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Researchers often have datasets measuring features xij of samples, such
as test scores of students. In factor analysis and PCA, these features are
thought to be influenced by unobserved factors, such as skills. Can we de-
termine how many components affect the data? This is an important problem,
because decisions made here have a large impact on all downstream data anal-
ysis. Consequently, many approaches have been developed. Parallel Analysis
is a popular permutation method: it randomly scrambles each feature of the
data. It selects components if their singular values are larger than those of the
permuted data. Despite widespread use, as well as empirical evidence for its
accuracy, it currently has no theoretical justification.

In this paper, we show that parallel analysis (or permutation methods)
consistently select the large components in certain high-dimensional factor
models. However, when the signals are too large, the smaller components are
not selected. The intuition is that permutations keep the noise invariant, while
“destroying” the low-rank signal. This provides justification for permutation
methods. Our work also uncovers drawbacks of permutation methods, and
paves the way to improvements.

1. Introduction.

1.1. Factor analysis and PCA. Factor Analysis (FA) and Principal Component Analysis
(PCA), the unsupervised discovery of components governing variation in the data, is per-
formed routinely in thousands of studies every year. In FA and PCA, we measure a number
p of indicators (features, covariates) for a set of n samples. In Spearman’s (1904) original
application, this involved p test scores of n students. The goal is to identify the common
factors driving variation in the data, such as skills in Spearman’s example. The setup for FA
and PCA is similar, while not exactly the same (see, e.g., Jolliffe (2002)), and hence we will
focus on factor analysis for clarity in most of the paper.

Since Spearman’s time factor analysis has found a wide range of applications in a variety of
fields, becoming one of the most widely used statistical methods (Bai and Ng (2008), Brown
(2014), Churchill (1979), Costello and Osborne (2005), Leek and Storey (2008), Stewart
(1981)).

The most widely used approach to FA relies on the the linear common-factor model (e.g.,
Anderson (1958), Thurstone (1947) etc.). For each sample i, the j th indicator xij is a linear
function of one or more common factors ηik and one unique factor (or idiosyncratic noise)
εij :

(1.1) xij =
r∑

k=1

ηikλjk + εij .

The factor values ηik and the factor loadings λjk are not observed. In Spearman’s example,
xij is the test score of student i on test j , the r factors are interpreted as skills, ηik is student
i’s level on the kth skill, and λjk is the relevance of the kth skill to the j th test.
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FA is merely one step beyond linear regression. In linear regression, ηik are observed,
while in FA they are not. This simplicity is deceiving, however, and FA can be surprisingly
difficult. A widely cited tutorial on FA notes: “Perhaps more than any other commonly used
statistical method, FA requires a researcher to make a number of important decisions with
respect to how the analysis is performed” (Fabrigar et al. (1999)).

One of the key problems in FA is to select the number of factors. For instance, how many
skills control test scores? This is well known to have a large impact on the later steps of data
analysis (e.g., Brown (2014), Hayton, Allen and Scarpello (2004)). The standard textbook
Brown (2014) calls it “the most crucial decision” in exploratory FA.

The factor selection problem is also important in principal component analysis (PCA).
While PCA and factor analysis are not the same (see, e.g., Jolliffe (2002), for a clear expla-
nation), in practice permutation methods are very popular to select the number of PCs (e.g.,
Hastie, Tibshirani and Friedman (2009), Zhou, Marron and Wright (2018)). Our work also
bears on PCA.

1.2. Parallel analysis. Parallel Analysis (PA) (Horn (1965), Buja and Eyuboglu (1992))
is one of the most popular methods for selecting the number of factors. In the widely used ver-
sion proposed by Buja and Eyuboglu (1992), we start with the n×p data matrix X containing
the measurements xij , i = 1, . . . , n, j = 1, . . . , p. We generate a matrix Xπ by permuting the
entries in each column of X separately. Here, π = (π1, π2, . . . , πp) is a permutation array,
which is a collection of permutations πj of {1, . . . , n}. The permutation πj permutes the j th
column of X, so Xπ has entries (Xπ)ij = Xπj (i),j . We repeat this procedure a few times.

We select the first factor if the top singular value of X is larger than a fixed percentile of
the top singular values of the permuted matrices. One can use the median, 95%th, or 100%th
percentile. If the first factor is selected, then we repeat the same procedure for the second
largest singular value of X, comparing with the second singular values of permuted matrices,
and so on. We stop when a factor is not selected; see Figure 1.

PA has a lot going for it. It is a simple, concrete method. It is easy to code in software, and
it is already implemented in several R packages, including nFactors (Raiche, Magis and
Raiche (2010)). In addition, there is a great deal of empirical evidence that it works well, com-
pared to other standard methods. The main other methods are Kaiser’s “eigenvalues larger
than one” rule (Kaiser (1960)), Bartlett’s likelihood ratio test (Bartlett (1950)), the scree plot
(Cattell (1966)) and Velicer’s minimum-average-partial criterion (MAP) (Velicer (1976)).
Empirical evidence favors PA. In an extensive simulation study, Zwick and Velicer (1986)

FIG. 1. In using the permutation method Parallel Analysis (PA), we have an n × p data matrix X measuring
p features of n datapoints. We want to determine how many unobserved factors or components affect the data.
We examine the scree plot of the singular values of X, that is, the plot of singular values in a decreasing order.
Classical methods such as Cattel’s scree plot look for the “elbow” in this plot. Instead of such a subjective rule,
we consider a permutation method. We permute the entries within each column of X independently, possibly
several times, to get “null” or “fake” data matrices Xπ . We plot a fixed percentile of the largest, second largest
etc., singular values of these matrices. We select the components of X whose singular values are larger than the
permuted ones. Here, only one factor is selected.
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concluded that PA and MAP are consistently accurate. Peres-Neto, Jackson and Somers
(2005) compared 20 methods for selecting the number of components in factor analysis.
They found the PA and its variants are the best methods.

Based on these findings, PA has become a standard textbook method:

1. Brown (2014) notes that PA “is accurate in the vast majority of cases.”
2. Hayton, Allen and Scarpello (2004) review evidence from social science and manage-

ment that PA is “one of the most accurate factor retention methods.”
3. Costello and Osborne (2005) write that PA is “accurate and easy to use.”
4. Hastie, Tibshirani and Friedman (2009) use it as the default method for selecting the

number of significant components in PCA (see Figure 14.24, p. 538).

More recently, PA has also started to be widely used by leading researchers in applied
statistics, especially in the biological sciences. Applications include multiple testing depen-
dence (Leek and Storey (2008)), surrogate variable analysis (Leek and Storey (2007)), dimen-
sion reduction controlling for covariates (Lin et al. (2016)), virology (Quadeer et al. (2014)),
removing unwanted variation (Gerard and Stephens (2017)) and tests for genetic association
(Zhou, Marron and Wright (2018)).

1.3. The lack of theory, and this work. Despite this empirical success, there is essentially
no theoretical justification that PA works. For instance, Green et al. (2012) calls PA “at best
a heuristic approach rather than a mathematically rigorous one.” Clearly, this lack of un-
derstanding limits the appeal of PA. The perceived lack of rigor prevents practitioners from
making the best decision on which method to use.

In this paper, we develop a rigorous understanding of PA. We show that PA selects the
“large” factors in certain factor models. The key requirements are that (1) the dimension p is
large compared to the sample size n, (2) each factor loads on more than just a few variables
and (3) the strong factors are not too strong. These are quantified into precise mathematical
statements (see, e.g., Theorem 2.1).

The basic idea is simple: The factor model can be written in a signal-plus-noise form X =
S + N , where S is of low rank. A random permutation “destroys” the signal S, transforming
it into a noise-like matrix (see Figure 2); while keeping the noise distribution invariant. This
allows the identification of the factors above noise level.

We hope that our results will demystify PA, and help practitioners understand when it is
the most suitable method in factor analysis and PCA. We also hope that the mathematical
approach developed in this paper will become useful to improve PA, as discussed at the end

FIG. 2. How does PA work? Given a “smooth” signal S of rank one (left), a random permutation of its columns
transforms it into a “rough,” noise-like matrix Sπ . The permuted matrix is typically of full rank, and its operator
norm is much smaller than that of the signal matrix. Thus, Sπ does not perturb the permuted noise matrix Nπ

significantly, which allows the estimation of the noise level ‖Nπ‖op =d ‖N‖op (equality in distribution). Then
factors above the noise level are selected.
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of the paper. In a follow-up work, we have been able to address several of the limitations of
PA (Dobriban and Owen (2019)).

Roughly speaking, our contributions are as follows:

1. We provide an asymptotic analysis of PA in “low-rank-signal plus noise” models (Sec-
tion 2.2). We prove a basic consistency lemma (Lemma 2.2) giving general conditions on the
signal and the noise when PA selects the large factors, which we call perceptible.

2. We then provide concrete assumptions under which the general conditions for the signal
(Section 3) and the noise (Section 4) hold. This involves new bounds on operator norms of
permutation random matrices (Theorem 3.1). A key condition is that the dimension of the
problem should be relatively large, which shows the somewhat counterintuitive phenomenon
that PA does not necessarily work well in the “simple” case of fixed p, when n → ∞.

3. We apply these results to show that PA selects the perceptible factors in factor models
(Section 2.1). For pedagogical reasons, this is presented before the general signal-plus-noise
approach.

4. We discuss the application of PA in PCA (Section 5). We provide numerical evidence
supporting our claims (Section 6), which are all reproducible with software available at http:
//github.com/dobriban/PA.

Recently, Saccenti and Timmerman (2017) have considered the relation between PA and
the Tracy–Widom law. However, their approach is completely different and complementary,
because we give theoretical guarantees for permutation based PA.

2. Consistency of permutation methods (PA).

2.1. A simple result. We start by presenting a simple consistency result for PA. Recall
that we have observations xij following the standard factor model (1.1). The vector xi =
(xi1, . . . , xip)� of observations for the ith sample can be expressed as

xi = �ηi + εi,

where � is the p × r factor loading matrix with entries λjk , ηi is the r-vector of factor
values for the ith sample, and εi is the p-vector of unique factors. The factors ηi are random
variables, while the loadings � are fixed parameters. The n × p matrix X = (x1, . . . , xn)

�
can be written as

X = H�� + E .

Here, H is the n × r matrix containing the factor values ηij , and E is the n × p matrix
containing the noise εij . The covariance matrix of one sample xi is

� = ���� + 	,

where 	 = diag(	i) is the diagonal matrix of idiosyncratic variances. In addition, � is the
r × r covariance matrix of the factor values � = Cov[ηi].

It is well known that the parameters are not uniquely identified in this model (Anderson
(1958)). It turns out, however, that the number of large factors is asymptotically well defined.
The key is to quantify the size of the noise via the operator norm of the noise matrix. For this,
we consider a sequence of factor models where the sample size n or the dimension p grows.
In this asymptotic setting, we suppose that we can renormalize the data so that

c−1
n,p‖E‖ → b > 0

almost surely (a.s.), or in probability. Here, ‖M‖ = ‖M‖op denotes the operator norm, the
largest singular value of a matrix M , and cn,p are some constants. We define b as the size of

http://github.com/dobriban/PA
http://github.com/dobriban/PA
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the noise. As we will see, there are many settings where cn,p exists and thus b is well defined.
Convergence a.s. and in probability are both considered, and allow for similar theories.

We define the above-noise factors as those whose contribution to variation in the data is
larger than the size of the noise. We measure the contribution of the kth factor by the kth
largest singular value σk(X). We say that the kth factor is above-noise if c−1

n,pσk(X) > b

a.s, (or in probability). To be more precise, our definition refers to the entire sequence of
problems, and the sequence of kth factors. In practice, a factor is above-noise if its effect on
variation is larger than the noise. Note that we may have lim infn,p c−1

n,pσk(X) = b.
In addition, it will be useful to define perceptible factors, whose effect on variation differs

from the size of the noise by some definite value. We define perceptible factors as those
indices k for which there exists an ε > 0 such that c−1

n,pσk(X) > b + ε a.s (or in probability).
This is equivalent to the statement:

lim inf
n,p

c−1
n,pσk(X) > b.

This reformulation shows that the definition is not dependent on ε. Similarly, we define imper-
ceptible factors as those indices k for which there exists an ε > 0 such that c−1

n,pσk(X) < b−ε.
Our main result is that PA selects the perceptible factors. To state this, we will need the

distribution function of 	, the discrete probability mass function placing equal mass on
all 	i . For a bounded probability distribution H , we will also need the quantity s(H) =
sup supp(H), the supremum of the support of H . For a discrete distribution H taking values
on h1 < h2 < · · · < hl , we have s(H) = maxi hi = hl . Let �1/2 be the symmetric square root
of � , and let us define the scaled factor loading matrix ��1/2 = [f1, . . . , fr ].

THEOREM 2.1 (Parallel analysis selects the perceptible factors). Suppose we observe n

independent samples from the p-dimensional factor model xi = �ηi + εi . Assume the follow-
ing conditions:

1. Factors: The number r of factors is fixed. The factors ηi have the form ηi = �1/2Ui , where
Ui have r independent entries with mean zero, variance 1, and bounded 2 + cth moment
for some c > 0.

2. Idiosyncratic terms: The idiosyncratic terms are εi = 	1/2Zi , where 	1/2 is a diagonal
matrix, and Zi have p independent entries with mean zero, variance one, and bounded
fourth moment.

3. Asymptotics: n,p → ∞ such that one of the following conditions holds:

(a) p/n → γ > 0, while the distribution function of 	 converges weakly to H , and
max	j → s(H). The entries of Zi have bounded 6 + εth moment.

(b) p/n → ∞, while the entries 	j are bounded in the sense that for some constant
C ≥ 1, 	j ≤ C tr[	]/p for all j .

4. Factor loadings: The r vectors of scaled loadings fk are each delocalized, in the sense
that ‖fk‖4 → 0 in probability. Note that, by the Holder inequality, this also implies that
they are bounded, in the sense that n−1/4‖fk‖2 → 0 in probability. This allows factors of
magnitude n1/4−δ for any δ > 0.

Then with probability tending to one, parallel analysis selects all perceptible factors, and
no imperceptible factors.

The proof of the theorem follows from the more general approach developed below, and is
given later in Section 8.1.

Importantly, PA selects only the sufficiently large factors, whose size is above a certain
well-specified threshold. While in general there we are not aware of a simple description
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of how large the factors must be to be selected, in the special case of spiked models, the
thresholds become much more explicit; see Corollary 5.1.

The theory allows growing factors, but only at a slow rate rate ‖fk‖2
2 ∼ n1/2. In econo-

metrics, (e.g., Bai and Ng (2008), Onatski (2009), etc.), the factors grow linearly at rate n, so
the current theory is weaker. However, PA is actually used more in computational genomics
and social science, where the factors are typically much weaker. So, we think that the current
theoretical results are a good first step. In future work, it would be important to examine the
issue of strong factors in more detail.

Assumption 3(a) is somewhat technical. We assume that the distribution function of 	

converges weakly to a certain limit probability distribution H . This means that there is a
certain “regularity” in the overall distribution of the variances. Mathematically, it is a standard
assumption in random matrix theory (Bai and Silverstein (2010), Yao, Zheng and Bai (2015)).
This and max	j → s(H) are technical assumptions needed to guarantee that the size of the
noise b > 0 is well defined.

The conclusion is that under reasonable conditions, PA selects the perceptible factors with
high probability. A key feature of the theorem is that it allows both the sample size n and the
dimension p to be large. Both p/n → γ > 0 and p/n → ∞ are handled, so that p can be
much larger than n. However, p/n → 0 is not handled, and we will see in simulations that
PA does not always work in this regime. This is one of the main conclusions of the current
paper: PA works well when the dimension is large. This can be interpreted as a blessing of
dimensionality.

The intuitive explanation is that when p is small, the factor loadings increase the effective
variance of the features of the data. Thus, when the features are permuted, the variances are
overestimated. Hence, the true noise level is overestimated, and some smaller factors may
not be detected. However, this heuristic argument at least indicates that PA will likely be
conservative in this case.

A second key feature is that the factor loading vectors λj need to load on more than just
a few variables. Suppose for simplicity that we have an orthogonal factor model, � = Ir ,
so fk = λk . The formal requirement is that the 4 norm vanishes: ‖λj‖4 → 0. Consider now
factors that have the same fixed Euclidean norm ‖λj‖2, say equal to unity for simplicity (by
renormalization we do not lose generality). In this case, we see that sparse vectors tend not
to satisfy the requirement. For instance, λj = (1,0,0, . . .) does not satisfy this, but λj =
p−1/2(1,1, . . .) does. In fact, λj can have nonzero loadings on a vanishing fraction δ of the
entries, as long as nδ → ∞, and the entry sizes are lower bounded. An interesting example is
a clustering pattern, where the λjk = |Sj |−1/2I (k ∈ Sj ), and Sj are mutually disjoint clusters
with sizes |Sj | → ∞.1

A third key assumption is that the strong factors cannot be too large. This is because strong
factors are transformed into strong noise by the permutations, thus shadowing the weaker
factors. In follow-up work, we have proposed deflation to address this (Dobriban and Owen
(2019)).

Thus, our assumptions are not restrictive. In practice, they mean that the loadings cannot
concentrate on a small number of variables. This assumption is similar to nonsparsity, delo-
calization or incoherence conditions seen in other works. This is the second main conclusion
of the current paper: PA works well when the factors load on more than just a few variables.

In summary, our main conclusion is that PA works well when:

1. the dimension of the data is large, and
2. the factors (PCs) load on more than just a few variables
3. the strong factors are not too strong.

1We thank Jingshu Wang for this example.
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Finally, this result concerns only separated factors, for which c−1
n,pσk(X) > b + ε or

c−1
n,pσk(X) < b − ε, but not factors near the noise level. Intuitively, these latter are “hard

to distinguish” from the noise. This is related to the difficulty of understanding the critical
regime of spiked models (e.g., Yao, Zheng and Bai (2015)). At the moment, we do not have
a clear understanding of PA in the critical regime.

In addition, we note that the new theoretical guarantees for PA cover roughly the same
regime as when some of the existing methods based on eigenvalues are known to work
(Kritchman and Nadler (2008), Onatski (2012)). However, PA is a very popular method,
used widely in science, and thus it is important to understand what it does.

2.2. The general approach: Signal-plus-noise matrices. We now shift to a more general
approach, which will be used in the rest of the paper. We will work with signal-plus-noise
matrices X = S + N , where S is an n × p signal matrix of low rank, and N is an n × p noise
matrix. In the standard factor model, X = H�� + E . The first term is the signal due to the
factor component, whose rank is at most r . Thus the factor model falls into the signal-plus-
noise framework.

PA works with the permuted matrices Xπ . By linearity, π acts separately on S and N , so
Xπ = Sπ + Nπ . Intuitively, permutations keep the noise distribution unchanged, while “de-
stroying” the signal. Think of S as a “smooth” matrix, which can be achieved by reordering
rows and columns. A typical permutation π transforms this into a “rough,” “noise-like” ma-
trix Sπ ; see Figure 2. This has the same entries as S, but is typically of full rank. While the
Frobenius norm (sum of squared entries) is preserved, the operator norm can be dramatically
reduced. Symbolically,

Xπ = Sπ + Nπ ≈ Nπ.

Therefore, Xπ behaves like the noise Nπ . If the noise is sufficiently “invariant under permu-
tations,” then it may be possible to estimate its “size.” Write X =d Y if the random objects
X, Y have the same distribution, and suppose that Nπ =d N . Then from the previous two
equations,

‖Xπ‖ ≈d ‖N‖.
Thus, the operator norms of the permuted matrix Xπ and the noise matrix are roughly the
same. Selecting factors whose singular values are larger than ‖Xπ‖ is roughly the same as
comparing to the operator norm of the noise. This provides an intuitive justification that PA
selects the perceptible factors, as defined above. The rest of the paper makes this intuition
precise.

2.2.1. The consistency lemma. The first step is to formalize the above argument into a
rigorous consistency lemma. This is a general result that gives broad conditions for the signal
and the noise under which PA is consistent. We will then give examples when the two sets of
conditions hold.

In the signal-plus-noise model X = S + N , suppose S is deterministic and N is random;
this can be achieved by conditioning on S. We want to provide a result that holds under a
variety of asymptotic settings. Thus, consider an asymptotic setting A, for instance:

1. Proportional-limit asymptotics, where n,p → ∞, such that p/n → γ > 0. This is also
known as high-dimensional asymptotics, random matrix asymptotics or the thermodynamic
limit (e.g., Dobriban and Wager (2018), Paul and Aue (2014), Yao, Zheng and Bai (2015)).

2. “Big n, bigger p” asymptotics, where n,p → ∞, such that p/n → ∞.
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Our consistency lemma does not depend on the specific type of asymptotics. It applies to
all of the above settings.

Next, fix a mode of stochastic convergence, either convergence almost surely (a.s.), or in
probability. Below we will use a.s., but the equivalent results hold for in probability, mutatis
mutandis. We will use both in the application to factor models.

In the asymptotic setting A, suppose that the signal matrix belongs to some parameter
space S ∈ �, and the noise has some distribution N ∼ PN (rather, the sequence of signal
matrices belongs to a specific sequence of parameter spaces). Suppose that we have renor-
malized the data such that under A,

‖N‖ → b > 0

a.s. As in the special case of factor models discussed above, we define the above-noise factors
as those indices k for which σk(X) > b a.s.

Consider also a distribution of permutation arrays �, defined for all n, p of interest; for
instance each permutation πj sampled independently and uniformly from the set of all per-
mutations of [n] = {1, . . . , n}.

Before turning to usual PA, it is pedagogically helpful to define asymptotic PA as a theoreti-
cal version of PA leading to a particularly simple analysis. Consider a finite set of permutation
arrays �0 sampled independently, each according to �. Asymptotic PA selects those factors
for which σk(X) > maxπ∈�0 ‖Xπ‖ a.s. This definition depends on the entire asymptotic set-
ting A, not just on finite values of n, p. In finite samples, we instead select the factors for
which σk(X) > maxπ∈�0 ‖Xπ‖. Asymptotic PA is an “oracle method,” but it leads to very
elegant results. The second definition is practically feasible, and we will see that the results
are still nice.

As we will see, in our setting selecting the factors above the 95th percentile of {‖Xπ‖ :
π ∈ �0} leads to an entirely equivalent method. This is because the values ‖Xπ‖, π ∈ �0
all converge a.s. to the same value. The difference is only important for the properties of PA
as a hypothesis testing method, specifically its control of the type I error. Thus, we focus on
asymptotic PA as defined above.

LEMMA 2.2 (Consistency lemma). Suppose the following:

1. Noise invariance: The distribution of the noise is invariant under permutations, so N =d

Nπ , where the equality in distribution is taken with respect to the joint randomness of the
noise matrix N ∼ PN and the independently chosen permutation π ∼ �.

2. Signal destruction: Under the asymptotics A, we have ‖Sπ‖ → 0 a.s., for all S ∈ �,
where the randomness is induced by the random permutation π ∼ �.

Then, asymptotic parallel analysis is consistent for selecting the above-noise factors.

PROOF. Since Xπ = Sπ + Nπ , by the triangle inequality we have |‖Xπ‖ − ‖Nπ‖| ≤
‖Sπ‖ → 0. Now, by invariance N =d Nπ , and by the convergence ‖N‖ → b to the noise
level, we have that the operator norms of the permuted matrices also converge: ‖Nπ‖ =d

‖N‖ → b. Hence, it follows that ‖Xπ‖ → b.
Asymptotic parallel analysis selects the factors for which σk(X) > maxπ∈�0 ‖Xπ‖ a.s.

Since �0 is of fixed size, based on the above argument, this is the same as those factors for
which σk(X) > b a.s., which are exactly the above-noise factors. This completes the proof.

�

This result is a very elegant form of the statement that PA selects the number of above-
noise factors. However, it deals with asymptotic PA, which is an oracle method only defined
asymptotically. Can we remove the asymptotics from the definition of the method?
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Recall that we consider the version of nonasymptotic parallel analysis which selects the
factors for which σk(X) > maxπ∈�0 ‖Xπ‖. Since above-noise factors are defined asymptoti-
cally by comparing σk(X) to b, and non-asymptotic PA depends only on finite n, p, it is not
clear how to show that PA selects all above-noise factors. However, this becomes clear if we
focus on separated above-noise factors, called perceptible factors, as indicated previously.
Thus, we define perceptible factors as the k for which σk(X) > b + ε a.s. for some ε > 0. We
also define imperceptible factors as the k for which σk(X) < b − ε a.s. for some ε > 0. We
then have the following analogue of the previous lemma.

LEMMA 2.3 (Consistency lemma for nonasymptotic PA). Under the conditions of
Lemma 2.2, PA selects all perceptible factors, and no imperceptible factors, a.s.

PROOF. Nonasymptotic parallel analysis selects the factors for which σk(X) >

maxπ∈�0 ‖Xπ‖. Since maxπ∈�0 ‖Xπ‖ → b a.s., it is immediate that this includes all per-
ceptible factors, and no imperceptible factors, a.s. �

These results give broad conditions for the signal and the noise under which PA is consis-
tent. The real work is always to show that these conditions hold in particular cases of interest,
such as for factor models.

2.2.2. Conditions on the signal and the noise. When do our assumptions hold? We start
here with a brief discussion.

For the noise, we need two assumptions:

1. The existence of a well-defined asymptotic noise level b > 0 such that ‖N‖ → b > 0.
This imposes a restriction on the noise models. For this condition, it will be helpful that
operator norms of random matrices have been studied thoroughly, and thus there are broad
conditions under which such convergence is known.

2. The invariance of the distribution of noise to permutations: N =d Nπ . There is a trade-
off: the more general the noise distribution, the smaller the set of permutations that keeps it
invariant. Thus, this also imposes a restriction, because we may need a large set of permuta-
tions to cancel out the signal terms, as we see next.

For the signal, we need one assumption:

1. The operator norm of the permuted signal matrices vanishes, ‖Sπ‖ → 0 a.s. for all
S ∈ �. There is a tradeoff here, too: The larger the parameter space �, the harder this is,
and the more permutations are needed to get enough “averaging” for this to hold. For certain
signals, for example, the all ones matrix with Sij = 1, this is entirely impossible, because
every permutation keeps the matrix unchanged.

In the next two sections, we examine these conditions in detail.

3. Signal models. When do our assumptions on the signal hold? We need that permuta-
tions “destroy” the signal structure, so that ‖Sπ‖ → 0 a.s., for all S ∈ �. Consider a rank one
signal matrix S = uv�. Then, acting on this by a permutation array π we get (denoting by �
elementwise product of matrices):

Sπ = (
uv�)

π = (
u1�)

π � 1v� = [
π1(u);π2(u); . . . ;πp(u)

] � 1v�.

Each permutation πj permutes the corresponding column j of S. This column equals vju, so
πj permutes the entries of u. Since πj is a uniformly random permutation, the distribution
of this column is uniform on all permutations of u, and is “modulated” by vj . If the entries
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of u sum to zero, this is effectively “noise” of variance approximately v[j ]2/n. The n entries
of column j are exchangeable random variables, which are almost independent for large n.
Hence, (uv�)π is a random matrix whose columns are independent, and within each column
the entries are nearly independent, with variance approximately v[j ]2/n. If the entries of
the matrix were independent, we could use well-known results controlling its operator norm
(e.g., Vershynin (2012)). However, since the entries are dependent, we need to establish these
results here from first principles.

A first simplification is that we can separate the component corresponding to u ∈ span(1),
where 1 = (1,1, . . .)� is the all ones vector, and its orthocomplement. The first part is kept
invariant by the permutation. So we just need to assume that it goes to zero. Let θ ·n−1/21 ·v�
be this component, where ‖u‖2 = ‖v‖2 = 1. Then we need to assume that θ → 0, because
we need ∥∥π(

θ · n−1/21 · v�)∥∥ = ∥∥θ · n−1/21 · v�∥∥ = θ‖v‖2 = θ → 0.

In our application to factor models, we will separate this component, and show that θ → 0
holds.

On the orthocomplement, we will use the moment method to show ‖Sπ‖ → 0. For any
matrix A, we have that ‖A‖k ≤ tr(A�A)k for all k. Hence,

P
(‖A‖ > ε

) = P
(‖A‖k > εk) ≤ P

(
tr

(
A�A

)k
> εk) ≤ ε−k

E tr
(
A�A

)k
.

Thus, to show that ‖Sπ‖ → 0 in probability, it is enough to argue that E tr(S�
π Sπ)k → 0

for some k > 0. To show a.s. convergence, by the Borel–Cantelli lemma we need that
E tr(S�

π Sπ)k is summable for some k > 0. After the appropriate moment calculations, we
obtain the following result.

THEOREM 3.1 (Requirements on the signal). Consider signals of the form S = n−1/2θ ·
1v�

0 + T , where T = ∑r
i=1 θiuiv

�
i , with ‖ui‖2 = ‖vi‖2 = 1, and u�

i 1 = 0 for all i. Here, r

can be fixed or change with the dimensions n, p. Suppose that θ → 0. Define the constants
Ank for k = 2,3,4 as

Ank =
r∑

i=1

θi · Ck(vi)
1/(2k),

where Ck(v) are defined as

1. C2(v) = 1/(n − 1) + ‖v‖4
4,

2. C3(v) = 1/(n − 1)2 + 9n−1‖v‖4
4 + ‖v‖6

6,
3. C4(v) = 1/(n − 1)3 + 4/(n − 1)2‖v‖4

4 + 12n−1[‖v‖8
4 + ‖v‖6

6] + ‖v‖8
8.

Then [
E tr

(
S�

π Sπ

)k]1/(2k) ≤ Ank.

Therefore,

1. If Ank → 0, then ‖Sπ‖ → 0 in probability.
2. If A2k

nk are summable, then ‖Sπ‖ → 0 almost surely.

The proof is provided in Section 8.2. Note that the second condition can only hold for
k ≥ 3, because n−1 � A4

n2.
An interesting consequence of this result is that PA works in certain cases even when the

number of signals as well as the strength of signals grows to infinity simultaneously. Indeed,
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suppose vi are all maximally delocalized, so that ‖vi‖∞ ≤ Cp−1/2 for some C > 0. Then we
have ‖vi‖4

4 ≤ C4p−1, and ‖vi‖6
6 ≤ C6p−2, therefore, C3(vi) ≤ C ′(n−2 + p−2) and

A6
n3 ≤ C′

[
r∑

i=1

θi

]6

·
(

1

p2 + 1

n2

)
.

So we need to find conditions under which this goes to zero or is summable. When n,p →
∞, for An3 → 0 it is enough that

∑r
i=1 θi = O(min(n,p)1/3−ε) for some ε > 0. For instance,

when p/n → γ > 0, is enough that m‖θ‖∞ = O(n1/3−ε). We can take n1/6 spikes (signals)
of size n1/6−ε each, and parallel analysis will work. Alternatively, we can take one spike of
strength θ = n1/3−ε .

This is important, because it allows us to handle two seemingly very different regimes si-
multaneously: the “explosive,” that is, growing, spikes of the type that are common in econo-
metrics (Bai and Ng (2008)), while also handling the constant-sized spikes that are common
in the literature in random matrix theory and applications to statistics (e.g., Paul and Aue
(2014), Yao, Zheng and Bai (2015)).

3.1. Optimality considerations.

3.1.1. Signal strength. The above results and discussion show that PA selects the percep-
tible factors in models of the form θuv� + N as long as the signal strength θ is not too large.
For instance, we saw that θ = min(n,p)1/3−ε suffices for delocalized signals. It may seem
counterintuitive that a strong signal can decrease the performance of PA. Is this a weakness
of our theoretical analysis or a weakness of the method?

To understand this issue, we recall that PA “transforms the signal into noise.” Thus, a large
signal is transformed into large noise, which can lead to the overestimation of the true noise
level. In turn, this may prevent the selection of the above-noise factors which are not above
the estimated noise level. So the problem is with PA, not with our result.

More precisely, the permuted matrix Sπ = (θuv�)π is a matrix with independent columns,
and within each column, with approximately independent (in truth, exchangeable) bounded
entries. If the entries were independent with variance σ 2/n, the operator norm would be of
order σ ·[1+(p/n)1/2] (Bai and Silverstein (2010), Vershynin (2012)). In our case, trS�

π Sπ =
trS�S = θ2, so heuristically, pσ 2 ≈ θ2. Thus, heuristically

‖Sπ‖ ≈ θ · [
n−1/2 + p−1/2]

.

In our consistency lemma, we showed that PA will select the above-noise factors if ‖Sπ‖ → 0,
which amounts to θ · [n−1/2 +p−1/2] → 0. In particular, under high-dimensional asymptotics
when p/n → γ > 0, this holds if θ/n1/2 → 0. This suggests that our result θ = n1/3−ε is not
optimal, and PA works more broadly. We conjecture that a kth moment bound in Theorem 3.1
will allow θ = o(p1/2−1/(2k)). However, much more work is needed to show such a bound.
In principle, the current moment calculations may work.

Thus it appears that very strong factors lead to problems with PA. This is counterintu-
itive, because strong factors should be easy to detect. However, this apparent paradox can be
resolved. The noise level estimated by PA is of the order of

fest ≈ max

(
b,

r∑
k=1

θk · [
n−1/2 + p−1/2])

.

A factors is not selected if σk(X) < fest . From the analysis of spiked covariance matrix
models, when the noise is of the form n−1/2X for X with i.i.d. entries, we expect the empirical
singular values to behave (very roughly speaking) like σk(X) ≈ θk + (p/n)1/2. From these
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two approximations, a factor k is not selected only if θk/
∑r

k=1 θk � n−1/2 + p−1/2. This
shows that only the relatively unimportant factors are not selected by PA, in the sense that
the relative strength of the factor k, θk/

∑r
k=1 θk , must be small. In this sense, PA still selects

the “relatively large” factors.

3.1.2. Delocalization. What is the precise condition needed on v? In Theorem 3.1, we
gave several conditions depending on the norms ‖v‖k , for k = 4,6,8, which all amount to
some form of delocalization, in the sense that v is nonsparse. Some nonsparsity condition
is needed. Indeed, when v = (1,0, . . . ,0), then a permutation only acts on the first column
of uv�, thus the operator norm is unchanged. Some form of delocalization is needed, but
finding the precise condition may need a new theoretical approach, which is beyond our
current scope.

4. Noise models. When do our assumptions on the noise hold? We need two assump-
tions: invariance to permutations, and operator norm convergence.

4.1. Invariance. We need the that noise is invariant in distribution to permutations
N =d Nπ , where the permutation π is also random. We will study when invariance holds
for any fixed permutation π ; then it will also hold for random permutations π ∼ �0 chosen
independently from N . This is a nonasymptotic condition, so the findings will apply to any
asymptotic setting we consider.

For N =d Nπ , it is enough if columns of N are independent, and each column has ex-
changeable entries. But a weaker condition is enough. Suppose for instance that (Nij )ij are
an equicorrelated Gaussian random vector, in matrix form. Then clearly they are not inde-
pendent, but are still invariant under any permutation.

Following this logic, if we vectorize the matrix N into an np-length vector, whose blocks
of size n are the different features indexed from 1 to p, the condition N =d Nπ means that the
distribution is invariant under permutations within the blocks. For a Gaussian random vector,
in terms of the covariance matrix, this means that it has the following block structure:

•. Var[Nij ] = σ 2
j : Within any column j , the entries Nij are exchangeable random vari-

ables. Thus, they must have the same variance σ 2
j .

•. Cov[Nij ,Ni′j ] = τ 2
j for i = i′: Similarly, distinct entries Nij , Ni′j in the same column

must have the same covariance.
•. Cov[Nij ,Nkj ′ ] = η2

jj ′ for j = j ′: Consider two distinct columns j , j ′. Since the en-
tries within each of them can be permuted independently of each other while preserving the
distribution, the covariance between any two entries Nij , Nkj ′ must be the same.

Equivalently, one has the explicit representation:

N = ED1/2 + 1z��1/2,

where E is n × p matrix of i.i.d. Gaussians, D is diagonal, z ∼ N (0, Ip), and � is p × p

PSD. Here, � induces the correlations between the different columns, and is not necessarily
diagonal. Thus each sample has the form Ni = D1/2εi + �1/2z ∼ N (0,D + �), which is a
sum of a sample-specific independent diagonal normal random vector D1/2εi , and the same
normal random vector �1/2z added to each sample.

A bit more generally, we have the following representation for noise models invariant
under permutations. The proof is immediate, and thus it is omitted.

PROPOSITION 4.1 (Requirements for noise invariance). Suppose that the noise matrix
N has rows of the form Ni = D1/2εi + z, where εi are i.i.d. across i, and z is any random
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vector independent of all εi . Suppose that εi have independent standardized entries, and
D1/2 is diagonal. Then the distribution of N is invariant under column permutations, that is,
N =d Nπ for any fixed permutation array π .

This result covers factor models, where the noise is of the form Ni = D1/2εi . The term
z is allowed by the theory, but it is usually not of practical interest. This common term can
be viewed as the mean of Ni . Even if the mean is zero, this can be viewed as a common
perturbation affecting all samples. However, z increases the overall noise level, because the
operator norm ‖N‖ is of order (np)1/2. Thus, the presence of z renders many previously
above-noise factors to sink below the noise. The practically interesting scenarios usually have
z = 0, which can be achieved by demeaning the data.

4.2. Operator norm convergence. The second condition that we need for the noise is
the convergence of the operator norm: ‖N‖ → b > 0. Operator norms of random matrices
have been studied for a long time; see, for example, Bai and Silverstein (2010), Vershynin
(2012). We are fortunate that we can leverage some of these results. For instance, Bai, Yin,
Silverstein and others have showed convergence of the operator norm of matrices of the form
N = n−1/2XT 1/2, where the entries of X are i.i.d. standardized random variables, and where
p,n → ∞ such that p/n → γ > 0. We state this result together with another one for the case
p/n → ∞.

PROPOSITION 4.2 (Requirements for noise operator norm, partly a corollary of Corollary
6.6 in (Bai and Silverstein (2010))). Suppose that the noise matrices have the form N =
c
−1/2
p XT 1/2 with cp = trT , where the entries of X are independent standardized random

variables with bounded fourth moment, and T are diagonal positive semidefinite matrices.
Suppose that p → ∞, and one of the following two sets of assumptions holds:

1. p/n → γ > 0, while the distribution function of the entries of T converges weakly to a
limit distribution H , FT ⇒ H . Moreover, the operator norm of T converges to the supremum
of the support of H , ‖T ‖ → supp sup(H), and the entries of X have bounded 6+εth moment.

2. The entries of T are bounded as tj ≤ C tr[T ]/p for all j , while (A) p/n → ∞ or (B)
n2+ε ≤ p for some ε > 0.

Then we have ‖N‖ → b for some b > 0, in probability under (2A), and almost surely under
(1) or (2B).

The second statement allows n fixed while p → ∞, which is the “transpose” of classi-
cal asymptotics where p is fixed and p → ∞. The proof is provided later in Section 8.3.
Combined with the conditions on noise invariance, and with the conditions on the signal, this
result provides a broad set of concrete scenarios when PA selects the perceptible factors.

5. PCA and spiked models. Should we select the number of components in PCA using
PA? As Jolliffe (2002) clearly explains that there is a substantial difference between PCA and
FA, and “it is usually the case that the number of components needed to achieve the objectives
of PCA is greater than the number of factors in a FA of the same data.”

However, we can understand the behavior of PA in PCA within a certain class of popular
spiked models. Spiked models have served as a theoretical tool to understand PCA in high di-
mensions. There are several versions, some of them mutually exclusive; see, for instance, Bai
and Ding (2012), Benaych-Georges and Nadakuditi (2012), Johnstone (2001), Nadakuditi
(2014), Nadler (2008), Onatski, Moreira and Hallin (2013), Paul (2007) and Paul and Aue
(2014), Yao, Zheng and Bai (2015) for more references.
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An important class of signal-plus-noise spiked models was studied in Benaych-Georges
and Nadakuditi (2012). Here, X = S + N , where S = ∑r

i=1 θiuiv
�
i , and n1/2ui , p1/2vi are

each i.i.d. vectors with i.i.d. entries from a distribution that satisfies a log-Sobolev inequality.
It is assumed that n,p → ∞ such that p/n → γ > 0, the spectral distribution of N converges
to a compactly supported distribution, and the top and bottom singular values converge to the
respective edges a < b of the distribution. The rank r and the spike strengths θi are fixed con-
stants. Under these conditions, Benaych-Georges and Nadakuditi (2012) derive the asymp-
totic limits of the empirical singular values of X. They establish the BBP phase transition
phenomenon discovered earlier by Baik, Ben Arous and Péché (2005) in a special case. For
θi above a critical value, the corresponding empirical spike σi(X) will converge to a definite
value larger than b. In this case, θi is said to be above the phase transition. These correspond
to the perceptible factors in our terminology. For θi below the critical value, σi(X) → b.

Our assumptions are neither more general, nor more specific. Indeed, we allow p/n → ∞
and diverging spikes, while they allow a general converging spectral distribution, without
requiring permutation-invariance.

However, our assumptions do have a nontrivial intersection. We can state the conclusion
as a corollary. This justifies the use of permutation methods in PCA.

COROLLARY 5.1 (PA in spiked models). Suppose we observe a signal-plus-noise spiked
model X = S + N , where S = ∑r

k=1 θkukv
�
k , and n1/2uk , p1/2vk are each i.i.d. vectors with

i.i.d. entries from a distribution that satisfies a log-Sobolev inequality. Suppose that n,p →
∞ such that p/n → γ > 0. Suppose that the noise matrix is of the form N = n−1/2YT 1/2,
where the entries of Y are independent standardized random variables with bounded 6 + εth
moments, and T are diagonal positive semidefinite matrices such the distribution function of
the entries of T converges weakly to a limit distribution H . Suppose that the operator norm
of T converges to the supremum of the support of H , ‖T ‖ → supp sup(H).

According to Benaych-Georges and Nadakuditi (2012), Theorem 2.9, for θk above the
phase transition, when θk > θ̄ for a certain θ̄ , the empirical singular values σk(X) converge,
σk(X) → λk a.s., for some λk > b, where b > 0 is the limit ‖N‖ → b, as guaranteed by
Proposition 4.2.

Then parallel analysis selects all spikes above the phase transition.

The analysis for the spikes below the transition is more delicate, and our results do not
address it.

We also emphasize that, the threshold θ̄ above which the factors are selected becomes
much more explicit. In particular, when the covariance of the noise is identity, θ̄ = √

γ ,
which is completely explicit as a function of n and p.

6. Numerical simulations. We perform numerical simulations to understand the behav-
ior of PA. We wish to understand the effect of key parameters of the factor model, including
signal strength and delocalization of loadings, on the accuracy of PA.

6.1. Effect of signal strength. We simulate from the factor model xi = �ηi + εi . We
generate the noise εi ∼N (0, Ip), and the factor loadings as � = θZ̃, where θ > 0 is a scalar
corresponding to factor strength, and Z̃ is generated by normalizing the columns of a random
matrix Z ∼ N (0, Ip×m).

We use a one-factor model, so m = 1, and work with sample size n = 500 and dimension
p = 300. It is well known that the critical regime for the signal strength θ is of the order of
γ 1/2. We vary θ on a grid of the form γ 1/2 · s, for s on a linear grid between 0.2 and 6.

We use PA to select the number of factors. We perform 10 Monte Carlo iterations for
each parameter. Motivated by our theoretical understanding, for each Monte Carlo realization
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FIG. 3. Mean and SD of number of factors selected by PA as a function of signal strength (left), and sparsity
(right).

of X, we generate only one permutation Xπ . We select the first factor if ‖X‖ > ‖Xπ‖. The
results in Figure 3(a) show that PA is selects the right number of factors as soon as the signal
strength s is larger than ∼ 4. This agrees with our theoretical predictions, since it shows that
PA selects the perceptible factors.

It may seem “wrong” that PA selects a factor even when the signal strength is nearly 0.
However, this result is in agreement with our theoretical predictions. Indeed, such a factor is
below-noise, but nonseparated. In line with the discussion in Section 5, the singular value σk

corresponding to a spike below the phase transition converges to the noise level b. Thus, the
empirical singular value does not separate from the noise level, hence PA cannot identify it
as below-noise.

6.2. Effect of delocalization. We provide numerical evidence for our claim that “PA
works when the factors load on more than just a few variables.” We use the same model
as above. To change the delocalization of the factor scores, we define the sparsity parame-
ter c, and generate c-sparse factors, by setting the first �c · p� coordinates of Z to be i.i.d.
Gaussians, and the remaining coordinates to be zero. Moreover, as above, we normalize the
columns of Z to have norm unity. One can verify that for every vector λ of factor scores, the
expected “localization” parameter L = ‖λ‖4/‖λ‖2 is approximately L = (9/cp)1/4, which
decreases with c. Our theoretical results suggest that PA should select the right number of
factors for “delocalized” or “nonsparse” vectors, when c is large and L is small.

We set θ = 2 to place ourselves in a critical regime where the effect of delocalization
is visible. This choice was made empirically. We vary c on a grid from 1/p to 10/p. We
perform 100 Monte Carlo iterations for each setting of the parameters.

The results in Figure 3(b) show that PA tends to select the right number of factors for
nonsparse, delocalized factor loadings (large c). This agrees with our theoretical predictions.

It is remarkable that PA already works when the sparsity is 2% (c = 0.02). That is, if the
factor loads on at least 6 out of 300 variables, PA selects the right number of factors. This
surprising result suggests that PA is likely to perform well in many realistic settings, and that
delocalization is not a stringent requirement.

6.3. Effect of dimension. We provide numerical evidence for our claim that “PA works
when the dimension of the data is large, even when the dimension is larger than the sample
size.” Using the same model as in the first simulation, we compare the accuracy of PA for
p = 3 and p = 1000. We set the signal strength to θ = 6γ 1/2, which is a perceptible factor.
This corresponds to the same signal strength for all p. Thus, the two problems are equally
hard statistically; or put it differently, the SNR is the same for the two values of p. We vary
the sample size from n = 10 to n = 100 in steps of 10.

The results in Figure 4 show that PA tends to select the right number of factors almost
without error for p = 1000, but not for p = 3. This holds already for p = 10 (data not shown).
This agrees with our theoretical predictions. Moreover, this also suggests that the requirement
on the sample size is not stringent.
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FIG. 4. Mean and SD of number of factors selected by PA as a function of sample size for p = 3 (left) and
p = 1000 (middle). Same quantity in a 2-factor model as a function of stronger factor value (right).

6.4. Effect of strong signals on detectability of weak signals: Shadowing. We provide
numerical evidence for the claim that “PA selects the relatively important factors.” Using the
same model as in the first simulation, we evaluate the accuracy of PA in a two-factor model.
We set the smaller signal strength to θ1 = 6γ 1/2, which is a perceptible factor. We vary the
larger signal strength as θ2 = c2γ

1/2 on a grid between c2 = 6 and 50.
The results in Figure 4(c) show that PA tends to select the right number of factors almost

without error for c2 < 25, but it starts making errors above that value. Above c2 > 35, PA
consistently selects only one perceptible factor. Qualitatively, these agree with our theoretical
predictions. A strong factor is transformed into noise by PA, thus “shadowing” the weaker
factor. Quantitatively, in this example the ratio of small-to-large signal strength where PA
breaks down is θ1/(θ1 + θ2) ≈ 6/35 ≈ 0.17. According to our theory, this should be on the
order of n−1/2 + p−1/2 = 0.1. Thus, our predictions seem quite accurate.

7. Discussion. There are numerous important directions for future research. First, there
are variants of PA developed in applied research (see, e.g., Brown (2014), Peres-Neto, Jack-
son and Somers (2005), Gaskin and Happell (2014)). When are they useful? These methods
differ in the test statistic, for instance: singular value gap, fraction of variance explained, ro-
bust correlations, loadings (Buja and Eyuboglu (1992)); The number of permutations, and
percentile used: mean of eigenvalues (Horn (1965)); other percentiles (Buja and Eyuboglu
(1992), Glorfeld (1995)); using stepwise testing (Horn (1965)); using the correlation matrix.
Can we understand when they help? This is especially interesting for tasks other than select-
ing the number of factors, such as estimating the factor loadings.

Second, what should one do when the noise is correlated? Independent permutations on
do not generate the correct null. However, it may be interesting to see if taking the Fourier
transform may help for problems such as stationary time series.

8. Proofs.

8.1. Proof of Theorem 2.1. We will check that the conditions of the consistency
Lemma 2.3 hold with probability tending to one. In matrix form, the factor model reads
X = U�1/2�� + Z	1/2. We first normalize it to have operator norm of unit order:
n−1/2X = n−1/2U�1/2�� + n−1/2Z	1/2.

Let us verify the required conditions:
Signal: We need to check that the operator norm of the permuted signal component con-

verges to zero in probability, that is, we have ‖Sπ‖ → 0 in probability. Denoting ��1/2 =
[f1, . . . , fr ], the signal component is

S = n−1/2U�1/2�� = n−1/2
r∑

k=1

ukf
�
k .
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Since there are only a fixed number of factors, it is enough to analyze one term of the
generic form n−1/2uf �. We decompose the signal component into two parts, corresponding
to the mean zero component of u and its complement. Denoting e = n−1/21, the projection
into the span of the all ones vector can be written as ee�.

1. Mean term: The projection into the span of the all ones vector 1 is n−1/2e · e�u · f �.
This matrix replaces the entries in the original rank one matrix by the mean of the column
they belong to. It is permutation-invariant, in the sense that any permutation of entries within
each column preserves the exact value of the matrix. Therefore, showing that the operator
norm of a random permutation of this component converges to zero in probability reduces
simply to showing that the operator norm of this component converges to zero.

Taking norms, we thus need the following convergence in probability: n−1/2‖e‖2 · |e�u| ·
‖f ‖2 → 0. Now, ‖e‖2 = 1. Therefore, we need that n−1/2‖f ‖2|e�u| → 0 in probability.
Next, u has i.i.d. entries with mean 0 and variance 1, and bounded 2 + cth moment for
some c > 0. Therefore, by the Lyapunov CLT, we have the convergence in distribution
e�u ⇒ N (0,1). Moreover, n−1/2‖f ‖2 → 0 in probability follows from our assumptions.
This completes the proof.

2. Zero-mean term We need to analyze the term in the orthocomplement of the all ones
vector 1. Let P = I − ee� be the demeaning projection operator. Our term is n−1/2Puf � =
n−1/2‖f ‖2‖Pu‖2 · P̃ uf̃ �

We want to use Theorem 3.1. There, we consider a rank one component that has form
θab�, where a, b are of unit norm and the mean of a is zero. By choosing k = 2 and noting
that 1/(n − 1) ≤ 2/n, it is enough to prove that θ(2n−1 + ‖b‖4

4)
1/4 → 0. This is equivalent

to proving that θ‖b‖4 → 0.
In our case, we have a = P̃ u, which is indeed of unit norm and has mean zero. We also

have b = f̃ , which is of unit norm. Finally, we have θ = n−1/2‖f ‖2 · ‖Pu‖2. Thus our goal
is to show that n−1/2‖f ‖2 · ‖Pu‖2 · ‖f̃ ‖4 = n−1/2‖Pu‖2 · ‖f ‖4 ≤ n−1/2‖u‖2 · ‖f ‖4 → 0.

Now note that by the LLN, n−1/2‖u‖2 → 1 a.s. Therefore, the condition we need is simply
‖f ‖4 → 0, which is true by assumption.

Noise. We need first that n−1/2Z	1/2 has a distribution that is invariant under permuta-
tions, as discussed in Section 4.1. This holds by inspection.

We need second that ‖n−1/2Z	1/2‖2 → b. Conditions for this are given in Proposition
4.2, and one can verify that the conditions given in the theorem match these. Thus, PA selects
all perceptible factors, and no imperceptible factors.

8.2. Proof of Theorem 3.1. We need to show that ‖Sπ‖ → 0, where S = n−1/2θ · 1v� +∑r
i=1 θiuiv

�
i . The term n−1/2θ · 1v� is handled by the assumption θ → 0, so we can fo-

cus on the rest, and assume θ = 0 from now on. Note that [tr(A�A)k]1/(2k) = ‖A‖2k is
the Schatten 2k-norm of A. By the triangle inequality for the Schatten norm, ‖Sπ‖2k ≤∑r

i=1 θi‖(uiv
�
i )π‖2k . Hence,

‖Sπ‖2k
2k ≤

[
r∑

i=1

θi

∥∥(
uiv

�
i

)
π

∥∥
2k

]2k

,

therefore, [E tr(S�
π Sπ)2k]1/(2k) ≤ [E(

∑r
i=1 θiD

1/(2k)
i )2k]1/(2k), where Di = E tr[(uiv

�
i )�π ×

(uiv
�
i )π ]2k . Next, by the triangle inequality for the 2k norm X → [E‖X‖2k]1/(2k),[

E

(
r∑

i=1

θiD
1/(2k)
i

)2k]1/(2k)

≤
r∑

i=1

θi[EDi]1/(2k).

Let us focus on bounding one such term EDi , and denote u = ui , v = vi for simplicity. From
now on, the entries of u, v will be indexed as u[a], v[b]. This should not be confusing, as
from n let us write A = (uv�)π .
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The simplest calculation is the first moment bound ‖A‖2 ≤ tr(A�A). However, this is
not effective, as tr(A�A) = ∑

ij [π(uv�)ij ]2 = ∑
ij [(uv�)ij ]2 = ‖uv�‖2 = ‖u‖2

2‖v‖2
2 = 1,

because the permutation of the entries does not change the sum of squares.

8.2.1. Second moment. We turn to the second simplest calculation, the second moment
bound. This starts with the identity

tr
(
A�A

)2 = trA�AA�A = ∑
ijkl

AijA
�
jkAklA

�
li = ∑

ijkl

AijAilAkjAkl.

We have Aab = u[πb(a)]v[b]. The vectors u, v are fixed, while πb are random and indepen-
dent across b. Thus, if j = l, then A·j and A·l are independent. Moreover, the joint distribu-
tion of (Aij ,Akj ), for i = k, is equal to that of v[j ] · (u[τ1], u[τ2]), where τ is a permutation
chosen uniformly at random. Thus,(

u[τ1], u[τ2]) ∼ Unif
{(

u[i], u[j ]) : i = j
}
.

With this observation, we can make the following moment calculations:

1. EAij = v[j ] ·Eu[τ1] = v[j ] · ∑
i u[i]/n = 0.

2. EA2
ij = v[j ]2 ·Eu2[τ1] = v[j ]2 · ∑

i u[i]2/n = v[j ]2/n.

3. EAijAkj = v[j ]2 · Eu[τ1]u[τ2] = v[j ]2 · ∑
i =j u[i]u[j ]/[n(n − 1)] = v[j ]2 ·

[(∑u[i])2 − 1]/[n(n − 1)] = −v[j ]2/[n(n − 1)].
Therefore, we conclude that∑

ijkl

EAijAkjAilAkl = ∑
ik,j =l

EAijAkj ·EAilAkl + ∑
ik,j

E(AijAkj )
2

= n(n − 1)
∑
j =l

EA1jA2j ·EA1lA2l + n
∑
j =l

EA2
1j ·EA2

1l

+ ∑
j

(
E

∑
i

A2
ij

)2
= n(n − 1) · I + n · II + III.

Then, we have the following bounds for I , II and III:

I = ∑
j =l

EA1jA2j ·EA1lA2l = ∑
j =l

−v[j ]2/
[
n(n − 1)

] · (−v[l]2/
[
n(n − 1)

])
= 1/

[
n(n − 1)

]2 ∑
j =l

v[j ]2v[l]2 =
(

1 − ∑
j

v[j ]4
) / [

n(n − 1)
]2 ≤ 1/

[
n(n − 1)

]2
.

Note that I ≥ 0, so |I | ≤ 1/[n(n − 1)]2.

II = ∑
j =l

EA2
1j ·EA2

1l = 1/n2
∑
j =l

v[j ]2v[l]2 =
(

1 − ∑
j

v[j ]4
) /

n2 ≤ 1/n2,

III = ∑
j

(
E

∑
i

A2
ij

)2
= ∑

j

(
nEA2

1j

)2 = ∑
j

v[j ]4.

Above we used E
∑

i A
2
ij = nEA2

1j = v[j ]2. Combining the bounds for I , II and III, we get
the upper bound

E tr
(
A�A

)2 ≤ 1/
[
n(n − 1)

] + 1/n + ∑
j

v[j ]4 = 1/(n − 1) + ‖v‖4
4.
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In conclusion EDi ≤ 2/n + ‖vi‖4
4, and [E tr(S�

π Sπ)4]1/4 ≤ ∑r
i=1 θi[1/(n − 1) + ‖vi‖4

4]1/4.
This completes the second moment bound.

The overall rate at which tr(S�
π Sπ)2 decays is 1/n. For a.s convergence, we need the

bounds to be a summable sequence; thus one cannot prove a.s convergence using only a
second moment argument. This motivates us to look at the third moment.

8.2.2. Third moment. The third moment bounds proceeds similarly. We start with the
identity

tr
(
A�A

)3 = trA�AA�AA�A = ∑
ijklmq

AijAkjAklAmlAmqAiq.

In this expression, the random variables with this the same second index (j , l or q) are
dependent, thus there are at most three groups of independent random variables. There are
three cases, depending on how many distinct indices there are among j , l or q:

Three distinct indices: j = l = q . In this case, we can write the sum over all j = l =
q as A1 = ∑

ijklmq EAijAkj · EAklAml · EAmqAiq . We already calculated that EAijAkj =
v[j ]2/n · [τ + δikη], where τ = −1/(n − 1), η = 1 − τ = n/(n − 1). Thus,

A1 = n−3
∑

j =l =q

v[j ]2v[l]2v[q]2 · ∑
ikm

[τ + δikη] · [τ + δkmη] · [τ + δmiη].

Now, we need to evaluate

A2 = ∑
ikm

[τ + δikη] · [τ + δkmη] · [τ + δmiη].

For the formal calculation, we can factor out τ 3, even though τ may be 0, and so this may
technically not be allowed. However, the formal calculation still leads to the correct answer.
If τ = 0, the result is A2 = nη3, which agrees with what we get below. Let thus ζ = η/τ , and
we want

τ−3A2 = ∑
ikm

[1 + δikζ ][1 + δkmζ ][1 + δmiζ ] = ∑
ik

[1 + δikζ ]∑
m

[1 + δkmζ ][1 + δmiζ ]

= ∑
ik

[1 + δikζ ][n + 2ζ + δkiζ
2] = [n + 2ζ ]∑

ik

[1 + δikζ ] + ζ 2
∑
ik

[1 + δikζ ]δik

= [n + 2ζ ][n2 + nζ
] + nζ 2[1 + ζ ] = n3 + 3n2ζ + 3nζ 2 + nζ 3.

Above we used that
∑

m[1 + δkmζ ] · [1 + δmiζ ] = n + 2ζ + δkiζ
2. Hence

A2 = n3 · τ 3 + 3n2 · τ 2η + 3n · τη2 + n · η3 = (nτ + η)3 + (n − 1)η3.

However, we also have nτ +η = nτ +1−τ = (n−1)τ +1 = 0, and (n−1)η3 = n3/(n−1)2.
Therefore, we conclude that A2 = n3/(n − 1)2. Going back to the definition of A1, we thus
see A1 = 1/(n − 1)2 · ∑

j =l =q v[j ]2v[l]2v[q]2.
Now

∑
j =l =q v[j ]2v[l]2v[q]2 ≤ ∑

j lq v[j ]2v[l]2v[q]2 = ‖v‖6
2 = 1, so we conclude that

A1 ≤ 1/(n − 1)2.
Two distinct indices: j = l = q and the other two symmetric cases. In this case, we can

write the sum as B1 = ∑
j =q,ikmEAijA

2
kjAmj · EAmqAiq . Now, it is easy to see that the vj

terms contribute a factor of at most (
∑

j v[j ]4)(
∑

j v[j ]2) = ∑
j v[j ]4. In the remainder, it

is enough to work with the u-part. This equals B2 = ∑
ikmEτiτ

2
k τm · Eτiτm, where τ is a

random permutation of the set of values u1, . . . , un. Now we can sum over k first to get

B2 = ∑
im

Eτiτm · ∑
k

Eτiτ
2
k τm = ∑

im

Eτiτm ·E
[
τiτm

(∑
k

τ 2
k

)]
.
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However,
∑

k τ 2
k = ∑

k u[k]2 = 1 is a deterministic quantity, so we obtain B2 = ∑
im(Eτi ×

τm)2. Now, recall that Eτiτk = 1/n · [τ + δikη], where τ = −1/(n−1), η = 1− τ . Therefore,

n2B2 = n(n − 1) · 1/(n − 1)2 + n · n2/(n − 1)2.

So B2 ≤ 3/n and B1 ≤ 3n−1‖v‖4
4

One unique index: j = l = q . In this case, we can write the sum as

C1 = ∑
j,ikm

EA2
ijA

2
kjA

2
mj = ∑

j

(∑
i

EA2
ij

)3
= ∑

j

(
v[j ]2)3 = ∑

j

v[j ]6.

Putting together the results from the three cases, we obtain

E tr
(
A�A

)3 ≤ 1/(n − 1)2 + 9n−1‖v‖4
4 + ‖v‖6

6.

This completes the proof.

8.2.3. Fourth moment. The fourth moment bounds proceeds similarly, except the calcu-
lation is more complicated. We start with the identity

tr
(
A�A

)4 = ∑
i1i2i3i4j1j2j3j4

Ai1j1Ai2j1Ai2j2Ai3j2Ai3j3Ai4j3Ai4j4Ai1j4 .

As before, in this expression, the random variables with this the same second index (j·) are
dependent, thus there are at most four groups of independent random variables. There are
now four cases, depending on how many distinct indices there are among them.

Four distinct indices. In this case, we can write the sum over all js as

A1 = ∑
i1i2i3i4j1j2j3j4

EAi1j1Ai2j1EAi2j2Ai3j2EAi3j3Ai4j3EAi4j4Ai1j4 .

We already calculated that EAijAkj = v[j ]2/n · [τ + δikη], where τ = −1/(n − 1), η = 1 −
τ = n/(n−1). Thus, denoting I = (i1, i2, i3, i4), J = (j1, j2, j3, j4), ṽJ = vj1vj2vj3vj4 , i ∈ I

summation over all is , and j ∈ J summation over distinct js : A1 = n−4 ∑
J∈SJ

ṽJ · A2(J ),
where, with ζ = η/τ , τ−3A2(J ) = ∑

I∈SI

∏4
l=1[1 + δil il+1ζ ]. This equals∑

i1,i3

∑
i2

[1 + δi1i2ζ ][1 + δi3i2ζ ] · ∑
i4

[1 + δi1i4ζ ][1 + δi3i4ζ ]

= ∑
i1,i3

(∑
a

[1 + δi1aζ ][1 + δi3aζ ]
)2

= ∑
ik

[
n + 2ζ + δikζ

2]2

= n4 + 4n3ζ + 6n2ζ 2 + 4nζ 3 + nζ 4.

Here, we used identities established in the previous section. This also equals (n + ζ )4 +
(n − 1)ζ 4. Hence A2 = (nτ + η)4 + (n − 1)η3 = n4/(n − 1)3. Therefore, A1 = 1/(n −
1)3 ∑

J∈SJ
ṽJ ≤ 1/(n − 1)3.

Three distinct indices: j1 = j2, other js different, and the other three symmetric cases. In
this case, we can write the sum as

B1 = ∑
i1i2i3i4;j1j3j4

EAi1j1A
2
i2j1

Ai3j1 ·EAi3j3Ai4j3EAi4j4Ai1j4 .

As before, it is easy to see that the vj terms contribute a factor of at most (
∑

j v[j ]4) ×
(
∑

j v[j ]2)2 = ∑
j v[j ]4. In the remainder, it is enough to work with the u-part. This equals

B2 = ∑
ikml

Eτiτ
2
k τm ·Eτmτl ·Eτlτi = ∑

iml

Eτiτm ·Eτmτl ·Eτlτi,
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using that
∑

k τ 2
k = 1. However, this expression is precisely the one that came up in the

calculation of the third moment bound for three distinct indices. There we saw that it equals
1/(n − 1)2. Hence, B1 ≤ ‖v‖4

4/(n − 1)2, and the overall contribution of the terms with three
distinct indices is four times this.

Two distinct indices: j1 = j2 = j3 = j4, and the other three symmetric cases. Here, we
need

B1 = ∑
i1i2i3i4;j1j3

EAi1j1A
2
i2j1

Ai3j1 ·EAi3j3A
2
i4j3

Ai1j3 .

The vj terms contribute a factor of at most (
∑

j v[j ]4)2. The u-part contributes

B2 = ∑
ikml

Eτiτ
2
k τm ·Eτmτ 2

l τi = ∑
im

(Eτiτm)2,

using that
∑

k τ 2
k = 1. In the calculation of the third moment bound for two distinct indices,

we saw that B2 ≤ 3/n. Hence, B1 ≤ 3‖v‖8
4/n. The overall contribution is four times this.

Two distinct indices: j1 = j2 = j3 = j4, and the other three symmetric cases. In this case,
we need

B1 = ∑
i1i2i3i4;j1j4

EAi1j1A
2
i2j1

A2
i3j1

Ai4j1 ·EAi4j4Ai1j4 .

The vj terms contribute a factor of at most (
∑

j v[j ]6)(
∑

j v[j ]2) = ∑
j v[j ]6. The u-part

contributes B2 = ∑
ikml Eτiτ

2
k τ 2

mτl ·Eτlτi = ∑
im(Eτiτm)2, using that

∑
k τ 2

k = 1. In the third
moment bound for two distinct indices, we saw that B2 ≤ 3/n. Hence, B1 ≤ 3‖v‖6

6/n, and
the overall bound is four times this.

One distinct index: j1 = j2 = j3 = j4, and the other three symmetric cases. In this case,
we can write the sum as

B1 = ∑
i1i2i3i4;j1j4

EA2
i1j1

A2
i2j1

A2
i3j1

A2
i4j1

.

The v[j ] contribute a factor of at most
∑

j v[j ]8, while the u-part contributes
∑

ikml Eτ 2
i τ 2

k ×
τ 2
mτ 2

l = 1, using that
∑

k τ 2
k = 1. Hence, B1 ≤ ‖v‖8

8.
In conclusion, we obtain the desired bound

E tr
(
A�A

)4 ≤ 1/(n − 1)3 + 4/(n − 1)2‖v‖4
4 + 12n−1[‖v‖8

4 + ‖v‖6
6
] + ‖v‖8

8.

8.3. Proof of Proposition 4.2. The first part essentially follows from Bai and Silverstein
((2010), Corollary 6.6). A small modification is needed to deal with the non-i.i.d.-ness, as
explained in Dobriban, Leeb and Singer (2017).

For the second part, we will show that |[trT ]−1/2XT 1/2| → 1. For this, it suffices to show
that |[trT ]−1XT X� − In| → 0 in probability (or a.s.). For the convergence in probability, it
is in turn enough to show that E tr[X�X� − In]2 → 0, where � = [trT ]−1T . We calculate

A = E tr
[
X�X� − In

]2 = E tr
[
X�X�]2 − 2E trX�X� + n.

Now X�X� = ∑p
j=1 σjxjx

�
j , where the xj are independent n × 1 random vectors whose

entries are i.i.d. random variables (whose distribution may depend on j ). They collect the j th
coordinates of the observed data. So, E trX�X� = ∑p

j=1 σjE‖xj‖2 = n
∑p

j=1 σj = n. Also,

E tr
[
X�X�]2 = E tr

[ p∑
j=1

σjxjx
�
j

][ p∑
k=1

σkxkx
�
k

]
=

p∑
j,k=1

σjσkE
[
x�
j xk

]2
.
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To evaluate this expression, we need to find E[x�
j xk]2. If j = k, then xj and xk are in-

dependent, and we can take expectation over j first, to get E[x�
j xk]2 = E tr[xjx

�
j xkx

�
k ] =

E tr[xkx
�
k ] = n. This leads to E tr[X�X�]2 = n

∑p
j,k=1 σjσk +∑p

j=1 σ 2
j [E‖xj‖4 −n]. There-

fore, we find that A = ∑p
j=1 σ 2

j [E‖xj‖4 − n]. Thus, we need to show that A → 0. Since

σj ≤ Cp−1 for all j ,

A = p−2
n∑

i=1

p∑
j=1

(
Ex4

ij − 1
) ≤ p−2 · Cnp = Cn/p → 0

if n/p → 0, since the fourth moments are bounded. This shows that n/p → 0 guarantees con-
vergence in probability, and completes the proof of (2A). If in addition n/p ≤ 1/n1+ε , then
by the Borel–Cantelli lemma we conclude that |[trT ]−1XT X� − In| → 0 a.s., as needed.
This completes the proof of (2B). Therefore, the proof of the proposition is complete.

Acknowledgments. We thank Andreas Buja, David Donoho, Alexei Onatski and Art
Owen for stimulating discussions. We are very grateful to Jingshu Wang for feedback on the
manuscript. We thank the Associate Editor and the referees for helpful comments that have
significantly improved the paper.

Research partially supported by NSF BIGDATA grant IIS 1837992.

REFERENCES

ANDERSON, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley Publications in Statistics.
Wiley, New York; CRC Press, London. MR0091588

BAI, Z. and DING, X. (2012). Estimation of spiked eigenvalues in spiked models. Random Matrices Theory Appl.
1 1150011, 21. MR2934717 https://doi.org/10.1142/S2010326311500110

BAI, J. and NG, S. (2008). Large Dimensional Factor Analysis. Now Publishers, Hanover.
BAI, Z. and SILVERSTEIN, J. W. (2010). Spectral Analysis of Large Dimensional Random Matrices, 2nd ed.

Springer Series in Statistics. Springer, New York. MR2567175 https://doi.org/10.1007/978-1-4419-0661-8
BAIK, J., BEN AROUS, G. and PÉCHÉ, S. (2005). Phase transition of the largest eigenvalue for nonnull

complex sample covariance matrices. Ann. Probab. 33 1643–1697. MR2165575 https://doi.org/10.1214/
009117905000000233

BARTLETT, M. S. (1950). Tests of significance in factor analysis. Br. J. Math. Stat. Psychol. 3 77–85.
BENAYCH-GEORGES, F. and NADAKUDITI, R. R. (2012). The singular values and vectors of low rank perturba-

tions of large rectangular random matrices. J. Multivariate Anal. 111 120–135. MR2944410 https://doi.org/10.
1016/j.jmva.2012.04.019

BROWN, T. A. (2014). Confirmatory Factor Analysis for Applied Research. Guilford, New York.
BUJA, A. and EYUBOGLU, N. (1992). Remarks on parallel analysis. Multivar. Behav. Res. 27 509–540.
CATTELL, R. B. (1966). The scree test for the number of factors. Multivar. Behav. Res. 1 245–276.
CHURCHILL, G. A. JR. (1979). A paradigm for developing better measures of marketing constructs. J. Mark.

Res. 64–73.
COSTELLO, A. B. and OSBORNE, J. W. (2005). Best practices in exploratory factor analysis: Four recommen-

dations for getting the most from your analysis. Pract. Assess., Res. Eval. 10 1–9.
DOBRIBAN, E., LEEB, W. and SINGER, A. (2017). Optimal prediction in the linearly transformed spiked model.

Preprint. Available at arXiv:1709.03393. To appear in the Annals of Statistics.
DOBRIBAN, E. and OWEN, A. B. (2019). Deterministic parallel analysis: An improved method for selecting

factors and principal components. J. R. Stat. Soc. Ser. B. Stat. Methodol. 81 163–183. MR3904784
DOBRIBAN, E. and WAGER, S. (2018). High-dimensional asymptotics of prediction: Ridge regression and clas-

sification. Ann. Statist. 46 247–279. MR3766952 https://doi.org/10.1214/17-AOS1549
FABRIGAR, L. R., WEGENER, D. T., MACCALLUM, R. C. and STRAHAN, E. J. (1999). Evaluating the use of

exploratory factor analysis in psychological research. Psychol. Methods 4 272.
GASKIN, C. J. and HAPPELL, B. (2014). On exploratory factor analysis: A review of recent evidence, an assess-

ment of current practice, and recommendations for future use. Int. J. Nurs. Stud. 51 511–521.
GERARD, D. and STEPHENS, M. (2017). Unifying and generalizing methods for removing unwanted variation

based on negative controls. Preprint. Available at arXiv:1705.08393.

http://www.ams.org/mathscinet-getitem?mr=0091588
http://www.ams.org/mathscinet-getitem?mr=2934717
https://doi.org/10.1142/S2010326311500110
http://www.ams.org/mathscinet-getitem?mr=2567175
https://doi.org/10.1007/978-1-4419-0661-8
http://www.ams.org/mathscinet-getitem?mr=2165575
https://doi.org/10.1214/009117905000000233
http://www.ams.org/mathscinet-getitem?mr=2944410
https://doi.org/10.1016/j.jmva.2012.04.019
http://arxiv.org/abs/arXiv:1709.03393
http://www.ams.org/mathscinet-getitem?mr=3904784
http://www.ams.org/mathscinet-getitem?mr=3766952
https://doi.org/10.1214/17-AOS1549
http://arxiv.org/abs/arXiv:1705.08393
https://doi.org/10.1214/009117905000000233
https://doi.org/10.1016/j.jmva.2012.04.019


2846 E. DOBRIBAN

GLORFELD, L. W. (1995). An improvement on Horn’s parallel analysis methodology for selecting the correct
number of factors to retain. Educ. Psychol. Meas. 55 377–393.

GREEN, S. B., LEVY, R., THOMPSON, M. S., LU, M. and LO, W.-J. (2012). A proposed solution to the problem
with using completely random data to assess the number of factors with parallel analysis. Educ. Psychol. Meas.
72 357–374.

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2009). The Elements of Statistical Learning: Data Min-
ing, Inference, and Prediction, 2nd ed. Springer Series in Statistics. Springer, New York. MR2722294
https://doi.org/10.1007/978-0-387-84858-7

HAYTON, J. C., ALLEN, D. G. and SCARPELLO, V. (2004). Factor retention decisions in exploratory factor
analysis: A tutorial on parallel analysis. Organ. Res. Methods 7 191–205.

HORN, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika 30 179–185.
JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann.

Statist. 29 295–327. MR1863961 https://doi.org/10.1214/aos/1009210544
JOLLIFFE, I. T. (2002). Principal Component Analysis, 2nd ed. Springer Series in Statistics. Springer, New York.

MR2036084
KAISER, H. F. (1960). The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20 141–

151.
KRITCHMAN, S. and NADLER, B. (2008). Determining the number of components in a factor model from limited

noisy data. Chemom. Intell. Lab. Syst. 94 19–32.
LEEK, J. T. and STOREY, J. D. (2007). Capturing heterogeneity in gene expression studies by surrogate variable

analysis. PLoS Genet. 3 e161.
LEEK, J. T. and STOREY, J. D. (2008). A general framework for multiple testing dependence. Proc. Natl. Acad.

Sci. USA 105 18718–18723.
LIN, Z., YANG, C., ZHU, Y. et al. (2016). Simultaneous dimension reduction and adjustment for confound-

ing variation. Proc. Natl. Acad. Sci. USA 113 14662–14667. MR3600520 https://doi.org/10.1073/pnas.
1617317113

NADAKUDITI, R. R. (2014). OptShrink: An algorithm for improved low-rank signal matrix denoising by
optimal, data-driven singular value shrinkage. IEEE Trans. Inform. Theory 60 3002–3018. MR3200641
https://doi.org/10.1109/TIT.2014.2311661

NADLER, B. (2008). Finite sample approximation results for principal component analysis: A matrix perturbation
approach. Ann. Statist. 36 2791–2817. MR2485013 https://doi.org/10.1214/08-AOS618

ONATSKI, A. (2009). Testing hypotheses about the numbers of factors in large factor models. Econometrica 77
1447–1479. MR2561070 https://doi.org/10.3982/ECTA6964

ONATSKI, A. (2012). Asymptotics of the principal components estimator of large factor models with weakly
influential factors. J. Econometrics 168 244–258. MR2923766 https://doi.org/10.1016/j.jeconom.2012.01.034

ONATSKI, A., MOREIRA, M. J. and HALLIN, M. (2013). Asymptotic power of sphericity tests for high-
dimensional data. Ann. Statist. 41 1204–1231. MR3113808 https://doi.org/10.1214/13-AOS1100

PAUL, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist.
Sinica 17 1617–1642. MR2399865

PAUL, D. and AUE, A. (2014). Random matrix theory in statistics: A review. J. Statist. Plann. Inference 150
1–29. MR3206718 https://doi.org/10.1016/j.jspi.2013.09.005

PERES-NETO, P. R., JACKSON, D. A. and SOMERS, K. M. (2005). How many principal components? Stop-
ping rules for determining the number of non-trivial axes revisited. Comput. Statist. Data Anal. 49 974–997.
MR2143053 https://doi.org/10.1016/j.csda.2004.06.015

QUADEER, A. A., LOUIE, R. H., SHEKHAR, K., CHAKRABORTY, A. K., HSING, I.-M. and MCKAY, M. R.
(2014). Statistical linkage analysis of substitutions in patient-derived sequences of genotype 1a hepatitis C
virus nonstructural protein 3 exposes targets for immunogen design. J. Virol. 88 7628–7644.

RAICHE, G., MAGIS, D. and RAICHE, M. G. Package ‘nfactors’. 2010.
SACCENTI, E. and TIMMERMAN, M. E. (2017). Considering Horn’s parallel analysis from a random matrix

theory point of view. Psychometrika 82 186–209. MR3614813 https://doi.org/10.1007/s11336-016-9515-z
SPEARMAN, C. (1904). ”General intelligence”, objectively determined and measured. Am. J. Psychol. 15 201–

292.
STEWART, D. W. (1981). The application and misapplication of factor analysis in marketing research. J. Mark.

Res. 51–62.
THURSTONE, L. L. (1947). Multiple-factor analysis. University of Chicago Press, Chicago.
VELICER, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psy-

chometrika 41 321–327.
VERSHYNIN, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Compressed Sensing

210–268. Cambridge Univ. Press, Cambridge. MR2963170

http://www.ams.org/mathscinet-getitem?mr=2722294
https://doi.org/10.1007/978-0-387-84858-7
http://www.ams.org/mathscinet-getitem?mr=1863961
https://doi.org/10.1214/aos/1009210544
http://www.ams.org/mathscinet-getitem?mr=2036084
http://www.ams.org/mathscinet-getitem?mr=3600520
https://doi.org/10.1073/pnas.1617317113
http://www.ams.org/mathscinet-getitem?mr=3200641
https://doi.org/10.1109/TIT.2014.2311661
http://www.ams.org/mathscinet-getitem?mr=2485013
https://doi.org/10.1214/08-AOS618
http://www.ams.org/mathscinet-getitem?mr=2561070
https://doi.org/10.3982/ECTA6964
http://www.ams.org/mathscinet-getitem?mr=2923766
https://doi.org/10.1016/j.jeconom.2012.01.034
http://www.ams.org/mathscinet-getitem?mr=3113808
https://doi.org/10.1214/13-AOS1100
http://www.ams.org/mathscinet-getitem?mr=2399865
http://www.ams.org/mathscinet-getitem?mr=3206718
https://doi.org/10.1016/j.jspi.2013.09.005
http://www.ams.org/mathscinet-getitem?mr=2143053
https://doi.org/10.1016/j.csda.2004.06.015
http://www.ams.org/mathscinet-getitem?mr=3614813
https://doi.org/10.1007/s11336-016-9515-z
http://www.ams.org/mathscinet-getitem?mr=2963170
https://doi.org/10.1073/pnas.1617317113


FACTOR SELECTION 2847

YAO, J., ZHENG, S. and BAI, Z. (2015). Large Sample Covariance Matrices and High-Dimensional Data Anal-
ysis. Cambridge Series in Statistical and Probabilistic Mathematics 39. Cambridge Univ. Press, New York.
MR3468554 https://doi.org/10.1017/CBO9781107588080

ZHOU, Y.-H., MARRON, J. S. and WRIGHT, F. A. (2018). Eigenvalue significance testing for genetic association.
Biometrics 74 439–447. MR3825330 https://doi.org/10.1111/biom.12767

ZWICK, W. R. and VELICER, W. F. (1986). Comparison of five rules for determining the number of components
to retain. Psychol. Bull. 99 432.

http://www.ams.org/mathscinet-getitem?mr=3468554
https://doi.org/10.1017/CBO9781107588080
http://www.ams.org/mathscinet-getitem?mr=3825330
https://doi.org/10.1111/biom.12767

	Introduction
	Factor analysis and PCA
	Parallel analysis
	The lack of theory, and this work

	Consistency of permutation methods (PA)
	A simple result
	The general approach: Signal-plus-noise matrices
	The consistency lemma
	Conditions on the signal and the noise


	Signal models
	Optimality considerations
	Signal strength
	Delocalization


	Noise models
	Invariance
	Operator norm convergence

	PCA and spiked models
	Numerical simulations
	Effect of signal strength
	Effect of delocalization
	Effect of dimension
	Effect of strong signals on detectability of weak signals: Shadowing

	Discussion
	Proofs
	Proof of Theorem 2.1
	Proof of Theorem 3.1
	Second moment
	Third moment
	Fourth moment

	Proof of Proposition 4.2

	Acknowledgments
	References

