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Under mild Markov assumptions, sufficient conditions for strict minimax
optimality of sequential tests for multiple hypotheses under distributional un-
certainty are derived. First, the design of optimal sequential tests for simple
hypotheses is revisited, and it is shown that the partial derivatives of the cor-
responding cost function are closely related to the performance metrics of the
underlying sequential test. Second, an implicit characterization of the least
favorable distributions for a given testing policy is stated. By combining the
results on optimal sequential tests and least favorable distributions, sufficient
conditions for a sequential test to be minimax optimal under general distribu-
tional uncertainties are obtained. The cost function of the minimax optimal
test is further identified as a generalized f -dissimilarity and the least favor-
able distributions as those that are most similar with respect to this dissimilar-
ity. Numerical examples for minimax optimal sequential tests under different
uncertainties illustrate the theoretical results.

1. Introduction. Sequential hypothesis tests are well known for being highly efficient
in terms of the number of required samples and, as a consequence, for minimizing the av-
erage decision delay in time-critical applications. In his seminal book [62], Wald showed
that, compared to fixed sample size tests, sequential tests can reduce the average number of
samples by a factor of approximately two. In general, the ability to allow the overall number
of samples to depend on the current history makes sequential procedures more flexible and
adaptable than procedures whose sample size is chosen a priori. Comprehensive overviews of
sequential hypothesis testing and related topics can be found in [22, 47, 53, 55, 62], to name
just a few.

A well-established drawback of sequential hypothesis tests is that their higher efficiency
depends critically on the assumption that the process generating the observations indeed fol-
lows the assumed model. If this is not the case, that is, if a model mismatch occurs, the
number of samples can increase significantly; compare, for example, [55], Figure 3.4, which
illustrates the influence of a model mismatch on the expected run length of a sequential test
for the mean of an autoregressive process. This observation lead Kiefer and Weiss to pro-
pose a sequential test that, in addition to meeting the targeted error probabilities under the
hypotheses, minimizes the maximum expected run length over all feasible distributions [11,
35]. Different variations of the corresponding optimization problem are known as Kiefer–
Weiss problem or modified Kiefer–Weiss problem and have received considerable attention
in the literature [10, 37, 45, 66]. However, to the present day, exact solutions to the Kiefer–
Weiss problem have only been shown for special cases of binary hypothesis tests.

A natural generalization of the Kiefer–Weiss problem is to include the error probabilities
in the minimax criterion, that is, to design a test whose maximum error probabilities are min-
imal over the set of feasible distributions. For fixed sample sizes this minimax approach to
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the design of statistical tests was pioneered by Huber [29] and is known as robust hypoth-
esis testing or robust detection. In general, robust hypothesis tests sacrifice some efficiency
under ideal conditions in order to be less sensitive to deviations from the ideal case [30]. In
this sense, robust hypothesis tests, and robust statistics in general, form a middle ground be-
tween parametric and nonparametric approaches. For an overview of existing results, recent
advances and applications of robust statistics, see, for example, [1, 33, 38, 67, 68].

The idea underlying this paper is to leverage both sequential and robust hypothesis testing.
Ideally, a robust sequential test is fast and reliable, that is, it requires fewer observations, on
average, than a fixed sample size test and at the same time works reliably under model mis-
match. In what follows, a coherent framework for the design of minimax optimal sequential
tests is developed, including the Kiefer–Weiss problem as a special case. The main contribu-
tions are summarized as follows:

• Sufficient conditions for strict minimax optimality of sequential tests for multiple hypothe-
ses under distributional uncertainty are derived. The results hold for stochastic processes
with a time-homogeneous Markovian representation and under mild assumptions on the
type of uncertainty.

• The tests satisfying the minimax optimality conditions are identified as optimal tests for
least favorable distributions. The latter are shown to be data dependent such that the under-
lying stochastic process becomes Markovian, even if the increments are independent under
the nominal model.

• It is shown that the least favorable distributions are those that are maximally similar with
respect to a weighted statistical similarity measure of the f -dissimilarity type with the
weights being data dependent. Both the similarity measure and the way in which the
weights depend on the data are characterized explicitly.

• A method for the design of minimax optimal sequential tests in practice is proposed, and
two numerical examples are provided to illustrate the theoretical findings.

The existing literature on minimax hypothesis testing can roughly be divided into two
groups. The first group consists of results on strictly minimax optimal tests that are based
on two alternating Choquet capacities [8, 31]. If the existence of capacity achieving distribu-
tions can be shown, then these distributions are least favorable and maximally similar with
respect to all convex divergences; compare [31], Theorem 6.1. The derivation of strictly min-
imax fixed sample size tests in [15, 29, 32] as well as the strictly minimax change detection
procedure in [57] are based on this result.

If no capacity-achieving distributions can be identified, least favorable distributions are
usually defined as the minimizers of a given statistical divergence, playing the role of a sur-
rogate objective function. That is, instead of solving the robust detection problem exactly,
it is shown that choosing distributions that are maximally similar with respect to a suitable
divergence are almost least favorable and the corresponding tests almost minimax. Typical
examples are [3, 21, 44, 46, 65]. However, many asymptotic results can also be grouped un-
der this approach in the sense that the solutions are obtained by solving an asymptotic surro-
gate problem which typically induces the Kullback–Leibler divergence as the corresponding
similarity measure. Examples are abundant in the literature: [6, 9, 10, 12, 19, 52, 61, 66].
Comparable asymptotic result can also be found for the closely related problem of minimax
quickest change detection [2, 5, 18]; the connection between the two problems is discussed
in more detail in Section 7.

The few works on minimax sequential testing that do not fall under the two categories
of asymptotic results or capacity based results are usually limited in scope. For example,
the results in [60] are highly application specific, the results in [34, 39] are based on strong
assumptions on the distributions and the results in [23] only hold for the single sample case.
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In summary, what sets this paper apart from the existing literature is that strictly minimax
optimal sequential tests are derived under mild distributional assumptions and that the proof
of optimality is given without invoking Choquet capacities. Finally, note that the paper ex-
tends and generalizes [13] where minimax optimal sequential tests for two hypotheses are
studied under slightly stricter assumptions.

The paper is organized as follows. The minimax sequential testing problem is stated for-
mally in Section 2. Optimal sequential tests for multiple simple hypotheses are revisited in
Section 3. Some useful results that relate properties of an optimal test to the partial derivatives
of its cost function are shown in Section 4. Least favorable distributions and their properties
are discussed in Section 5. The main result, sufficient conditions for minimax optimal se-
quential tests, is stated in Section 6 and followed by a discussion in Section 7. Two illustrative
numerical examples are shown in Section 8.

2. Notation and problem formulation. In this section the minimax optimal sequential
testing problem is defined, and some common notation are introduced. Notation not covered
here are defined when they occur in the text.

2.1. Notation. Random variables are denoted by uppercase letters and their realizations
by lowercase letters. Analogously, probability distributions are denoted by uppercase letters
and their densities by the corresponding lowercase letters. Blackboard bold is used to indicate
product measures. Measurable sets are denoted by tuples (�,F). Boldface lowercase letters
are used to indicate vectors; no distinction is made between row and column vectors. The
inner product of two vectors, x and y, is denoted by 〈x,y〉 and the elementwise product by
xy. All comparisons between vectors are defined elementwise. The indicator function of a
set A is denoted by I(A). All comparisons between functions are defined pointwise.

The notation ∂yk
f (y) is used for the subdifferential [50], Section 23, of a convex function

f : Y ⊂RK →R with respect to yk evaluated at y, that is,

(2.1) ∂yk
f (y) := {

c ∈R : f (
y′) − f (y) ≥ c

(
y′
k − yk

) ∀y′ ∈ Yk(y)
}
,

with Yk(y) := {y′ ∈ Y : y′
j = yj ∀j ∈ {1, . . . ,K} \ {k}}. The superdifferential of a concave

function is defined analogously. Both are referred to as generalized differentials in what fol-
lows. The length of the interval corresponding to ∂yk

f (y) is denoted by

(2.2)
∣∣∂yk

f (y)
∣∣ := sup

a,b∈∂yk
f (y)

|a − b|.

If a function fyk
exists such that fyk

(y) ∈ ∂yk
f (y)∀y ∈ Y , then fyk

is called a partial gener-
alized derivative of f with respect to yk . The set of all partial generalized derivatives, fyk

, is
denoted by ∂yk

f .

2.2. Underlying stochastic process. Let (Xn)n≥1 be a discrete-time stochastic process
with values in (�X,FX). The joint distribution of (Xn)n≥1 on the cylinder set

(2.3)
(
�N

X,FN
X

) :=
(∏

n≥1

�X,
∏
n≥1

FX

)

is denoted by P, the conditional or marginal distributions of an individual random variable X

on (�X,FX) by P and the natural filtration [7], Definition 2.32, of the process (Xn)n≥1 by
(Fn

X)n≥1. In order to balance generality and tractability, the analysis in this paper is limited
to stochastic processes that satisfy the following three assumptions.
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ASSUMPTION 1. The process (Xn)n≥1 admits a time-homogeneous Markovian repre-
sentation. That is, there exists a (��,F�)-valued stochastic process (�n)n≥0 adapted to
(Fn

X)n≥1 such that

(2.4)
P(Xn+1 ∈ E | X1 = x1, . . . ,Xn = xn) = P(Xn+1 ∈ E | �n = θn)

=: Pθn(E)

for all n ≥ 1 and all E ∈ FX . The distribution of X1 is denoted by Pθ0 , where θ0 is assumed
to be deterministic and known a priori. An extension to randomly initialized θ0 should not be
hard but will not be entered.

ASSUMPTION 2. There exists a function ξ : �� × �X → �� that is measurable with
respect to F� ⊗FX and that satisfies

(2.5) �n+1 = ξ(�n,Xn+1) =: ξ�n(Xn+1)

for all n ≥ 0.

ASSUMPTION 3. For all θ ∈ ��, the probability measure Pθ , defined in Assumption 1,
admits a density pθ with respect to some σ -finite reference measure μ.

The set of distributions P on (�N
X,FN

X) that satisfy these three assumptions is denoted by
M. The set of distributions P on (�X,FX) that admit densities with respect to μ is denoted
by Mμ.

The above assumptions are rather mild and are introduced primarily to simplify the presen-
tation of the results. In general, the sufficient statistic � can be chosen as a sliding window
of past samples, that is, �n = (Xn−m, . . . ,Xn), where m is a finite positive integer. Hence,
the presented results apply to every discrete-time Markov process of finite order. However, in
order to implement the test in practice, �� should be sufficiently low-dimensional (compare
the examples in Section 8). As long as the existence of the corresponding densities is guar-
anteed, the reference measure μ in Assumption 3 can be chosen arbitrarily. This aspect can
be exploited to simplify the numerical design of minimax sequential tests and is discussed in
more detail in Sections 7 and 8.

2.3. Uncertainty model and hypotheses. For general Markov processes the question of
how to model distributional uncertainty is nontrivial and has far-reaching implications on the
definition of minimax robustness. In the most general case the joint distribution P is subject
to uncertainty. However, defining meaningful uncertainty models for P is an intricate task and
is usually neither feasible nor desirable. An approach that is more tractable and more useful
in practice is to assume that at any given time instant, n ≥ 1, the marginal or conditional
distribution of Xn is subject to uncertainty.

In this paper it is assumed that the conditional distributions Pθ , as defined in (2.4), are
subject to uncertainty. More precisely, for each θ ∈ �� the conditional distribution Pθ is
replaced by an uncertainty set of feasible distributions Pθ ⊂ Mμ. This model induces an
uncertainty set for P which is given by

(2.6) P :=
{
P ∈ M : P = ∏

n≥0

Pθn,Pθn ∈ Pθn

}

and is completely specified by the corresponding family of uncertainty sets for the conditional
distributions {Pθ : θ ∈ ��}.
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The goal of this paper is to characterize and to design minimax optimal sequential tests
for multiple hypotheses under the assumption that under each hypothesis the distribution is
subject to the type of uncertainty introduced above. That is, each hypothesis is given by

(2.7) Hk : P ∈ Pk, k = 1, . . . ,K,

where all Pk are of the form (2.6) and are defined by a corresponding family of conditional
uncertainty sets {P(k)

θ : θ ∈ ��}. Note that the parameter θ , which corresponds to the suffi-
cient statistic in Assumption 2, does not depend on k, that is, the statistic needs to be chosen
such that it is sufficient under all hypotheses. Finally, the set P0 defines the uncertainty in the
distribution under which the expected run length is supposed to be minimum. It is assumed
to be of the form (2.6) as well. In practice, one is often interested in minimizing the worst
case expected run length under one hypothesis or under any hypotheses, that is, P0 = Pk for
some k ∈ {1, . . . ,K} or P0 = ⋃K

k=1 Pk , respectively. In principle, however, P0 can be chosen
freely by the test designer.

Before proceeding, it is useful to illustrate the assumptions on the underlying stochastic
process and the proposed uncertainty model with an example. Consider an exponentially
weighted moving-average process, that is,

(2.8) Xn+1 =
∞∑
l=1

alXn+1−l + Wn+1,

where a ∈ (−1,1) is a known scalar and (Wn)n≥1 is a sequence of independent random
variables that are identically distributed according to PW . This process can equivalently be
written as

(2.9) Xn+1 = a�n + Wn+1,

where the sufficient statistic �n can be updated recursively via

(2.10) �n+1 = ξ�n(Xn+1) = �n + Xn+1.

In order to introduce uncertainty, it is assumed that with probability ε the increment Wn

is replaced by an arbitrarily distributed outlier. This model yields the following family of
conditional uncertainty sets

(2.11) Pθ = {
P ∈ Mμ : P(E) = (1 − ε)PW(E − aθ) + εH(E),H ∈ Mμ

}
,

where E ∈ FX and E − aθ is shorthand for {x ∈ �X : x + aθ ∈ E}. In Section 8 a variant of
this example is used to illustrate the design of a minimax optimal test with dependencies in
the underlying stochastic process.

2.4. Testing policies and test statistics. A sequential test is specified via two sequences
of randomized decision rules, (ψn)n≥1 and (δn)n≥1, that are adapted to the filtration (Fn

X)n≥1.
Each ψn : �n

X → [0,1] denotes the probability of stopping at time instant n. Each δn : �n
X →


K is a K-dimensional vector, δn = (δ1,n, . . . , δK,n), whose kth element denotes the proba-
bility of deciding for Hk , given that the test has stopped at time instant n. The randomization
is assumed to be performed by independently drawing from a Bernoulli distribution with
success probability ψn and a discrete distribution on {1, . . . ,K} with associated probabilities
(δ1,n, . . . , δK,n), respectively. The set of randomized K-dimensional decision rules defined
on (�n

X,Fn
X) is denoted by 
K

n . The stopping time of the test is denoted by τ = τ(ψ).
For the sake of a more concise notation, let π = (πn)n≥1 with πn = (ψn, δn) ∈ 
1

n × 
K
n ;

denote a sequence of tuples of stopping and decision rules. In what follows, π is referred to
as a testing policy, and the set of all feasible policies is denoted by � := Ś

n≥1(

1
n × 
K

n ).
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A test statistic is a stochastic process, (Tn)n≥0, that is adapted to the filtration (Fn
X)n≥1

and allows the stopping and decision rules to be defined as functions mapping from the
codomain of Tn to the unit interval. Of particular importance for this paper is the case where
the sequence of test statistics, (Tn)n≥0, is itself a time-homogeneous Markov process and the
stopping and decision rules are independent of the time index n. The corresponding testing
policies are in the following referred to as time homogeneous. This property is formalized in
the following definition:

DEFINITION 1. A policy π ∈ � is referred to as time homogeneous if there exists a
(�T ,FT )-valued stochastic process (Tn)n≥0 that is adapted to the filtration (Fn

X)n≥1, and it
holds that

(2.12) ψn = ψ(Tn) and δn = δ(Tn),

where the functions ψ : �T → [0,1] and δ : �T → [0,1]K are independent of the index n.

Focusing on time-homogeneous policies significantly simplifies both the derivation and
the presentation of the main results. Moreover, it will become clear in the course of the paper
that optimal tests for time-homogeneous Markov processes can always be realized with time-
homogeneous policies so that this restriction can be made without sacrificing optimality.

2.5. Performance metrics and problem formulation. The performance metrics consid-
ered in this paper are the probability of erroneously rejecting the kth hypothesis, αk , and
the expected run length of the sequential test, γ . Both are defined as functions of the testing
policy and the true distribution:

γ (π,P) := Eπ,P

[
τ(ψ)

]
,(2.13)

αk(π,P) := Eπ,P[1 − δk,τ ],(2.14)

with k = 1, . . . ,K . Here, Eπ,P denotes the expected value taken jointly with respect to the
distribution of (Xn)n≥1 and the randomized policy π . A generalization to performance met-
rics that are defined in terms of the pairwise error probabilities is possible but would consid-
erably complicate notation while adding little conceptual insight.

It is important to note that for the design of robust sequential tests the error probabilities
and the expected run length need to be treated as equally important performance metrics. On
the one hand, reducing the sample size is typically the reason for using sequential tests in the
first place. On the other hand, a test whose error probabilities remain bounded over a given
uncertainty set but whose expected run length can increase arbitrarily, cannot be considered
robust. In other words, a robust test should not be allowed to delay a decision indefinitely in
order to avoid making a wrong decision.

The first optimality criterion considered in this paper is the weighted sum cost, that is,

(2.15) Lλ(π,PPP) = γ (π,P0) +
K∑

k=1

λkαk(π,Pk),

where PPP = (P0, . . . ,PK) denotes a K + 1 dimensional vector of distributions and λ =
(λ1, . . . , λK) denotes a K dimensional vector of nonnegative cost coefficients. The minimax
problem corresponding to the cost function in (2.15) reads as

(2.16) inf
π∈�

sup
PPP∈P

Lλ(π,PPP),

where PPP ∈ P is used as a compact notation for Pk ∈Pk , k = 0, . . . ,K .
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The second optimality criterion is the expected run length under constraints on the error
probabilities. The corresponding minimax problem reads as

(2.17) inf
π∈�

sup
P0∈P0

γ (π,P0) s.t. sup
Pk∈Pk

αk(π,Pk) ≤ αk,

where the constraint holds for all k = 1, . . . ,K and αk denotes an upper bound on the prob-
ability of erroneously deciding against Hk . The notation for the minimax optimal policies is
fixed below and concludes the section.

DEFINITION 2. The set of time-homogeneous policies that are optimal in the sense of
(2.16) is denoted by �∗

λ(P). The set of time-homogeneous policies that are optimal in the
sense of (2.17) is denoted by �∗

α(P).

3. Optimal tests. Assume that the distributions P0, . . . ,PK ∈ M are given and fixed. In
this case, problems (2.16) and (2.17) reduce to the design of an optimal test for K simple
hypotheses, that is,

(3.1) inf
π∈�

Lλ(π,PPP)

and

(3.2) inf
π∈�

γ (π,P0) s.t. αk(π,Pk) ≤ αk.

The notation for the corresponding optimal policies is fixed in the next definition.

DEFINITION 3. The set of time-homogeneous policies that are optimal in the sense of
(3.1) is denoted by �∗

λ(PPP). The set of time-homogeneous policies that are optimal in the sense
of (3.2) is denoted by �∗

α(PPP).

The solutions to both the unconstrained problem (3.1) and the constrained problem (3.2)
can be found in the literature. The binary case (K = 2) was treated in [14] under the same
assumptions as stated in Section 2.2. In [41], the general solution for an arbitrary number of
hypotheses and arbitrary underlying stochastic processes is derived.

For easier reference the solution of (3.1) is restated in this section. To this end, the functions
G

(k)
λ , gλ : RK+1

≥0 →R≥0 are introduced. Let

(3.3) G
(k)
λ (z) :=

K∑
i=1,i �=k

λizi =
(

K∑
i=1

λizi

)
− λkzk

and

(3.4) gλ(z) := min
k=1,...,K

G
(k)
λ (z) =

(
K∑

i=1

λizi

)
− max

k=1,...,K
λkzk,

where z = (z0, . . . , zK) ∈ RK+1
≥0 and λ ∈ RK≥0 is the vector of cost coefficients introduced in

Section 2.5. Note that both G
(k)
λ and gλ are independent of z0; defining them as functions of

the K + 1 dimensional vector z unifies the notation in what follows.
The cost function that characterizes the optimal test is stated in the following theorem. It

extends Theorem 2.1 in [14] to multiple hypotheses.
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THEOREM 1. Let λ ≥ 0, let PPP ∈MK+1, and let ρλ : �ρ →R≥0, where

(3.5) �ρ := RK+1
≥0 × ��.

The integral equation

(3.6) ρλ(z, θ) = min
{
gλ(z), z0 +

∫
ρλ

(
zpθ (x), ξθ (x)

)
μ(dx)

}
,

with gλ defined in (3.4), has a unique solution and it holds that

(3.7) inf
π∈�

Lλ(π,PPP) = ρλ(1, θ0).

Theorem 1 follows directly from Theorem 5 and Lemma 6 in [41] and the Markov property
of the stochastic process (Xn)n≥1. Also, compare Theorem 5 in [13]. The optimal test statistic
and testing policies are obtained by comparing the cost for stopping with the expected cost
for continuing under the optimal policy.

COROLLARY 1. The optimal test statistic of a test solving (3.1) is given by

(3.8) Tn(x1, . . . , xn) = (zn, θn) ∈ �ρ,

where θn is a sufficient statistic for (x1, . . . , xn) in the sense of (2.4) and zn = (z0,n, . . . , zK,n)

is the vector of likelihood ratios (Radon–Nikodym derivatives)

(3.9) zk,n =
n∏

i=1

dP
(k)
θi−1

dμ
(xi) =

n∏
i=1

p
(k)
θi−1

(xi).

By Assumption 2 in Section 2.2, the test statistic can be calculated recursively via

θn+1 = ξθn(xn+1), θ0 : given a priori,(3.10)

zn+1 = znpθn
(xn+1), z0 = 1(3.11)

with ξθ is defined in (2.5).

COROLLARY 2. Let λ ≥ 0, let PPP ∈ MK+1, and let ρλ be as defined in Theorem 1. A
policy π is time homogeneous in the sense of Definition 1 and optimal in the sense of (3.1),
that is, π ∈ �∗

λ(PPP), if and only if its stopping and decision rules are of the form

(3.12) ψn = ψ(zn, θn) and δk,n = δk(zn),

where

I
({

gλ(z) < ρλ(z, θ)
}) ≤ ψ(z, θ) ≤ I

({
gλ(z) ≤ ρλ(z, θ)

})
,(3.13)

δk(z) ≤ I
({

G
(k)
λ (z) = gλ(z)

})
(3.14)

and (zn, θn) is defined in Corollary 1.

Corollary 1 and Corollary 2 follow immediately from Theorem 6 in [41] and characterize
the set of optimal time-homogeneous policies under Markov assumptions. The two compo-
nents of the optimal test statistic (zn, θn) correspond to the two types of information that are
necessary to apply the optimal stopping rule. The likelihood ratios z are needed to evalu-
ate the cost for stopping, while the state of the Markov process θ is needed to evaluate the
conditional expectation that determines the cost for continuing.

The policies defined in Corollary 2 are optimal in the sense of the unconstrained problem
(3.1). The solution of the constrained problem is closely related, but its statement is deferred
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to the next section since it relies on properties of the optimal cost function ρλ that need to
be established first. Before turning to the latter, a more compact notation and a useful way of
characterizing the performance of time-homogeneous tests of the form (3.8) are introduced.

For policies of the form given in Corollaries 1 and 2, it is convenient to define the expected
run length and the error probabilities of the underlying test as functions of the initial state of
the test statistic, that is,

γπ,P(z, θ) := Eπ,P

[
τ(ψ) | Z0 = z,�0 = θ

]
,(3.15)

α
(k)
π,P(z, θ) := Eπ,P[1 − δτ,k | Z0 = z,�0 = θ ],(3.16)

where γπ,P : �ρ → R≥0 ∪ {∞} and απ,P : �ρ → [0,1]. Since (Zn,�n)n≥0 is a time-
homogeneous Markov process, γπ,P and α

(k)
π,P solve the Chapman–Kolmogorov equations

[28]

(3.17) γπ,P(z, θ) = (
1 − ψ(z, θ)

)(
1 +

∫
γπ,P

(
zpθ (x), ξθ (x)

)
Pθ(dx)

)

and

(3.18)
α

(k)
π,P(z, θ) = ψ(z, θ)

(
1 − δk(z, θ)

)
+ (

1 − ψ(z, θ)
) ∫

α
(k)
π,P

(
zpθ (x), ξθ (x)

)
Pθ(dx).

Conditioning on the true initial states of the statistics reduces the conditional performance
metrics in (3.15) and (3.16) to the unconditional ones in (2.13) and (2.14), that is,

(3.19) γπ,P(1, θ0) = γ (π,P) and α
(k)
π,P(1, θ0) = αk(π,P).

Being able to characterize the performance of a test in terms of solutions of (3.17) and (3.18)
is of critical importance for the proofs given in later sections.

In order to simplify the notation of the central integral equations of this section, let {μz,θ :
(z, θ) ∈ �ρ} and {Pz,θ : (z, θ) ∈ �ρ} be two families of probability measures on �ρ that are
defined via

μz,θ (Ez × Eθ ) := μ
({

x ∈ �X : zpθ (x) ∈ Ez, ξθ (x) ∈ Eθ

})
,(3.20)

Pz,θ (Ez × Eθ ) := Pθ

({
x ∈ �X : zpθ (x) ∈ Ez, ξθ (x) ∈ Eθ

})
,(3.21)

where Ez ×Eθ ∈ Fρ with Fρ denoting the natural σ -algebra on �ρ . The notation P
(k)
z,θ is used

to refer to the probability measure in (3.21) with Pθ chosen to be P
(k)
θ . Using this notation,

the integral equations in (3.6), (3.17) and (3.18) can be written more compactly as

(3.22) ρλ = min
{
gλ, z0 +

∫
ρλ dμz,θ

}

and

γπ,P = (1 − ψ)

(
1 +

∫
γπ,P dPz,θ

)
,(3.23)

α
(k)
π,P = ψ(1 − δk) + (1 − ψ)

∫
α

(k)
π,P dPz,θ .(3.24)

Both notations are used in what follows.
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4. Properties of the cost function ρλ. While Theorem 1 is well known in the literature,
the cost function ρλ in (3.6) has rarely been studied in detail. The connection between ρλ and
the properties of sequential tests using policies π ∈ �∗

λ(PPP) is the subject of this section. It
extends and generalizes the results in Section 3 of [14].

THEOREM 2. Let ρλ be as defined in Theorem 1, and let �∗
λ(PPP) be as defined in Defini-

tion 3. For all π ∈ �∗
λ(PPP), it holds that

(4.1) ρλ(z, θ) = z0γπ,P0(z, θ) +
K∑

k=1

λkzkα
(k)
π,Pk

(z, θ),

where γπ,P and α
(k)
π,P are defined in (3.15) and (3.16), respectively.

See Appendix A in the Supplementary Material [17] for a proof. Theorem 2 connects the
performance metrics in Section 2.5 to the optimal cost function ρλ and is key to solving
the unconstrained minimax problem (2.16). However, obtaining a solution to the constrained
minimax problem (2.17) additionally requires control over the individual error probabilities.
In what follows, a connection between the latter and the partial generalized derivatives of ρλ

is established. First, some useful technical properties of ρλ are shown.

LEMMA 1. For all λ ≥ 0 and all PPP ∈ MK+1, the function ρλ that solves (3.6) is nonde-
creasing, concave and homogeneous of degree one in z.

A proof is detailed in Appendix B in the Supplementary Material [17]. Lemma 1 is sig-
nificant for two reasons. First, it ensures that ρλ admits a generalized differential, a property
that is used in the next theorem to establish a connection between ρλ and the error proba-
bilities αk . Second, being concave and homogeneous qualifies ρλ as an f -dissimilarity, that
is, a statistical measure for the joint similarity of P

(0)
θ , . . . ,P

(K)
θ . This property of ρλ is not

used explicitly in the derivations of the minimax optimal sequential test, but it puts the results
into context and will later be shown to provide a unified interpretation of minimax optimal
sequential and minimax optimal fixed sample size test. A more detailed discussion of this
aspect is deferred to Section 7.

THEOREM 3. Let PPP ∈ MK+1, and let �∗
λ(PPP) be as defined in Definition 3. For ρλ, as

defined in Theorem 1, and γπ,P, α
(k)
π,P, as defined in (3.15) and (3.16), respectively, it holds

that:

1. For all π ∈ �∗
λ(PPP) and all k = 1, . . . ,K

γπ,P0 ∈ ∂z0ρλ,(4.2)

λkα
(k)
π,Pk

∈ ∂zk
ρλ.(4.3)

2. For all π ∈ �∗
λ(PPP), all (z, θ) ∈ �ρ , and all k = 1, . . . ,K{

γπ,P0(z, θ) : π ∈ �∗
λ(PPP)

} = ∂z0ρλ(z, θ),(4.4) {
λkα

(k)
π,Pk

(z, θ) : π ∈ �∗
λ(PPP)

} = ∂zk
ρλ(z, θ).(4.5)

Theorem 3 is proven in Appendix C in the Supplementary Material [17]. Its two parts
correspond to a global and a local statement about the generalized differentials of ρλ. The
first part states that for all π ∈ �∗

λ(PPP), the functions γπ,P0 and α
(k)
π,Pk

are valid generalized
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differentials of ρλ. The second part states that at every point (z, θ) ∈ �ρ , the generalized dif-
ferential of ρλ coincides with the set of all error probabilities that can be realized by policies
π ∈ �∗

λ(PPP). Note that since the optimal policy is deterministic on the interior of the decision
regions, the remaining degrees of freedom in terms of the error probabilities are exclusively
due to the randomization on the boundary of the stopping and decision regions. That is, the
subdifferentials on the right-hand sides of (4.4) and (4.5) are spanned by policies with differ-
ent randomizations on the left-hand side. If only deterministic policies are allowed, the result
only holds for the end points of the interval, that is, the left and right derivative.

The local statement in Theorem 3 cannot be extended to a global statement since the in-
tegral equations (C.4) and (C.5) in the Supplementary Material [17] establish a coupling be-
tween the local differentials so that they cannot be chosen independently of each other. This
coupling reflects the fact that changing the randomization on the boundaries of a decision
region also affects the overall performance of the corresponding sequential test.

Based on Theorem 3, the following optimality result can be obtained for the constrained
sequential testing problem in (3.2).

THEOREM 4. Let PPP ∈MK+1, and let π∗ ∈ �∗
α(PPP), that is, π∗ solves (3.2). If

(4.6) λ∗ ∈ arg max
λ∈RK≥0

{
ρλ(1, θ0) −

K∑
k=1

λkαk

}
,

with ρλ defined in Theorem 1, then for all π ∈ �∗
λ∗(PPP) and all k = 1, . . . ,K it holds that∣∣γ (π,P0) − γ

(
π∗,P0

)∣∣ ≤ ∣∣∂z0ρλ∗(1, θ0)
∣∣,(4.7)

λ∗
k

∣∣αk(π,Pk) − αk

∣∣ ≤ ∣∣∂zk
ρλ∗(1, θ0)

∣∣.(4.8)

Moreover, it holds that

(4.9) �∗
λ∗(PPP) ∩ �∗

α(PPP) �= ∅,

that is, there exists at least one π ∈ �∗
λ∗(PPP) that is optimal in the sense of (3.2).

A proof is detailed in Appendix D in the Supplementary Material [17]. The significance
of Theorem 4 lies in the fact that it characterizes solutions of the constrained problem (3.2)
in terms of the optimal cost function of the unconstrained problem (3.1). From an algorith-
mic point of view, Theorem 4 makes it possible to design constrained sequential tests via
a systematic optimization of the cost coefficients λ instead of Monte Carlo simulations or
resampling techniques [54, 56].

Theorems 2, 3 and 4 form the basis for the derivation of minimax optimal tests, which will
be characterized as optimal tests for least favorable distributions. The latter are introduced
and discussed in the next section.

5. Least favorable distributions. The counterpart of the optimal testing problem inves-
tigated in the previous sections is the problem of determining the least favorable distributions
for a given testing policy π . In this case the unconstrained problem (3.1) reduces to

(5.1) sup
PPP∈P

Lλ(π,PPP) = sup
PPP∈P

(
γ (π,P0) +

K∑
k=1

λkαk(π,Pk)

)
.

Since the expected run length and the error probabilities are coupled only via the policy, the
joint problem in (5.1) decouples into K + 1 individual maximization problems

(5.2) sup
P0∈P0

γ (π,P0) and sup
Pk∈Pk

αk(π,Pk), k = 1, . . . ,K

which can be solved independently.



2610 M. FAUSS, A. M. ZOUBIR AND H. V. POOR

For arbitrary stopping and decision rules, solving the problems in (5.2) exactly is challeng-
ing and, in general, the least favorable distributions depend on the time instant n as well as
on the history of the random process. However, for time-homogeneous policies of the form
(3.12), a more elegant solution can be obtained.

THEOREM 5. Let P be an uncertainty set of the form (2.6), and let γπ,P : �ρ → R≥0 ∪
{∞} and α

(k)
π,P : �ρ →R≥0. For all testing policies π of the form (3.12) and all k = 1, . . . ,K ,

it holds that the integral equations

γπ,P = (1 − ψ)

(
1 + sup

H∈Pθ

∫
γπ,P

(
zpθ (x), ξθ (x)

)
H(dx)

)
,(5.3)

α
(k)
π,P = ψ(1 − δk) + (1 − ψ)

(
sup

H∈Pθ

∫
α

(k)
π,P

(
zpθ (x), ξθ (x)

)
H(dx)

)
(5.4)

have unique solutions.

THEOREM 6. Let P = (P0, . . . ,PK) be uncertainty sets of the form (2.6), and let π be
of the form (3.12).

• If it holds that for every (z, θ) ∈ �ρ

(5.5) Q(0)
z,θ := arg max

H∈P(0)
θ

∫
γπ,P0

(
zpθ (x), ξθ (x)

)
H(dx) �= ∅

with γπ,P defined in (5.3), then every distribution

(5.6) Q0 ∈Q0 :=
{
P ∈ M : P = ∏

n≥0

Pzn,θn,Pzn,θn ∈ Q(0)
zn,θn

}

is least favorable with respect to the expected run length of the test, that is,

(5.7) γ (π,Q0) = sup
P∈P0

γ (π,P).

• If it holds that for every (z, θ) ∈ �ρ

(5.8) Q(k)
z,θ := arg max

H∈P(k)
θ

∫
α

(k)
π,Pk

(
zpθ (x), ξθ (x)

)
H(dx) �=∅

with k = 1, . . . ,K and α
(k)
π,P defined in (5.4), then every distribution

(5.9) Qk ∈Qk :=
{
P ∈M : P = ∏

n≥0

Pzn,θn,Pzn,θn ∈ Q(k)
zn,θn

}

is least favorable with respect to the probability of erroneously deciding against Hk , that
is,

(5.10) αk(π,Qk) = sup
P∈Pk

αk(π,P).

Theorems 5 and 6 are proven in Appendices E and F in the Supplementary Material [17],
respectively. Note that the distributions whose densities are used to update the test statis-
tic zpθ are not the least favorable distribution but are determined by the policy π ; compare
Corollary 1. From Theorem 6 it follows that, under the least favorable distributions, the pro-
cess (Xn)n≥1 is a Markov process with sufficient statistic (zn, θn). That is, the least favorable
distributions adapt to the policy of the test as well as to the history of the stochastic process.
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It is worth highlighting that even in the case where the Xn are independent, that is, no
additional statistic θn is required, the least favorable distributions still generate a Markov
process with sufficient statistic zn. That is, the least favorable distributions depend on the
history of the process via the likelihood ratios. This aspect distinguishes robust sequential
hypothesis tests from existing robust tests for fixed sample sizes or for change points. It is
discussed in more detail in Section 7.

Having characterized optimal tests and least favorable distributions, everything is in place
for the derivation of minimax optimal sequential tests.

6. Minimax optimal sequential tests. In this section sufficient conditions for strict min-
imax optimality of sequential hypothesis tests are given. Following the procedure for the op-
timal sequential test without uncertainty, the solutions of the unconstrained problem (2.16)
are derived first and are then shown to contain a solution of the constrained problem (2.17).

The following three theorems are stated in sequence and constitute the main contribution
of the paper. A discussion and an interpretation of the results are deferred to the next section.

THEOREM 7. Let λ ≥ 0, let P = (P0, . . . ,PK) be uncertainty sets of the form (2.6), and
let ρλ, dλ : �ρ →R≥0 and Dλ : �ρ ×Mμ →R≥0. The equation system

ρλ(z, θ) = min
{
gλ(z), z0 + dλ(z, θ)

}
,(6.1)

dλ(z, θ) = sup
P∈Pθ

Dλ(z, θ;P ),(6.2)

Dλ(z, θ;P ) =
∫

ρλ
(
zpθ (x), ξθ (x)

)
μ(dx)(6.3)

with gλ defined in (3.4) has a unique solution.

THEOREM 8. Let λ ≥ 0, let P = (P0, . . . ,PK) be uncertainty sets of the form (2.6), and
let ρλ, dλ and Dλ be as defined in Theorem 7. If for all (z, θ) ∈ �ρ

(6.4) Qz,θ := arg max
P∈Pθ

Dλ(z, θ;P ) �= ∅,

then every policy π ∈ �∗
λ(QQQ) with

(6.5) QQQ ∈QQQ =
{
PPP ∈ MK+1 : Pk = ∏

n≥0

P
(k)
zn,θn

,P zn,θn ∈Qzn,θn

}

is minimax optimal in the sense of (2.16), that is,

(6.6)
{
π ∈ �∗

λ(QQQ) :QQQ ∈QQQ
} ⊂ �∗

λ(PPP).

THEOREM 9. Let PPP = (P0, . . . ,PK) be uncertainty sets of the form (2.6), and let π∗ ∈
�∗

α(PPP) such that (π∗,PPP∗) solves (2.17). If

(6.7) λ∗ ∈ arg max
λ∈RK≥0

{
ρλ(1, θ0) −

K∑
k=1

λkαk

}

with ρλ defined in Theorem 7, then for all π ∈ �∗
λ∗(QQQ) with QQQ ∈QQQ defined in Theorem 8 and

all k = 1, . . . ,K , it holds that∣∣γ (π,Q0) − γ
(
π∗,P∗

0
)∣∣ ≤ ∣∣∂z0ρλ∗(1, θ0)

∣∣,(6.8)

λ∗
k

∣∣αk(π,Qk) − αk

∣∣ ≤ ∣∣∂zk
ρλ∗(1, θ0)

∣∣.(6.9)
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Moreover, it holds that

(6.10)
{
π ∈ �∗

λ∗(QQQ) :QQQ ∈QQQ
} ∩ �∗

λ(PPP) �= ∅,

that is, there exists at least one pair (π,QQQ), with QQQ ∈QQQ and π ∈ �∗
λ∗(QQQ), that is optimal in

the sense of (2.17).

Theorems 7, 8 and 9 are proven in Appendices G, H and I in the Supplementary Material
[17], respectively.

7. Discussion. Theorems 8 and 9 in the previous section provide sufficient conditions for
the characterization of minimax optimal tests in terms of optimal testing policies and least
favorable distributions. In this section the question of existence is discussed, and an interpre-
tation in terms of statistical similarity measures is given that provides additional insight and
establishes a connection to minimax optimal fixed samples size tests and change detection
procedures.

7.1. Statistical similarity measures. In order to obtain a better conceptual understanding
of minimax optimal sequential tests, it is helpful to introduce a class of statistical similar-
ity measures known as f -dissimilarities. They were first proposed by Györfi and Nemetz
[24–26] as an extension of f -divergences to multiple distributions and play an important
role in the theory of statistical decision making. In particular, the connection between f -
dissimilarities and Bayesian risks has been a topic of high interest in statistics [40], signal
processing [58] and machine learning [48].

In this section it is shown that the function ρλ in Theorem 7 induces an f -dissimilarity
and that this f -dissimilarity provides a sufficient characterization of the minimax optimal
test. For this purpose a variation on the concept of f -dissimilarities is useful which is defined
as follows:

DEFINITION 4. Let P1, . . . ,PK be probability measures on a measurable space (�,F),
and let f : RK≥0 ×� →R, with f = f (y,ω) = f (y1, . . . , yK,ω), be homogeneous of degree
one and concave in (y1, . . . , yK). The functional

(7.1) If (P1, . . . ,PK) =
∫

f
(
p1(ω), . . . , pK(ω),ω

)
μ(dω)

is called f -similarity of P1, . . . ,PK .

If in (7.1) is referred to as a similarity measure since for concave and homogeneous func-
tions f , the functinal −If = I−f , is a dissimilarity measure in the sense of Györfy and
Nemetz [26], Definition 1. Allowing f to depend on the integration variable directly is a mi-
nor generalization that, in the context of this paper, allows the similarity measure to depend
on the history of the random process. Similar generalizations have been introduced in the
literature before [4, 43, 49].

Using Definition 4, an intuitive characterization of the family of least favorable distribu-
tions can be given in terms of a corresponding family of f -similarities.

COROLLARY 3. At every time instant n ≥ 0, the least favorable distributions of Xn+1,
conditioned on the state (Zn,�n) = (z, θ), are the feasible distributions that are most similar
with respect to the f -similarity defined by

(7.2) fz,θ (y, x) = ρλ
(
zy, ξθ (x)

)
with ρλ given in Theorem 7.
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The family of f -divergences, defined by {fz,θ : (z, θ) ∈ �ρ}, can be interpreted as follows:
The equation system in Theorem 7 defines the optimal cost function ρλ which in turn defines
the similarity measure in Corollary 3. The sequential aspect of the test is captured by the
parameters (z, θ). The likelihood ratios z determine the weights of the individual densities.
That is, the larger zk , the larger the influence of the kth distribution on the similarity measure.
In terms of the underlying hypothesis test, a high value of zk implies that the test is likely
to decide in favor of Hk . Consequently, depending on whether Hk is true or not, the least
favorable distributions need to be as similar or dissimilar to Hk as possible. On the other
hand, a low value of zk implies that a decision in favor of Hk is highly unlikely so that the
corresponding distribution contributes little to the overall similarity measure. The influence
of the parameter θ , that is, the history of the underlying stochastic process, does not affect
the relative weighting of the individual distributions but rather the shape of ρλ. It strongly
depends on the stochastic process itself, and it is less predictable than the effect of z.

The use of statistical similarity measures for the design of (sequential) tests for composite
hypotheses has been suggested previously in the literature. However, as discussed in the In-
troduction, in most works a suitable similarity measure is chosen beforehand—usually based
on asymptotic results, bounds or approximations—and is used as a surrogate objective whose
optimization is easier than solving the actual testing problem. Here, by contrast, it is shown
that the minimax testing problem induces a similarity measure and that the distributions that
maximize the latter solve the former.

It is also instructive to compare the minimax optimal tests in the previous section to tests
whose least favorable distributions achieve Choquet capacities. In [15, 31], it is shown that
in this case the pair of least favorable distributions jointly minimizes all f -divergences over
the uncertainty sets. This implies that the least favorable distributions do not depend on the
decision rule and can be calculated a priori; compare also [59]. For the minimax sequential
test this is no longer the case. Instead, the least favorable distributions need to minimize a
particular f -dissimilarity that depends on ρλ and the current state of the test statistic. Inter-
estingly, the existence of capacity achieving distributions seems to be closely related to the
existence of a single threshold test. Both fixed sample size detection and quickest change
detection are problems for which optimal single threshold procedures exist and whose least
favorable distributions have been shown to be of the capacity type [31, 57]. Sequential de-
tection, on the other hand, is inherently a multithreshold procedure. This difference is subtle
but turns out to be crucial. An intuitive explanation is as follows: For a single threshold test
the least favorable distributions are those that maximize or minimize the drift of the test
statistic towards the threshold. In the example of quickest change detection, maximizing the
expected detection delay corresponds to minimizing the drift towards the threshold under the
postchange distribution. On the other hand, in order to maximize the expected run length of
a two-sided sequential test, one needs to minimize the drift of the test statistic towards either
threshold. Depending on the data observed so far, this can translate to a drift towards the up-
per or towards the lower threshold; the least favorable distributions become data dependent.
Similar considerations also apply to fixed sample size tests for multiple hypotheses which
might explain why, as of now, no capacity based minimax solutions for the latter for can be
found in the literature.

In summary, the discussion shows that minimax optimal sequential tests are based the same
principles that underpin existing minimax tests. Optimality is achieved by using a policy that
leads to the best separation of the most similar distributions. The difference is that in the
sequential case the similarity measure depends on the testing policy and on the observed
data.
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7.2. Existence. The results presented so far allow for some statements about the exis-
tence of minimax optimal tests. Stronger statements can be made for the unconstrained prob-
lem formulation (2.16) than for the constrained formulation (2.17). The former is considered
first.

Since by Theorem 1 it holds that

inf
π∈�

sup
PPP∈P

Lλ(π,PPP) ≤ gλ(1) ≤
K∑

k=1

λk,

the minimax optimal objective value in (2.16) is guaranteed to be finite for all cost coeffi-
cients λ ≥ 0 and all uncertainty sets PPP . This includes scenarios where two uncertainty sets
overlap or are identical. However, it does not imply that a testing policy exists that achieves
this value. In order to guarantee (6.4), that is, that the supremum is attained, the uncertainty
sets P1, . . . ,PK need to be compact [51], Theorem 4.16. While this assumption seems re-
strictive in theory, it is automatically fulfilled when the problem is discretized in order to
be solved numerically. Moreover, given that the least favorable distributions are maximizers
of concave functionals, we conjecture that compactness is not necessary for the existence of
minimax solutions. A more thorough discussion would need to go into the technical details
of optimization on function spaces which is beyond the scope of this paper.

For the constrained problem (2.17) the situation is more involved, since, in order to be able
to satisfy the constraints on the error probabilities, the uncertainty sets P1, . . . ,PK need to be
sufficiently separated, that is, the distance between the two sets needs to be large enough to
statistically separate them using a finite number of samples. The appropriate way to measure
this distance is via the f -similarity that is induced by the corresponding cost function ρλ.
This leads to the following result:

COROLLARY 4. The minimax optimal objective in (2.17) is finite, if and only if the right-
hand side of (6.7) is bounded, that is, if

(7.3) sup
λ∈RK≥0

{
ρλ(1, θ0) −

K∑
k=1

λkαk

}
< ∞

with ρλ defined in Theorem 7.

A proof of Corollary 4 is detailed in Appendix J in the Supplementary Material [17]. As in
the unconstrained case, existence of a finite supremum does not imply that an optimal policy
exists, unless the uncertainty sets are compact. Finally, note that no deterministic policy might
exist that attains the bounds on the error probabilities with equality which implies that, in
general, the optimal policy is randomized. In view of Theorem 3, this happens when the
bounds are located in the interior of the subdifferentials of the optimal cost function.

Interestingly, the conditions for the existence of minimax optimal sequential tests are rather
mild, especially for the unconstrained problem formulation. This is in contrast to the fixed
sample size case for which much stricter sufficient conditions are given in the literature [15,
31]. This suggests the conjecture that these stricter conditions are only necessary to guarantee
that the optimal policy and the least favorable distributions are decoupled and that minimax
optimal fixed sample size tests for arbitrary uncertainty sets exist but that they require a joint
design of the policy and the least favorable distributions. Unfortunately, applying the results
presented in this paper to the fixed sample size case is not straightforward. First, the concept
of ordered samples, which is essential to sequential hypothesis testing and induces state-
dependent least favorable distributions, in general does not apply to fixed sample size tests.
Second, owing to the deterministic stopping rule, the policies of fixed sample size tests are
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not time homogeneous in the sense of Definition 1. However, the second numerical example
given in the next section indicates that it might be possible to implement truncated tests with
time-homogeneous policies; see Section 8.2 for more details.

Finally, it should be highlighted that the least favorable distributions do not depend on
the reference measure μ. More precisely, if μ is absolutely continuous with respect to an
alternative reference measure μ̃, it follows from the homogeneity of ρλ that

Dλ(z, θ;P ) =
∫

ρλ(zp, ξθ )dμ =
∫

ρλ(zp, ξθ )
dμ

dμ̃
dμ̃

=
∫

ρλ

(
zp

dμ

dμ̃
, ξθ

)
dμ̃ =:

∫
ρλ(zp̃, ξθ )dμ̃,

where p̃ = (p̃0, . . . , p̃K) are probability densities with respect to μ̃.

8. Example and numerical results. In order to illustrate the presented results, two ex-
amples for minimax optimal sequential tests are given in this section. First, a test for three
hypotheses that is robust with respect to the error probabilities is designed under the assump-
tion that (Xn)n≥1 is a sequence of independent random variables with identical uncertainty
sets. Second, the case when the underlying processes admits dependencies is illustrated by
solving the Kiefer–Weiss problem for a variant of the uncertainty model in Section 2.3. In
both examples the targeted error probabilities are set to αk = 0.01 for all k = 1, . . . ,K .

The test design is based on the following iterative procedure: First, all P
(k)
θ are initialized

to some feasible distribution. Keeping these distributions fixed, an optimal sequential test is
designed by solving (4.6) for λ∗ and ρλ∗ . In the second step, ρλ∗ is kept fixed, and the distri-
butions are updated by solving the optimization problem in (6.4). Both steps are iterated until
the changes in the function ρλ∗ are small enough to assume convergence. For both examples
convergence was assumed if the relative difference between two consecutive approximations
of ρλ∗ fell below 10−3. The question whether this procedure is guaranteed to converge in
general is certainly worth investigating but beyond the scope of this paper.

It should be noted that this iterative procedure does not alternate between the design of
optimal testing policies and least favorable distributions. Unless the procedure has converged,
the distributions that solve (6.4) are not least favorable in the sense of Theorem 6. Moreover,
the test statistic, which is part of the optimal policy, depends on the likelihood ratios and is
hence affected by the update of the distributions in the second step.

In order to solve (4.6) and (6.4) numerically, both the state space �ρ and the sample space
�X are discretized using a regularly spaced grid, and linear interpolation is used to evaluate
functions between grid points. This straightforward approach works well for the examples
presented here. However, if a larger number of hypotheses or more complex dependencies
need to be considered, more sophisticated approximations need to be used [20, 36]. The
linear programming algorithm detailed [14] was used to efficiently solve (4.6) jointly for λ∗
and ρλ∗ . However, in principle, any suitable convex optimization algorithm can be used to
solve (4.6), and any method for solving nonlinear integral equations can be used to obtain
ρλ∗ .

In both examples the distributional uncertainty is of the density band type [32], that is,

(8.1) P = {
P ∈ Mμ : p′ ≤ p ≤ p′′},

where 0 ≤ p′ ≤ p′′ ≤ ∞, P ′(�X) ≤ 1 and P ′′(�X) ≥ 1. Here, P ′ and P ′′ denote the mea-
sures corresponding to p′ and p′′, respectively. The reason for using this uncertainty model
is twofold. First, it contains several popular uncertainty models as special cases, for exam-
ple, the ε-contamination model [29], the bounded distribution function model [27, 42] and
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the f -divergence ball model [16]. Second, an efficient iterative algorithm for the minimiza-
tion of convex functionals of probability distribution under density band constraints exists
that makes it possible to obtain accurate numerical solutions with moderate computational
efforts. A more detailed discussion of the band model, its properties and how to obtain the
least favorable distributions numerically can be found in [32] and [15].

8.1. IID process under three hypotheses. For the first example all Xn, n ≥ 1, are assumed
to be independent and distributed on the interval �X = [−1,1]. Let Pn denote the distribution
of Xn. The task is to decide between the following three hypotheses:

(8.2) H1 : Pn ∈ P1, H2 : Pn ∈ P2, H3 : Pn = U[−1,1]
for all n ≥ 1. Here, U[a,b] denotes the continuous uniform distribution on the interval [a, b],
and the uncertainty sets P1, P2 are of the form (8.1) with

p′
1(x) = ae−2x + 0.1, p′′

1(x) = ae−2x + 0.3,(8.3)

p′
2(x) = ae2x + 0.1, p′′

2(x) = ae2x + 0.3,(8.4)

where a ≈ 0.1907 was chosen such that P ′
1(�X) = P ′

2(�X) = 0.9 and P ′′
1 (�X) = P ′′

2 (�X) =
1.1. The expected run length was minimized under H3, that is, Pn = U[−1,1] for all n. More-
over, in order to keep the domain of the cost function two-dimensional, the reference measure
μ was set to μ = U[−1,1] so that z0 = z3 = 1 and ρλ becomes a function of (z1, z2) only.

The scenario in this example can arise, for instance, in monitoring applications, where H3
corresponds to an “in control” state in which the distribution of the data is known almost ex-
actly, while H1 and H2 correspond to two different “out of control” states with only partially
known distributions. If it needs to be established that the system is “in control” before a cer-
tain procedure starts, it is reasonable to minimize the expected run length of the test under the
“in control” distribution while still requiring it to be insensitive to distributional uncertainties
in the “out of control” states.

In order to solve this example numerically, the likelihood ratio plane (z1, z2) was dis-
cretized on [−20,10] × [−20,10] using 301 × 301 uniformly spaced grid points, and the
sample space �X = [−1,1] was discretized using 101 uniformly spaced grid points. The
design procedure detailed above converged after five iterations. The optimal weights were
found to be λ∗ ≈ (133.41,133.41,45.41). The resulting cost function ρλ∗ , as well as the
corresponding testing policy, are depicted in Figure 1. While the cost function as such pro-
vides little insight, the testing policy lends itself to an intuitive interpretation. In analogy to
the regular sequential probability ratio test (SPRT), the minimax optimal test consists of two
corridors that correspond to a binary test between H{1,2} and H3, respectively. Interestingly,
there is a rather sharp intersection of the two corridors so that the test quickly reduces to a
quasi-binary scenario.

The expected run length and the error probabilities as functions of the state of the test
statistic can be obtained either via the partial derivatives of ρλ∗ or by solving the integral
equations (3.16) and (2.13) and are depicted in Figure 2. The “blocky” appearance of some
of the functions is due to them having being downsampled to a coarser grid for plotting.
Moreover, no smoothing was applied in order not to smear the hard transitions between the
decision regions. Finally, note that the plots are oriented differently to provide a better visual
representation of the respective function.

The stopping and decision rules in Figure 1 are depicted as functions of the log-likelihood
ratios. The latter are in turn defined in terms of the least favorable distributions, that is, the
distributions that solve the maximization in (6.4). Four examples of densities of least favor-
able distributions are depicted in Figure 3. As can be seen, the densities change significantly,
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FIG. 1. Segment of the optimal cost function ρλ in logarithmic scale and the corresponding testing policy as a
function of the log-likelihood ratios.

depending on the state of the test statistic. In the top left plot the test statistic is in its initial
state, meaning that there is no preference for either hypothesis. Consequently, the least fa-
vorable densities are chosen such that all three distributions are equally similar to each other
which in this case implies that they are symmetric around the y-axis and that q

(1)
z and q

(2)
z

jointly mimic the uniform density p
(3)
z . Also, note that q

(1)
z and q

(2)
z overlap on an interval

around x = 0 so that observations in this interval are statistically indistinguishable under H1
and H2. As the test statistic is updated, the least favorable distributions change. In the upper
right and the lower left plot of Figure 3, two cases are depicted where the test has a strong
preference for H1 or H2, respectively; compare the decision regions in Figure 1. In both
cases the least favorable densities are no longer symmetric, but their probability masses are
shifted, their tail behavior is noticeably different and the interval of overlap can no longer be

FIG. 2. Performance metrics as functions of the log-likelihood ratios. Clockwise from the top left: expected run
length, error probability of the first, second and third type.
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FIG. 3. Examples of least favorable distributions for different states of the test statistic.

observed. Finally, in the lower right plot, there is a strong preference for H3 which leads to
q

(1)
z and q

(2)
z both shifting as much probability mass as possible to their tails in order to re-

duce the significance of the corresponding observations. It is interesting to observe the effect
that an imminent decision for H3 has on q

(1)
z and q

(2)
z , namely, that they become less similar

to each other in order to increase the joint similarity to p
(3)
z . This is in contrast to the initial

state depicted in the upper left plot, where q
(1)
z and q

(2)
z also try to approximate p

(3)
z but at

the same time need to be similar to each other as well.
In order to verify the numerical results, 10,000 Monte Carlo simulations were performed

using the testing policy depicted in Figure 1. The observations were drawn from the least fa-
vorable distributions which were calculated on the fly by solving (6.4) for the current weights
(z1, z2). The resulting confusion matrix and the average run length of the tests are shown in
Table 1.

TABLE 1
Results of 104 Monte Carlo runs of the minimax optimal test using the

policy depicted in Figure 1. The target detection probability is 99%, the
theoretical expected run length under H3 is EP3 [τ (ψ)] ≈ 36.31 samples

Decisions in %

True hypothesis H1 H2 H3 Average run-length

H1 99.22 0.00 0.78 25.46
H2 0.00 98.83 1.17 26.84
H3 0.61 0.35 99.04 36.04
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8.2. Binomial AR(1) process under two hypotheses. For the second example a discrete
version of the uncertainty model in Section 2.3 is considered, namely, a binomial AR(1)
process [63] which has applications, for example, in finance and monitoring [64]. Due to
space constraints, the example is not detailed here but can be found in [17].
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