n is determined by Aij |(ξi, ξj ) ∼ Bernoulli(f (ξi, ξj )),
where {ξi} are latent variables with some joint distribution Pξ . The symmetric nonparametric
function f is called graphon. It governs the underlying data generating process of a random
graph. When f is assumed to be in a Hölder class, it can be approximated by the stochastic
block model.

8. Aggregation. Consider a nonparametric regression problem Yi = f (xi) + Wi for i ∈
[n]. Given a collection of functions {f1, . . . , fp} and a subset � ⊂ R

p , the goal of aggregation
is to approximate f with some estimator so that the error is comparable to what is given by the
best among the class {fβ = ∑p

j=1 βjfj : β ∈ �}. In Section 5.8, we show that the regression
function f can be approximated by the general structured linear model.

9. Linear regression with approximate sparsity. For the linear regression problem Y =
Xβ +W , assume that β is in an �q ball so that it has an approximate sparse pattern. Then Xβ

can be approximated by the structured linear model with an exact sparse pattern.
10. Wavelet estimation under Besov space. Consider the Gaussian sequence model Yjk =

θjk + n−1/2Wjk for k = 1, . . . ,2j and j = 0,1,2, . . . . The signal θ belongs to a Besov ball
�α

p,q(L). Then we can use the general structured linear model to approximate the signal at
each resolution separately. This strategy leads to a minimax optimal procedure for a large
collection of Besov balls.

3. The prior distribution. In this section, we introduce a prior distribution on the struc-
tured linear model (1). The prior distribution has a two-step sampling procedure. First, we
are going to sample a structure Z. Second, given Z, we sample the parameter Q. Let us first
present the prior distribution on the parameter Q ∈ R

�(Zτ ). We propose an elliptical Laplace
distribution with density function proportion to exp(−λ‖XZ(Q)‖). By direct calculations of
its normalizing constant, the density function is

(4) f�(Zτ ),XZ,λ(Q) =
√

det(X T
Z XZ)

2

(
λ√
π

)�(Zτ ) �(�(Zτ )/2)

�(�(Zτ ))
exp

(−λ
∥∥XZ(Q)

∥∥)
.

A derivation of the normalizing constant with details is given in Section A of the supplement.
Note that (4) is well defined when det(X T

Z XZ) > 0. Recall that XZ is understood as a matrix
in R

N×�(Zτ ) whenever a matrix operation is applied. The elliptical Laplace distribution be-
longs to the elliptical family [21] with scatter matrix proportional to (X T

Z XZ)−1. Compared
with a product measure on Q, the density function (4) involves an extra factor �(�(Zτ )/2)

�(�(Zτ ))
in

the normalizing constant. This factor needs to be corrected in the model selection step.
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Let ε(Zτ ) be a function satisfying

(5) ε(Zτ ) ≥ �(Zτ ) + log |Zτ |.
The sampling procedure of the prior distribution  on XZ(Q) is given by:

1. Sample τ ∼ π from T , where π(τ) ∝ �(�(Zτ ))
�(�(Zτ )/2)

exp(−Dε(Zτ ));

2. Conditioning on τ , sample Z uniformly from the set Z̄τ = {Z ∈ Zτ : det(X T
Z XZ) >

0};
3. Conditioning on (τ,Z), sample Q ∼ f�(Zτ ),XZ,λ.

Step 1 weighs the structure index τ by the function ε(Zτ ) that satisfies (5). For all the ex-
amples considered in the paper, ε(Zτ ) is chosen to be at the same order of the model com-
plexity (2). The quantity �(�(Zτ ))

�(�(Zτ )/2)
is a correction factor that is imposed to compensate the

influence of �(�(Zτ )/2)
�(�(Zτ ))

in the elliptical Laplace distribution. Without the correction factor,
exp(−Dε(Zτ )) is the complexity prior used by [16, 17] in Gaussian sequence model and
sparse linear regression. Since the support T is a finite set, π is a valid probability mass
function. Step 2 samples a structure Z uniformly in Z̄τ . It is sufficient to consider such Z

that det(X T
Z XZ) > 0 for all the examples considered in this paper. Such restriction leads to

a proper density function (4), and thus Step 3 is well defined.
After defining the prior, we need to specify the likelihood function. The examples in Sec-

tion 2 have different distributions. For example, the stochastic block model usually assumes
a Bernoulli random graph, while sparse linear regression often works with general sub-
Gaussian noise distributions. To pursue a unified approach, we propose to use the Gaussian
likelihood Y |(Z,Q) ∼ N(XZ(Q), IN) throughout the paper. Then the posterior distribution
is


(
XZ(Q) ∈ U |Y )

=
(∑

τ∈T
e−Dε(Zτ )

∑
Z∈Z̄τ

√
det(X T

Z XZ)

|Z̄τ |
(

λ√
π

)�(Zτ )

×
∫
XZ(Q)∈U

e− 1
2 ‖Y−XZ(Q)‖2−λ‖XZ(Q)‖ dQ

)

/(∑
τ∈T

e−Dε(Zτ )
∑

Z∈Z̄τ

√
det(X T

Z XZ)

|Z̄τ |
(

λ√
π

)�(Zτ ) ∫
e− 1

2 ‖Y−XZ(Q)‖2−λ‖XZ(Q)‖ dQ

)
.

The summation over an empty set is understood to be zero in the posterior formula above. We
remark that there exists at least one τ ∈ T such that Z̄τ is not empty (see Theorem 4.1), and
thus the posterior formula is well defined. We also note the factor �(�(Zτ )/2)

�(�(Zτ ))
in the Laplace

normalizing constant has been cancelled out by the correction factor �(�(Zτ ))
�(�(Zτ )/2)

in the model
selection prior.

4. Main results. In this section, we analyze the posterior distribution for the general
structured linear model. Though the prior specifies a model XZ(Q), we do not need to as-
sume that data is generated from the same model. Instead, we allow data to be generated by
an arbitrary signal with sub-Gaussian noise. That is,

Y = θ∗ + W,

where W = Y − θ∗ is a noise vector with a sub-Gaussian tail satisfying

(6) P
(∣∣〈W,K〉∣∣ > t

) ≤ e−ρt2/2 for all ‖K‖ = 1.
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The sub-Gaussianity number ρ > 0 is assumed to be a constant throughout the paper. It
worths noting that 1/ρ is a bound on the noise level. We also assume a mild condition on the
function ε(Zτ ),

(7)
∣∣{τ ∈ T : t − 1 < ε(Zτ ) ≤ t

}∣∣ ≤ t for all t ∈ N.

The condition (7) is satisfied for all examples considered in the paper. The main result of
the paper is stated in the following theorem. Recall that λ and D are parameters of the prior
distribution .

THEOREM 4.1. Assume (5), (6) and (7). Given any θ∗ ∈ R
N , τ ∗ ∈ T , Z∗ ∈ Z̄τ∗ , Q∗ ∈

R
�(Zτ∗ ), any constants λ,ρ > 0 and any sufficiently small constant δ ∈ (0,1), there exists

some constant Dλ,δ,ρ > 0 only depending on λ, δ, ρ, such that

Eθ∗
(
ε(Zτ ) > (1 + δ1)ε(Zτ∗) + δ1

∥∥XZ∗
(
Q∗) − θ∗∥∥2|Y )

≤ exp
(−C′(ε(Zτ∗) + ∥∥XZ∗

(
Q∗) − θ∗∥∥2))

,
(8)

Eθ∗
(∥∥XZ(Q) − θ∗∥∥2

> (1 + δ2)
∥∥XZ∗

(
Q∗) − θ∗∥∥2 + Mε(Zτ∗)|Y )

≤ exp
(−C′′(ε(Zτ∗) + ∥∥XZ∗

(
Q∗) − θ∗∥∥2))(9)

and

Eθ∗
∥∥E

(
XZ(Q)|Y ) − θ∗∥∥2

≤ (1 + δ2)
∥∥XZ∗

(
Q∗) − θ∗∥∥2 + Mε(Zτ∗)(10)

+ exp
(−C′′′(ε(Zτ∗) + ∥∥XZ∗

(
Q∗) − θ∗∥∥2))

,

for any constant D > Dλ,δ,ρ with δ1 = δ, δ2 = 8
√

14δ/ρ and some constants M , C′, C′′, C′′′
only depending on λ, δ, ρ, D.

Theorem 4.1 contains three results of an oracle type. The object XZ∗(Q∗) can be chosen
with arbitrary Q∗ and Z∗, but is usually taken as the oracle model that best approximates
the true signal θ∗ in many applications. The first result (8) shows that the model complexity
selected by the posterior distribution is not greater than the sum of the complexity of the
oracle and a model misspecification term quantified by ‖XZ∗(Q∗) − θ∗‖2. The second result
(9) is a posterior oracle inequality for the squared error loss ‖XZ(Q) − θ∗‖2. Compared with
that of the oracle XZ∗(Q∗), the squared error loss of XZ(Q) has an extra term proportional
to ε(Zτ∗). The third result is an oracle inequality for the posterior mean E(XZ(Q)|Y). It
is worth noting that exp(−C′′′(ε(Zτ∗) + ‖XZ∗(Q∗) − θ∗‖2)) is negligible compared with
(1 + δ2)‖XZ∗(Q∗) − θ∗‖2 + Mε(Zτ∗) in all the examples considered in the paper.

When the model is well specified in the sense that θ∗ = XZ∗(Q∗), Theorem 4.1 reduces
to the following results on posterior contraction.

COROLLARY 4.1. Assume (5), (6) and (7). For any θ∗ = XZ∗(Q∗) with any Z∗ ∈ Z̄τ∗ ,
any τ ∗ ∈ T , any Q∗ ∈ R

�(Zτ∗ ), any constants λ,ρ > 0 and any sufficiently small constant
δ ∈ (0,1), there exists some constant Dλ,δ,ρ > 0 only depending on λ, δ, ρ, such that

Eθ∗
(
ε(Zτ ) > (1 + δ)ε(Zτ∗)|Y ) ≤ exp

(−C′ε(Zτ∗)
)
,

Eθ∗
(∥∥XZ(Q) − θ∗∥∥2

> Mε(Zτ∗)|Y ) ≤ exp
(−C′′ε(Zτ∗)

)
and

Eθ∗
∥∥E

(
XZ(Q)|Y ) − θ∗∥∥2 ≤ Mε(Zτ∗) + exp

(−C′′′ε(Zτ∗)
)
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for any constant D > Dλ,δ,ρ with some constants M , C′, C′′, C′′′ only depending on λ, δ,
ρ, D.

REMARK 4.1. The above results hold for all ε(Zτ ) satisfying (5). By choosing ε(Zτ )

at the same order of (2), we obtain the contraction rate �(Zτ∗) + log |Zτ∗ | for the posterior
distribution. As we are going to show in the next section, this rate is minimax optimal for all
the examples considered in the paper. From now on, we refer to both (2) and ε(Zτ ) as the
complexity function.

REMARK 4.2. By carefully examining the proof, the assumption (7) can be weakened.
In fact, we only require |{τ ∈ T : t − 1 < ε(Zτ ) ≤ t}| ≤ atb for arbitrary constants a, b > 0
for the result of Theorem 4.1 to hold. However, the condition (7) is simpler and is suffi-
cient for all the examples considered in the paper. For example, |{k ∈ [n] : t − 1 < k2 +
n log k ≤ t}| ≤ 1 for stochastic block model, and |s ∈ [p] : t − 1 < 2s log ep

s
≤ t | ≤ 1 for

sparse linear regression.

REMARK 4.3. It is worth noting that the constant (1 + δ2) in (9) can be arbitrarily close
to 1, as long as D is chosen sufficiently large. Since our procedure involves a model selection
step, an oracle inequality with constant exactly 1 may be impossible, which is suggested by
a counterexample in [49] for sparse linear regression.

REMARK 4.4. Note that we do not impose any assumption on the operator XZ(·) be-
sides its linearity (3). In the regression model, this means the results are assumption-free for
the design matrix, as those in the frequentist literature [59].

5. Applications.

5.1. Stochastic block model. The stochastic block model was proposed by [30] to model
random graphs with a community structure. Given a symmetric adjacency matrix A = AT ∈
{0,1}n×n that codes an undirected network with no self-loop in the sense that Aii = 0 for
all i ∈ [n], the stochastic block model assumes {Aij }i>j are independent Bernoulli random
variables with mean θij = Qz(i)z(j) ∈ [0,1] for some matrix Q ∈ [0,1]k×k and some label
vector z ∈ [k]n. In other words, the probability that there is an edge between the ith and
the j th nodes only depends on their community labels z(i) and z(j). Recently, the problem
of estimating the success matrix θ receives some attention. The minimax rate of estimating
θ under the Frobenius norm was established by [22]. However, the upper bound in [22] was
achieved by a procedure assuming the knowledge of the true number of community k∗, which
is not adaptive. The Bayes framework proposed in this paper provides a natural solution to
adaptive estimation for stochastic block model.

Let us write the stochastic block model in a general from as θij = [XZ(Q)]ij = Qz(i)z(j)

for all i �= j . We do not need to model the diagonal entries because Aii = 0 for all i ∈ [n]
as convention. Then Z = z, τ = k, T = [n] and Zk = [k]n. Though the true parameter Q∗ is
symmetric, we do not impose symmetry for the prior distribution. Hence, �(Zk) = k2 and (5)
is satisfied with ε(Zk) = k2 + n log k. The general prior distribution  can be specialized to
this case as follows:

1. Sample k ∼ π from [n], where π(k) ∝ �(k2)

�(k2/2)
exp(−D(k2 + n logk));

2. Conditioning on k, sample z uniformly from the set {z ∈ [k]n : minu∈[k] |{i ∈ [n] :
z(i) = u}| > 0};
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3. Conditioning on (k, z), sample Q ∼ fk,z,λ, where fk,z,λ(Q) ∝ e
−λ

√∑
i �=j Q2

z(i)z(j) ;
4. Set θij = Qz(i)z(j) for all i �= j and θii = 0 for all i ∈ [n].

Note that in Step 2, Z̄k = {z ∈ [k]n : minu∈[k] |{i ∈ [n] : z(i) = u}| > 0}. In other words, Z̄k is
the set of label assignments that induce k clusters. For each u ∈ [k], |{i ∈ [n] : z(i) = u}|
is the size of the uth cluster. If for some u ∈ [k], |{i ∈ [n] : z(i) = u}| = 0, then there
must exists some k1 < k such that z ∈ Z̄k1 . Moreover, it is easy to see that for any z ∈ Z̄k ,
(Q1)z(i)z(j) = (Q2)z(i)z(j) for all i �= j implies Q1 = Q2. This indicates that the correspond-
ing linear operator XZ(·) is not degenerate. To help understand the density function fk,z,λ

in Step 3, consider the case of equal community sizes, that is, |{i ∈ [n] : z(i) = u}| = n/k

for all u ∈ [k]. Then fk,z,λ(Q) ∝ e− nλ
k

‖Q‖F , if we include the diagonal entries and treat θii as
Qz(i)z(i).

To study the posterior distribution, we assume that the adjacency matrix is generated by
the true mean θ∗

ij = Q∗
z∗(i)z∗(j) = Q∗

z∗(j)z∗(i) ∈ [0,1] for i �= j and θ∗
ii = 0 for all i ∈ [n],

where z∗ ∈ Z̄k∗ for some k∗ ∈ [n]. It can be shown that the noise W = A − θ∗ satisfies (6)
for some constant ρ > 0 by Hoeffding’s inequality, and the complexity function ε(Zτ ) =
k2 + n logk satisfies (7). Hence, Corollary 4.1 can be specialized for the stochastic block
model as follows.

COROLLARY 5.1. For any θ∗ and k∗ specified above, any constant λ > 0 and any suffi-
ciently small constant δ ∈ (0,1), there exists some constant Dλ,δ > 0 only depending on λ, δ

such that

Eθ∗
(
k2 + n log k > (1 + δ)

((
k∗)2 + n logk∗)|A) ≤ exp

(−C′((k∗)2 + n logk∗))
and

Eθ∗
(∥∥θ − θ∗∥∥2

F > M
((

k∗)2 + n log k∗)|A) ≤ exp
(−C′′((k∗)2 + n logk∗))

for any constant D > Dλ,δ with some constants M , C′, C′′ only depending on λ, δ, D.

A previous result on Bayes estimation for the stochastic block model by [46] assumes
the knowledge of k∗, and the rate is suboptimal. To the best of our knowledge, our result is
the first adaptive Bayes estimator for the stochastic block model with a posterior contraction
rate (k∗)2 + n logk∗, which is optimal according to [22]. When k∗ ≤ √

n logn, the rate is
dominated by n logk∗, which grows only logarithmically as k∗ grows. When k∗ >

√
n logn,

the rate is dominated by (k∗)2, corresponding to the number of parameters. Corollary 4.1 also
implies that the posterior mean achieves the minimax rate (k∗)2 + n logk∗.

While our result uses a prior distribution that does not impose symmetry on the mean
matrix θ , it may be more desirable to incorporate symmetry from a practical point of view.
This can be achieved within our framework of structured linear models. To be specific, we
can consider the object XZ(Q) to be a triangle array with entries {[XZ(Q)]ij : 1 ≤ i <

j ≤ n}. Then Q is also a triangle array, but it is of dimension k(k + 1)/2 and has entries
{Qij : 1 ≤ i ≤ j ≤ k}. The linear operator XZ(·) that maps from Q to XZ(Q) is specified
by XZ(Q) = Qz(i)z(j). In other words, the symmetric SBM is also a special case of our
structured linear models with Z = z, τ = k, T = [n], Zk = [k]n, �(Zk) = k(k + 1)/2 and
N = n(n − 1)/2.

To close this section, we also mention an important problem of community detection,
which is equivalent to estimating the structure Z in our general framework. The posterior
distribution of Bayesian community detection was recently analyzed by [56].
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5.2. Biclustering. The biclustering model, originated in [28], can be viewed as a precur-
sor and an asymmetric extension of the stochastic block model. The data matrix Y ∈ R

n×m is
generated by a signal matrix θ = (θij ) with θij = Qz1(i)z2(j) for some label vectors z1 ∈ [k]n
and z2 ∈ [l]m, that is, the rows of θ have k clusters and the columns of θ have l clusters,
and the values of (θij ) that belong to the same row-cluster and the same column-cluster are
identical. The goal is to recover the true signal matrix θ∗ from the observation Y .

To put the biclustering model in our general framework, we have Z = (z1, z2), τ = (k, l),
T = [n] × [m], Zk,l = [k]n × [l]m and �(Zn,l) = kl. Moreover, the complexity function is
ε(Zk,l) = kl + k logn + l logm, which satisfies (5) and (7). The general prior  can be spe-
cialized to this case as follows:

1. Sample (k, l) ∼ π from [n] × [m], where π(k, l) ∝ �(kl)
�(kl/2)

exp(−D(kl + n logk +
m log l));

2. Conditioning on (k, l), sample (z1, z2) uniformly from Z̄k,l ;
3. Conditioning on (k, l, z1, z2), sample Q ∼ fk,l,z1,z2,λ with fk,l,z1,z2,λ(Q) ∝

e
−λ

√∑
ij Q2

z1(i)z2(j) ;
4. Set θij = Qz1(i)z2(j) for all (i, j).

In Step 2,

Z̄k,l =
{
(z1, z2) ∈ [k]n × [l]m : min

u∈[k]
∣∣{i ∈ [n] : z1(i) = u

}∣∣ > 0,

min
v∈[l]

∣∣{j ∈ [m] : z2(j) = v
}∣∣ > 0

}
.

In other words, for any (z1, z2) ∈ Z̄k,l , z1 and z2 induce row and column clustering structures
with numbers of clusters being k and l, respectively.

To analyze the posterior distribution, assume Y = θ∗ + W , where θ∗
ij = Q∗

z∗
1(i)z∗

2(j)
for

Q∗ ∈ R
k∗×l∗ and (z∗

1, z
∗
2) ∈ [k∗]n × [l∗]m, and the noise W is assumed to satisfy (6).

COROLLARY 5.2. For any θ∗ and (k∗, l∗) specified above, any constants λ,ρ > 0 and
any sufficiently small constant δ ∈ (0,1), there exists some constant Dλ,δ,ρ > 0 only depend-
ing on λ, δ, ρ such that

Eθ∗
(
kl + n log k + m log l > (1 + δ)

(
k∗l∗ + n logk∗ + m log l∗

)|Y )
≤ exp

(−C′(k∗l∗ + n log k∗ + m log l∗
))

and

Eθ∗
(∥∥θ − θ∗∥∥2

F > M
(
k∗l∗ + n logk∗ + m log l∗

)|Y )
≤ exp

(−C′′(k∗l∗ + n log k∗ + m log l∗
))

for any constant D > Dλ,δ,ρ with some constants M , C′, C′′ only depending on λ, δ, ρ, D.

The posterior contraction rate for recovering a signal matrix with a biclustering structure
is k∗l∗ + n logk∗ + m log l∗, which is minimax optimal according to [22]. To the best of our
knowledge, this is the first adaptive estimation result for biclustering with an optimal rate.

5.3. Sparse linear regression. Consider a regression problem with fixed design Xβ ,
where X ∈ R

n×p and β ∈ R
p . The regression coefficient is assumed to be sparse so that

βT = (βT
S ,0T

Sc) for some S ⊂ [p]. Recovering the mean vector Xβ and the regression vector
β with a sparse prior has been considered in [16]. However, the results of [16] imposed a
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stronger assumption that is used for the Lasso estimator [9]. In this section, we show that
the prior distribution that we propose in Section 3 leads to optimal posterior contraction rates
with minimal assumptions.

The sparse linear regression model is a special case of the general structured linear model
(1) with Z = S, τ = s, T = [p], Zs = {S ⊂ [p] : |S| = s}, �(Zs) = s and Q = βS . Then
we have the representation XZ(Q) = X∗SβS = Xβ . Since log |Zs | = log

( p
s

) ≤ s log ep
s

, the
complexity function ε(Zs) = 2s log ep

s
satisfies the condition (5). It can be shown that ε(Zτ )

satisfies (7). We specialize the general prior  in Section 3 as follows:

1. Sample s ∼ π from [p], where π(s) ∝ �(s)
�(s/2)

exp(−2Ds log ep
s

);

2. Conditioning on s, sample S uniformly from {S ⊂ [p] : |S| = s,det(XT∗SX∗S) > 0};
3. Conditioning on (s, S), sample βS ∼ fs,S,λ with fs,S,λ(βS) ∝ e−λ‖X∗SβS‖ and set

βSc = 0.

In Step 1, we set ε(Zs) = 2s log ep
s

instead of the exact form of �(Zτ ) + log |Zτ | in
the exponent for simplicity. In Step 2, we sample S from the set Z̄s = {S ⊂ [p] : |S| =
s,det(XT∗SX∗S) > 0} instead of Zs such that the density fs,S,λ in Step 3 is not degenerate.
Since X∗S ∈ R

n×s , when s > n, we have Z̄s = ∅. Note that the exponent on the density of βS

is −λ‖X∗SβS‖, different from −λ‖βS‖1 in [16]. We allow the prior to depend on the design
matrix X to obtain an assumption-free optimal posterior prediction rate. The idea of design-
dependent prior was also employed by [42] in an empirical pseudo-Bayes framework. Since
e−λ‖X∗SβS‖ has an exponential tail, it is capable of modeling a large regression coefficient.
We expect that an elliptical distribution with heavier tails than Laplace also works here.

The prior distribution involves a correction factor �(s)
�(s/2)

in the model selection step to
compensate the normalizing constant of the elliptical Laplace distribution. Without this fac-
tor, exp(−2Ds log ep

s
) is the common prior distribution on the model dimension used in [16,

17, 24, 42, 48]. Since exp(−2Ds log ep
s

) is a decreasing function of s, it gives less weights for

more complex models. However, with the correction factor, π(s) ∝ �(s)
�(s/2)

exp(−2Ds log ep
s

)

is not necessarily a decreasing function of s. For a large D > 0, it can be shown that
π(

√
p) < π(p), which leads to a counterintuitive prior modeling strategy. Nevertheless, it

is worth noting that the π in Step 1 is only part of the prior . The elliptical Laplace distri-
bution used later also contributes to the prior modeling on the dimension. The combination
of the two gives a correct prior weight on the model dimension.

Let Y = Xβ∗ + W for some β∗ with support S∗ and sparsity |S∗| = s∗, where the noise
vector W is assumed to be sub-Gaussian (6). Without loss of generality, we may assume
S∗ ∈ Z̄s∗ . If X∗S∗ is collinear in the sense that det(XT∗S∗X∗S∗) = 0, there always exists a β1

with support S1 and sparsity s1 = |S1| such that Xβ∗ = Xβ1 and det(XT∗S1
X∗S1) > 0. We may

simply redefine (s∗, S∗) by (s1, S1).

COROLLARY 5.3. For any β∗, S∗ ∈ Z̄s∗ and s∗ specified above, any constants λ,ρ > 0
and any sufficiently small constant δ ∈ (0,1), there exists some constant Dλ,δ,ρ > 0 only
depending on λ, δ, ρ such that

(11) EXβ∗
(
s > (1 + δ)s∗|Y ) ≤ exp

(
−C′s∗ log

ep

s∗
)

and

(12) EXβ∗
(∥∥Xβ − Xβ∗∥∥2

> Ms∗ log
ep

s∗
∣∣∣∣Y

)
≤ exp

(
−C′′s∗ log

ep

s∗
)

for any constant D > Dλ,δ,ρ with some constants M , C′, C′′ only depending on λ, δ, ρ, D.
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The result (11) is a consequence of (8) since s log ep
s

> (1 + δ1)s
∗ log ep

s∗ is equivalent
to s > (1 + δ)s∗. It improves the corresponding bounds in [16, 17] at a constant level. The
result (12) achieves the rate s∗ log ep

s∗ with no assumption on the design matrix X, which is
comparable to the frequentist result in [10]. A slight improvement of (12) will be discussed
in Section 5.8.

Besides the optimal prediction rate, we are ready to obtain optimal estimation rates given
(11) and (12). Define

(13) κ2 = min{b �=0:‖b‖0≤(2+δ)s∗}
‖Xb‖√
n‖b‖ and κ1 = min{b �=0:‖b‖0≤(2+δ)s∗}

√
s∗‖Xb‖√
n‖b‖1

.

Note that κ2 is the restricted eigenvalue constant [9, 14] and κ1 is the compatibility constant
[12].

COROLLARY 5.4. Under the setting of Corollary 5.3, we have

EXβ∗
(∥∥β − β∗∥∥2

> M
s∗ log ep

s∗

nκ2
2

∣∣∣∣Y
)

≤ 2 exp
(
−(

C′ + C′′)s∗ log
ep

s∗
)

and

EXβ∗
(∥∥β − β∗∥∥2

1 > M
(s∗)2 log ep

s∗

nκ2
1

∣∣∣∣Y
)

≤ 2 exp
(
−(

C′ + C′′)s∗ log
ep

s∗
)

for the same constants M , C′, C′′ in Corollary 5.3.

We note that the dependence on the quantities κ2 and κ1 are optimal [47], compared with
the Lasso estimator and the spike and slab prior [16]. When κ � κ1 � κ2, the rates of the Lasso

estimator are s∗ logp

nκ4 and (s∗)2 logp

nκ4 for the loss ‖·‖2 [9] and the loss ‖·‖2
1 [55], respectively,

and the rates of the spike and slab prior are
s∗ log ep

s∗
nκ6 and

(s∗)2 log ep

s∗
nκ8 for the loss ‖·‖2 and ‖·‖2

1
[16], respectively.

The results on �∞ convergence and model selection consistency for sparse linear regres-
sion are not implied by the general theory. We are going to treat it separately in Section 6.

To close this section, we briefly discuss the computational issue of the proposed prior dis-
tribution. A recent theoretical result by [64] shows that the mixing-time of a simple MCMC
algorithm is polynomial in the setting of Bayesian sparse linear regression. They also use
a two-step model selection prior, but the distribution on model parameters is e−λ‖X∗SβS‖2

,
compared with our e−λ‖X∗SβS‖. Given the similarity between the two prior distributions, it is
conceivable that similar results in [64] can also be established in our setting. More interest-
ingly, whether a general theory of computation can be established under our framework of
structured linear models will be an important topic to study in the future.

5.4. Multiple linear regression with group sparsity. Let us consider a multiple regression
setting XB for X ∈ R

n×p and B ∈ R
p×m. The matrix B collects regression coefficients from

m regression problems. We assume the m regression coefficients share the same support.
There is some S ⊂ [p] such that BSc∗ = 0, that is, S is the nonzero rows of B . The concept of
group sparsity was proposed by [3, 65], and frequentist statistical properties were analyzed
by [38].

To put the problem in the general framework, we have Z = S, τ = s, T = [p], Z =
{S ⊂ [p] : |S| = s}, �(Zs) = ms and Q = BS∗. Then XZ(Q) = X∗SBS∗ = XB . The choice
ε(Zs) = s(m + log ep

s
) satisfies the conditions (5) and (7). The prior distribution  is similar

to that used in Section 5.3:
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1. Sample s ∼ π from [p], where π(s) ∝ �(s)
�(s/2)

exp(−Ds(m + log ep
s

));

2. Conditioning on s, sample S uniformly from Z̄s = {S ⊂ [p] : |S| = s,det(XT∗SX∗S) >

0};
3. Conditioning on (s, S), sample BS∗ ∼ fs,S,λ with fs,S,λ(BS∗) ∝ e−λ‖X∗SBS∗‖F and set

BSc∗ = 0.

Note that we sample S from Z̄s in Step 2 as for sparse linear regression. Assume the data is
generated by Y = XB∗+W for some matrix B∗ with support S∗ and sparsity s∗. Without loss
of generality, we assume S∗ ∈ Z̄s∗ . The noise matrix W is assumed to be the sub-Gaussian in
the sense of (6).

COROLLARY 5.5. For any B∗, S∗ ∈ Z̄s∗ and s∗ specified above, any constants λ,ρ > 0
and any sufficiently small constant δ ∈ (0,1), there exists some constant Dλ,δ,ρ > 0 only
depending on λ, δ, ρ such that

EXB∗
(
s > (1 + δ)s∗|Y ) ≤ exp

(
−C′s∗

(
m + log

ep

s∗
))

and

EXB∗
(∥∥XB − XB∗∥∥2

F > Ms∗
(
m + log

ep

s∗
)∣∣∣Y)

≤ exp
(
−C′′s∗

(
m + log

ep

s∗
))

for any constant D > Dλ,δ,ρ with some constants M , C′, C′′ only depending on λ, δ, ρ, D.

The posterior contraction rate for the prediction loss is s∗(m + log ep
s∗ ), which is optimal

according to [38, 41]. Posterior contraction for various estimation loss functions can also be
derived in a similar way as in Section 5.3.

5.5. Multitask learning. Multitask learning is another name for multiple linear regression
in the form of XB with X ∈ R

n×p and B ∈ R
p×m. Compared with m independent linear

regression problems, a typical multi-task learning setting assumes some dependent structure
among the columns of the coefficient matrix B . The group sparsity assumption considered in
Section 5.4 is an example where the columns of B share the same support.

In this section, we consider another special but important class of multi-task learning prob-
lems. We assume a clustering structure among the columns of B , that is, B∗j = Q∗z(j) for
some z ∈ [k]m and Q ∈ R

p×k . In other words, the m regression coefficient vectors are al-
lowed to choose from k possibilities. When the design X is an identity matrix, it reduces to
an ordinary clustering problem.

Let us write the multitask learning problem in the general framework. This can be done
by letting Z = z, τ = k, T = [m], Zk = [k]m and �(Zk) = pk. Moreover, we have the rep-
resentation [XZ(Q)]∗j = XQ∗z(j). The complexity function ε(Zτ ) = pk + m log k satisfies
the conditions (5) and (7). We consider a full rank design matrix with det(XT X) > 0. The
general prior distribution  in Section 3 can be specialized to this case:

1. Sample k ∼ π from [p], where π(k) ∝ �(pk)
�(pk/2)

exp(−D(pk + m logk));
2. Conditioning on k, sample z uniformly from the set {z ∈ [k]m : minu∈[k] |{j ∈ [m] :

z(j) = u}| > 0};
3. Conditioning on (k, z), sample Q ∼ fk,z,λ with fk,z,λ(Q) ∝ e

−λ
√∑

j ‖XQz(j)∗‖2
;

4. Set B∗j = Q∗z(j) for all j ∈ [m].
Note that in Step 2, we have Z̄k = {z ∈ [k]m : minu∈[k] |{j ∈ [m] : z(j) = u}| > 0}, which is
due to det(XT X) > 0. The full rankness of the design matrix implicitly implies p ≤ n. In fact,
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there is no loss to assume det(XT X) > 0, because whenever det(XT X) = 0, one can simply
use a subset of the variables that are linearly independent without affecting the prediction
error.

We assume that the data is generated as Y = XB∗ + W for some matrix B∗ satisfying
B∗∗j = Q∗∗z∗(j) with some Q∗ and z∗ ∈ [k∗]m. The noise matrix is assumed to satisfy (6).

COROLLARY 5.6. For any B∗ and k∗ specified above, any constants λ,ρ > 0 and any
sufficiently small constant δ ∈ (0,1), there exists some constant Dλ,δ,ρ > 0 only depending
on λ, δ, ρ such that

EXB∗
(
pk + m log k > (1 + δ)

(
pk∗ + m log k∗)|Y ) ≤ exp

(−C′(pk∗ + m log k∗))
and

EXB∗
(∥∥XB − XB∗∥∥2

F > M
(
pk∗ + m log k∗)|Y ) ≤ exp

(−C′′(pk∗ + m log k∗))
for any constant D > Dλ,δ,ρ with some constants M , C′, C′′ only depending on λ, δ, ρ, D.

The posterior contraction rate for multitask learning is pk∗ + m logk∗. According to [35],
the rate pk∗ + m log k∗ is minimax optimal when pk∗ + m log k∗ ≤ pm. The minimax rate
for the case pk∗ + m log k∗ > pm is simply pm, the dimension of B . In that case, even the
ordinary least-squares estimator B̂ = argminB ‖Y − XB‖2

F can achieve the rate.

5.6. Dictionary learning. Dictionary learning can be viewed as a linear regression prob-
lem without knowing the design matrix. Mathematically, the signal matrix θ ∈ R

n×d can be
represented as θ = QZ for some Q ∈ R

n×p and Z ∈ R
p×d . Both the dictionary Q and the

coefficient matrix Z are unknown. A common assumption is that each column of Z is sparse,
and the goal is to learn the latent sparse representation of the signal. The problem is also
referred to as sparse coding [45]. Recently, the minimax rate of dictionary learning has been
established by [35] for estimating the true signal matrix θ∗. In this section, we provide a
Bayes solution to the adaptive estimation problem of dictionary learning. Following [1], we
consider a discrete version of the problem. Namely, Z ∈ {−1,0,1}p×d . Then the problem can
be represented in a general form by letting τ = (p, s), T = {(p, s) ∈ [n ∧ d] × [n] : s ≤ p},
Zp,s = {Z ∈ {−1,0,1}p×d : maxj∈[d] | supp(Z∗j )| ≤ s} and �(Zp,s) = np. Moreover, we
have the representation XZ(Q) = QZ. The complexity function is �(Zp,s) + log |Zp,s | =
np + d(log

( p
s

) + 3 log s). With ε(Zp,s) = 3(np + ds log ep
s

), (5) and (7) are satisfied. The
general prior distribution  can be specialized into the following sampling procedures:

1. Sample (p, s) ∼ π from T with π(p, s) ∝ �(np)
�(np/2)

exp(−3D(np + ds log ep
s

));

2. Given (p, s), sample Z uniformly from Z̄p,s = {Z ∈ Zp,s : det(ZZT ) > 0};
3. Given (p, s,Z), sample Q ∼ fp,s,Z,λ with fp,s,Z,λ(Q) ∝ e−λ‖QZ‖F ;
4. Set θ = QZ.

Note that we have used ε(Zp,s) = 3(np + ds log ep
s

) instead of the exact �(Zτ ) + log |Zτ | in
Step 1 for simplicity.

We assume that the data is generated by Y = θ∗ + W for some noise matrix W satisfying
(6) and θ∗ = Q∗Z∗. Without loss of generality, we assume the matrix Z∗ belongs to the set
Z̄p∗,s∗ . If det(Z∗(Z∗)T ) = 0, there must exist some Q1 ∈ R

n×p1 and Z1 ∈ Z̄p1,s1 such that
θ∗ = Q∗Z∗ = Q1Z1.

COROLLARY 5.7. For any θ∗ = Q∗Z∗ with Z∗ ∈ Z̄p∗,s∗ specified above, any constants
λ,ρ > 0 and any sufficiently small constant δ ∈ (0,1), there exists some constant Dλ,δ,ρ > 0
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only depending on λ, δ, ρ such that

Eθ∗
(
np + ds log

ep

s
> (1 + δ)

(
np∗ + ds∗ log

ep∗

s∗
)∣∣∣Y)

≤ exp
(
−C′

(
np∗ + ds∗ log

ep∗

s∗
))

and

Eθ∗
(∥∥θ − θ∗∥∥2

F > M

(
np∗ + ds∗ log

ep∗

s∗
)∣∣∣Y)

≤ exp
(
−C′′

(
np∗ + ds∗ log

ep∗

s∗
))

for any constant D > Dλ,δ,ρ with some constants M , C′, C′′ only depending on λ, δ, ρ, D.

The rate we have obtained from (5.7) is np∗ +ds∗ log ep∗
s∗ , which is minimax optimal when

np∗ + ds∗ log ep∗
s∗ ≤ nd according to [35]. When np∗ + ds∗ log ep∗

s∗ > nd , the minimax rate

is just nd , the dimension of θ . It can be achieved by the naive estimator θ̂ = Y , and thus this
is not an interesting case to us. The term ds∗ log ep∗

s∗ in the rate is the error for recovering d

sparse regression coefficient vectors, and np∗ is the price to pay for not knowing the design
matrix Q∗. The result can be extended to the case where the entries of Z∗ are allowed to take
values in an arbitrary discrete set with finite cardinality. To the best of our knowledge, this is
the first adaptive estimation result for dictionary learning with an optimal prediction rate.

5.7. Nonparametric graphon estimation. Consider a random graph with adjacency ma-
trix {Aij } ∈ {0,1}n×n, whose sampling procedure is determined by

(14) (ξ1, . . . , ξn) ∼ Pξ , Aij |(ξi, ξj ) ∼ Bernoulli
(
θ∗
ij

)
, where θ∗

ij = f ∗(ξi, ξj ).

For i ∈ [n], Aii = θ∗
ii = 0. Conditioning on (ξ1, . . . , ξn), Aij = Aji is independent across

i > j . The function f ∗ on [0,1]2, which is assumed to be symmetric, is called graphon. The
concept of graphon is originated from graph limit theory [19, 31, 39, 40] and the studies
of exchangeable arrays [2, 33]. It is the underlying nonparametric object that generates the
random graph.

Let us proceed to specify the function class of graphons. Define the derivative operator by

∇jkf (x, y) = ∂j+k

(∂x)j (∂y)k
f (x, y),

and we adopt the convention ∇00f (x, y) = f (x, y). The Hölder norm is defined as

‖f ‖Hα = max
j+k≤�α� sup

x,y∈D
∣∣∇jkf (x, y)

∣∣

+ max
j+k=�α� sup

(x,y) �=(x′,y′)∈D
|∇jkf (x, y) − ∇jkf (x′, y′)|

‖(x − x′, y − y′)‖α−�α� ,

where D = {(x, y) ∈ [0,1]2 : x ≥ y}. Then the graphon class with Hölder smoothness α is
defined by

Fα(L) = {
0 ≤ f ≤ 1 : ‖f ‖Hα ≤ L,f (x, y) = f (y, x) for all x ∈D

}
,

where L > 0 is the radius of the class, which is assumed to be a constant. Recently, a minimax
optimal estimator of f ∗ was proposed by [22] given the knowledge of α. In this section, we
solve the adaptive graphon estimation problem via a Bayes procedure.

As shown in [22], it is sufficient to approximate a graphon with Hölder smoothness by a
blockwise constant function. In the random graph setting, a blockwise constant function is the
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stochastic block model. Therefore, we apply the prior distribution in Section 5.1 by equating
f (ξi, ξj ) = θij . The oracle inequality in Theorem 4.1 gives the desired bias-variance tradeoff
of the problem.

COROLLARY 5.8. Consider the prior distribution specified in Section 5.1. For the class
Fα(L) with α,L > 0 defined above and any constant λ > 0, there exists some constant Dλ >

0 only depending on λ such that

sup
f ∗∈Fα(L)

sup
Pξ

Ef ∗
(

1

n2

∑
i,j∈[n]

(
f (ξi, ξj ) − f ∗(ξi, ξj )

)2
> M

(
n− 2α

α+1 + logn

n

)∣∣∣A)

≤ exp
(−C′(n 1

α+1 + n logn
))

for any constant D > Dλ with some constants M , C′ only depending on λ, D, L.

REMARK 5.1. The expectation in Corollary 5.8 is associated with the joint distribution
(14) over both {Aij } and {ξi}. Moreover, we do not need any assumption on the distribution
on {ξi}, and the result of Corollary 5.8 holds uniformly over all Pξ .

The posterior contraction rate we have obtained for graphon estimation is n− 2α
α+1 + logn

n
,

which is minimax optimal for the worst-case design according to [22]. When α ∈ (0,1),

the rate is dominated by n− 2α
α+1 , which is the typical two-dimensional nonparametric regres-

sion rate. When α ≥ 1, the rate becomes logn
n

, which does not depend on α anymore. The
key difference between graphon estimation and nonparametric regression lies in the knowl-
edge of the design sequence {ξi}. A nonparametric regression problem observes the pair
{(ξi, ξj ),Aij }, while graphon estimation only observes the adjacency matrix {Aij }, result-
ing in an extra term logn

n
in the rate. To the best of our knowledge, Corollary 5.8 is the first

adaptive estimation result on graphon estimation with an optimal convergence rate.

5.8. Aggregation. Aggregation in nonparametric regression has been considered by [18,
36, 43, 53, 60, 61] among others. Let us start with the nonparametric regression setting with
fixed design. The data is generated by

(15) Yi = f ∗(xi) + Wi, i = 1, . . . , n,

where the noise vector W = {Wi} is assumed to satisfy (6). The goal of nonparametric re-
gression is to estimate the true regression function f ∗ by some estimator f̂ under the loss

‖f̂ − f ‖2
n = 1

n

n∑
i=1

(
f̂ (xi) − f ∗(xi)

)2
,

where ‖·‖n stands for the empirical �2 norm. Assume we are given a collection of func-
tions {f1, . . . , fp}, called the dictionary. Given a subset � ⊂ R

p , for β ∈ �, define fβ =∑p
j=1 βjfj . The goal of aggregation is to find an estimator f̂ such that its error ‖f̂ − f ∗‖2

n is
comparable to that given by the best among the class {fβ : β ∈ �}. To be specific, one seeks
an estimator f̂ to satisfy the following oracle inequality:

(16)
∥∥f̂ − f ∗∥∥2

n ≤ (1 + δ) inf
β∈�

∥∥fβ − f ∗∥∥2
n + �n,p(�)

with high probability for some arbitrarily small constant δ ∈ (0,1) and some optimal rate
function �n,p(�) determined by the class �. The right-hand side of (16) is also called the
index of resolvability of f ∗ [8, 59]. Various types of aggregation problems include linear,
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convex, model selection aggregation, etc., which are determined by the choice of the class
�. In this section, we provide a single Bayes solution to various types of aggregation prob-
lems simultaneously and establish the oracle inequality (16) under the posterior distribu-
tion.

Since the vector fβ = (fβ(x1), . . . , fβ(xn)) can be represented as Xβ with Xij = fj (xi)

for all (i, j) ∈ [n]×[p], the aggregation problem can be recast as a linear regression problem.
Define r = rank(X). Without loss of generality, we assume the first r columns of X span
the column space of X, that is, span({X∗j }j∈[r]) = span({X∗j }j∈[p]). We are going to use a
modified version of the prior distribution defined in Section 5.3:

1. Sample s ∼ π from [r], where π(s) = N �(s)
�(s/2)

exp(−Ds log ep
s

) for s < r and π(r) =
N �(r)

�(r/2)
exp(−Dr) with some normalizing constant N ;

2. Conditioning on s, sample S uniformly from Z̄s = {S ⊂ [p] : |S| = s,det(XT∗SX∗S) >

0} if s < r and set S = [r] if s = r ;
3. Conditioning on (s, S), sample βS ∼ fs,S,λ with fs,S,λ(βS) ∝ e−λ‖X∗SβS‖ and set

βSc = 0.

The prior  is similar to the exponential weights used for sparsity pattern aggregation by [48,
49]. Compared with the prior in Section 5.3, it has a modified weight on the model S = [r],
which captures the intrinsic dimension of the matrix X. Assuming the data generating process
(15), we have the following result implied by Theorem 4.1.

COROLLARY 5.9. For any β∗ with support S∗ ∈ Z̄s∗ and sparsity s∗ = |S∗| ≤ r , any
f ∗, any constants λ,ρ > 0 and any sufficiently small constant δ ∈ (0,1), there exists some
constant Dλ,δ,ρ only depending on λ, δ, ρ such that

Ef ∗
(∥∥fβ − f ∗∥∥2

n > (1 + δ)
∥∥fβ∗ − f ∗∥∥2

n + M

(
r

n
∧ s∗ log(ep/s∗)

n

)∣∣∣Y)

≤ exp
(
−C′

(
n
∥∥fβ − f ∗∥∥2

n + r ∧ s∗ log
ep

s∗
))

for any constant D > Dλ,δ,ρ with some constants M , C′ only depending on λ, δ, ρ, D.

Since rank(X) = r , it is sufficient to establish the posterior oracle inequality for all β∗
with sparsity s∗ ≤ r . Due to the modified prior weight on the model S = [r], Corollary 5.9
has a better convergence rate than Corollary 5.3. The corresponding frequentist results [48,
49] have leading constant 1 instead of the (1 + δ) in Corollary 5.9. Since our prior and
posterior have a subset selection step, the result in [49] suggests that the extra constant δ may
be necessary.

Let us specialize Corollary 5.9 to various types of aggregation problems. Following
the notation in [54], define the simplex �p = {β ∈ R

p : ∑
j βj = 1, βj ≥ 0} and the �0

ball B0(s
∗) = {β ∈ R

p : | supp(β)| ≤ s∗}. Then we consider model selection aggregation
�(MS) = B0(1) ∩ �p , convex aggregation �(C) = �p , linear aggregation �(L) = R

p , sparse
aggregation �(Ls ) = B0(s

∗) and sparse convex aggregation �(Cs ) = B0(s
∗) ∩ �p . For these
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aggregation problems, define the rate function

�n,p(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

logp

n
, � = �(MS);√

1

n
log

(
1 + p√

n

)
� = �(C);

r

n
, � = �(L);

s ∗ log ep
s∗

n
, � = �(Ls );√

1

n
log

(
1 + p√

n

)
∧ s ∗ log ep

s∗
n

, � = �(Cs ).

COROLLARY 5.10. Assume maxj∈[p] ‖fj‖n ≤ 1. For any f ∗, any � ∈ {�(MS),�(C),

�(L),�(Ls ),�(Cs )}, any constants λ,ρ > 0 and any sufficiently small constant δ ∈ (0,1), there
exists some constant Dλ,δ,ρ only depending on λ, δ, ρ such that

Ef ∗
(∥∥fβ − f ∗∥∥2

n > (1 + δ) inf
β∈�

∥∥fβ − f ∗∥∥2
n + M

(
�n,p(�) ∧ r

n

)∣∣∣Y)

≤ exp
(
−C′n

(
inf
β∈�

∥∥fβ − f ∗∥∥2
n + �n,p(�) ∧ r

n

))

for any constant D > Dλ,δ,ρ with some constants M , C′ only depending on λ, δ, ρ, D.

Corollary 5.10 provides a universal aggregation result with a single posterior distribution.
The rate is minimax optimal according to [48, 58]. Bayes aggregation was recently studied by
[63] under the model misspecification framework [34]. Corollary 5.10 is a stronger result of
posterior oracle inequality under weaker assumptions compared with that of [63]. Other types
of aggregation results such as �q aggregation can also be derived directly from Corollary 5.9.

5.9. Linear regression under �q ball. Section 5.3 studied high dimensional linear regres-
sion under exact sparsity. In this section, we assume that regression coefficients are approx-
imately sparse. Theorem 4.1 allows us to derive optimal posterior rates of contraction via a
bias variance tradeoff argument. Assume the data is generated by Y = Xβ∗ + W ∈ R

p with
some design X ∈ R

n×p and some sub-Gaussian noise vector W satisfying (6). We assume β∗
is approximately sparse,

β∗ ∈ Bq(k) =
{
β ∈R

p :
p∑

j=1

|βj |q ≤ k

}

with some q ∈ (0,1]. For q = 0,

B0(k) =
{
β ∈R

p :
p∑

j=1

I{βj �= 0} ≤ k

}
,

which is reduced to the case of exact sparsity. To facilitate the presentation, we define the
effective sparsity by s∗ = x∗�, where

x∗ = max
{

0 ≤ x ≤ p : x ≤ k

(
n

log(ep/x)

)q/2}
.

The effective sparsity s∗ is a function of q , k, p, n. In the exact sparse case where q = 0, we
have s∗ = k. For the prior distribution specified in Section 5.3, we have the following result.
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COROLLARY 5.11. Assume maxj∈[p] n−1/2‖X∗j‖ ≤ L for some constant L > 0. For
any q ∈ [0,1], k and s∗ specified above and any constants λ,ρ > 0, there exists some constant
Dλ,ρ > 0 only depending on on λ, ρ such that

sup
β∗∈Bq(k)

EXβ∗
(∥∥Xβ − Xβ∗∥∥2

> Ms∗ log
ep

s∗
∣∣∣∣Y

)
≤ exp

(
−C′s∗ log

ep

s∗
)

for any constant D > Dλ,ρ with some constants M , C′ only depending on λ, ρ, D, L.

With s∗ being the effective sparsity, the posterior rate of contraction has the same form
as that of Corollary 5.3. In the special case when k ≤ p1−η(

logp
n

)q/2 for some constant

η ∈ (0,1), the rate has an explicit formula in terms of k, which is s∗ log(ep/s∗)
n

� k(
logp

n
)1−q/2.

When X is an identity matrix, Corollary 5.11 reduces to the results for sparse Gaussian se-
quence model in [17]. We also refer to [58] for a general study of minimax estimation and
aggregation under �q sparsity. Bayesian �q aggregation is also possible by applying the more
general Corollary 5.9. Besides the prediction error, estimation error under approximate spar-
sity can be derived in the same way as Corollary 5.4. Finally, we remark that in practice,
the assumption maxj∈[p] n−1/2‖X∗j‖ ≤ L can be met by column normalization of the design
matrix.

5.10. Wavelet estimation in Besov space. In this section, we apply the general prior distri-
bution in Section 3 to establish optimal Bayes wavelet estimation under Besov space. Assume
the data is generated as

(17) Yjk = θ∗
jk + 1√

n
Wjk, k = 1, . . . ,2j ; j = 0,1,2, . . . ,

where {Wjk} are i.i.d. N(0,1) variables. It is well known that the sequence model is equiva-
lent to Gaussian white noise model [32], and it is closely related to nonparametric regression
and density estimation [11, 44]. Under a wavelet basis, {θjk} are understood as wavelet coef-
ficients. We assume the true signal θ∗ = {θ∗

jk} belongs to the Besov ball defined by

(18) �α
p,q(L) =

{
θ : ∑

j

2ajq‖θj∗‖q
p ≤ Lq

}

for some p,q,α,L > 0 and a = α + 1
2 − 1

p
. The Besov ball (18) naturally induces a multires-

olution structure of the signal. This inspires us to use a sparse prior distribution independently
at each resolution level. That is, we consider a prior distribution  on θ satisfying

(dθ) = ∏
j

j (dθj∗).

The prior distribution j on the j th level for j < log2 n is specified as follows:

1. Sample sj ∼ π from [2j ], where π(sj ) ∝ �(sj )

�(sj /2)
exp(−Dsj log e2j

sj
);

2. Conditioning on sj , sample Sj uniformly from {Sj ⊂ [2j ] : |Sj | = sj };
3. Conditioning on (sj , Sj ), sample θjSj

∼ fsj ,Sj ,λ with fsj ,Sj ,λ(θjSj
) ∝ e

−λ
√

n‖θjSj
‖

and set θjSc
j
= 0.

For j ≥ log2 n, let j(θj∗ = 0) = 1. Using Theorem 4.1 at each resolution level, we are able
to establish the posterior contraction rate in the following corollary.



2866 C. GAO, A. W. VAN DER VAART AND H. H. ZHOU

COROLLARY 5.12. For any constants p, q , α satisfying 0 < p,q ≤ ∞, L > 0 and α ≥ 1
p

and any constant λ > 0, there exists some constant Dλ only depending on λ such that

sup
θ∗∈�α

p,q(L)

Eθ∗
(∥∥θ − θ∗∥∥2

> Mn− 2α
2α+1 |Y ) ≤ exp

(−C′n
1

2α+1 / logn
)

for any D > Dλ with some constants M , C′ only depending on λ, D, α, p, L.

The result of Corollary 5.12 can be regarded as a Bayes version of Theorem 12.1 of [32]

under the same condition. The rate n− 2α
2α+1 is minimax optimal over the class �α

p,q(L). Pos-
terior contraction for (17) over the class �α

p,q(L) has been investigated by [25, 29, 50, 57]
only for a restricted configuration of (p, q,α). In comparison, Corollary 5.12 obtains adap-
tive optimal posterior contraction rates to all possible combinations of (p, q,α) considered
in the frequentist literature [32].

When p = q = 2, the class �α
p,q(L) is equivalent to a Sobolev ball. It is worth noting

that in this case the prior distribution can be greatly simplified. Let us recast (17) into the
sequence model with single index. That is, consider data generated by

Yj = θ∗
j + 1√

n
Wj , j = 1,2,3, . . . ,

with {Wj } being i.i.d. N(0,1) variables. Assume the true signal θ∗ = {θ∗
j } belongs to the

Sobolev ball defined by

Sα(L) =
{
θ : ∑

j

a2
j θ

2
j ≤ L2

}
,

for some sequence aj � jα . We use the following version of the general prior  in Section 3:

1. Sample k ∼ π from [n], where π(k) ∝ �(k)
�(k/2)

exp(−Dk);

2. Conditioning on k, sample θ[k] = (θ1, . . . , θk) ∼ fk,λ with fk,λ(θ[k]) ∝ e−λ
√

n‖θ[k]‖
and set θj = 0 for all j > k.

Note that the prior distribution has a missing step compared with the general prior in Sec-
tion 3, since Zk = {[k]} is a singleton set and we do not need to perform a further model
selection. Specializing Theorem 4.1 to this case, we obtain the following result.

COROLLARY 5.13. For any constants α,L > 0 and any constant λ > 0, there exists
some constant Dλ only depending on λ such that

sup
θ∗∈Sα(L)

Eθ∗
(∥∥θ − θ∗∥∥2

> Mn− 2α
2α+1 |Y ) ≤ exp

(−C′n
1

2α+1
)

for any D > Dλ with some constants M , C′ only depending on λ, D, α, L.

Thus, we have obtained rate-optimal adaptive posterior contraction over the Sobolev ball
through a very simple prior distribution.

To close this section, we remark that the prior distributions used in this section depend
on n. This is a consequence of writing the Gaussian sequence model in the form of structured
linear models. For adaptive priors that do not depend on n but still achieve optimal posterior
contraction rates, we refer the readers to [25].
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6. More results on sparse linear regression. In this section, we provide some further
results on posterior contraction rates for linear regression under the �∞ norm ‖·‖∞. First,
let us consider the sparse linear regression setting Y = Xβ + W in Section 5.3. Convergence
under the �∞ norm requires stronger assumptions than convergence under the �2 norm. Fol-
lowing [20, 37], we assume the mutual coherence condition:

(19) n−1XT∗jX∗j = 1 for all j ∈ [p] and max
j �=k

n−1XT∗jX∗k ≤ τ.

Assuming that data is generated by Y = Xβ∗ + W for some regression coefficient β∗ with
sparsity s∗ and some noise vector W satisfying (6), the posterior contraction under the �∞
norm for the prior distribution specified in Section 5.3 is given in the following theorem.

THEOREM 6.1. For any τ > 0 and any β∗ with sparsity s∗ satisfying τs∗ ≤ 1/9 and any
constants λ,ρ > 0, there exists some constant Dλ,ρ > 0 only depending on λ, ρ such that

EXβ∗
(∥∥β − β∗∥∥∞ > M

√
logp

n

∣∣∣Y)
≤ p−C′

for any constant D > Dλ,ρ with some constants M , C′ only depending on λ, ρ, D.

The result of convergence under the �∞ norm is obtained under the assumption τs∗ ≤ 1/9.
Such assumption was also made in [13, 16, 20, 37]. It implies the restricted eigenvalue κ2

defined in (13) to be bounded away from 0 [66]. The convergence rate
√

logp
n

is optimal
under the �∞ norm. Moreover, with a standard minimal signal strength assumption, Theorem
6.1 immediately implies model selection consistency under the posterior distribution.

While the optimal convergence result for �∞ norm is well known in the frequentist litera-
ture for sparse linear regression, an analogous result for regression with group sparsity is not
stated in literature. We provide a Bayes solution to this problem. For simplicity of presen-
tation, we consider the case of identity design Y = B + W ∈ R

p×m. The result for the case
of a more general design can be derived in a similar way. For any subset T ⊂ [p] × [m], let
r(T ) = {i ∈ [p] : ({i} × [m]) ∩ T �= ∅} denote the the rows selected by the set T . The prior
 we use is defined through the following sampling procedure:

1. Sample T ∼ π in {T : T ⊂ [p] × [m]} with

(20) π(T ) ∝ �(|T |)
�(|T |/2)

exp
(
−D

(
m

∣∣r(T )
∣∣ + ∣∣r(T )

∣∣ log
ep

|r(T )| + |T | log
em|r(T )|

|T |
))

;

2. Conditioning on T , sample BT ∼ fT,λ with fT,λ(BT ) ∝ e
−λ

√∑
(i,j)∈T B2

ij and set
BT c = 0.

Compared with the prior distribution specified in Section 5.4, the model selection step for the
above prior has a two-level structure. Apart from the correction factor �(|T |)

�(|T |/2)
, the probability

mass (20) can be viewed as the product of e
−D|S|(m+log ep

|S| ) and e
−D|T | log em|S|

|T | with S = r(T )

denoting the row support. Therefore, (20) can be understood as first picking a row support S,
and then further selecting a finer support from S × [m]. In comparison, the prior specified in
Section 5.4 does not have the second step. While it only produces B with support in the form
of S ×[m] for some S, (20) can give an arbitrary support T , which is critical to obtain optimal
convergence rate under the �∞ loss. Assume that the data is generated from Y = B∗ + W for
some B∗ with row support S∗ and noise matrix W satisfying (6). The posterior contraction
rate is given in the following theorem.
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THEOREM 6.2. For any B∗ with row support S∗ and sparsity s∗ = |S∗|, any arbitrarily
small constant δ > 0 and any constants λ,ρ > 0, there exists some constant Dλ,δ,ρ > 0 only
depending on λ, δ, ρ such that

EB∗
(∣∣r(T )

∣∣ > (1 + δ)s∗|Y ) ≤ exp
(
−C′s∗

(
m + log

ep

s∗
))

,(21)

EB∗
(∥∥B − B∗∥∥2

F > Ms∗
(
m + log

ep

s∗
)∣∣∣Y)

≤ exp
(
−C′′s∗

(
m + log

ep

s∗
))

(22)

and

(23) EB∗
(∥∥B − B∗∥∥∞ > M

√
log(p + m)|Y ) ≤ (pm)−C′′′

for any constant D > Dλ,δ,ρ with some constants M , C′, C′′, C′′′ only depending on λ, δ,
ρ, D.

To the best our knowledge, this is the first procedure that achieves the optimal rates si-
multaneously for both �2 and �∞ losses in a group sparse signal recovery problem. The

e
−D|S|(m+log ep

|S| ) part in (20) preserves the group sparse structure and results in the optimal �2

result (22). The e
−D|T | log em|S|

|T | part in (20) does a further model selection in a finer resolution,
thus giving optimal rate for each coordinate in (23). The subtlety of the simultaneous adapta-
tion under both global and local loss functions is not reflected in an ordinary sparsity setting.
When m = 1, group sparsity reduces to ordinary sparsity and the two-level model selection
prior  is equivalent to the prior in Section 5.3, so that a one-level model selection would be
sufficient for the task.

7. Proof of Theorem 4.1. Let us first introduce some notation and give the outline of
the proof. Define the following two sets:

A(t) = {
ε(Zτ ) > (1 + δ1)ε(Zτ∗) + δ1

∥∥XZ∗
(
Q∗) − θ∗∥∥2 + ct

}
,

U(t) = {∥∥XZ(Q) − θ∗∥∥2
> (1 + δ2)

∥∥XZ∗
(
Q∗) − θ∗∥∥2 + M

(
ε(Zτ∗) + t

)}
.

We will specify the numbers δ1, δ2, c later. The goal of the proof is to derive bounds for both
E(τ ∈ A(t)|Y) and E(XZ(Q) ∈ U(t)|Y) with any t ≥ 0. Then the conclusions (8) and
(9) are deduced by setting t = 0. The conclusion (10) is then obtained by integrating out the
tail bound of E(XZ(Q) ∈ U(t)|Y) over t ≥ 0.

Using the fact that

e− 1
2 ‖Y−XZ(Q)‖2

e− 1
2 ‖Y−XZ∗ (Q∗)‖2

= e− 1
2 ‖XZ(Q)−XZ∗ (Q∗)‖2+〈Y−XZ∗ (Q∗),XZ(Q)−XZ∗ (Q∗)〉,

we can rewrite the posterior distribution as

(24) 
(
XZ(Q) ∈ U(t)|Y ) =

∑
τ∈T exp(−Dε(Zτ ))

1
|Z̄τ |

∑
Z∈Z̄τ

R(Z,U(t))∑
τ∈T exp(−Dε(Zτ ))

1
|Z̄τ |

∑
Z∈Z̄τ

R(Z)
,

where R(Z,U(t)) is defined by
√

det
(
X T

Z XZ

)( λ√
π

)�(Zτ )

×
∫
XZ(Q)∈U(t)

e− 1
2 ‖XZ(Q)−XZ∗ (Q∗)‖2+〈Y−XZ∗ (Q∗),XZ(Q)−XZ∗ (Q∗)〉−λ‖XZ(Q)‖ dQ,
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and R(Z) = R(Z,RN). Moreover, for a class of structure indexes A(t) ⊂ T , its posterior
distribution can be written as

(25) 
(
τ ∈A(t)|Y ) =

∑
τ∈A(t) exp(−Dε(Zτ ))

1
|Z̄τ |

∑
Z∈Z̄τ

R(Z)∑
τ∈T exp(−Dε(Zτ ))

1
|Z̄τ |

∑
Z∈Z̄τ

R(Z)
.

We are going to work with the formulas (25) and (24) to prove (8) and (9), respectively.
The main strategy is to lower bound R(Z∗) in the denominator and upper bound R(Z) or
R(Z,U(t)) in the numerator given some events holding with high probability. For each Z ∈
Z̄τ and t ≥ 0, consider the following events:

EZ(t) = {∣∣〈W,XZ(Q) − XZ∗
(
Q∗)〉∣∣ ≤ √

ε∗(Zτ ) + t
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥

for all Q ∈ R
�(Zτ )},

FZ(t) = {∣∣〈W,XZ(Q) − XZ∗
(
Q∗)〉∣∣ ≤ √

ε∗(Zτ∗) + t
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥

for all Q ∈ R
�(Zτ )},

where ε∗(Zτ ) = C1ε(Zτ ) + C2‖XZ∗(Q∗) − θ∗‖2 and ε∗(Zτ∗) = C1ε(Zτ∗) +
C2‖XZ∗(Q∗) − θ∗‖2 for some constants C1, C2 to be specified later. The next lemma shows
that both events hold with high probability.

LEMMA 7.1. For any constants C1 > 1, C2 > 0 and t ≥ 0, the conditions (5) and (6)
imply

P
(
EZ(t)c

) ≤ 2 exp
(−(ρC1/16 − 5)ε(Zτ ) − ρC2

∥∥XZ∗
(
Q∗) − θ∗∥∥2

/16 − ρt/16
)
,

P
(
FZ(t)c

) ≤ 2 exp
(
5�(Zτ ) − ρC1ε(Zτ∗)/16 − ρC2

∥∥XZ∗
(
Q∗) − θ∗∥∥2

/16 − ρt/16
)
.

We need a lemma to characterize the growing rate of ε(Zτ ).

LEMMA 7.2. For any β ≥ 2 and α ≥ 1, the condition (7) implies∑
{τ∈T :ε(Zτ )≤α}

exp
(
βε(Zτ )

) ≤ 4α� exp
(
βα�);

∑
{τ∈T :ε(Zτ )>α}

exp
(−βε(Zτ )

) ≤ 4α exp
(−β�α�);

∑
{τ∈T :ε(Zτ )≤α}

exp
(−βε(Zτ )

) ≤ 6.

The proofs of Lemma 7.1 and Lemma 7.2 are given in Section D of the supplement [23].

Lower bounding R(Z∗). We first introduce some extra notation. For the matrix XZ∗ ∈
R

N×�(Zτ∗ ), its singular value decomposition is XZ∗ = U�VT , with U ∈ R
N×�(Zτ∗ ) and V ∈

R
�(Zτ∗ )×�(Zτ∗ ) being orthonormal matrices, and � is an �(Zτ∗) × �(Zτ∗) diagonal matrix

with positive entries on the diagonal.
For Z∗ ∈ Z̄τ∗ with any τ ∗ ∈ T , we lower bound R(Z∗) by(√

π

λ

)�(Zτ∗ )

R
(
Z∗)

=
√

det
(
X T

Z∗XZ∗
)

×
∫

e− 1
2 ‖XZ∗ (Q)−XZ∗ (Q∗)‖2+〈Y−XZ∗ (Q∗),XZ∗ (Q)−XZ∗ (Q∗)〉−λ‖XZ∗ (Q)‖ dQ
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=
√

det
(
X T

Z∗XZ∗
)

×
∫

e− 1
2 ‖XZ∗ (Q)‖2+〈Y−XZ∗ (Q∗),XZ∗ (Q)〉−λ‖XZ∗ (Q)+XZ∗ (Q∗)‖ dQ

(26)

≥ e−λ‖XZ∗ (Q∗)‖
√

det
(
X T

Z∗XZ∗
)

×
∫

e− 1
2 ‖XZ∗ (Q)‖2+〈Y−XZ∗ (Q∗),XZ∗ (Q)〉−λ‖XZ∗ (Q)‖ dQ

(27)

= e−λ‖XZ∗ (Q∗)‖
√

det
(
V�2VT

)
×

∫
e− 1

2 ‖�VT Q‖2+〈UT (Y−XZ∗ (Q∗)),�VT Q〉−λ‖�VT Q‖ dQ

(28)

= e−λ‖XZ∗ (Q∗)‖
∫

e− 1
2 ‖b‖2+〈UT (Y−XZ∗ (Q∗)),b〉−λ‖b‖ db(29)

≥ e−λ‖XZ∗ (Q∗)‖
∫

e− 1
2 ‖b‖2−λ‖b‖ db(30)

× exp
(∫ 〈

UT (
Y − XZ∗

(
Q∗))

, b
〉 e− 1

2 ‖b‖2−λ‖b‖∫
e− 1

2 ‖b‖2−λ‖b‖ db
db

)

= e−λ‖XZ∗ (Q∗)‖
∫

e− 1
2 ‖b‖2−λ‖b‖ db.(31)

The equalities (26) and (29) are due to changes of variables and the linearity (3), and we
use the orthonormal property of U to get det(X T

Z∗XZ∗) = det(V�2VT ) and ‖XZ∗(Q)‖ =
‖�VT Q‖. We use triangle inequality and Jensen’s inequality to derive (27) and (30), re-

spectively. The last equality (31) uses the fact that the distribution e
− 1

2 ‖b‖2−λ‖b‖
∫

e
− 1

2 ‖b‖2−λ‖b‖
db

is spher-

ically symmetric so that its mean is zero. Let us continue to lower bound the integral∫
e− 1

2 ‖b‖2−λ‖b‖ db by∫
e− 1

2 ‖b‖2−λ‖b‖ db = 2π�(Zτ∗ )/2

�(�(Zτ∗)/2)

∫ ∞
0

r�(Zτ∗ )−1e− 1
2 r2−λr dr

≥ 2π�(Zτ∗ )/2

�(�(Zτ∗)/2)
e− 1

2 �(Zτ∗ )−λ
√

�(Zτ∗ )
∫ √

�(Zτ∗ )

0
r�(Zτ∗ )−1 dr

= 2π�(Zτ∗ )/2

�(Zτ∗)

[�(Zτ∗)]�(Zτ∗ )/2

�(�(Zτ∗)/2)
e− 1

2 �(Zτ∗ )−λ
√

�(Zτ∗ )

≥ 2(2π)�(Zτ∗ )/2

�(Zτ∗)
e− 1

2 �(Zτ∗ )−λ
√

�(Zτ∗ ).

Combining the above lower bound with (31), we reach the conclusion

R
(
Z∗) ≥e−λ‖XZ∗ (Q∗)‖ exp

(
−1

2
�(Zτ∗) − λ

√
�(Zτ∗) + �(Zτ∗) logλ − log�(Zτ∗)

)

≥e−λ‖XZ∗ (Q∗)‖ exp
(−�(Zτ∗) − λ

√
�(Zτ∗) + �(Zτ∗) logλ

)
(32)

≥e−λ‖XZ∗ (Q∗)‖−(1+λ+λ−1)�(Zτ∗ ).(33)

The inequality (32) is by − log�(Zτ∗) ≥ −1
2�(Zτ∗) given the fact that �(Zτ∗) is an integer.

To obtain (33), we discuss two cases. When λ ≥ 1,

−λ
√

�(Zτ∗) + �(Zτ∗) logλ ≥ −λ
√

�(Zτ∗) ≥ −λ�(Zτ∗) ≥ −(
λ + λ−1)

�(Zτ∗).
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When λ < 1,

−λ
√

�(Zτ∗) + �(Zτ∗) logλ ≥ −�(Zτ∗) + �(Zτ∗) logλ

≥ −λ−1�(Zτ∗) ≥ −(
λ + λ−1)

�(Zτ∗).

Note that (33) is a deterministic lower bound for the denominator R(Z∗). The arguments we
have used to derive (33) are greatly inspired by the corresponding ones in [16, 17].

Upper bounding R(Z)IEZ(t). To facilitate the analysis, we introduce the object

(34) Q̄Z = argmin
Q∈R�(Zτ )

∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2

.

The property of least squares implies the following Pythagorean identity:

(35)
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥2 = ∥∥XZ(Q) − XZ(Q̄Z)

∥∥2 + ∥∥XZ(Q̄Z) − XZ∗
(
Q∗)∥∥2

.

We first analyze the exponent in the definition of R(Z) on the event EZ(t) by

−1

2

∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2 + 〈

Y − XZ∗
(
Q∗)

,XZ(Q) − XZ∗
(
Q∗)〉 − λ

∥∥XZ(Q)
∥∥

= −1

2

∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2 + 〈

W,XZ(Q) − XZ∗
(
Q∗)〉

+ 〈
θ∗ − XZ∗

(
Q∗)

,XZ(Q) − XZ∗
(
Q∗)〉 − λ

∥∥XZ(Q)
∥∥

≤ −1

2

∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2 + (√

ε∗(Zτ ) + t + λ
)∥∥XZ(Q) − XZ∗

(
Q∗)∥∥(36)

+ ∥∥θ∗ − XZ∗
(
Q∗)∥∥∥∥XZ(Q) − XZ∗

(
Q∗)∥∥

− λ
∥∥XZ(Q)

∥∥ − λ
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥

≤ 2
(√

ε∗(Zτ ) + t + λ
)2 −

(
1

2
− 1

8

)∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2(37)

+ 2
∥∥θ∗ − XZ∗

(
Q∗)∥∥2 + 1

8

∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2 − λ

∥∥XZ∗
(
Q∗)∥∥

≤ (4 + 2/C2)ε
∗(Zτ ) + 4t + 4λ2 − 1

4

∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2 − λ

∥∥XZ∗
(
Q∗)∥∥(38)

≤ (4 + 2/C2)ε
∗(Zτ ) + 4t + 4λ2 − 1

4

∥∥XZ(Q) − XZ(Q̄Z)
∥∥2 − λ

∥∥XZ∗
(
Q∗)∥∥.(39)

We have used Cauchy–Schwarz inequality and the event EZ(t) to get (36). The inequality
(37) is due to the fact ab ≤ 2a2 + b2/8 for all a, b ≥ 0 and triangle inequality. By rearrange-
ment and the fact C2‖θ∗ − XZ∗(Q∗)‖2 ≤ ε∗(Zτ ), we obtain (38). Finally, the inequality (39)
is due to the identity (35). The above upper bound implies

R(Z)IEZ(t) ≤
(

λ√
π

)�(Zτ )

e(4+2/C2)ε
∗(Zτ )+4t+4λ2−λ‖XZ∗ (Q∗)‖

×
√

det
(
X T

Z XZ

) ∫
e− 1

4 ‖XZ(Q)−XZ(Q̄Z)‖2
dQ

=
(

λ√
π

)�(Zτ )

e(4+2/C2)ε
∗(Zτ )+4t+4λ2−λ‖XZ∗ (Q∗)‖

∫
e− 1

4 ‖b‖2
db

= (2λ)�(Zτ )e(4+2/C2)ε
∗(Zτ )+4t+4λ2−λ‖XZ∗ (Q∗)‖.

(40)
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The change of variable in (40) uses the same argument in (26) and (29). Using the fact that
�(Zτ ) ≤ ε∗(Zτ ) by (5), we reach the conclusion

(41) R(Z)IEZ(t) ≤ e(4+2/C2+| log(2λ)|)ε∗(Zτ )+4t+4λ2−λ‖XZ∗ (Q∗)‖.

Upper bounding R(Z,U(t))IFZ(t). We require δ2 ∈ (0,1/4) throughout the proof. Let
ξ ∈ (0,1/4) be a constant to be specified later. When both FZ(t) and U(t) hold, the exponent
in the definition of R(Z,U(t)) is bounded by

−1

2

∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2 + 〈

Y − XZ∗
(
Q∗)

,XZ(Q) − XZ∗
(
Q∗)〉 − λ

∥∥XZ(Q)
∥∥

= −1

2
ξ
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥2 + 〈

W,XZ(Q) − XZ∗
(
Q∗)〉

+ 〈
θ∗ − XZ∗

(
Q∗)

,XZ(Q) − XZ∗
(
Q∗)〉

− 1

2
(1 − ξ)

∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2 − λ

∥∥XZ(Q)
∥∥

≤ −1

2
ξ
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥2 + (√

ε∗(Zτ∗) + t + λ
)∥∥XZ(Q) − XZ∗

(
Q∗)∥∥(42)

+ 〈
θ∗ − XZ∗

(
Q∗)

,XZ(Q) − XZ∗
(
Q∗)〉 − 1

2
(1 − ξ)

∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2

− λ
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥ − λ

∥∥XZ(Q)
∥∥

≤ ξ−1(√
ε∗(Zτ∗) + t + λ

)2 − 1

4
ξ
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥2(43)

− 1

2
(1 − ξ)

∥∥XZ(Q) − θ∗∥∥2 + 1

2
(1 + ξ)

∥∥XZ∗
(
Q∗) − θ∗∥∥2

+ ξ
〈
XZ(Q) − θ∗, θ∗ − XZ∗

(
Q∗)〉

− λ
∥∥XZ∗

(
Q∗)∥∥

≤ ξ−1(√
ε∗(Zτ∗) + t + λ

)2 − 1

4
ξ
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥2 − λ

∥∥XZ∗
(
Q∗)∥∥(44)

− 1

2
(1 − 2ξ)

∥∥XZ(Q) − θ∗∥∥2 + 1

2
(1 + 2ξ)

∥∥XZ∗
(
Q∗) − θ∗∥∥2

≤ 16δ−1
2 λ2 − 1

8
Mε(Zτ∗) − 1

8
Mt − 1

16
δ2

∥∥XZ∗
(
Q∗) − θ∗∥∥2(45)

− 1

32
δ2

∥∥XZ(Q) − XZ(Q̄Z)
∥∥2 − λ

∥∥XZ∗
(
Q∗)∥∥.

We have used the event FZ to get (42). Now we explain the inequality (43). Due to the fact
that ab ≤ ξ−1a2 + ξb2/4, we have

−1

2
ξ
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥2 + (√

ε∗(Zτ∗) + t + λ
)∥∥XZ(Q) − XZ∗

(
Q∗)∥∥

≤ ξ−1(√
ε∗(Zτ∗) + t + λ

)2 − 1

4
ξ
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥2

.
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It is easy to check the following equality:

〈
θ∗ − XZ∗

(
Q∗)

,XZ(Q) − XZ∗
(
Q∗)〉 − 1

2
(1 − ξ)

∥∥XZ(Q) − XZ∗
(
Q∗)∥∥2

= −1

2
(1 − ξ)

∥∥XZ(Q) − θ∗∥∥2 + 1

2
(1 + ξ)

∥∥XZ∗
(
Q∗) − θ∗∥∥2

+ ξ
〈
XZ(Q) − θ∗, θ∗ − XZ∗

(
Q∗)〉

.

Finally, by triangle inequality, we get

−λ
∥∥XZ(Q) − XZ∗

(
Q∗)∥∥ − λ

∥∥XZ(Q)
∥∥ ≤ −λ

∥∥XZ∗
(
Q∗)∥∥.

Then, (44) is by rearranging (43) together with the inequality

〈
XZ(Q) − θ∗, θ∗ − XZ∗

(
Q∗)〉 ≤ 1

2

∥∥XZ(Q) − θ∗∥∥2 + 1

2

∥∥θ∗ − XZ∗
(
Q∗)∥∥2

.

Finally, we have set

(46) ξ = 1

8
δ2 and C2 = 1

128
δ2

2

and used (35) to obtain (45) on the event U(t) for all M > max{128δ−1
2 C1,128δ−1

2 }. Note
that we require δ2 ∈ (0,1/4) for the inequality (45). Using the above bound, we have

R
(
Z,U(t)

)
IFZ(t) ≤

(
λ√
π

)�(Zτ )

e−λ‖XZ∗ (Q∗)‖+16δ−1
2 λ2− 1

8 Mε(Zτ∗ )− 1
8 Mt− 1

16 δ2‖XZ∗ (Q∗)−θ∗‖2

×
√

det
(
X T

Z XZ

) ∫
e− 1

32 δ2‖XZ(Q)−XZ(Q̄Z)‖2
dQ

=
(

4λ√
δ2/2

)�(Zτ )

e−λ‖XZ∗ (Q∗)‖+16δ−1
2 λ2− 1

8 Mε(Zτ∗ )− 1
8 Mt− 1

16 δ2‖XZ∗ (Q∗)−θ∗‖2

by the same argument in deriving (41). By �(Zτ ) ≤ ε∗(Zτ ) from (5), we reach the conclusion

(47) R
(
Z,U(t)

)
IFZ(t) ≤ e−λ‖XZ∗ (Q∗)‖− 1

16 Mε(Zτ∗ )− 1
8 Mt− 1

16 δ2‖XZ∗ (Q∗)−θ∗‖2
,

for all M > max{128δ−1
2 (C1 + 1),16 log(4λ/

√
δ2/2) + 256δ−1

2 λ2}.
After obtaining the bounds (33), (41) and (47), we are ready to prove the main results.

PROOF OF (8). First, we use (33) and (41) to bound the ratio R(Z)IEZ(t)/R(Z∗),

|Z̄τ∗ |R(Z)IEZ(t)

R(Z∗)

≤ e4λ2 |Zτ∗ |e
[4C1+2C1/C2+C1| log(2λ)|](ε(Zτ ))+[4C2+2+C2| log(2λ)|]‖XZ∗ (Q∗)−θ∗‖2+4t

e−(1+λ+λ−1)�(Zτ∗ )

≤ e4λ2
exp

((
1 + λ + λ−1)

ε(Zτ∗) + C′
1ε(Zτ ) + C′

2
∥∥XZ∗

(
Q∗) − θ∗∥∥2 + 4t

)
,

where C′
1 = 4C1 + 2C1/C2 + C1| log(2λ)| and C′

2 = 4C2 + 2 + C2| log(2λ)|. Consider (25)
with A(t). Here, we require that δ1 ∈ (0,1/3). By Z∗ ∈ Z̄τ∗ , we have

E
(
τ ∈ A(t)|Y ) ≤ ∑

τ∈A(t)

exp(−Dε(Zτ ))

exp(−Dε(Zτ∗))

|Z̄τ∗ |
|Z̄τ |

∑
Z∈Z̄τ

E
R(Z)IEZ(t)

R(Z∗)
(48)

+ ∑
τ∈A(t)

∑
Z∈Z̄τ

P
(
EZ(t)c

)
.(49)
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According to previous calculations, (48) can be bounded by

exp
(
4λ2 + (

D + λ + λ−1 + 1
)
ε(Zτ∗) + C′

2
∥∥XZ∗

(
Q∗) − θ∗∥∥2 + 4t

)
× ∑

τ∈A(t)

exp
(−(

D − C′
1
)
ε(Zτ )

)
.

(50)

Then we can bound the sum in the above display by Lemma 7.2. We take α = (1 +
δ1)ε(Zτ∗) + δ1‖XZ∗(Q∗) − θ∗‖2 + ct and β = D − C′

1. Then Lemma 7.2 gives∑
τ∈A(t)

exp
(−(

D − C′
1
)
ε(Zτ )

)

≤ 4α exp
(−β�α�)

≤ 4eβ exp
(−(β − 1)α

)
≤ 4eD exp

(−(
D − C′

1 − 1
)
(1 + δ1)ε(Zτ∗) − (

D − C′
1 − 1

)
δ1

∥∥XZ∗
(
Q∗) − θ∗∥∥2

− (
D − C′

1 − 1
)
ct

)
.

This leads to a bound for (50) as

4eD+4λ2
exp

(−((
D − C′

1 − 1
)
δ1 − C′

2
)∥∥XZ∗

(
Q∗) − θ∗∥∥2)

× exp
(−((

D − C′
1 − 1

)
(1 + δ1) − (

D + λ + λ−1 + 1
))

ε(Zτ∗)

− ((
D − C′

1 − 1
)
c − 4

)
t
)

≤ 4eD+4λ2
exp

(
−δ1D

2

∥∥XZ∗
(
Q∗) − θ∗∥∥2 − δ1D

2
ε(Zτ∗) − Dc

2
t

)
,

for D > max{λ+λ−1+1+2(C′
1+1)

δ1/2 ,2(C′
1 + 1) + 2C′

2
δ1

, 8
c

+ 2(C′
1 + 1)}. Using Lemma 7.1,

Lemma 7.2 and (5), we bound the second term (49) by

(51) 2 exp
(−ρC2

∥∥XZ∗
(
Q∗) − θ∗∥∥2

/16 − ρt/16
) ∑
τ∈A(t)

exp
(−(ρC1/16 − 6)ε(Zτ )

)
.

Again, we will bound the sum in the above display by Lemma 7.2 with α = (1+ δ1)ε(Zτ∗)+
δ1‖XZ∗(Q∗) − θ∗‖2 + ct and β = ρC1/16 − 6. That is,∑

τ∈A(t)

exp
(−(ρC1/16 − 6)ε(Zτ )

)

≤ 4α exp
(−β�α�)

≤ 4eβ exp
(−(β − 1)α

)
≤ 4eρC1/16 exp

(−(ρC1/16 − 7)(1 + δ1)ε(Zτ∗) − (ρC1/16 − 7)δ1
∥∥XZ∗

(
Q∗) − θ∗∥∥2

− (ρC1/16 − 7)ct
)
.

Therefore, (51) can be bounded by

8eρC1/16 exp
(−(ρC1/16 − 7)(1 + δ1)ε(Zτ∗)

)
× exp

(−(ρC1/16 + ρC2/16 − 7)δ1
∥∥XZ∗

(
Q∗) − θ∗∥∥2 − (

ρ(C1 + 1)/16 − 7
)
ct

)
≤ 8 exp

(−(ρC1/16 − 8)(1 + δ1)ε(Zτ∗)
)

× exp
(−(ρC1/16 + ρC2/16 − 7)δ1

∥∥XZ∗
(
Q∗) − θ∗∥∥2 − (

ρ(C1 + 1)/16 − 7
)
ct

)
≤ 8 exp

(−7δ1
∥∥XZ∗

(
Q∗) − θ∗∥∥2 − 6ε(Zτ∗) − 7ct

)
,
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for C1 = max{1,224/ρ}. We obtain the desired result by combining the bounds of (48) and
(49) and setting t = 0. �

PROOF OF (9). Let us first use (33) and (47) to bound the ratio R(Z,U(t))IFZ(t)/R(Z∗),
that is,

R(Z,U(t))IFZ(t)

R(Z∗)

≤ exp
(
−(

M/16 − (
1 + λ + λ−1))

ε(Zτ∗) − 1

8
Mt − 1

16
δ2

∥∥XZ∗
(
Q∗) − θ∗∥∥2

)

≤ exp
(
−M

32
ε(Zτ∗) − 1

8
Mt − 1

16
δ2

∥∥XZ∗
(
Q∗) − θ∗∥∥2

)
,

for M > max{128δ−1
2 (C1 + 1),16 log(4λ/

√
δ2/2) + 256δ−1

2 λ2,32(1 + λ + λ−1)}. By (24),
we have

E
(
XZ(Q) ∈ U(t)|Y ) ≤ ∑

τ∈T ∩A(t)c

exp(−Dε(Zτ ))

exp(−Dε(Zτ∗))

|Z̄τ∗ |
|Z̄τ |

∑
Z∈Z̄τ

E
R(Z,U(t))IFZ

R(Z∗)
(52)

+ ∑
τ∈T ∩A(t)c

∑
Z∈Z̄τ

P
(
FZ(t)c

)
(53)

+E
(
τ ∈ A(t)|Y )

.(54)

The bound for (54) has been derived in the proof of (8). Using Lemma 7.2, we bound (52) by

exp
(
−

(
M

32
− D − 1

)
ε(Zτ∗) − 1

8
Mt − 1

16
δ2

∥∥XZ∗
(
Q∗) − θ∗∥∥2

)

× ∑
τ∈T ∩A(t)c

exp
(−Dε(Zτ )

)

≤ 6 exp
(
−M

64
ε(Zτ∗) − 1

8
Mt − 1

16
δ2

∥∥XZ∗
(
Q∗) − θ∗∥∥2

)
,

for M > max{128δ−1
2 (C1 +1),16 log(4λ/

√
δ2/2)+256δ−1

2 λ2,32(1+λ+λ−1),64(D+1)}.
Using Lemma 7.1 and (5), the term (53) is bounded by

2 exp
(
−ρC1ε(Zτ∗)/16 − ρC2

∥∥XZ∗
(
Q∗) − θ∗∥∥2 − ρt

16

) ∑
τ∈T ∩A(t)c

exp
(
5ε(Zτ )

)
.

We use Lemma 7.2 to bound the sum in the above display with α = (1 + δ1)ε(Zτ∗) +
δ1‖XZ∗(Q∗) − θ∗‖2 + ct and β = 5.∑

τ∈T ∩A(t)c

exp
(
5ε(Zτ )

) ≤ 4(α + 1) exp
(
β(α + 1)

)

≤ 4eβ+1 exp
(
(β + 1)α

)
= 4e6 exp

(
6(1 + δ1)ε(Zτ∗) + 6δ1

∥∥XZ∗
(
Q∗) − θ∗∥∥2 + 6ct

)
.

Therefore, we can bound (53) by

8e6 exp
(
−

(
ρC1

16
− 8

)
ε(Zτ∗) − (ρC2 − 6δ1)

∥∥XZ∗
(
Q∗) − θ∗∥∥2 −

(
ρ

16
− 6c

)
t

)

≤ 8e6 exp
(
−6ε(Zτ∗) − δ1

∥∥XZ∗
(
Q∗) − θ∗∥∥2 − ρ

32
t

)
,
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where we set C2 = δ2
2/128, C1 = max{1,224/ρ}, δ2 = 8

√
14δ1/ρ = 8

√
14δ/ρ, and c =

ρ/192. The proof is complete by combining the bounds of (52), (53) and (54) and setting
t = 0. �

PROOF OF (10). In the proof of (9), we obtain a general bound for E(XZ(Q) ∈
U(t)|Y) for any t ≥ 0. The result of (10) can be obtained by integrating out the tail prob-
ability E(XZ(Q) ∈ U(t)|Y). The details of the argument is given in Section B in the
supplement. �
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