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ADDITIVE REGRESSION WITH HILBERTIAN RESPONSES
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This paper develops a foundation of methodology and theory for the es-
timation of structured nonparametric regression models with Hilbertian re-
sponses. Our method and theory are focused on the additive model, while the
main ideas may be adapted to other structured models. For this, the notion
of Bochner integration is introduced for Banach-space-valued maps as a gen-
eralization of Lebesgue integration. Several statistical properties of Bochner
integrals, relevant for our method and theory and also of importance in their
own right, are presented for the first time. Our theory is complete. The ex-
istence of our estimators and the convergence of a practical algorithm that
evaluates the estimators are established. These results are nonasymptotic as
well as asymptotic. Furthermore, it is proved that the estimators achieve the
univariate rates in pointwise, L2 and uniform convergence, and that the es-
timators of the component maps converge jointly in distribution to Gaussian
random elements. Our numerical examples include the cases of functional,
density-valued and simplex-valued responses, demonstrating the validity of
our approach.

1. Introduction. Regression analysis with non-Euclidean data is one of the major chal-
lenges in modern statistics. In many cases it is not transparent how one can go beyond tra-
ditional Euclidean methods to analyze non-Euclidean objects. The problem we tackle in this
paper is particularly the case.

Let H be a separable Hilbert space with a zero vector 0, vector addition ⊕ and scalar
multiplication �. For a probability space (�,F ,P ), we consider a response Y : � →H. Let
X = (X1, . . . ,Xd) be a predictor taking values in a compact subset of Rd , say [0,1]d , and ε
be a H-valued error satisfying E(ε|X) = 0. For the definition of the conditional expectation
of a H-valued random element, see [4]. In this paper we develop a unified approach to fitting
the additive model

Y = m0 ⊕
d⊕

j=1

mj (Xj ) ⊕ ε,(1.1)

where m0 is a constant in H and m1, . . . ,md : [0,1] → H are measurable maps.
Additivity is a commonly employed structure with which one is able to avoid the curse

of dimensionality in nonparametric regression. A powerful kernel-based method for achiev-
ing this is the smooth backfitting (SBF) technique originated by [31]. The idea has been
developed for various structured nonparametric models; see [3, 25, 26, 30, 46] and [17], for
example. All of them, however, treated the case of Euclidean response.

There have been a few applications of the SBF idea to the case of functional response,
in which case H is a space of real-valued functions defined on a domain T ⊂ R. Examples
include [47] and [37], but their techniques and theory are essentially the same as in the case
of Euclidean response. They applied the SBF technique to a functional response Y ≡ Y(·)
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in a pointwise manner, that is, to Y(t) for each t ∈ T , or to a finite number of its singu-
lar/principal components that live in a Euclidean space. These methods have certain draw-
backs. The pointwise application does not guarantee that the estimate of mj (xj ) ≡ mj(xj )(·)
for each xj ∈ [0,1] belongs to H, particularly in the case where H is a space of smooth
functions, as is typically the case with functional data. Methods based on singular/principal
components require choosing the number of included components in a working model, which
is very difficult.

Our approach in specialization to functional data does not have these drawbacks. It guar-
antees that the estimates of mj (xj ) belong to the space H where the targets live. It does
not need a dimension reduction procedure to deal with infinite-dimensional responses, while
many others do in the functional data literature, in particular, those based on splines and
FPCA. Moreover, the computation of our estimators is faster than the pointwise approach as
the grid on T gets denser, since the proposed method estimates mj(xj )(·) on the whole T all
at once.

One of the most appealing features of this work is to cover a very wide scope of possible
applications that overpass the standard case of curve variables. There are numerous examples
of Hilbertian variables. In the next section we introduce three examples, which we also treat
in our numerical study in Section 5. These are functional variables, density-valued variables
and simplex-valued variables. One may also apply our unified approach to various types of
object oriented data, such as images, shapes and manifolds, if the data spaces are equipped
with an inner product or after embedding them in a Hilbert space via a transformation. The
literature for the analysis of such complex data objects has not been much developed. For
recent works on object oriented data analysis, we refer to [34] and the references therein. For
a framework of Hilbert space embedding, see [18].

Our work serves as the basic building block of structured nonparametric regression for
Hilbertian responses in general. The unified approach involves integral operators acting on
Hilbert-space-valued maps such as mj in (1.1). The traditional Lebesgue integral theory does
not apply here since it is for real-valued functions. Our first task is thus to develop a new the-
ory that generalizes the conventional Lebesgue integration to the case of Hilbert-space-valued
maps. For this we take the notion of Bochner integration, which is not very well known in
statistics and is for Banach-space-valued maps. We detail the new theory in Section 2. Based
on the Bochner integral theory, we present a powerful technique of estimating the model
(1.1). The technique consists of solving a system of integral equations, expressed in terms of
Bochner integrals, and an associated backfitting algorithm. We establish the existence of the
estimator that solves the system of equations and the convergence of the algorithm. The major
accomplishment at this stage of the work is to prove that the space of regression maps under
the model (1.1) is closed. The results on the existence and convergence include nonasymp-
totic versions as well as asymptotic ones. The nonasymptotic results do not exist in the lit-
erature even, for the case H = R. Furthermore, we present complete theory for the rates of
convergence of the estimators of the component maps mj and their asymptotic distributions.

There have been a few attempts of dealing with possibly non-Euclidean responses. Exam-
ples include functional Nadaraya–Watson, locally linear and k-nearest neighbor estimation
for general Hilbert- or Banach-space-valued responses. These are for full-dimensional esti-
mation without structure on the regression map. For recent trends on this topic, we refer to
the survey papers, [29] and [1]. Some others for L2 or longitudinal responses include [6, 20,
48] and [40]. The first of these considered a representation of a functional response in terms
of its finite number of principal components, each of which is expressed as a single index
model with a multivariate predictor. The second studied a time-dynamic functional single-
index model in a longitudinal data setting. The third discussed function-on-scalar varying
coefficient models, and the last was for a spline method. For density-valued data, [38] intro-
duced a transformation approach. [10] considered an additive model that describes a density
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response in terms of level sets at different levels. The main focus of the latter paper was
to find the optimal levels at which the additive model best depicts the density response, for
which they employed a stagewise regression technique considered in [14]. Recently, [41] and
[42] treated density- and simplex-valued responses, respectively, but in parametric models.

2. Bochner smooth backfitting. Throughout this paper we use the symbol B to denote
Banach spaces and ‖ · ‖ for their norms. We use the symbol B(B) to denote the Borel σ -field
of B. For a set U ∈ B(B), we write U ∩ B(B) for the σ -field {U ∩ B : B ∈ B(B)} on U . We
let H denote a separable Hilbert space equipped with an inner product 〈·, ·〉. Let Lebk denote
the Lebesgue measure on R

k .

2.1. Examples of Hilbertian response. Here, we introduce three Hilbert spaces. These
are the spaces we consider for the response in our numerical study in Section 5.

L2 and Hilbert–Sobolev spaces. For a set U ∈ B(Rk), consider L2(U,U ∩ B(Rk),Lebk)

and a Hilbert–Sobolev space Wl,2(U) for l ∈N. For these spaces 0 is a zero function, (f (·)⊕
g(·))(u) = f (u) + g(u) and (c � f (·))(u) = c · f (u) for c ∈ R. It is well known that these
are separable Hilbert spaces.

Bayes–Hilbert spaces. Consider a space of probability density functions on U ∈ B(Rk)

with Lebk(U) < ∞. Let

M = {
ν : ν is a σ -finite measure on U ∩B

(
R

k) such that

ν  Lebk and Lebk  ν
}
.

For ν ∈M, let fν = dν/dLebk . For ν,λ ∈M and c ∈ R, define νλ, νc : U ∩B(Rk) → [0,∞]
by (νλ)(A) = ∫

A fν(u)fλ(u) du and (νc)(A) = ∫
A(fν(u))c du, respectively. Then, νλ, νc ∈

M. For these measures, fνλ = fν · fλ a.e. [Lebk] and fνc = (fν)
c a.e. [Lebk]. Define

B2(U,U ∩B
(
R

k),Lebk

) =
{
[fν] : ν ∈ M,

∫
U

(
logfν(u)

)2
du < ∞

}
,

where [fν] denotes the class of all measurable functions g : U → [0,∞] such that g = C · fν

a.e. [Lebk] for some constant C > 0. Define ⊕ and � on B2(U,U ∩B(Rk),Lebk) by [fν]⊕
[fλ] = [fνλ] = [fν · fλ] and c � [fν] = [fνc ] = [(fν)

c], respectively. Also, define 〈·, ·〉 by

〈[fν], [fλ]〉 = 1

2Lebk(U)

∫
U2

log
(

fν(u)

fν(u′)

)
log

(
fλ(u)

fλ(u′)

)
dudu′.

Then, B2(U,U ∩B(Rk),Lebk) is a separable Hilbert space with 0 = [fLebk
] = [1], as proved

by [43].
Simplices. For s > 0, consider the space Sk

s = {(v1, . . . , vk) ∈ (0, s)k : ∑k
j=1 vj = s}.

The case s = 1 corresponds to the discrete analogue of a Bayes–Hilbert space in the pre-
vious example. For v,w ∈ Sk

s and c ∈ R, define ⊕ and �, respectively, by v ⊕ w =
( sv1w1
v1w1+···+vkwk

, . . . , svkwk

v1w1+···+vkwk
) and c � v = (

svc
1

vc
1+···+vc

k
, . . . ,

svc
k

vc
1+···+vc

k
). Define 〈v,w〉 =

(2k)−1 ∑k
j=1

∑k
l=1 log(vj /vl) · log(wj/wl). Then, (Sk

s ,⊕,�, 〈·, ·〉) is a separable Hilbert
space with 0 = (s/k, . . . , s/k).

2.2. Bochner integration. Our method of estimating the additive model (1.1) is based
on the representation of the conditional means of mk(Xk) given Xj for k �= j , in terms of
the conditional densities of Xk given Xj . This involves integration of mk(xk) over xk in the
support of the corresponding conditional density. Since each component mk is a H-valued
map, the conventional Lebesgue integration does not apply to the current problem. In this
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subsection we study a notion of integration in a more general setting. Specifically, we con-
sider integration of B-valued maps, for which we use a recently introduced notion of Bochner
integral. The notion has not been well studied in statistics. Our results below are familiar in
Lebesgue integral theory, but their derivation for Bochner integrals requires substantial inno-
vation.

Our definition of Bochner integral is for “strongly measurable” B-valued maps. We briefly
introduce it here. For more details, see [7]. Let (Z,A ,μ) be a measure space. For a map
f : Z → B, we let range(f) denote {f(z) : z ∈ Z} ⊂ B.

DEFINITION 2.1. A map f : (Z,A ,μ) → (B,B(B)) is called strongly measurable if it
is (A ,B(B))-measurable and range(f) is separable.

An immediate example of strongly measurable map is μ-simple map. A map f : Z → B

is called μ-simple if f(z) = ⊕n
i=1 1Ai

(z) � bi for some bi ∈ B and disjoint Ai ∈ A with
μ(Ai) < ∞. For such a μ-simple map its Bochner integral is defined by

∫
f(z) dμ(z) =⊕n

i=1 μ(Ai)� bi . It can be shown that, if a map f is strongly measurable and ‖f‖ is Lebesgue
integrable with respect to μ, then there exist μ-simple maps fn such that f(z) = limn→∞ fn(z)
and ‖fn(z)‖ ≤ ‖f(z)‖ for all z and n.

DEFINITION 2.2. A map f : (Z,A ,μ) → (B,B(B)) is called Bochner integrable if it is
strongly measurable and ‖f‖ is Lebesgue integrable with respect to μ. In this case the Bochner
integral of f is defined by

∫
fdμ = limn→∞

∫
fn dμ, where fn is a sequence of μ-simple maps

such that f(z) = limn→∞ fn(z) and ‖fn(z)‖ ≤ ‖f(z)‖.

REMARK 2.1. There are two other notions of Bochner integrals of which we are aware.
One is defined for (A ,B(B))-measurable maps, and the other is for μ-measurable maps.
Both are not relevant for the component maps mj in the model (1.1); see the online Supple-
mentary Material S.1 [19] for details.

We present several properties of the Bochner integral that are fundamental in its statistical
applications. For 1 ≤ p < ∞, define

Lp((Z,A ,μ),B
)=

{
f : Z → B

∣∣∣f is strongly measurable

and
(∫

Z

∥∥f(z)
∥∥p

dμ(z)
)1/p

< ∞
}
.

We call it Lebesgue–Bochner space. If f is Bochner integrable with respect to μ, then
f ∈ L1((Z,A ,μ),B). Note that Lp((Z,A ,μ),R) corresponds to the standard Lp space
of real-valued functions. It is well known that Lp((Z,A ,μ),R) can be made into a Ba-
nach space by taking its quotient space Lp((Z,A ,μ),R)/N with respect to the kernel N
of its norm, N = {f : f = 0 a.e. [μ]}. This also holds for Lp((Z,A ,μ),B). In particular,
for N = {f : f = 0 a.e. [μ]}, the quotient space L2((Z,A ,μ),H)/N is a Hilbert space with
an inner product 〈·, ·〉μ defined by 〈f,g〉μ = ∫

Z 〈f(z),g(z)〉dμ(z). We adopt the following
convention throughout this paper.

CONVENTION 1. With slight abuse of notation, we write Lp((Z,A ,μ),B) for Lp((Z,

A ,μ),B)/N . We also write simply f = g for f and g with f = g a.e. [μ] unless we need to
specify the measure with respect to which the two maps agree almost everywhere. We say
simply “measurable” for “strongly measurable” and “integrable” for “Bochner integrable” in
the sense of Definition 2.2. We say “μ-integrable” in case we need to specify the underlying
measure μ associated with Bochner integration.
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For measure spaces (Z,A ,μ) and (W,B, ν), let A ⊗ B denote the product σ -field and
μ⊗ν denote a product measure on A ⊗B. For a (A ,B)-measurable mapping T : Z → W ,
we let μT−1 denote a measure on (W,B) defined by μT−1(B) = μ(T−1(B)), B ∈ B. For
a probability space (�,F ,P ) and a random element Z : (�,F ,P ) → (Z,A ,μ) with σ -
finite μ, we write pZ for its density dP Z−1/dμ with respect to μ.

The following two propositions are the basic building blocks of our methodological and
theoretical development to be presented later. They are also of interest in their own right.
The results are very new in statistics although there are familiar versions in the Lebesgue
integral theory. One may find versions of Proposition 2.1 for real-valued functions in stan-
dard textbooks; see Theorem 9.4.1 in [24], for example. For a Lebesgue integral version of
Proposition 2.2, see Example 4.1.6 in [11]. The proofs of the propositions are in the online
Supplementary Material S.4 and S.5.

PROPOSITION 2.1. Let (�,F ,P ) be a probability space and (Z,A ,μ) be a σ -finite
measure space. Let Z : � → Z be a random element such that P Z−1  μ and f : Z → B

be a measurable map such that E(‖f(Z)‖) < ∞. Then, it holds that E(f(Z)) = ∫
Z f(z) �

pZ(z) dμ(z).

PROPOSITION 2.2. Let (�,F ,P ) be a probability space and (Z,A ,μ) and (W,B, ν)

be σ -finite measure spaces. Let Z : � → Z and W : � → W be random elements such that
P(Z,W)−1  μ ⊗ ν. Assume that pW(w) ∈ (0,∞) for all w ∈ W . Let f : Z → B be a
measurable map such that E(‖f(Z)‖) < ∞. Define g : W → B by

g(w) =
∫
Z

f(z) � pZ,W(z,w)

pW(w)
dμ(z)

if w ∈ DW := {w ∈ W : ∫Z ‖f(z)‖pZ,W(z,w) dμ(z) < ∞} and g(w) = g0(w) if w /∈ DW ,
where g0 : W → B is an arbitrary measurable map. Then, g is measurable, and g(W) is a
version of E(f(Z)|W).

REMARK 2.2. Some earlier uses of Bochner integration may be found in the literature.
In [4], for example, Bochner integral is used to express the (conditional) mean of a B-valued
random element in probabilistic sense but not in terms of the densities of the involved random
elements as we have done in Propositions 2.1 and 2.2. In [35] and [39], as other examples,
Bochner integral is also introduced either as kernel mean in the context of reproducing kernel
Hilbert space or as the expected value of a Hilbertian random element but is not used to
develop a statistical methodology and its theory, as we have done in this paper.

2.3. Lebesgue–Bochner spaces of additive maps. We introduce some relevant spaces
of H-valued maps for the estimation of the additive model (1.1). For a probability space
(�,F ,P ) and a separable Hilbert space H, let Y : � →H be a response with E(‖Y‖2) < ∞
and X : � → [0,1]d a d-variate predictor vector. We assume P X−1  Lebd . For simplic-
ity, we write p, instead of pX, to denote its density dP X−1/dLebd . We also write pj for
dPX−1

j /dLeb1 and pjk for dP (Xj ,Xk)
−1/dLeb2.

The E(Y|Xj) and E(Y|X), respectively, are (X−1
j ([0,1] ∩ B(R)),B(H))- and (X−1([0,

1]d ∩ B(Rd)),B(H))-measurable maps by definition. In general, for a measurable space
(Z,A ), a random element V : � → H and a random element Z : � → Z , it holds that V
is (Z−1(A ),B(H))-measurable if and only if there exists a measurable map h : Z →H such
that V = h(Z); see Lemma 1.13 in [21], for example. Thus, there exist measurable maps
hj : [0,1] → H and h : [0,1]d → H such that E(Y|Xj) = hj (Xj ) and E(Y|X) = h(X). For
such measurable maps, we define E(Y|Xj = ·) = hj and E(Y|X = ·) = h.
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Let m : [0,1]d → H be defined by m(x) = m0 ⊕ ⊕d
j=1 mj (xj ). We note that m =

E(Y|X = ·). As the space where E(Y|X = ·) belongs, we consider

LH

2 (p) := L2(([0,1]d, [0,1]d ∩B
(
R

d),P X−1),H)
and endow LH

2 (p) with the norm ‖ · ‖2 defined by

‖f‖2
2 =

∫
[0,1]d

∥∥f(x)
∥∥2

dP X−1(x) =
∫
[0,1]d

∥∥f(x)
∥∥2

p(x) dx.

As subspaces of LH

2 (p), define

LH

2 (pj ) := {
f ∈ LH

2 (p) : ∃ a univariate map fj such that f(x) = fj (xj )
}
.

We note that LH

2 (pj ) depends on p only through its marginalization pj since, for f ∈ LH

2 (pj ),
it holds that ∫

[0,1]d
∥∥f(x)

∥∥2
p(x) dx =

∫ 1

0

∥∥fj (xj )
∥∥2

pj (xj ) dxj ,

where fj is a univariate map such that f(x) = fj (xj ). Let SH(p) be the sum-space defined by

SH(p) =
{

d⊕
j=1

fj : fj ∈ LH

2 (pj ),1 ≤ j ≤ d

}
⊂ LH

2 (p).

To define empirical versions of LH

2 (p), LH

2 (pj ) and SH(p), we let K : R → [0,∞) be a
baseline kernel function. Throughout this paper we assume that K vanishes on R \ [−1,1]
and satisfies

∫ 1
−1 K(u)du = 1. For a bandwidth h > 0, we write Kh(u) = K(u/h)/h. Define

a normalized kernel Kh(u, v) by

Kh(u, v) = Kh(u − v)∫ 1
0 Kh(t − v) dt

,

whenever
∫ 1

0 Kh(t − v) dt > 0, and we set Kh(u, v) = 0 otherwise. This type of kernel func-
tion has been used in the smooth backfitting literature; see [31, 46] and [26], for example.
Note that

∫ 1
0 Kh(u, v) du = 1 for all v ∈ [0,1].

Suppose that we observe (Yi ,Xi),1 ≤ i ≤ n which follow the model (1.1). We estimate
pj (xj ) and pjk(xj , xk) by

p̂j (xj ) = 1

n

n∑
i=1

Khj
(xj ,Xij ), p̂jk(xj , xk) = 1

n

n∑
i=1

Khj
(xj ,Xij )Khk

(xk,Xik),

respectively, where Xij denotes the j th entry of Xi . Here, we allow the bandwidths hj to be
different for different j . Because of the normalization in defining Kh(·, ·), it holds that∫ 1

0
p̂j (xj ) dxj = 1,

∫ 1

0
p̂jk(xj , xk) dxk = p̂j (xj ).

Let p̂ be the multivariate kernel density estimator of p defined by p̂(x) = n−1 ×∑n
i=1

∏d
j=1 Khj

(xj ,Xij ). The density estimator p̂ also has the marginalization properties
as p: ∫

[0,1]d−1
p̂(x) dx−j = p̂j (xj ),

∫
[0,1]d−2

p̂(x) dx−j,k = p̂jk(xj , xk)

for 1 ≤ j �= k ≤ d , where x−j and x−j,k denote the respective (d − 1)- and (d − 2)-vector
resulting from omitting xj and (xj , xk) in x = (x1, . . . , xd).
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Now, define a measure P̂ X−1 on [0,1]d ∩ B(Rd) by P̂ X−1(B) = ∫
B p̂(x) dx. With this

measure we define LH

2 (p̂) and LH

2 (p̂j ) as LH

2 (p) and LH

2 (pj ) with P X−1 in the definition of
LH

2 (p) being replaced by P̂ X−1. We endow LH

2 (p̂) with the norm ‖ · ‖2,n defined by

‖f‖2
2,n =

∫
[0,1]d

∥∥f(x)
∥∥2

dP̂ X−1(x) =
∫
[0,1]d

∥∥f(x)
∥∥2

p̂(x) dx.

Also, define an analogue of SH(p) by

SH(p̂) =
{

d⊕
j=1

fj : fj ∈ LH

2 (p̂j ),1 ≤ j ≤ d

}
⊂ LH

2 (p̂).

CONVENTION 2. It is often convenient to treat f in LH

2 (pj ) or in LH

2 (p̂j ) as a uni-
variate map and write f(xj ) instead of f(x). This convention is particularly useful in (2.4),
for example. Conversely, we may embed a univariate map f : [0,1] → H into LH

2 (pj ) or
LH

2 (p̂j ) by considering its version f∗j defined by f∗j (x) = f(xj ) for x ∈ [0,1]d . We take the

above convention throughout this paper. With this convention we may put mj into LH

2 (pj ) if
E(‖mj (Xj )‖2) < ∞ and m into SH(p) if all mj ∈ LH

2 (pj ).

2.4. Bochner integral equations and backfitting algorithm. In this section we describe
the estimation of the component maps mj in the model (1.1) using Bochner integrals.
Throughout this paper we assume that mj ∈ LH

2 (pj ) for all 1 ≤ j ≤ d . Furthermore, we
make the following assumptions:

CONDITION (A). For all 1 ≤ j �= k ≤ d and xj ∈ [0,1], pj (xj ) > 0,

∫ 1

0

p2
jk(xj , xk)

pk(xk)
dxk < ∞ and

∫
[0,1]2

p2
jk(xj , xk)

pj (xj )pk(xk)
dxj dxk < ∞.

We also use the following analogue of the condition (A) for p̂j and p̂jk :

CONDITION (S). For all 1 ≤ j �= k ≤ d and xj ∈ [0,1], p̂j (xj ) > 0,

∫ 1

0

p̂2
jk(xj , xk)

p̂k(xk)
dxk < ∞ and

∫
[0,1]2

p̂2
jk(xj , xk)

p̂j (xj )p̂k(xk)
dxj dxk < ∞.

We note that the condition (S) always holds if

c := max
1≤j≤d

h−1
j max

{
X

(1)
j ,1 − X

(n)
j , max

1≤i≤n−1

{(
X

(i+1)
j − X

(i)
j

)
/2
}}

< 1,

K is bounded and infu∈[−c,c] K(u) > 0, where X
(1)
j < · · · < X

(n)
j are the order statistics of

(Xij : 1 ≤ i ≤ n).
Under the condition (A) we also get that∫ 1

0

∥∥mk(xk)
∥∥pjk(xj , xk) dxk < ∞(2.1)

for all xj ∈ [0,1] and 1 ≤ j �= k ≤ d . The property (2.1) is a simple consequence of an
application of Hölder’s inequality. Then, by Proposition 2.2, E(mk(Xk)|Xj) = ∫ 1

0 mk(xk) �
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[pjk(Xj , xk)/pj (Xj )]dxk . Thus, by the definition of E(Y|Xj = ·) and from the model (1.1),
we get

E(Y|Xj = xj ) = m0 ⊕ mj (xj ) ⊕ ⊕
k �=j

∫ 1

0
mk(xk) � pjk(xj , xk)

pj (xj )
dxk,

1 ≤ j ≤ d.

(2.2)

For the identifiability of mj in the model, we put the constraints E(mj (Xj )) = 0, 1 ≤ j ≤ d .
By Proposition 2.1 the constraints are equivalent to∫ 1

0
mj (xj ) � pj (xj ) dxj = 0, 1 ≤ j ≤ d.(2.3)

The constraints entail m0 = E(Y).
Now, we describe the estimation of mj based on the Bochner integral equations at (2.2).

We estimate E(Y|Xj = xj ) by the Nadaraya–Watson-type estimator

m̃j (xj ) = [
p̂j (xj )

−1n−1]�
n⊕

i=1

Khj
(xj ,Xij ) � Yi

and E(Y) by the sample mean Ȳ = n−1 � ⊕n
i=1 Yi . Let � be defined by b1 � b2 = b1 ⊕

(−1 � b2). We solve the estimated system of Bochner integral equations

m̂j (xj ) = m̃j (xj ) � Ȳ � ⊕
k �=j

∫ 1

0
m̂k(xk) � p̂jk(xj , xk)

p̂j (xj )
dxk,

1 ≤ j ≤ d

(2.4)

for (m̂1, . . . , m̂d) in the space of d-tuple maps {(f1, . . . , fd) : fj ∈ LH

2 (p̂j ),1 ≤ j ≤ d}, subject
to the constraints ∫ 1

0
m̂j (xj ) � p̂j (xj ) dxj = 0, 1 ≤ j ≤ d.(2.5)

We note that the Bochner integrals at (2.4) are well defined for m̂j ∈ LH

2 (p̂j ) under the
condition (S).

In the next section we will show that there exists a solution (m̂j : 1 ≤ j ≤ d) of (2.4)
with m̂j ∈ LH

2 (p̂j ) and that their sum
⊕d

j=1 m̂j is unique, only under the condition (S).

The estimator of the regression map m = E(Y|X = ·) : [0,1]d → H is defined by m̂, where
m̂(x) = Ȳ ⊕⊕d

j=1 m̂j (xj ). For the estimator m̂ we will also prove that the constraints (2.5)
uniquely determine the component tuple (m̂j : 1 ≤ j ≤ d) under some additional assumption.
Our estimator of (m1, . . . ,md) is then the solution (m̂1, . . . , m̂d). We call m̂ and m̂j Bochner
smooth backfitting estimators, or B-SBF estimators in short, and the system of equations (2.4)
Bochner smooth backfitting equation, or B-SBF equation in short. Our approach guarantees
that m̂j (xj ) and m̂(x) belong to H, the space of the true values of the maps mj and m as well
as the values of Y.

To solve (2.4), we take an initial estimator (m̂[0]
1 , . . . , m̂[0]

d ) ∈ ∏d
j=1 LH

2 (p̂j ) that satisfies

the constraints (2.5). We update the estimator (m̂[r]
1 , . . . , m̂[r]

d ) for r ≥ 1 by

m̂[r]
j (xj ) = m̃j (xj ) � Ȳ � ⊕

k<j

∫ 1

0
m̂[r]

k (xk) � p̂jk(xj , xk)

p̂j (xj )
dxk

� ⊕
k>j

∫ 1

0
m̂[r−1]

k (xk) � p̂jk(xj , xk)

p̂j (xj )
dxk, 1 ≤ j ≤ d.

(2.6)
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Then, all subsequent updates (m̂[r]
1 , . . . , m̂[r]

d ) for r ≥ 1 are in
∏d

j=1 LH

2 (p̂j ) under the condi-

tion (S) and satisfy (2.5) due to the normalization property
∫ 1

0 Khj
(u, ·) du ≡ 1 on [0,1]. We

let m̂[r](x) = Ȳ ⊕⊕d
j=1 m̂[r]

j (xj ). We call (2.6) Bochner smooth backfitting algorithm, or B-
SBF algorithm in short. In the next section we will show that the B-SBF algorithm converges
always in ‖ · ‖2,n norm under the condition (S). We will also show that it converges in ‖ · ‖2
norm with probability tending to one under weak conditions on p, K and hj .

2.5. Practical implementation. Bochner integrals are defined in an abstract way. In this
subsection we present an innovative way of implementing the B-SBF algorithm using the
usual numerical integration techniques. The key idea is to use the fact that, for any measure
space (Z,A ,μ),

(Bochner)
∫
Z

f (z) � bdμ(z) = (Lebesgue)
∫
Z

f (z) dμ(z) � b,(2.7)

where f is a real-valued integrable function on Z and b is a constant in a Banach space.
Suppose that we choose

m̂[0]
j (xj ) = n−1 �

n⊕
i=1

w
[0]
ij (xj ) � Yi

with the weights w
[0]
ij (xj ) ∈ R satisfying

∫ 1
0 w

[0]
ij (xj )p̂j (xj ) dxj = 0. This is not a restriction

since we can take w
[0]
ij ≡ 0 for all 1 ≤ j ≤ d and 1 ≤ i ≤ n. Define

w
[r]
ij (xj ) = Khj

(xj ,Xij )

p̂j (xj )
− 1 − ∑

k<j

∫ 1

0
w

[r]
ik (xk)

p̂jk(xj , xk)

p̂j (xj )
dxk

− ∑
k>j

∫ 1

0
w

[r−1]
ik (xk)

p̂jk(xj , xk)

p̂j (xj )
dxk, r ≥ 1.

Then, by using (2.7) we may express (2.6) as follows.

m̂[r]
j (xj ) = n−1 �

n⊕
i=1

w
[r]
ij (xj ) � Yi , 1 ≤ j ≤ d.(2.8)

Thus, it turns out that the algorithm (2.6) reduces to a simple iteration scheme that updates
the weight functions w

[r]
ij based on Lebesgue integrals.

The equation (2.8) reveals that m̂[r]
j for r ≥ 1 are linear smoothers if the initial m̂[0]

j are.

It also demonstrates explicitly that the values of m̂[r]
j (xj ) for each xj belong to the space of

the values of Yi and mj (xj ). The idea of using (2.7) in the evaluation of Bochner integrals
appears to be important in the analysis of more general object-oriented data belonging to a
Banach space. One may develop a similar idea for nonparametric structural regression dealing
with various types of random objects.

3. Existence and algorithm convergence.

3.1. Projection operators. Our theory for the existence of the B-SBF estimators and the
convergence of the B-SBF algorithm rely heavily on the theory of projection operators that
map LH

2 (p) to LH

2 (pj ), or LH

2 (p̂) to LH

2 (p̂j ). Let LB

2 (p), LB

2 (p̂), LB

2 (pj ) and LB

2 (p̂j ) be
defined as LH

2 (p), LH

2 (p̂), LH

2 (pj ) and LH

2 (p̂j ) but with H being replaced by a Banach space
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B. We start with a proposition that characterizes LB

2 (pj ) and LB

2 (p̂j ), respectively, as closed
subspaces of LB

2 (p) and LB

2 (p̂). These topological properties in the case where B = H are
essential to defining relevant projection operators. We write B1 ≤ B2 if B1 is a closed sub-
space of a Banach space B2. Also, define a σ -field Bj = {[0,1]j−1 × Bj × [0,1]d−j : Bj ∈
[0,1] ∩ B(R)} on [0,1]d . We let B∗

j denote the smallest σ -field such that Bj ⊂ B∗
j and

{B ∈ [0,1]d ∩ B(Rd) : P X−1(B) = 1} ⊂ B∗
j . Lemma S.6 in the Supplementary Material as-

serts that LB

2 (pj ) = L2(([0,1]d,B∗
j ,P X−1),B) and LB

2 (p̂j ) = L2(([0,1]d,B∗
j , P̂ X−1),B).

The following proposition is immediate from this and the fact that a complete subspace of a
metric space is closed.

PROPOSITION 3.1. It holds that LB

2 (pj ) ≤ LB

2 (p) and LB

2 (p̂j ) ≤ LB

2 (p̂).

We define the operators πj : LH

2 (p) → LH

2 (pj ) by

πj (f)(xj ) =
∫
[0,1]d−1

f(x) � p(x)

pj (xj )
dx−j

for xj ∈ Dj(f) := {xj ∈ [0,1] : ∫[0,1]d−1 ‖f(x)‖p(x) dx−j < ∞} and simply let πj (f)(xj ) = 0
for xj /∈ Dj(f). Likewise, we define the operators π̂j : LH

2 (p̂) → LH

2 (p̂j ) with p and pj being
replaced by p̂ and p̂j , respectively. The following proposition demonstrates that both πj and
π̂j are projection operators on the respective spaces.

PROPOSITION 3.2. If pj (xj ) > 0 for all xj ∈ [0,1], then, πj (f) ∈ LH

2 (pj ) and f −
πj (f) ⊥ LH

2 (pj ) for all f ∈ LH

2 (p). Also, if p̂j (xj ) > 0 for all xj ∈ [0,1], then, π̂j (f) ∈
LH

2 (p̂j ) and f − π̂j (f) ⊥ LH

2 (p̂j ) for all f ∈ LH

2 (p̂).

For Banach spaces B1 and B2, let L(B1,B2) denote the space of all bounded linear op-
erators that map B1 to B2. We write simply L(B) for L(B,B). Let πj |LH

2 (pk) : LH

2 (pk) →
LH

2 (pj ) denote the operator πj restricted to LH

2 (pk) for k �= j . Under the condition (A),
πj |LH

2 (pk) are integral operators with the kernel kjk : [0,1]d × [0,1]d → L(H) defined by

kjk(u,v)(h) = h � pjk(uj , vk)

pj (uj )pk(vk)
.

To see this, we note that the condition (A) implies
∫
[0,1]d−1 ‖fk(x)‖p(x) dx−j < ∞ for all

xj ∈ [0,1] if fk ∈ LH

2 (pk), so that Dj(fk) = [0,1] for all fk ∈ LH

2 (pk). Thus, it holds that

πj (fk)(uj ) =
∫
[0,1]d

fk(x) � pjk(uj , xk)

pj (uj )pk(xk)
dP X−1(x)

=
∫
[0,1]d

kjk(u,x)
(
fk(x)

)
dP X−1(x).

Similarly, under the condition (S), π̂j |LH

2 (p̂k) are integral operators with the kernel k̂jk :
[0,1]d × [0,1]d → L(H) defined by k̂jk(u,v)(h) = h � p̂jk(uj ,vk)

p̂j (uj )p̂k(vk)
.

3.2. Compactness of projection operators. In the case where H = R, a common ap-
proach to establishing the existence of the SBF estimators and the convergence of the SBF
algorithm is to prove that πj |LH

2 (pk) or π̂j |LH

2 (p̂k) for all 1 ≤ j �= k ≤ d are compact oper-
ators; see [31] or a more recent [33], for example. Indeed, it follows from Proposition A.4.2
in [2] that if πj |LH

2 (pk) for all 1 ≤ j �= k ≤ d are compact, then

SH(p) ≤ LH

2 (p).(3.1)
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Moreover, according to Corollary 4.3 in [45], (3.1) implies

‖T ‖L(SH(p)) < 1,(3.2)

where T is an operator in L(SH(p)) defined by T = (I − πd) ◦ · · · ◦ (I − π1) and I is the
identity operator. The same properties hold for SH(p̂) and for T̂ , defined in the same way as
T with πj being replaced by π̂j , if π̂j |LH

2 (p̂k) are compact. The two properties at (3.1) and
(3.2) and their empirical versions are essential to the existence of the B-SBF estimators and
the convergence of the B-SBF algorithm.

The compactness of πj |LH

2 (pk) or π̂j |LH

2 (p̂k) has been unknown when H �= R. Some
sufficient conditions for the compactness of integral operators, defined on Lebesgue–Bochner
spaces of “μ-measurable maps” were studied by [5] and [44], among others. But the case
for “strongly measurable maps” which are relevant in statistical applications and on which
our theoretical development is based, has never been studied. Below we present two general
theorems in the latter case. The first one gives a sufficient condition for compactness, and
the second is about noncompactness for certain integral operators. The two theorems have
important implications in our theoretical development, while they are also of interest in their
own right. Their proofs are in the online Supplementary Material S.7 and S.8.

In the following two theorems, (Z,A ,μ) and (W,B, ν) are measure spaces, and B1
and B2 are Banach spaces. We denote by ‖ · ‖L(B1,B2) the operator norm of L(B1,B2). Let
1 < p,q < ∞ satisfy p−1 +q−1 = 1. Let k : Z×W → L(B1,B2) be a measurable map such
that

∫
Z×W ‖k(z,w)‖q

L(B1,B2)
dμ ⊗ ν(z,w) < ∞. For f ∈ Lp((Z,A ,μ),B1), define L(f) :

W → B2 by

(3.3) L(f)(w) =
⎧⎨
⎩
∫
Z

k(z,w)
(
f(z)

)
dμ(z) if w ∈ DW ,

L0(f)(w) otherwise,

where DW = {w ∈ W : ∫Z ‖k(z,w)‖q
L(B1,B2)

dμ(z) < ∞} and L0 is any linear map from
Lp((Z,A ,μ),B1) to {g : W → B2|g is measurable}. Finally, we let C(B1,B2) denote the
space of all compact operators from B1 to B2.

THEOREM 3.1. The mapping f �→ L(f) with L(f) at (3.3) defines a bounded linear op-
erator L : Lp((Z,A ,μ),B1) → Lq((W,B, ν),B2). Furthermore, if range(k) ⊂ C(B1,B2),
then L is compact.

One may compare the above theorem with those in Lebesgue integral theory; see Propo-
sition 4.7 in [8], for example. In the application of Theorem 3.1 to L = πj |LH

2 (pk) or to
L = π̂j |LH

2 (p̂k) with k = kjk or k = k̂jk , respectively, we may prove that kjk(u,v) and
k̂jk(u,v) belong to C(H,H) for all u,v ∈ [0,1]d under the conditions (A) and (S), respec-
tively, if H is finite dimensional. Furthermore, kjk and k̂jk are measurable since C(H,H) is
separable, according to a lemma in [15].

COROLLARY 3.1. Suppose that H is finite dimensional. Then, πj |LH

2 (pk) and π̂j |
LH

2 (p̂k) for all 1 ≤ j �= k ≤ d are compact under the conditions (A) and (S), respectively.

At the beginning we thought that πj |LH

2 (pk) and π̂j |LH

2 (p̂k) might be also compact when
H is infinite dimensional. However, we find that the conclusion of Corollary 3.1 is not valid
for infinite dimensional H which follows from an application of the following theorem:
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THEOREM 3.2. Suppose that μ(Z) < ∞. Let κ :Z ×W →R be a measurable function
such that

∫
Z×W |κ(z,w)|q dμ ⊗ ν(z,w) < ∞ and 0 <

∫
W | ∫Z κ(z,w) dμ(z)|q dν(w) < ∞.

Let C ∈ L(B1,B2) be a noncompact operator. Then, L at (3.3) with k(z,w)(h) = κ(z,w) �
C(h) defines a bounded linear noncompact operator.

For the application of Theorem 3.2 to πj |LH

2 (pk) and π̂j |LH

2 (p̂k), we take κjk : [0,1]d ×
[0,1]d → R such that κjk(u,v) = pjk(uj , vk)/(pj (uj )pk(vk)) for κ in the theorem, and the
identity operator IH : H → H for C. Note that IH is noncompact since the unit closed balls
in infinite-dimensional Hilbert spaces are not compact. Also, it holds that

0 <

∫
[0,1]d

∣∣∣∣
∫
[0,1]d

κjk(u,v) dP X−1(u)

∣∣∣∣2 dP X−1(v) = 1 < ∞
under the condition (A). The same holds for κ̂jk defined by κ̂jk(u,v) = p̂jk(uj , vk)/

(p̂j (uj )p̂k(vk)) under the condition (S). Therefore, surprisingly we have the following corol-
lary of Theorem 3.2:

COROLLARY 3.2. Suppose that H is infinite dimensional. Then, for all 1 ≤ j �= k ≤ d ,
πj |LH

2 (pk) and π̂j |LH

2 (p̂k) are noncompact under the conditions (A) and (S), respectively.

3.3. Existence of B-SBF estimators. Noncompactness of πj |LH

2 (pk) and π̂j |LH

2 (p̂k)

raises a major difficulty in proving (3.1) and (3.2) and their empirical versions since the
earlier proofs of them for the case H = R use the compactness of the respective projection
operators. To tackle the difficulty, we rely on the following equivalence result, which is a di-
rect consequence of applying Lemma S.7 in the Supplementary Material and Proposition 3.2.
We state the result only for the empirical versions SH(p̂) and T̂ , but an obvious analogue
holds for SH(p) and T as well. Let SH(p̂) denote the closure of SH(p̂).

PROPOSITION 3.3. Assume that p̂j (xj ) > 0 for all xj ∈ [0,1] and 1 ≤ j ≤ d . Then, the
followings are equivalent: (a) SH(p̂) ≤ LH

2 (p̂); (b) ‖T̂ ‖L(SH(p̂))
< 1; (c) there exists ĉ > 0

such that, for all f ∈ SH(p̂), there exist f1 ∈ LH

2 (p̂1), . . . , fd ∈ LH

2 (p̂d) satisfying
⊕d

j=1 fj = f

and
∑d

j=1 ‖fj‖2
2,n ≤ ĉ‖f‖2

2,n.

The above proposition does not say that one of (a)–(c) is true which has never been known.
With an innovative use of Corollary 3.1, we are able to show that the “compatibility” condi-
tion (c) for sum-maps holds.

THEOREM 3.3. Assume that the condition (S) holds. Then, the statements in Proposi-
tion 3.3 are true.

We are now ready to discuss the existence of the B-SBF estimators. For this we consider
an objective functional F̂ : SH(p̂) →R defined by

F̂ (f) =
∫
[0,1]d

n−1
n∑

i=1

∥∥Yi � f(x)
∥∥2 ·

d∏
j=1

Khj
(xj ,Xij ) dx.

The map F̂ is well-defined since F̂ (f) ≤ 2(max1≤i≤n ‖Yi‖2 +‖f‖2
2,n) < ∞. Now, the Gâteaux

differential at f ∈ SH(p̂) is given by

(3.4) DF̂ (f)(g) := −2
∫
[0,1]d

n−1
n∑

i=1

〈
Yi � f(x),g(x)

〉 d∏
j=1

Khj
(xj ,Xij ) dx.
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Clearly, DF̂ (f) : SH(p̂) →R is a linear operator. It is also bounded, which we may verify by
using Hölder’s inequality. Hence, F̂ is Gâteaux differentiable.

THEOREM 3.4. Assume that the condition (S) holds. Then, there exists a unique solution
m̂ ∈ SH(p̂) of (2.4). Furthermore, if p̂(x) > 0 for all x ∈ [0,1]d , then there exists a unique
decomposition m̂ = Ȳ ⊕ m̂1 ⊕ · · · ⊕ m̂d with m̂j ∈ LH

2 (p̂j ) that satisfy (2.5).

REMARK 3.1. In the proof of the second part of Theorem 3.4 in the online Supplemen-
tary Material, it is worthwhile to note that

⊕d
j=1 ĝj = 0 a.e. [P̂ X−1] does not always imply⊕d

j=1 ĝj = 0 a.e. [P̂X−1
j ⊗ P̂ X−1

−j ] under the condition (S) only. Thus, one can not argue

directly from the condition (S) and (2.5) that 0 = ∫
[0,1]d−1

⊕d
k=1 ĝk(xk) � p̂X−j

(x−j ) dx−j =
ĝj (xj ) a.e. [P̂X−1

j ].
3.4. Convergence of B-SBF algorithm. In this subsection we establish the convergence

of the B-SBF algorithm (2.6). We first consider convergence in the empirical norm, ‖ · ‖2,n,
for fixed n and given observations (Xi ,Yi),1 ≤ i ≤ n. Then, we study convergence in ‖ · ‖2
norm, where we let n diverge to infinity. We note that all works in the smooth backfitting
literature treated only the latter asymptotic version for H = R. The following theorem is a
nonasymptotic version of the convergence of the B-SBF algorithm.

THEOREM 3.5. Assume that the condition (S) holds. Then, ‖T̂ ‖L(SH(p̂)) < 1, and there
exists ĉ′ > 0 such that∫

[0,1]d
∥∥m̂(x) � m̂[r](x)

∥∥2
p̂(x) dx ≤ ĉ′‖T̂ ‖2r

L(SH(p̂))
for all r ≥ 0.

We now turn to the asymptotic version of the convergence of the B-SBF algorithm in ‖ · ‖2
norm. For this we need the following additional conditions:

CONDITION (B).

(B1) E(‖Y‖α) < ∞ for some α > 2 and E(‖Y‖2|Xj = ·) is bounded on [0,1] for 1 ≤
j ≤ d .

(B2) p is bounded away from zero and infinity on [0,1]d , and pjk are continuous on
[0,1]2 for 1 ≤ j �= k ≤ d .

(B3) K is Lipschitz continuous and
∫ 0
−1 K(u)du ∧ ∫ 1

0 K(u)du > 0.
(B4) hj = o(1) as n → ∞, and there exist 0 < cj < (α − 2)/α with cj + ck < 1 for all

1 ≤ j �= k ≤ d such that ncj hj are bounded away from zero for all 1 ≤ j ≤ d .

(B5) max1≤j≤d ‖m̂[0]
j ‖2

2,n < C for an absolute constant 0 < C < ∞.

THEOREM 3.6. Assume that the condition (B) holds. Then, there exist constants c > 0
and γ ∈ (0,1) such that

lim
n→∞P

(
max

1≤j≤d

∫ 1

0

∥∥m̂j (xj ) � m̂[r]
j (xj )

∥∥2
pj (xj ) dxj ≤ cγ r for all r ≥ 0

)
= 1.

Theorem 3.6 is about the L2-convergence of the B-SBF algorithm, like all other re-
sults in the literature on smooth backfitting for H = R. Here, we add an almost every-
where convergence result which is also of interest. We note that the theorem implies∑∞

r=1
∫ 1

0 ‖m̂j (xj ) � m̂[r]
j (xj )‖2pj (xj ) dxj < ∞ with probability tending to one. This entails

that, with probability tending to one,
∑∞

r=1 ‖m̂j (xj )�m̂[r]
j (xj )‖2pj (xj ) < ∞ a.e. xj ∈ [0,1]

with respect to Leb1, which gives the following corollary:
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COROLLARY 3.3. Under the condition of Theorem 3.6,

lim
n→∞P

(
m̂[r]

j (xj ) → m̂j (xj ) as r → ∞ a.e. xj ∈ [0,1] w.r.t. Leb1
) = 1

for 1 ≤ j ≤ d .

4. Asymptotic properties.

4.1. Rates of convergence. Below we collect the assumptions for our asymptotic theory:

CONDITION (C).

(C1) E(‖ε‖α) < ∞ for some α > 5/2 and E(‖ε‖2|Xj = ·) is bounded on [0,1] for 1 ≤
j ≤ d .

(C2) The true maps mj for 1 ≤ j ≤ d are twice continuously Fréchet differentiable on
[0,1].

(C3) The condition (B2) holds. Also, pjk are C1 on [0,1]2 for 1 ≤ j �= k ≤ d .
(C4) The condition (B3) holds. Also,

∫ 1
−1 uK(u)du = 0.

(C5) n1/5hj → αj for some constant αj > 0, 1 ≤ j ≤ d .

The conditions on ε and the Fréchet differentiability of the maps mj : [0,1] → H, re-
spectively, are natural generalizations of the usual conditions on Euclidean errors and the
smoothness assumptions on real-valued functions. In the theory we need functional calculus
for Fréchet derivatives and Bochner integrals. Other assumptions on the baseline kernel K

and the density p are typical in the kernel smoothing theory.
Let Ij = [2hj ,1 − 2hj ] and I c

j denote its complement in [0,1]. The following theorem
demonstrates that our estimators achieve the univariate error rates:

THEOREM 4.1. Assume that the condition (C) holds. Then, for 1 ≤ j ≤ d , (i) ‖m̂j (xj )�
mj (xj )‖ = Op(n−2/5) for xj ∈ Ij and ‖m̂j (xj ) � mj (xj )‖ = Op(n−1/5) for xj ∈ I c

j ;

(ii)
∫
Ij

‖m̂j (xj ) � mj (xj )‖2pj (xj ) dxj = Op(n−4/5) and
∫ 1

0 ‖m̂j (xj ) � mj (xj )‖2 ×
pj (xj ) dxj = Op(n−3/5); (iii) supxj∈Ij

‖m̂j (xj ) � mj (xj )‖ = Op(n−2/5√logn) and

supxj∈[0,1] ‖m̂j (xj ) � mj (xj )‖ = Op(n−1/5).

4.2. Asymptotic distribution and asymptotic independence. Recall that, for a mean-zero
random element Z : � →H, its covariance operator C :H→H is characterized by〈

C(h),g
〉 = E

(〈Z,h〉 · 〈Z,g〉), h,g ∈ H.

Also, recall that a H-valued random element Z is called Gaussian if 〈Z,h〉 is normally dis-
tributed for any h ∈ H. We denote a Gaussian random element with mean zero and covariance
operator C, by G(0,C).

Let {el}Ll=1 be an orthonormal basis of H, where we allow L = ∞ for infinite-dimensional
H. Define

aj,kl(xj ) = α−1
j pj (xj )

−1
∫ 1

−1
K2(u) du · E

(〈ε, ek〉 · 〈ε, el〉|Xj = xj

)
for αj defined at (C5). Let Cj,xj

:H →H be a covariance operator characterized by

〈
Cj,xj

(h), ek

〉 = L∑
l=1

〈h, el〉 · aj,kl(xj ).

Define m̃A
j (xj ) = [p̂j (xj )

−1n−1]�⊕n
i=1 Khj

(xj ,Xij )� εi . The following theorem plays an
important role in determining the distributions of m̂j (xj ):
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THEOREM 4.2. Fix x = (x1, . . . , xd) ∈ (0,1)d . Assume that the condition (C5) holds,
that K is bounded, and that, for all 1 ≤ j �= k ≤ d , (i) E(‖ε‖α) < ∞ for some α > 2,
E(‖ε‖α |Xj = ·),E(〈ε, el〉 · 〈ε, el′ 〉 |Xj = ·,Xk = ·) and pjk are bounded on a neighbor-
hood of xj , of (xj , xk) and of (xj , xk), respectively, and E(〈ε, el〉 · 〈ε, el′ 〉 |Xj = ·), for all l

and l′, are continuous on a common neighborhood of xj ; (ii) pj is continuous on a neigh-
borhood of xj and pj (xj ) > 0. Then, (n2/5 � m̃A

j (xj ) : 1 ≤ j ≤ d) converges in distribution
to (G(0,Cj,xj

) : 1 ≤ j ≤ d), where G(0,Cj,xj
) are independent.

Now, we are ready to present a theorem that demonstrates the asymptotic distribution and
independence of our estimators of the component maps mj . In addition to (C), we need the
following condition:

CONDITION (D). For all l, l′ and 1 ≤ j �= k ≤ d , the followings hold:

(D1) E(‖ε‖α |Xj = ·) and E(〈ε, el〉 · 〈ε, el′ 〉 |Xj = ·,Xk = ·) are bounded on [0,1] and
[0,1]2, respectively, for the constant α in (C1), and E(〈ε, el〉 · 〈ε, el′ 〉 |Xj = ·) are continuous
on [0,1].

(D2) ∂p(x)/∂xj exist and are bounded on [0,1]d .

To state the theorem, we need to introduce more terminologies. For a twice Fréchet differ-
entiable f : [0,1] → H, we let Df : [0,1] → L(R,H) denote its first Fréchet derivative and
D2f : [0,1] → L(R,L(R,H)) its second Fréchet derivative. Let p′

j denote the first derivative
of pj and define

δj (xj ) =
[p′

j (xj )

pj (xj )
·
∫ 1

−1
u2K(u)du

]
� Dmj (xj )(1),

δjk(xj , xk) =
[
∂pjk(xj , xk)/∂xk

pjk(xj , xk)
·
∫ 1

−1
u2K(u)dt

]
� Dmk(xk)(1),

�̃j (xj ) = α2
j � δj (xj ) ⊕ ⊕

k �=j

∫ 1

0
δjk(xj , xk) �

[
α2

k

pjk(xj , xk)

pj (xj )

]
dxk.

Let (�1, . . . ,�d) ∈ ∏d
j=1 LH

2 (pj ) be a solution of the system of equations

�j (xj ) = �̃j (xj ) � ⊕
k �=j

∫ 1

0
�k(xk) � pjk(xj , xk)

pj (xj )
dxk, 1 ≤ j ≤ d(4.1)

satisfying the constraints

(4.2)
∫ 1

0
�j (xj ) � pj (xj ) dxj = α2

j �
∫ 1

0
δj (xj ) � pj (xj ) dxj , 1 ≤ j ≤ d.

Below in Theorem 4.3, we prove that the equation (4.1) subject to (4.2) has a unique solution.
Define cj (xj ) = 1

2

∫ 1
−1 u2K(u)du � D2mj (xj )(1)(1) and �j (xj ) = α2

j � cj (xj ) ⊕ �j (xj ).

THEOREM 4.3. Assume that the conditions (C) and (D) hold. Then, the solution of (4.1)
subject to (4.2) is unique. Furthermore, for a.e. fixed x ∈ (0,1)d , (n2/5 � (m̂j (xj )�mj (xj )) :
1 ≤ j ≤ d) converges in distribution to (�j (xj )⊕ G(0,Cj,xj

) : 1 ≤ j ≤ d), where �j (xj )⊕
G(0,Cj,xj

) are independent. Moreover, n2/5 � (m̂(x) � m(x)) converges in distribution to⊕d
j=1 �j (xj ) ⊕ G(0,

∑d
j=1 Cj,xj

).
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Let m̂ora
j be the oracle estimator of mj under the knowledge of all other component maps

mk, k �= j . Using Theorem 4.2, we may prove

n2/5 � (
m̂ora

j (xj ) � mj (xj )
) d−→ α2

j � [
δj (xj ) ⊕ cj (xj )

]⊕ G(0,Cj,xj
).

Therefore, m̂j and m̂ora
j have the same asymptotic covariance operator but differ in their

asymptotic biases. The difference of asymptotic biases is [α2
j � δj (xj )]��j (xj ) =: βj (xj ),

and it holds that
∫ 1

0 βj (xj ) � pj (xj ) dxj = 0 by (4.2).

5. Numerical study. In the simulation and real data examples presented here, we took
Epanechnikov kernel K(u) = (3/4)(1 − u2)I (|u| < 1). We chose the initial estimators

m̂[0]
j (xj ) = n−1 �

n⊕
i=1

(
Khj

(xj ,Xij )

p̂j (xj )
− 1

)
� Yi =: n−1 �

n⊕
i=1

w
[0]
ij (xj ) � Yi ,

so that they satisfy
∫ 1

0 w
[0]
ij (xj )p̂j (xj ) dxj = 0. However, any other choices with

∫ 1
0 m̂[0]

j (xj )�
p̂j (xj ) dxj = 0 would work. For example, one may choose m̂[0]

j ≡ 0 for all 1 ≤ j ≤ d . For
the convergence criterion of the B-SBF algorithm, we set

max
1≤j≤d

∫ 1

0

∥∥m̂[r]
j (xj ) � m̂[r−1]

j (xj )
∥∥2

p̂j (xj ) dxj < 10−4.

With the above criterion we found that the B-SBF algorithm converged within eight itera-
tions in all the cases of the numerical studies to be presented in Sections 5.2–5.4. The R
codes used in this numerical study are available in a Github repository at https://github.com/
jeong-min-jeon/Add-Reg-Hilbert-Res.

5.1. Bandwidth selection. Searching for the bandwidths hj on a full-dimensional grid
is not feasible when d is large. One way often adopted in multivariate smoothing is to set
h1 = · · · = hd and perform a one-dimensional grid search. Obviously, this is not desirable
since it ignores different degrees of smoothness for different target functions. Recently, [16]
and [17] used a method called “bandwidth shrinkage”. The method first selects ĥj for each
j that is good for estimating marginal regression function of Xj and then tunes c > 0 for
(cĥ1, . . . , cĥd). The latter method also searches bandwidths on a restricted class of options.

Here, we suggest a new scheme called “CBS” (coordinate-wise bandwidth selection) based
on cross-validation. We used the CBS method, as described below, in our numerical study.
Let CV(h1, . . . , hd) denote a cross-validatory criterion for bandwidths h1, . . . , hd .

CBS ALGORITHM. Take a grid G = ∏d
j=1{gj1, . . . , gjLj

}. Choose an initial bandwidth

h
(0)
j from {gj1, . . . , gjLj

} for 1 ≤ j ≤ d . For t = 1,2, . . ., find

h
(t)
j = arg min

gj∈{gj1,...,gjLj
}
CV

(
h

(t)
1 , . . . , h

(t)
j−1, gj , h

(t−1)
j+1 , . . . , h

(t−1)
d

)
, 1 ≤ j ≤ d.

Repeat the procedure until (h
(t)
1 , . . . , h

(t)
d ) = (h

(t−1)
1 , . . . , h

(t−1)
d ).

We chose G = ∏d
j=1{aj + 0.01 × k : k = 0, . . . ,20} in our simulation and G = ∏d

j=1{aj +
0.005 × k : k = 0, . . . ,100} in the real data examples, for some small values aj that satisfy
c < 1 for c defined in Section 2.4 and used a 10-fold cross-validation. Let

T = min
{
t ≥ 1 : (h(t)

1 , . . . , h
(t)
d

) = (
h

(t−1)
1 , . . . , h

(t−1)
d

)}
.

https://github.com/jeong-min-jeon/Add-Reg-Hilbert-Res
https://github.com/jeong-min-jeon/Add-Reg-Hilbert-Res
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We note that T is finite since the grid size is finite. In our numerical work the algorithm
converged very fast. In all cases T ≤ 4. We also note that (h

(T )
1 , . . . , h

(T )
d ) is a coordinate-

wise minimum that satisfies

CV
(
h

(T )
1 , . . . , h

(T )
d

) = min
j

min
gj

CV
(
h

(T )
1 , . . . , h

(T )
j−1, gj , h

(T )
j+1, . . . , h

(T )
d

)
.

A bandwidth selected by the CBS algorithm does not always match with a bandwidth selected
by the full-dimensional grid search. However, we found that they coincided in most cases
in our numerical study; see Table 1. Based on this observation, we suggest to consider the
CBS algorithm in high dimension as a promising solution to the infeasibility of the full-
dimensional search.

5.2. Simulation study with density response. We considered the case where Y(·) is a
probability density on a domain U ∈ B(R) such that Y := [Y(·)] ∈ B2(U,U ∩ B(R),Leb1).
In this case, simply writing wi,j,r (xj ) = n−1w

[r]
ij (xj ) for brevity, we get

(5.1)

m̂[r]
j (xj ) =

[(∫
U

n∏
i=1

Yi(u)wi,j,r (xj ) du

)−1 n∏
i=1

Yi(·)wi,j,r (xj )

]
,

Ȳ ⊕
d⊕

j=1

m̂[r]
j (xj ) =

[(∫
U

n∏
i=1

Yi(u)
n−1+∑d

j=1 wi,j,r (xj )
du

)−1

×
n∏

i=1

Yi(·)n−1+∑d
j=1 wi,j,r (xj )

]
,

whenever the denominators are nonzero and finite. We predicted [Y(·)] at X = x for an out-
of-sample (X, Y (·)) by Ȳ ⊕ ⊕d

j=1 m̂[r]
j (xj ) given in the above formula (5.1). We note that

TABLE 1
Average computing times in minutes with a personal PC, Inter(R) Xeon(R) CPU 23-1245 v3@3.50 GHz, and

percentages of the cases where the bandwidth from the CBS algorithm (CBS) coincided with that from the
full-dimensional search (Full), based on M = 100 pseudo samples. MSPE ratio was (MSPE with ‘Full’

bandwidth)/(MSPE with ‘CBS’ bandwidth). In the computation of MSPE ratio according to (5.5), the cases
where CBS = Full were deleted

Computing time

Scenario d n CBS Full Ratio CBS = Full MSPE Ratio

Additive 2 100 0.02 0.07 3.50 97% 1.00
(5.2) 400 0.38 1.29 3.39 99% 0.99

3 100 0.06 2.71 45.17 94% 1.02
400 1.41 65.12 46.18 97% 1.00

Non-Add. I 2 100 0.02 0.07 3.50 100% –
(5.3) 400 0.39 1.29 3.31 100% –

3 100 0.06 2.72 45.33 94% 0.98
400 1.38 66.16 47.94 93% 0.99

Non-Add. II 2 100 0.02 0.06 3.00 91% 1.00
(5.4) 400 0.34 1.17 3.44 98% 1.01

3 100 0.05 2.34 46.80 83% 1.00
400 1.27 58.62 46.16 99% 1.00
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the denominators are nonzero and finite for all w
[r]
ij (xj ) ∈ R if Yi(·)’s are essentially bounded

away from zero and infinity on U with Leb1(U) < ∞. In this simulation study our focus
is to demonstrate that: (i) the CBS algorithm for bandwidth selection works well, and (ii)
the prediction based on the proposed estimators m̂j and m̂ is valid for small sample sizes,
avoiding the curse of dimensionality.

We generated Y(·) on U = [−1/2,1/2], according to the following formula:

Y(·) =
(∫

U

d∏
j=1

fj (Xj )(u)ε(u) du

)−1

·
d∏

j=1

fj (Xj )(·)ε(·),(5.2)

where fj (xj )(·) : U → R are some measurable functions, ε is an error process and Xj are
uniform [0,1] random variables. Specifically, we considered d = 2 and d = 3. We took
fj (xj )(u) = − exp(−jx

j
j uj ) for 1 ≤ j ≤ 3 and ε(u) = exp(−Zu4) with Z being a uni-

form [−1,1] random variable. By considering the operations ⊕ and � for the quotient space
H= B2(U,U ∩B(R),Leb1) and the equivalence class [Y(·)] as introduced in Section 2, we
clearly see that (5.2) falls into the additive model (1.1).

For a sensitivity analysis we also considered two nonadditive models for each d . For the
first nonadditive scenario we took

(5.3)

Y(u) =
∏2

j=1 fj (Xj )(u) · f12(X1,X2)(u) · ε(u)∫ 1/2
−1/2

∏2
j=1 fj (Xj )(u) · f12(X1,X2)(u) · ε(u) du

(d = 2),

Y (u) =
∏3

j=1 fj (Xj )(u) · f123(X1,X2,X3)(u) · ε(u)∫ 1/2
−1/2

∏3
j=1 fj (Xj )(u) · f123(X1,X2,X3)(u) · ε(u) du

(d = 3),

where fj and ε are as defined in the additive scenario, f12(X1,X2)(u) = exp(−X1X2u
2) and

f123(X1,X2,X3)(u) = exp[−(X1X2 + X1X3 + X2X3)u
2].

For the second nonadditive scenario we considered

(5.4)

Y(u) = log((X1/2 + X2/2)u + 2)ε(u)∫ 1/2
−1/2 log((X1/2 + X2/2)u + 2)ε(u) du

(d = 2),

Y (u) = log((X1/2 + X2/2 + X3/2)u + 2)ε(u)∫ 1/2
−1/2 log((X1/2 + X2/2 + X3/2)u + 2)ε(u) du

(d = 3).

The latter two models correspond to single-index models of the form Y = m(
∑d

j=1 θjXj ) ⊕
ε.

We repeatedly generated a training sample of size n and a test sample of size N = 100
for M = 100 times. As a measure of performance, we computed the mean squared prediction
error (MSPE) defined by

(5.5) MSPE = M−1
M∑

m=1

N−1
N∑

i=1

∥∥[Y test(m)
i (·)]� [

Ŷ
test(m)
i (·)]∥∥2

,

where Y
test(m)
i (·) is the ith response in the mth test sample and Ŷ

test(m)
i (·) is the prediction of

Y
test(m)
i (·) based on the mth training sample. We note that∥∥[Y test(m)

i (·)]� [
Ŷ

test(m)
i (·)]∥∥2

= 1

2

∫
[−1/2,1/2]2

[
log

(
Y

test(m)
i (u)

Y
test(m)
i (u′)

)
− log

(
Ŷ

test(m)
i (u)

Ŷ
test(m)
i (u′)

)]2
dudu′.
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Table 1 suggests that the CBS algorithm is much faster than the full-dimensional grid
search, especially for higher dimension. The former would also win the latter by wider margin
as the grid G gets denser. The table also reveals that the bandwidths obtained by the CBS
algorithm and by the full-dimensional search matched in most cases. This might be due to
the fact that CV(h1, . . . , hd) is coordinate-wise convex as is often the case in practice. Even
in the case where the two were different, the CBS bandwidths gave comparable prediction
results to the full-dimensional grid search, as the ratios in the last column of the table show.

In the simulation we also compared the prediction based on our approach with those based
on full-dimensional estimators. We considered the functional Nadaraya–Watson (NW) esti-
mator proposed by [9, 12] and [13] and the kernel-based functional k-nearest neighbor (k-
NN) estimator proposed by [27] and [28]. For the NW estimator we used Epanechnikov
kernel and tuned bandwidth on {b + 0.001 × l : 1 ≤ l ≤ 200} for some small b. For the k-
nearest neighbor estimator we selected k from {1,2, . . . ,30}. We chose both the bandwidth
and k by 10-fold cross-validation. Table 2 demonstrates that the proposed method won these
methods, except in the lower dimensional (d = 2) nonadditive scenario (5.3). As the dimen-
sion gets higher in the nonadditive models, the SBF estimator deteriorated much less than the
full-dimensional competitors, so that in the case d = 3 it won the latter two by large margins.

We conducted additional simulation with d = 4 and compared the performance of our
proposal with those of oracle estimators that were based on the knowledge of some of the
true component maps. The performance of the B-SBF was comparable with those of the
oracle estimators; see the online Supplementary Material S.18 for more details.

5.3. Real data analysis with functional response. Predicting electricity consumption
pattern is, nationally, an important issue because it may identify peak demand that can
cause blackout. Recently, the Korea meteorological administration released a report that
meteorological information can be useful in the prediction of national electricity consump-
tion. Motivated by this report, we considered function-on-scalar regression taking electric-
ity consumption trajectory as the response and some meteorological variables as predic-
tors. Specifically, we took the monthly average of daylong home electricity consumption
trajectories as the response, and the monthly average temperatures and amounts of clouds

TABLE 2
MSPE, multiplied by 103, of the proposed method, the functional Nadaraya–Watson and the kernel-based

functional k-NN methods

Proposed Functional Kernel-based
Scenario d n with CBS Nadaraya–Watson functional k-NN

Additive 2 100 0.1422 0.2573 0.2660
(5.2) 400 0.1020 0.1310 0.1377

3 100 0.1698 0.6862 0.7017
400 0.1060 0.2834 0.2963

Non-Add. I 2 100 0.1879 0.2541 0.2658
(5.3) 400 0.1409 0.1345 0.1458

3 100 0.3308 0.8287 0.8435
400 0.2360 0.3258 0.3406

Non-Add. II 2 100 0.1143 0.1367 0.1440
(5.4) 400 0.1010 0.1067 0.1096

3 100 0.1580 0.2856 0.2970
400 0.1299 0.1558 0.1628
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FIG. 1. Raw electricity consumption curves in the electricity data (left) and their pre-smoothed curves (right).
Each raw curve is presmoothed by kernel smoothing with the Gaussian kernel (sd = 0.5) and leave-one-out
cross-validatory bandwidth.

as two predictors. The data on these variables were available for the period January 2008–
December 2016, in KOSIS (Korean Statisticl Information Service) http://kosis.kr/statHtml/
statHtml.do?orgId=310&tblId=DT_3664N_2008 and the Korea meteorological administra-
tion https://data.kma.go.kr/cmmn/main.do. The observed responses are normalized hourly
electricity loads, Y(tj ) = 1000 × Z(tj ) × (

∑24
l=1 Z(tl)/24)−1, where Z(t) denotes the elec-

tricity load at time t . Thus, we focus on predicting relative consumption pattern during a day,
not absolute electricity consumption itself. We presmoothed the hourly observed Yi(·) and
applied our method to the presmoothed versions. Figure 1 depicts the observed trajectories
of Y(·) and their presmoothed curves. We computed the leave-one-curve-out average squared
prediction error (ASPE) defined by

ASPE = n−1
n∑

i=1

∥∥Yi(·) � Ŷ
(−i)
i (·)∥∥2 = n−1

n∑
i=1

∫ 1

0

(
Yi(s) − Ŷ

(−i)
i (s)

)2
ds

with n = 108 (9 years × 12 months), where Ŷ
(−i)
i (·) is the prediction of Yi(·) based on the

sample without the ith observation.
For this example we compared our method with those of [6] and [40] and with the

functional NW and the kernel-based functional k-NN estimators. [6] considered the model
E(Y (t)|X) = E(Y (t)) + ∑L

k=1 gk(β
�
k X)ρk(t), where L ≥ 1, βk ∈ R

d and real-valued func-
tions gk are unknown and ρk are the (unknown) eigenfunctions of the autocovariance opera-
tor of the response process Y(·). [40] studied the model E(Y (t)|X) = g0(t) + g1(X1, t) +
g2(X2, t) based on spline expansions of gj . In the comparison we included, as well the
function-on-scalar linear model, E(Y (t)|X) = g0(t) + X1g1(t) + X2g2(t), which was also
discussed in [40]. To implement the method of [6], we used “FQR” function in the matlab
package “PACE” (version 2.17) with bandwidth for mean curve being selected by leave-one-
curve-out cross-validation and bandwidth for covariance surface being selected by GCV. For
the method of [40], we used “pffr” function in the R package “refund” (version 0.1-16) with
100 cubic B-spline basis functions and smoothing parameter selected by REML. The penalty
was “first-order-difference”, which is the default option of “pffr” in “refund”. We chose the
bandwidth for the NW method and the smoothing parameter k for the k-NN estimator using
10-fold cross-validation.

Table 3 contains the results, which suggest that our method outperforms all competitors.
While the performances of the functional NW and k-NN estimators were inferior to those
of the approaches based on structured models, such as the B-SBF, [6] and [40], they were
computationally cheaper. We found that methods of [6] and [40] were computationally very
expensive while the B-SBF was moderate but slower than the NW and k-NN.

Figure 2 depicts the fitted component maps based on our method. The first component
map demonstrates that, when the weather is hot or cold, people use more electricity in the
afternoon than in normal temperature. The second component map illustrates that, when it is

http://kosis.kr/statHtml/statHtml.do?orgId=310&tblId=DT_3664N_2008
https://data.kma.go.kr/cmmn/main.do
http://kosis.kr/statHtml/statHtml.do?orgId=310&tblId=DT_3664N_2008
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TABLE 3
Comparison of ASPE for electricity data

Method ASPE

B-SBF with CBS 315.54
Function-on-scalar additive model (Scheipl et al. (2015)) 355.46
Function-on-scalar multiple-index model (Chiou et al. (2003)) 355.64
Kernel-based functional k-NN 361.99
Functional Nadaraya–Watson 425.19
Function-on-scalar linear model (Scheipl et al. (2015)) 704.90

cloudy, people use more electricity in the afternoon than in less cloudy condition. Combining
these two component maps, we may identify peak demand hours depending on the weather
conditions. We found that the peak hour predicted by the B-SBF was not much affected by
cloudiness, while the spline additive regression approach studied by [40] produced a differ-
ent result showing that the peak hour was influenced by both temperature and cloudiness.
For the plots of the peak hours against the mean temperature and cloudiness, see the online
Supplementary Material S.20.

5.4. Real data analysis with simplex-valued response. It is a general belief that age,
educational level and richness are main factors in determining people’s political orienta-
tion. There have not been many statistical analysis checking the belief using an advanced
method. Here, we analyzed the 2017 Korea presidential election data collected from https:
//github.com/OhmyNews/2017-Election. The dataset contains the voting results and some
demographic information for each of the 250 electoral districts in Korea. The voting results
are the proportions of votes earned by the top five candidates, and the demographic infor-
mation consists of average age(X1), average years of education(X2), average housing price
per square meter(X3) and average paid national health insurance premium(X4). The last one
is considered as an indicator of richness because those who get high salary pay more na-
tional health insurance premium. Since the election was mainly focused on the candidates
from three major parties representing progressivism, conservatism and centrism, we took the

FIG. 2. The fitted component maps for electricity data based on the B-SBF method for the monthly averaged
temperature (left) and for the monthly averaged cloudiness (right).

https://github.com/OhmyNews/2017-Election
https://github.com/OhmyNews/2017-Election
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three-dimensional compositional vector Y = (Y1, Y2, Y3) ∈ S3
1 =H as the response, where Yj

is the proportion of votes earned by the j th candidate among the three. We divided the 250
observations into 10 partitions Sk,1 ≤ k ≤ 10, with each partition having 25 observations.
We then computed the 10-fold average squared prediction error (ASPE) defined by

ASPE = 10−1
10∑

k=1

|Sk|−1
∑
i∈Sk

∥∥Yi � Ŷ(−Sk)
i

∥∥2
,

where |Sk| is the number of observations in Sk and Ŷ(−Sk)
i is the prediction of Yi =

(Yi1, Yi2, Yi3) based on the sample with the observations in Sk being removed.
To find a model that best describes the relationship between Y and the four-dimensional

predictor, we compared our method with four others. These are in the R package “Com-
positional.” The first one is Dirichlet regression named as “diri.reg”. It assumes that the
conditional distribution of Y given X = x is given by Dirichlet(φα1(x), φα2(x), φα3(x)),
where φ > 0, α1(x) = 1/[1 + ∑3

l=2 exp(βl0 + β
�
l x)] and αj (x) = exp(βj0 + β

�
j x)/[1 +∑3

l=2 exp(βl0 + β
�
l x)] for j ≥ 2 and estimates φ,βj0 ∈ R and βj ∈ R

4 by maximum likeli-
hood. The second one named as “ols.compreg” is to assume the multinomial logistic model,
E(Y|X = x) = (α1(x), α2(x), α3(x)), and estimates βj0 and βj by least squares. The third
one named as “kl.compreg” also assumes the multinomial logistic model but estimates βj0

and βj by minimizing the Kullback–Leibler divergence
∑n

i=1
∑3

j=1 Yij log(Yij /αj (Xi )).
The last one is the method of [42] named as “alfa.reg” and for this we tuned “alpha” on
{−1 + 0.2 × k : 0 ≤ k ≤ 10} by 10-fold cross-validation. As for the computing time, the four
competitors were faster than the B-SBF.

The results are presented in Table 4. It demonstrates that our method is most predictive.
Figure 3 depicts the component maps fitted by the proposed method. The first, third and
fourth fitted component maps suggest that districts where older or richer people live are po-
litically more conservative. The second map tells an interesting story. As people are more
educated, from low to medium level, their political orientation moves to the direction of con-
servatism, while it is reversed for people at medium to medium-high education level. For
people at medium-high to high education level, it shows a zigzagging pattern. The applica-
tions of other methods offered somewhat different conclusions. Basically, all other methods
are based on a model that is monotone in each of the predictors, so that we may not expect the
zigzagging pattern that we observed in the application of our method. For example, the coef-
ficients βj estimated by the Kullback–Leibler-divergence-based regression “kl.compreg” tell
that, as people get more educated, they tend to support both conservatism and centrism. For
the estimated coefficients of other methods, we refer to the tables in the online Supplementary
Material S.21.

TABLE 4
Comparison of ASPE for election data

Method ASPE

B-SBF with CBS 0.82
Alpha transformation method (Tsagris (2015)) 1.07
Kullback-Leibler-divergence-based regression 1.07
Dirichlet regression 1.07
Multinomial logistic regression 1.08
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FIG. 3. The values of the fitted component maps for election data based on the B-SBF method, depicted on
the simplex S3

1 , for the average age (top left), average years of education (top right), average housing price per
square meter (bottom left) and average paid national health insurance premium (bottom right).

6. Discussion. We have focused on the case where the predictors Xj are real. One chal-
lenging extension is to consider infinite-dimensional predictors. Consider the model (1.1),
now for infinite-dimensional Xj taking values in Banach spaces Bj . For this we assume that
there exist measures μj on (Bj ,B(Bj )) such that

(6.1) P X−1  μ1 ⊗ · · · ⊗ μd,

where X ≡ (X1, . . . ,Xd). Define the density of X by p = dP X−1/d
⊗d

j=1 μj . Also, de-
fine pj and pjk to be the integrations of p over B−j := ∏

l �=j Bl and B−jk := ∏
l �=j,k Bl ,

respectively, with the measures μ−j := ⊗
l �=j μl and μ−jk := ⊗

l �=j,k μl . With these new
definitions, the estimating equation (2.2) with obvious changes holds. We may estimate these
densities and E(Y|Xj = xj ) in the same way as in Section 2 but with the modified kernel
scheme

(6.2) Khj
(xj ,Xij ) = K(h−1

j ‖xj � Xij‖)∫
Bj

K(h−1
j ‖xj � Xij‖) dμj (xj )

for a baseline kernel function K , now defined on [0,∞). Let p̂, p̂j , p̂jk and m̃j continue to
denote the estimators. Then, we would get analogues of (2.4) and (2.6) for the B-SBF equa-
tion and algorithm. Also, by going through the development in Section 3 we may establish
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versions of Theorems 3.4 and 3.5 under a modified version of the condition (S). We refer to
the online Supplementary Material S.2 for further details.

The implementation of the B-SBF algorithm involves integrating real-valued functions
over Bk . In case Bk =R and μk is the Lebesgue measure, it has no difficulty as we have seen
in previous sections. However, in the case of infinite-dimensional Bk there exists no reference
measure such as Lebesgue measure. It has not been well studied how to implement integrals
with respect to general measures on Banach spaces. In case there exist random elements Wk

whose distributions equal μk and one can generate i.i.d. Wik for 1 ≤ i ≤ M from μk , then
one may approximate

∫
Bk

gk(xk)μk(xk) for real-valued functions gk by M−1 ∑M
l=1 gk(Wik).

The statistical properties of this Monte Carlo approximation and their implications to the
properties of the estimators m̂j are yet to be developed.

In the case where Xj are functional predictors, there is a general way of dimension reduc-
tion based on functional principal components (FPC), as originated from [36]. In fact, [16]
applied this approach to the case of a scalar response and multiple functional predictors. We
may repeat it in our case with Hilbertian responses. Let ξjk denote the kth FPC of Xj . Then,
it is straightforward to extend our methodology and theory to estimating Hilbertian additive

models of the form Y = m0 ⊕ ⊕d
j=1

⊕Lj

k=1 mjk(ξjk) ⊕ ε, under some additional conditions
in [16]. Another way of dimension reduction is through functional single-index modeling.
This approach basically takes Lj ≡ 1 and replaces ξj ≡ ξj1 by 〈θj ,Xj 〉 for some unknown
real-valued functions θj .

The SBF technique is largely based on the method of alternating orthogonal projections
acting on the spaces LH

2 (p) and LH

2 (p̂). One might be interested in extending our method
to B-valued responses. The main difficulty with the extension is that the spaces LB

2 (p) and
LB

2 (p̂), defined as LH

2 (p) and LH

2 (p̂) but with H being replaced by B, are non-Hilbertian.
There are a number of hurdles to overcome to extend our results to LB

2 (p) and LB

2 (p̂). To
list some of them, one needs analogues of Proposition A.4.2 of [2] and Lemma S.7 for non-
Hilbertian spaces of maps. For asymptotic distribution one also need to develop a Lindeberg-
type CLT for sequences of B-valued random elements. [23] provided one in their “Extension
of Theorem 1.1,” but checking the third condition of the theorem is infeasible since there is
no distributive law to be applied to the norm of a Banach space. For these reasons a unified
treatment of B-valued responses seems too early considering the current state of related the-
ory in mathematics. One may handle each Banach-space-valued response case by case. A
useful approach to this option might be to think of a transformation that maps the underlying
Banach space, where the response takes values, to a Hilbert space and then apply the methods
and tools we explored in this paper to the transformed response variable.

We may strengthen Theorem 4.1 in two directions. An easy one is to relax the bandwidth
condition (C5). Suppose that nβhj → αj ∈ (0,∞) for some 0 < β < min{1/2, (α − 2)/α},
where α is the constant in (C1). Let h � hj ,1 ≤ j ≤ d . Then, we may show that the pointwise
rates n−2/5 in the interior Ij and n−1/5 at the boundaries I c

j in Theorem 4.1 are now modified

to h2 + n−1/2h−1/2 and h + n−1/2h−1/2, respectively. We may also prove that the squared
L2 rate on the interior and the one on the whole interval [0,1], respectively, are h4 + n−1h−1

and h3 + n−1h−1, and that the respective sup-rates are h2 + n−1/2h−1/2(logn)1/2 and
h + n−1/2h−1/2(logn)1/2. The more challenging extension is to get uniform rates over
hj ∈ [an, bn] for some sequences an < bn. This is important as it gives error rates for the
m̂j with data-driven bandwidth choices such as those discussed in Section 5.1 in case they
are chosen to minimize the CV criterion in the range [an, bn]. We believe it is possible to get
some results that are similar in flavor to [32] and [22], for example. This could be the subject
of a new paper.

The present paper considered only the estimation problem. One challenging topic for fu-
ture study is to develop a procedure for testing if some of the components in the model (1.1)
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are zero. Another direction for future study is to treat responses or predictors taking values in
a locally compact space, which encompasses the case of Riemannian manifolds.
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SUPPLEMENTARY MATERIAL

Supplement to “Additive regression with Hilbertian responses” (DOI: 10.1214/19-
AOS1902SUPP; .pdf). The Supplementary Material [19] contains additional lemmas and
propositions with their proofs and the proofs of Propositions 2.1, 2.2, 3.2 and Theorems 3.1–
3.6, 4.1–4.3. It also introduces two other notions of Bochner integrals, gives the extensions of
Theorems 3.4 and 3.5 to the case of infinite-dimensional predictors, and presents additional
numerical results.
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