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This paper explores a connection between empirical Bayes posterior dis-
tributions and false discovery rate (FDR) control. In the Gaussian sequence
model this work shows that empirical Bayes-calibrated spike and slab pos-
terior distributions allow a correct FDR control under sparsity. Doing so, it
offers a frequentist theoretical validation of empirical Bayes methods in the
context of multiple testing. Our theoretical results are illustrated with numer-
ical experiments.

1. Introduction.

1.1. Context. In modern high-dimensional statistical models several aims are typically
pursued, often at the same time: testing of hypotheses on the parameters of interest, estima-
tion and uncertainty quantification, among others. Due to their flexibility, in particular in the
choice of the prior, Bayesian posterior distributions are routinely used to provide solutions to
a variety of such inference problems. However, although practitioners may often directly read
off quantities, such as the posterior mean or credible sets once they have simulated posterior
draws, the question of mathematical justification of the use of such quantities, in particular
from a frequentist perspective, has recently attracted a lot of attention. While the seminal
papers [27, 41] set the stage for the study of posterior estimation rates in general models,
the case of estimation in high-dimensional models has been considered only recently from
the point of view of estimation (see [19, 30, 49] among others), while results on frequen-
tist coverage of credible sets are just starting to emerge; see, for example, [6, 48]. Some of
the previous approaches rely on automatic data-driven calibration of the prior parameters,
following the so-called empirical Bayes approach, notably [30], estimating the proportion
of significant parameters, and [29], where the full distribution function of the unknowns is
estimated.

Our interest here is on the issue of multiple testing of hypotheses. Typically, the problem
is to identify the active variables among a large number of candidates. This task appears in
a wide variety of applied fields as genomics, neuroimaging and astrophysics among others.
Such data typically involve more than thousands of variables with only a small part of them
being significant (sparsity).

In this context, a typical aim is to control the false discovery rate (FDR) (see (9) below),
that is, to find a selection rule that ensures that the averaged proportion of errors among the
selected variables is smaller than some prescribed level α. This multiple testing type I er-
ror rate, introduced in [7], became quickly popular with the development of high-throughput
technologies because it is “scalable” with respect to the dimension—the more rejections are
possible, the more false positives are allowed. A common way to achieve this goal is to com-
pute the p-values (probability under the null that the test statistic is larger than the observed
value) and to run the Benjamini–Hochberg (BH) procedure [7] which is often considered as
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a benchmark procedure. In the last decades an extensive literature aimed at studying the BH
method, by showing that it (or versions of it) controls the FDR in various frameworks; see [8,
9, 24, 38], among others.

In a fundamental work [2], Abramovich, Benjamini, Donoho and Johnstone proved that a
certain hard thresholding rule deduced from the BH procedure—keeping only observations
with significant p-values—satisfies remarkable risk properties; it is minimax adaptive simul-
taneously for a range of losses and sparsity classes over a broad range of sparsity parameters.
In addition, similar results hold true for the misclassification risks; see [10, 35]. These results,
in particular, suggest a link between FDR controlling procedures and adaptation to sparsity.
Here, we shall follow a questioning that can be seen as “dual” to the former one. Starting from
a commonly used Bayesian procedure that is known to optimally adapt to the sparsity in terms
of risk over a broad range of sparsity classes (and even, under appropriate self-similarity-type
conditions, to produce adaptive confidence sets), we ask whether a uniform FDR control can
be guaranteed.

1.2. Setting. In this paper we consider the Gaussian sequence model. One observes, for
1 ≤ i ≤ n,

(1) Xi = θ0,i + εi

for an unknown n-dimensional vector θ0 = (θ0,i )1≤i≤n ∈ R
n and εi i.i.d. N (0,1). This model

can be seen as a stylized version of a high-dimensional model. The problem is to test

H0,i : “θ0,i = 0” against H1,i : “θ0,i �= 0”,

simultaneously over i ∈ {1, . . . , n}. We also introduce the assumption that the vector θ0 is
sn-sparse, that is, is supposed to belong to the set

(2) �0[sn] = {
θ ∈ R

n : #{1 ≤ i ≤ n : θi �= 0} ≤ sn
}

for some sequence sn ∈ {0,1, . . . , n}, typically much smaller than n, measuring the sparsity
of the vector.

1.3. Bayesian multiple testing methodology. From the point of view of posterior distri-
butions, one natural approach for testing is simply based on comparing posterior probabilities
of the hypotheses under consideration. Yet, to do so, a choice of prior needs to be made, and
for this reason it is important to carefully design a prior that is flexible enough to adapt to the
unknown underlying structure (and, here, sparsity) of the model. This is one of the reasons
behind the use of empirical Bayes approaches that aim at calibrating the prior in a fully auto-
matic, data-driven, way. Empirical Bayes methods for multiple testing have been in particular
advocated by Efron (see, e.g., [22] and references therein) in a series of works over the last
10–15 years, reporting excellent behaviour of such procedures—we describe two of them
in more detail in the next paragraphs—in practice. Fully Bayes methods, that bring added
flexibility by putting prior on sensible hyperparameters are another alternative. In the sequel,
Bayesian multiple testing procedures will be referred to as BMT for brevity.

Several popular BMT procedures rely on two quantities that can be seen as possible
Bayesian counterparts of standard p-values:

• the �-value: the probability that the null is true conditionally on the fact that the test
statistic is equal to the observed value; see, for example, [23];

• the q-value: the probability that the null is true conditionally on the fact that the test
statistic is larger than the observed value, introduced in [43].
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(Note that the �-value is usually called “local FDR.” Here, we used another terminology to
avoid any confusion between the procedure and the FDR.) Obviously, these quantities are
well defined only if the trueness/falseness of a null hypothesis is random which is obtained
by introducing an appropriate prior distribution.

Once the prior is calibrated (in a data-driven way or not), the q-values (resp. �-values)
can be computed and combined to produce BMT procedures. For instance, existing strategies
reject null hypotheses with:

• a �-value smaller than a fixed cutoff t = 0.2 [21];
• a q-value smaller than the nominal level α [22];
• averaged �-values smaller than the nominal level α [34, 45, 46].

For alternatives see, for example, [1, 39]. In particular, one popular fact is that the use of
Bayesian quantities “automatically corrects for the multiplicity of the tests,” see, for example,
[43]. While using p-values requires to use a cutoff t that decreases with the dimension n,
using �-values/q-values can be used with a cutoff t close to the nominal level α and without
any further correction. This is well known to be valid from a decision theoretic perspective
for the Bayes FDR, that is, for the FDR integrated w.r.t. the prior distribution, as we recall in
Proposition 1 below. When the hyperparameters are estimated from the data within the BMT,
the Bayes FDR is still controlled, to some extent, as proved in [45, 46]. However, controlling
the Bayes FDR does not give theoretical guarantees for the usual frequentist FDR, that is,
for the FDR at the true value of the parameter, as the pointwise FDR may deviate from an
integrated version thereof.

1.4. Frequentist control of BMT. In this paper our main aim is to study whether BMT
procedures have valid frequentist multiple testing properties.

A first hint has already been given in [22, 43]. It turns out that the BH procedure can
loosely be seen as a “plug-in version” of the procedure rejecting the q-values smaller than α

(namely, the theoretical c.d.f. of the p-values is estimated by its empirical counterpart). Since
the BH procedure controls the (frequentist) FDR, this might suggest a possible connection
between BMT and successful frequentist multiple testing procedures.

In regard to the rapidly increasing literature on frequentist validity of Bayesian procedures
from the estimation perspective, the multiple testing question for BMT procedures has been
less studied so far from the theoretical, frequentist point of view. This is despite a number
of very encouraging simulation performance results; see, for example, [15, 28, 32, 34]. A
recent exception is the interesting preprint [37] that shows a frequentist FDR control for a
BMT based on a continuous shrinkage prior; yet, this control holds under a certain signal-
strength assumption only. One main question we ask in the present work is whether a fully
uniform control (over sparse vectors) of the frequentist FDR is possible for some posterior-
based BMT procedures. Also, while the constants in the risk bounds are not made explicit
in [37], we would like to clarify whether the final FDR control is made at, or close to, the
required level α. The FDR control results below will also be complemented by appropriate
type II-error controls.

1.5. Spike and slab prior distributions and sparse priors. Let w ∈ (0,1) be a fixed hy-
perparameter. Let us define the prior distribution � = �w,γ on R

n as

(3) �w,γ = (
(1 − w)δ0 + wG

)⊗n
,

where G is a distribution with a symmetric density γ on R. Such a prior is a tensor product of a
mixture of a Dirac mass at 0 (spike), that reflects the sparsity assumption, and of an absolutely
continuous distribution (slab), that models nonzero coefficients. This is arguably one of the
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most natural priors on sparse vectors and has been considered in many key contributions on
Bayesian sparse estimation and model selection; see, for example, [25, 33].

Of course, an important question is that of the choice of w and γ . A popular choice of w

is data driven and based on a marginal maximum likelihood empirical Bayes method (to be
described in more details below). The idea is to make the procedure learn the intrinsic sparsity
while also incorporating some automatic multiplicity correction, as discussed, for example,
in [11, 40]. Following such an approach in a fundamental paper, Johnstone and Silverman
[30] show that, provided γ has tails at least as heavy as Laplace, the posterior median of
the empirical Bayes posterior is rate adaptive for a wide range of sparsity parameters and
classes, is fast to compute and enjoys excellent behaviour in simulations (the corresponding
R-package EBayesThresh [31] is widely used). Namely, if ‖·‖ denotes the Euclidian norm
and θ̂ = θ̂ (X) is the coordinate-wise median of the empirical Bayes posterior distribution,
there exists c1 > 0 such that

sup
θ0∈�0[sn]

Eθ0‖θ̂ − θ0‖2 ≤ c1sn log(n/sn).(4)

Thus, asymptotically (in the regime sn, n → ∞, sn/n → 0), it matches up to a constant the
minimax risk for this problem ([20]). In the recent work [16], the convergence of the empirical
Bayes full posterior distribution (not only aspects such as median or mean) is considered, and
similar results can be obtained, under stronger conditions on the tails of γ (for instance, γ

Cauchy works). More precisely, for �(· | X) = �̂(· | X) the empirical Bayes posterior, one
can find a constant C1 > 0 such that

sup
θ0∈�0[sn]

Eθ0

∫
‖θ − θ0‖2 d�(θ | X) ≤ C1sn log(n/sn).(5)

Further, under some conditions, one can show that certain credible sets from the posterior
distributions are also adaptive confidence sets in the frequentist sense [18]. Alternatively,
one can also follow a hierarchical approach and put a prior on w. The paper [19] obtains
adaptive rates for such a fully Bayes procedure over a variety of sparsity classes and presents
a polynomial time algorithm to compute certain aspects of the posterior.

Empirical Bayes approaches have also been successfully applied to a variety of different
sparse priors such as empirically recentered Gaussian slabs, as in [5, 6] or the horseshoe [47,
48], both studied in terms of estimation and the possibility to construct adaptive confidence
sets. In [29], an empirical Bayes approach based on the “empirical” c.d.f. of the θs is shown
to allow for optimal adaptive estimation over various sparsity classes. For an overview on the
rapidly growing literature on sparse priors, we refer to the discussion paper [48].

Yet, most of the previous results are concerned with estimation or confidence sets, although
a few of them report empirical false discoveries, for example, [48], Figure 7, though without
theoretical analysis.

1.6. Aim and results of the paper. Here, we wish to find, if this is at all possible, a
posterior-based procedure using a prior � (possibly an empirical Bayes one, that is, � = �̂),
that can perform simultaneous inference in that: (a) it behaves optimally up to constants in
terms of the quadratic risk in the sense of (4) (or (5)); (b) its frequentist FDR at any sparse
vector is bounded from above by (a constant times) a given nominal level. More precisely,
given a nominal level t ∈ (0,1) and ϕt a multiple testing procedure deduced from � (�-values
or q-values procedure, as listed in Section 1.3), we want to validate its use in terms of a uni-
form control of its false discovery rate FDR(θ0, ϕt ) (see (9) below) over the whole parameter
space. That is, we ask whether we can find C2 > 0 independent of t such that, for n large
enough,

sup
θ0∈�0[sn]

FDR(θ0, ϕt ) ≤ C2t.(6)
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Our main results are as follows for a sparsity sn = O(nυ) with υ ∈ (0,1):

• Theorem 1 shows that (6) holds with C2 arbitrary small for the BMT procedure rejecting
the nulls whenever the corresponding �-value is smaller than t .

• Theorem 2 shows that (6) holds for some C2 > 0 for the BMT procedure rejecting the
nulls whenever the corresponding q-value is smaller than t (with a slight modification if only
few signals are detected).

These results hold for spike and slab priors, for γ being Laplace or Cauchy, or even for
slightly more general heavy-tailed distributions. The hyperparameter ŵ is chosen according
to a certain empirical Bayes approach to be specified below (with minor modifications with
respect to the choice of [30]). In addition, it is important to evaluate the amplitude of C2 >

0 in (6). Our numerical experiments support the fact that, roughly, C2 = 1. Furthermore,
Theorem 3 shows that for some subset L0[sn] ⊂ �0[sn] (containing strong signals), we have
for the q-value BMT, for any (sequence) θ0 ∈ L0[sn],
(7) lim

n
FDR(θ0, ϕt ) = t,

so the FDR control is exactly achieved asymptotically in that case.
Finally, we provide a control of the type II error of the considered procedures by showing

in Theorem 4 that if FNR(θ0, ϕ) denotes the average number of nondiscoveries of a procedure
ϕ, for θ0 ∈ L0[sn] as above,

(8) lim
n

FNR(θ0, ϕt ) = 0,

where ϕt can either be the �-values or q-values procedure at level t .
It follows from these results (combined with previous results of [16, 30]) that the poste-

rior distribution associated to a spike and slab prior, with γ Cauchy and a suitably empirical
Bayes-calibrated w, is appropriate to perform several tasks: (6)–(7)–(8) (multiple testing),
(5)–(4) (posterior concentration in L2-distance). The posterior can also be used to build hon-
est adaptive confidence sets ([18]). The present work, focusing on the multiple testing aspect,
then completes the inference picture for spike and slab empirical Bayes posteriors, confirm-
ing their excellent behaviour in simulations.

1.7. Organisation of the paper. In Section 2 we introduce Bayesian multiple testing pro-
cedures associated to spike and slab posterior distributions as well as the considered empirical
Bayes choice of w. In Section 3 our main results are stated, while Section 4 contains numer-
ical experiments. Section 5 presents some related BMT procedures, and Section 6 gives a
short discussion. Preliminaries for the proofs are given in Section 7, while the proof of Theo-
rems 1 and 2 can be found in Section 8. The Supplementary Material [17] gathers a number of
lemmas used in the proofs, as well as the proofs of Propositions 1–3 and Theorems 3, 4 and 5.
The sections and equations of this supplement are referred to with an additional symbol “S-”
in the numbering.

1.8. Notation. In this paper we use the following notation:

• for F , a c.d.f., we set F = 1 − F

• φ(x) = (2π)−1/2e−x2/2 and (x) = ∫ x
−∞ φ(u)du;

• un 
 vn means that there exist constants c,C > 0 such that |vn|c ≤ |un| ≤ C|vn| for n

large enough;
• un � vn means that there exist constants C > 0 such that |un| ≤ C|vn| for n large

enough;
• f (y) 
 g(y), for y ∈ A means that there exist constants c,C > 0 such that for all y ∈ A,

c|g(y)| ≤ |f (y)| ≤ C|g(y)|;
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• f (y) 
 g(y), as y → ∞ means that there exist constants c,C > 0 such that c|g(y)| ≤
|f (y)| ≤ C|g(y)| for y large enough;

• un ∼ vn means un − vn = o(un).

Also, for τ ∈ R
n, the symbol Eτ (resp. Pτ ) denotes the expectation (resp. probability)

under θ0 = τ in the model (1). The support of θ0 ∈ R
n is denoted by Sθ0 = {i : θ0,i �= 0} or

sometimes S0 for simplicity. The cardinality of the support Sθ0 is denoted by σ0 = |S0|.

1.9. Relevance and novelty of the approach. We now briefly emphasize connections with
existing works, and discuss several merits of the proposed approach. First, studying theoret-
ical properties of BMT procedures is motivated by the fact that they are routinely used in
practice since Efron’s seminal papers [22, 23]; in the context of genomic applications, we
refer for instance to a recent series of works by Stephens and coauthors [26, 42] and refer-
ences therein. Second, we note that just a few other procedures to date theoretically allow
both estimation at minimax rate and uniform FDR control. Besides the BH procedure [2, 7],
the SLOPE procedure [12, 44] also enjoys these two properties in a regression context. In
addition, the Bayesian maximum a posteriori (MAP) rule [3] has a minimax estimation rate
and shares connections with the BH rule [1] for some specific choice of the prior. Third, let us
mention that Sun, Cai and coauthors have also investigated a generic �-value-based approach
(see Section 5.2 for more details) that allows to control the FDR in structured settings where
the BH procedure can be suboptimal [13, 14, 46]. Nevertheless, the proposed FDR control is
not uniform from the frequentist perspective and is restricted to a specific asymptotical set-
ting. Interestingly, using the present spike and slab prior in these contexts seems promising
to get uniform FDR control while improving upon the BH procedure. During the submission
process of the manuscript, a first encouraging attempt has being made by the second author
in the discussion part of the paper [14] (see page 218 therein).

To summarize, the present work aims at providing guarantees for a widely used class of
�-value/q-value-based BMT procedures, deploying a spike and slab prior with suitably heavy
tails and empirical Bayes choice of the weight. Further, by doing so and combining with re-
sults from recent parallel investigations [16, 18], our work demonstrates that the correspond-
ing posterior distribution produces simultaneously optimal estimation rates, confidence sets
and uniform FDR control (as well as FNR control over appropriately large signals) thereby
achieving a complete inference picture along the three canonical inferential goals of “estima-
tion, testing (here, multiple) and confidence sets.” We are not aware of any another method
that produces, simultaneously, these (frequentist) inferences in the present setting.

2. Preliminaries.

2.1. Procedure and FDR. A multiple testing procedure is a measurable function of the
form ϕ(X) = (ϕi(X))1≤i≤n ∈ {0,1}n, where each ϕi(X) = 0 (resp. ϕi(X) = 1) codes for
accepting H0,i (resp. rejecting H0,i ). For any such procedure ϕ, we let

(9) FDR(θ0, ϕ) = Eθ0

[∑n
i=1 1{θ0,i = 0}ϕi(X)

1 ∨ ∑n
i=1 ϕi(X)

]
.

A procedure ϕ is said to control the FDR at level α if FDR(θ0, ϕ) ≤ α for any θ0 in R
n. Note

that under θ0 = 0, we have FDR(θ0, ϕ) = Pθ0=0(∃i : ϕi(X) = 1) which means that an α-FDR
controlling procedure provides in particular a (single) test of level α of the full null “θ0,i = 0
for all i.” As already mentioned, in the framework of this paper our goal is a control of the
FDR around the prespecified target level, as in (6) or (7) (where t = α).
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2.2. Prior, posterior, �-values and q-values. Recall the definition of the prior distribution
� = �w,γ from (3), and let

(10) g(x) =
∫

γ (x − u)φ(u)du.

The posterior distribution �[· | X] = �w,γ [· | X] of θ is explicitly given by

θ |X ∼
n⊗

i=1

�i(X)δ0 + (
1 − �i(X)

)
GXi

,(11)

where Gx is the distribution with density γx(u) := φ(x − u)γ (u)/g(x) and

�i(X) = �(Xi;w,g);(12)

�(x;w,g) = �(θ1 = 0 | X1 = x) = (1 − w)φ(x)

(1 − w)φ(x) + wg(x)
.(13)

The quantities �i(X), 1 ≤ i ≤ n, given by (12), are called the �-values. Note that, although
we do not emphasize it in the notation for short, the �-values also depend on w and g. The
�-value measures locally, for a given observation Xi , the probability that the latter comes
from pure noise. This is why it is sometimes called “local-FDR”; see [23].

If one has in mind a range of values, that is, those that exceed a given amplitude—, a
different measure is given by the q-values defined by:

qi(X) = q(Xi;w,g);(14)

q(x;w,g) = �
(
θ1 = 0 | |X1| ≥ |x|) = (1 − w)(|x|)

(1 − w)(|x|) + wG(|x|) ;(15)

G(s) =
∫ +∞
s

g(x) dx.(16)

The identity (15) relating the q-value to ,G is proved in Section S-3.

2.3. Assumptions. We follow throughout the paper assumptions similar to those of [30].
The prior γ is assumed to be unimodal, symmetric and so that∣∣logγ (x) − logγ (y)

∣∣ ≤ �|x − y|, x, y ∈ R;(17)

γ (y)−1
∫ ∞
y

γ (u) du 
 yκ−1, as y → ∞, κ ∈ [1,2];(18)

y ∈ R → y2γ (y) is bounded.(19)

Conditions (17), (18) and (19) above are, for instance, true when γ is Cauchy (κ = 2,
� = 1) or Laplace (κ = 1, � is the scaling parameter). As we show in Remark 1 in the
Supplementary Material, explicit expressions exist for g; see (10), in the Laplace case. In the
Cauchy case the integral is not explicit, but, in practice, (to avoid approximating the integral)
one can work with the quasi-Cauchy prior; see [31], that satisfies the above conditions and
corresponds to:

γ (x) = (2π)−1/2(
1 − |x|(x)/φ(x)

);(20)

g(x) = (2π)−1/2x−2(
1 − e−x2/2)

.(21)

The condition (19) is mostly for simplicity to get unified proofs, but heavier tails could be
considered as well by adapting estimates of [18].



SPIKE AND SLAB EMPIRICAL BAYES MULTIPLE TESTING 2555

2.4. Bayesian multiple testing procedures (BMT). We define the multiple procedures de-
fined from the �-values/q-values in the following way:

ϕ�-val
i (t;w,g) = 1{�i(X)≤t}, 1 ≤ i ≤ n;(22)

ϕ
q-val
i (t;w,g) = 1{qi(X)≤t}, 1 ≤ i ≤ n,(23)

where t ∈ (0,1) is some threshold that possibly depends on X. As we will see in Section 7.2,
these two procedures, denoted ϕ�-val(t), ϕq-val(t) for brevity, simply correspond to (hard)
thresholding procedures that select the |Xi |’s larger than some (random) threshold. The value
of the threshold is driven by the posterior distribution in a very specific way. It depends on γ ,
t and on the whole data vector X through the empirical Bayes choice of the hyperparameter
w that automatically “scales” the procedure according to the sparsity of the data.

2.5. Controlling the Bayes FDR. If the aim is to control the FDR at some level α, a first
result indicates that choosing t = α in ϕ�-val(t) and ϕq-val(t) may be appropriate because the
corresponding procedures control the Bayes FDR, that is, the FDR where the parameter θ

has been integrated with respect to the prior distribution (see, e.g., [39]). More formally, for
any multiple testing procedure ϕ and hyperparameters w and γ , define

BFDR(ϕ;w,γ ) =
∫
Rn

FDR(θ, ϕ) d�w,γ (θ).(24)

Then, the following result holds:

PROPOSITION 1. Let α ∈ (0,1) and w ∈ (0,1), and consider any density γ satisfy-
ing the assumptions of Section 2.3. Let ϕ� = ϕ�-val(α;w,g) as defined in (22) and ϕq =
ϕq-val(α;w,g) as defined in (23). Then, we have

BFDR
(
ϕ�;w,γ

) ≤ αP
(∃i : �i(X) ≤ α

)
(25)

≤ αP
(∃i : qi(X) ≤ α

) = BFDR
(
ϕq;w,γ

) ≤ α.(26)

This result can be certainly considered well known, as (25) (resp. (26)) is similar in essence
to Theorem 4 of [46] (resp., Theorem 1 of [43]). It is essentially a consequence of Fubini’s
theorem; see Section S-2.1 for a proof. While Proposition 1 justifies the use of �/q-values
from the purely Bayesian perspective, it does not bring any information about FDR(θ0, ϕ

�)

and FDR(θ0, ϕ
q) at an arbitrary sparse vector θ0 ∈R

n.

2.6. Marginal maximum likelihood. In order to choose the hyperparameter w, we explore
now the choice made in [30], following the popular marginal maximum likelihood method.
Let us introduce the auxiliary functions

β(x) = g

φ
(x) − 1; β(x,w) = β(x)

1 + wβ(x)
.(27)

A useful property is that β is increasing on [0,∞) from β(0) ∈ (−1,0) to infinity; see Sec-
tion 7.1. The marginal likelihood for w is, by definition, the marginal density of X, given w,
in the Bayesian setting. Its logarithm is equal to

L(w) =
n∑

i=1

logφ(Xi) +
n∑

i=1

log
(
1 + wβ(Xi)

)
,

which is a differentiable function on [0,1]. The derivative S of L, the score function, can be
written as

(28) S(w) =
n∑

i=1

β(Xi)

1 + wβ(Xi)
=

n∑
i=1

β(Xi,w).
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The function w ∈ [0,1] → S(w) is (a.s.) decreasing, and thus w ∈ [0,1] → L(w) is (a.s.)
strictly concave. Hence, almost surely, the maximum of the function L on a compact interval
exists, is unique and we can define the marginal maximum likelihood estimator ŵ by

(29) ŵ = argmax
w∈[ 1

n
,1]

L(w) (a.s.).

This choice of ŵ is close to the one in [30]. The only difference is in the lower bound, here
1/n, of the maximisation interval which differs from the choice in [30] by a slowly varying
term. This difference is important for multiple testing in case of weak or zero signal (in
contrast to the estimation task for which this different choice does not modify the results).
Another slightly different choice of interval, still close to [1/n,1], will also be of interest
below. In addition, if ŵ ∈ (1/n,1), it solves the equation S(w) = 0 in w. However, note that,
in general, the maximiser ŵ can be at the boundary and thus may not be a zero of S .

3. Main results. Let us first describe the �-value algorithm.

Algorithm EBayesL
Input: X1, . . . ,Xn, slab prior γ , target confidence t

Output: BMT procedure ϕ�-val

1. Find the maximiser ŵ given by (29).
2. Compute �̂i (X) = �(Xi; ŵ, g) given by (13).
3 Return, for 1 ≤ i ≤ n,

(30) ϕ�-val
i = 1

{
�̂i (X) ≤ t

}
.

THEOREM 1. Consider the parameter space �0[sn] given by (2) with sparsity sn ≤ nυ for
some υ ∈ (0,1). Let γ be a unimodal symmetric slab density that satisfies (17)–(19) with κ

as in (18). Then, the algorithm EBayesL produces as output the BMT ϕ�-val defined in (30)
that satisfies the following: There exists a constant C = C(γ,υ) such that for any t ≤ 3/4,
there exists an integer N0 = N0(γ,υ, t) such that, for any n ≥ N0,

(31) sup
θ0∈�0[sn]

FDR
(
θ0, ϕ

�-val) ≤ C
log logn

(logn)κ/2 .

Theorem 1 is proved in Section 8. The proof relies mainly on two different arguments:
first, a careful analysis of the concentration of ŵ, which requires to distinguish between
two regimes (weak/moderate or strong signal, basically); second, the study of the FDR of
the �-value procedure taken at some sparsity parameter w (not random but depending on
n) in each of these two regimes. This requires to analyse the mathematical behavior of a
number of functions of w,θ0, uniformly over a wide range of possible sparsities, which is
one main technical difficulty of our results. In particular, the concentration of ŵ is obtained
uniformly over all sparse vectors with polynomial sparsity, without any strong-signal or self-
similarity-type assumption, as would typically be the case for obtaining adaptive confidence
sets. Such assumptions would, of course, simplify the analysis significantly, but the point here
is precisely that a uniform FDR control is possible for rate-adaptive procedures without any
assumption on the true sparse signal. The uniform concentration of ŵ is expressed implicitly
and requires sharp estimates, contrary to rate results for which a concentration in a range of
values is typically sufficient. In particular, some of our lemmas in the Supplementary Material
[17] are refined versions of lemmas in [30].
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As a corollary, (31) entails

lim
n

sup
θ0∈�0[sn]

FDR
(
θ0, ϕ

�-val) = 0,

and this for any chosen threshold t ∈ (0,1) in ϕ�-val. From a pure α-FDR controlling point of
view, while making a vanishing small proportion of errors is obviously desirable, it implies
that ϕ�-val is, as far as the FDR is concerned, somewhat conservative, in the sense that it does
not spend all the allowed type I errors (0 instead of α) and thus will make too few (true)
discoveries at the end. It turns out that in the present setting �-values are not quite on the
“exact” scale for FDR control. An alternative is to consider the q-value scale, as we now
describe.

Algorithm EBayesq
Input: X1, . . . ,Xn, slab prior γ , target confidence t

Output: BMT procedure ϕq-val

1. Find the maximiser ŵ given by (29).
2. Compute q̂i (X) = q(Xi; ŵ, g).
3. Return, for 1 ≤ i ≤ n,

(32) ϕ
q-val
i = 1

{
q̂i(X) ≤ t

}
.

We also consider the following variant of the procedure EBayesq, which is mostly the
same except that it does not allow for too small estimated weight ŵ. Set, for Ln tending
slowly to infinity,

(33) ωn = Ln

nG(
√

2.1 logn)
.

For instance, for γ Cauchy or quasi-Cauchy, we have ωn 
 (Ln/n)
√

logn, while for γ

Laplace(1), we have ωn 
 (Ln/n) exp{C√
logn}.

Algorithm EBayesq.0
Input: X1, . . . ,Xn, slab prior γ , target confidence t , sequence Ln

Output: BMT procedure ϕq-val.0

1.–2. Same as for EBayesq, returning q̂i(X).
3. Return, for 1 ≤ i ≤ n and ωn, as in (33),

(34) ϕ
q-val.0
i = 1

{
q̂i(X) ≤ t

}
1{ŵ > ωn}.

THEOREM 2. Consider the same setting as Theorem 1. Then, the algorithm EBayesq
produces the BMT procedure ϕq-val in (32) that satisfies the following: there exists a constant
C = C(γ,υ) such that for any t ≤ 3/4, there exists an integer N0 = N0(γ,υ, t) such that, for
any n ≥ N0,

sup
θ0∈�0[sn]

FDR
(
θ0, ϕ

q-val) ≤ Ct log(1/t).(35)

In addition, the algorithm EBayesq.0 produces the BMT procedure ϕq-val.0 in (34) that
satisfies, for ωn as in (33) with Ln → ∞, Ln ≤ logn, t ≤ 3/4 and C,N0 as before (but with
possibly different numerical values) for any n ≥ N0,

sup
θ0∈�0[sn]

FDR
(
θ0, ϕ

q-val.0) ≤ Ct.(36)
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The proof of Theorem 2 is technically close to that of Theorem 1 and is given in Section 8;
see also Section 8.2 for an informal heuristic that serves as guidelines for the proof. The
statements of Theorem 2 are, however, of different nature because the q-value threshold t

appears explicitly in the bounds (35)–(36) that do not vanish as n tends to infinity.
The two bounds (35) and (36) differ from a log(1/t) term which may become significant

for small t . This term appears in the case where the signal is weak (only few rejected nulls)
and for which the calibration ŵ is slightly too large. This may not be the case using a different
type of sparsity-adaptation or a different estimate ŵ. Indeed, this phenomenon disappears
when using EBayesq.0, since ŵ is then set to 0 when it is not large enough, in which case
the FDR control is shown to be guaranteed, and we retrieve a dependence in terms of a
constant times the target level t .

A consequence of Theorem 2 is that an α-FDR control can be achieved with EBayesq/
EBayesq.0 procedures by taking t = t (α) sufficiently small (although not tending to zero).
Again, it is important to know how small the constant C > 0 can be taken in (35) and (36).
When the signal is strong enough, the following result shows that C = 1 and the log(1/t)

factor can be removed in (35).
Let us first introduce a set L0[sn] of “large” signals for arbitrary a > 1,

L0[sn] = {
θ ∈ �0[sn] : |θi | ≥a

√
2 log(n/sn) for i ∈ Sθ , |Sθ | = sn

}
.(37)

THEOREM 3. Consider L0[sn] = L0[sn;a] defined by (37) with an arbitrary a > 1, for
sn → ∞ and sn ≤ nυ for some υ ∈ (0,1). Assume that γ is a unimodal symmetric slab density
that satisfies (17)–(19) with κ as in (18). Then, for any prespecified level t ∈ (0,1), EBayesq
produces the BMT procedure ϕq-val in (32) such that

lim
n

sup
θ0∈L0[sn]

FDR
(
θ0, ϕ

q-val) = lim
n

inf
θ0∈L0[sn] FDR

(
θ0, ϕ

q-val) = t.(38)

In addition, EBayesq.0 with Ln → ∞, satisfies the same property whenever sn/n ≥ 2ωn,
for ωn as in (33) which is, in particular, the case if sn grows faster than a given power of n

and Ln ≤ logn.

Theorem 3, although focused on a specific regime, shows that empirical Bayes procedures
are able to produce an asymptotically exact FDR control. Again, this may look surprising at
first, as the prior slab density γ is not particularly linked to the true value of the parameter
θ0 ∈ L0[sn] in (38). This puts forward a strong adaptive property of the spike and slab prior
for multiple testing.

We conclude this section by giving results on the type II risk of the introduced multiple
testing procedures. This is done by controlling the average number of false negatives (also
called false nondiscoveries) among the nonzero coordinates which is called below False Neg-
ative Rate (FNR). For a given multiple testing procedure ϕ, following [4], we let

(39) FNR(θ0, ϕ) = Eθ0

[∑n
i=1 1{θ0,i �= 0}(1 − ϕi(X))

1 ∨ ∑n
i=1 1{θ0,i �= 0}

]
.

Clearly, in the present setting, controlling this quantity is only possible under signal strength
assumptions. Below, we provide such a control over the class L0[sn] defined in (37) above,
and for the procedures ϕ�-val and ϕq-val (results for ϕq-val.0 are the same as for ϕq-val under
the conditions of Theorem 3 and are omitted).

THEOREM 4. Let t ∈ (0,1) be any prespecified level. Consider the setting and notation
of Theorem 3, and recall the �-values procedure from Theorem 1. The BMT procedures ϕ�-val

and ϕq-val verify

lim
n

sup
θ0∈L0[sn]

FNR
(
θ0, ϕ

�-val) = lim
n

sup
θ0∈L0[sn]

FNR
(
θ0, ϕ

q-val) = 0.(40)
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COROLLARY 1. In the setting of Theorem 4, for any prespecified level t ∈ (0,1), the
multiple testing procedures ϕ�-val and ϕq-val satisfy

lim
n

[
sup

θ0∈�0[sn]
FDR

(
θ0, ϕ

�-val) + sup
θ0∈L0[sn]

FNR
(
θ0, ϕ

�-val)] = 0,(41)

lim
n

sup
θ0∈L0[sn]

FDR
(
θ0, ϕ

q-val) = t, lim
n

sup
θ0∈L0[sn]

FNR
(
θ0, ϕ

q-val) = 0.(42)

Let us consider, similarly to [4], the (multiple testing) classification risk R(θ0, ϕ) =
FDR(θ0, ϕ) + FNR(θ0, ϕ) for any θ0 ∈ R

n and procedure ϕ. It follows from Corollary 1
that for any a > 1 and t < 1,

lim
n

sup
θ0∈L0[sn;a]

{
R

(
θ0, ϕ

�-val)} = 0, lim
n

sup
θ0∈L0[sn;a]

{
R

(
θ0, ϕ

q-val)} = t,

so the procedure ϕ�-val is consistent for this risk on this range of signals, while ϕq-val controls
it at level t < 1.

We can legitimately ask if this property is optimal in some sense. We establish below
that the classification task is impossible (i.e., the risk is at least 1) below the boundary√

2 log(n/sn), at least over a fairly large class of procedures.
Define the class C of two-sided, thresholding-based multiple testing procedures ϕ of the

form

ϕi(X) = 1
{
Xi ≥ τ1(X) or − Xi ≥ τ2(X)

}
, 1 ≤ i ≤ n

for some measurable τ1(X), τ2(X) ≥ 0. The following result adapts a result of [4] to the
two-sided context:

PROPOSITION 2. Consider L0[sn] = L0[sn;a], defined by (37) with an arbitrary a < 1
for sn → ∞, and sn ≤ nυ for some υ ∈ (0,1). Consider the class of two-sided, thresholding-
based multiple testing procedures C defined above. Then, for R is the FDR+FNR classifica-
tion risk defined above,

lim
n

inf
ϕ∈C sup

θ0∈L0[sn;a]
R(θ0, ϕ) ≥ 1.

The proof of Proposition 2 is given in Section S-6. Let us underline that, therein, much
sharper results are provided which allow to derive explicit convergence rates for the classifi-
cation impossibility for a signal strength just below

√
2 log(n/sn).

Finally, we have established that the procedures ϕ�-val and ϕq-val both achieve asymptoti-
cally the optimal classification boundary

√
2 log(n/sn). They asymptotically control the risk

on L[sn;a] for arbitrary a > 1 (at levels 0 and t respectively), while any such control is
impossible if a < 1.

REMARK 1. Our results can be extended to the case where g is not of the form (10) (i.e.,
not necessarily of the form of a convolution with the standard Gaussian) but satisfies some
weaker properties; see Section 7.1. This extended setting corresponds to a “quasi-Bayesian”
approach where the �-values (resp., q-values) are directly given by the formulas (12) (resp.,
(14)) without specifying a slab prior γ .
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4. Numerical experiments. In this section our theoretical findings are illustrated via
numerical experiments. A motivation here is also to evaluate how the parameters sn, θ0 ∈
�0[sn], and the hyperparameter γ (or g) affect the FDR control, in particular, the value of the
constant in the bound of Theorem 2.

For this we consider n = 104, sn ∈ {10,102,103} and the following two possible scenarios
for θ0 ∈ �0[sn]:

• constant alternatives: θ0,i = μ if 1 ≤ i ≤ sn and 0 otherwise; or
• randomized alternatives: θ0,i i.i.d. uniformly distributed on (0,2μ) if 1 ≤ i ≤ sn and 0

otherwise.

The parameter range for μ is taken equal to {0.01,0.5,1,2, . . . ,10}. The marginal likelihood
estimator ŵ given by (29) is computed by using a modification of the function wfromx of
the package EbayesThresh [31] that accommodates the lower bound 1/n in our defini-
tion (instead of wn = ζ−1(

√
2 logn), see (55), in the original version). The parameter γ is

either given by the quasi-Cauchy prior (20)–(21) or by the Laplace prior of scaling parame-
ter a = 1/2 (see Remark 1 in the Supplementary Material for more details). For any of the
above parameter combinations, the FDR of the procedures EBayesL, EBayesq (defined in
Section 3) is evaluated empirically via 2000 replications.

Figure 1 displays the FDR of the procedures EBayesL (�-values) and EBayesq (q-
values). Concerning EBayesL, in all situations the FDR is small while not exactly equal
to the value 0 which seems to indicate that the bound found in Theorem 1 is not too con-
servative. Moreover, the quasi-Cauchy version seems more conservative than the Laplace
version, which corroborates our theoretical findings (in our bound (31); we have the factor
(logn)−1 for quasi-Cauchy and (logn)−1/2 for Laplace). As for EBayesq, when the signal
is large, the FDR curves are markedly close to the threshold value t when sn/n is small,
which is in line with Theorem 3. However, for a weak sparsity sn/n = 0.1, the FDR values
are slightly inflated (above the threshold t) which seems to indicate that the asymptotical
regime is not yet reached for this value. Looking now at the whole range of signal strengths,
one notices the presence of a “bump” in the regime of intermediate values of μ, especially for
the Laplace prior. However, this bump seems to disappear when sn/n decreases. We do not
known presently whether this bump is vanishing with n or if this corresponds to a necessary
additional constant C = C(γ,υ) > 1 (or log(1/t)) in the achieved FDR level, but we suspect
that this is related to the fact that the intermediate regime was the most challenging part of
our proofs. Overall, the Cauchy slab prior seems to have a particularly suitable behavior. This
was not totally surprising for us, as it already showed more stability than the Laplace prior in
the context of estimation with the full empirical Bayes posterior distribution, as seen in [16].

Finally, we provide additional experiments in the Supplementary Material; see Section S-
10. The findings can be summarized as follows:

• The curves behave qualitatively similarly for randomized alternatives (second scenario).
• The procedure EBayesq.0 (with Ln = log logn) has a global behavior similar to

EBayesq with more conservativeness for weak signal (as expected).
• It is possible to uniformly improve EBayesq.0 by considering the following mod-

ification (named EBayesq.hybrid below): if w ≤ ωn, instead of rejecting no null,
EBayesq.hybrid performs a standard Bonferroni correction, that is, rejects the H0,i ’s
such that pi(X) ≤ t/n. Note that a careful inspection of the proof of Theorem 2 (EBayesq.0
part) shows that the bound (36) is still valid for EBayesq.hybrid.

5. Further procedures. Two other popular Bayesian multiple testing procedures are
now briefly discussed as well as their links to both �- and q-value procedures.
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FIG. 1. FDR of EBayesL and EBayesq procedures with threshold t ∈ {0.05,0.1,0.2}; n = 10,000; 2000
replications; alternative all equal to μ (on the X-axis).

5.1. MCI procedures. Given a posterior distribution, one may test the presence of sig-
nal on a coordinate by looking at whether 0 belongs to a certain interval on this coordinate
with high posterior probability. We refer to any such procedure based on marginal credi-
ble intervals as MCI procedure for short. Let Ii (X) = Ii (t,X) be an interval with credi-
bility, at least 1 − t for coordinate i for the empirical Bayes posterior, then, by definition,
�[Ii(X) | X] ≥ 1 − t . Hence, 0 /∈ Ii (X) implies, for �̂i (X) as in (30),

�̂i (X) = �[θi = 0 | X] ≤ �
[
θi /∈ Ii(X) | X] ≤ 1 − (1 − t) = t.

One deduces that any MCI procedure at level 1 − t is more conservative than the �-value
procedure at level t > 0. For a natural quantile-based MCI procedure and spike-and-slab
priors, it can be shown that the converse is also true up to taking a slightly lower level, say
t − ε, any ε > 0, for the �-value procedure; see Section S-7. This property means that in
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the present setting this quantile-based MCI procedure is essentially equivalent to the �-value
procedure which leads to Theorem 5 below and proved in Section S-7.

Let zt
i (X) denote the quantile at level t ∈ (0,1) of the marginal empirical Bayes posterior

distribution of the ith coordinate,

zt
i (X) = inf

{
z ∈ R : �ŵ,γ [θi ≤ z | X] ≥ t

}
,

and define a procedure ϕm at level t as follows. For i = 1, . . . , n,

ϕm
i = 1

{
0 /∈ [

zt
i (X), z1−t

i (X)
]}

, t ∈ (0,1/2),(43)

= 1
{
0 < zt

i(X)
} + 1

{
z1−t
i (X) < 0

} = 1
{
0 /∈ Ii (X)

}
,

where Ii (X) = (zt
i (X),+∞) if Xi ≥ 0, and Ii (X) = (−∞, z1−t

i (X)) if Xi < 0. Note that
such an interval Ii (X) is an MCI at level 1 − t , as its credibility is indeed 1 − t in both cases.

THEOREM 5. For t < 1/2, under the assumptions of Theorem 1, the conclusion of The-
orem 1 holds for the MCI procedure ϕm at level t .

In particular, the FDR of the ϕm procedure goes to 0 uniformly over sparse vectors. Control
of FDR+FNR can be obtained as well, in a similar way as for the �-value procedure in
Section 3. The procedure ϕm can be shown to be very close to the �-values procedure at level
t ; see Section S-7 for a justification and the proof of Theorem 5.

5.2. Averaging �-values. Another type of procedures, advocated by Sun and Cai in a
series of works (e.g., [45, 46]), are those based on averaged �-values. In the Bayesian
spike and slab context, it gives rise to the procedure, denoted here by SC (at a target con-
fidence t), that rejects the k̂ smallest �-values, where k̂ is the maximum of the k such
that k−1 ∑k

k′=1 �̂(k′)(X) ≤ t , where �̂(1)(X) ≤ · · · ≤ �̂(n)(X) are the ordered elements of
{�̂i (X),1 ≤ i ≤ n}, the latter being the empirical Bayes �-values used in EBayesL (Sec-
tion 3). We provide insight into the behavior of SC in Section S-8, both theoretically and
numerically. In a nutshell, we observe a qualitative behavior similar to EBayesq with an
FDR tending to t under strong signal strength. Nevertheless, the convergence rate to the
target level t seems slow (decreasing at a logarithmic order in n/sn) because of a specific
remainder term; see Lemma S-39.

6. Discussion. Our results show that spike and slab priors produce posterior distributions
with particularly suitable multiple testing properties. One main challenge in deriving the
results was to build bounds that are uniform over sparse vectors. We demonstrate that such
a uniform control is possible up to a constant term away from the target control level. This
constant is very close to 1 in simulations, and can even be shown to be 1 asymptotically for
some subclass of sparse vectors.

The results of the paper are meant as a theoretical validation of the common practical use
of posterior-based quantities for (frequentist) FDR control. While the main purpose here was
validation, it is remarkable that a uniform control of the FDR very close to the target level
can be obtained for the spike and slab BMT procedure in the present unstructured sparse
high-dimensional model.

While many studies focused on controlling the Bayes FDR with Bayesian multiple testing
procedures, this work paves the way for a frequentist FDR analysis of such procedures in dif-
ferent settings. In our study, perhaps the most surprising fact is how well marginal maximum
likelihood estimation combines with FDR control under sparsity. As shown in our proof (and
summarized in our heuristic), the score function is linked to a peculiar equation that makes
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perfectly the link between the numerator and the denominator in the FDR of the q-value-
based multiple testing procedure. This phenomenon has not been noticed before to the best
of our knowledge. We suspect that this link is only part of a more general picture in which the
concentration of the score process in general sparse high-dimensional models plays a central
role. While this exceeds the scope of this paper, generalizing our results to such settings is a
very interesting direction for future work.

7. Preliminaries for the proofs.

7.1. Working with general g. As noted in Remark 1, the results of Theorems 1, 2 and 3
are also true under slightly more general assumptions that do not impose that g is coming
from a γ by a convolution product. Namely, let us assume that

g is a positive, symmetric, differentiable density
that decreases on a vicinity of +∞(44)

(g decreasing on a vicinity of +∞ means that x → g(x) is decreasing for x > M , for a
suitably large constant M = M(g)). Assume moreover that∣∣(logg)′(y)

∣∣ ≤ � for all y ∈ R,� > 0;(45)

G(y) 
 g(y)yκ−1, as y → ∞, for some κ ∈ [1,2];(46)

y ∈ R→ (
1 + y2)

g(y) is bounded;(47)

g/φ is increasing on [0,∞) from (g/φ)(0) < 1 to ∞;(48)

By Lemma S-9, it is worth to note that (48) implies

G/ is increasing on [0,∞) from 1 to ∞.(49)

In the case where g is of the form of a convolution with γ , as in (10), conditions (45), (46)
and (47) are easy consequences of the fact g(y) 
 γ (y) as y → ∞; condition (48) follows
from the fact that for all fixed u > 0, the function x ∈ [0,∞) → (φ(x +u)+φ(x −u))/φ(x)

is increasing; see Lemma 1 of [30] for a detailed derivation.
A consequence of (45) is that g and G have at least Laplace tails

g(y) ≥ g(0)e−�y, y ≥ 0;(50)

G(y) ≥ g(0)�−1e−�y, y ≥ 0.(51)

7.2. BMT as thresholding-based procedures. Recall the definitions (22) and (23). Let,
for any w and t in [0,1),

r(w, t) = wt

(1 − w)(1 − t)
.(52)

The following quantity plays the role of threshold for �-values,

ξ = (φ/g)−1 : (
0, (φ/g)(0)

] → [0,∞),(53)

that is, ξ is the decreasing continuous inverse of φ/g (that exists thanks to (48)). Simple
algebra shows that, for w, t ∈ [0,1) with r(w, t) ≤ φ(0)/g(0),

�i(X) ≤ t ⇔ |Xi | ≥ ξ
(
r(w, t)

)
.(54)

When u becomes small, the order magnitude of ξ(u) is given in Lemma S-12. ξ(u) slightly
exceeds (−2 logu)1/2, but not by much, which comes from the fact that g has heavy tails.
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Another quantity close to ξ we shall use in the sequel is the threshold ζ introduced in [30]
and defined as, for any w ∈ (0,1],
(55) ζ(w) = β−1(

w−1)
.

Combining the definitions leads (see (S-8) for details) to ζ(w) = ξ(w/(1 + w)) and ξ(w) ≤
ζ(w). Similarly, let us introduce a threshold for q-values as

χ = (/G)−1 : (0,1] → [0,∞),(56)

which is the decreasing continuous inverse of /G (that exists thanks to (49)). For all w ∈
[0,1) and t ∈ [0,1) with r(w, t) ≤ 1,

qi(X) ≤ t ⇔ |Xi | ≥ χ
(
r(w, t)

)
.(57)

Lemma S-13 shows that, for small u, the order of magnitude of χ(u) is slightly more than


−1

(u) but not by much which comes from the fact that G has heavy tails. Also, Lemma
S-10 together with (54)–(57) imply

(58) χ(u) ≤ ξ(u) for u ≤ 1.

7.3. Single type I error rates. The single type I error rates of our procedures are evaluated
by the following result (proved in Section S-2.2):

PROPOSITION 3. Consider any function g satisfying the assumptions of Section 7.1.
Consider r(·, ·) as in (52), ξ as in (53) and χ as in (56). Then, the following bounds hold.
For all t,w such that r(w, t) ≤ (φ/g)(0),

Pθ0=0
(
�i(X) ≤ t

) ≤ 2r(w, t)
g(ξ(r(w, t)))

ξ(r(w, t))
.(59)

Also, for all t,w such that r(w, t) ≤ (φ/g)(1),

Pθ0=0
(
�i(X) ≤ t

) ≥ r(w, t)
g(ξ(r(w, t)))

ξ(r(w, t))
.(60)

For q-values we have, for all t,w such that r(w, t) ≤ 1,

Pθ0=0
(
qi(X) ≤ t

) = r(w, t)2G
(
χ

(
r(w, t)

))
.(61)

As a result, for a fixed w, we see that heavier tails of g result in larger type I error rate. This
is well expected, as the heavier the tails of g, the more mass the prior puts on large values.

8. Proof of the main results.

8.1. Notation. The following moments are useful when studying the score function S .
Let us set

(62) m̃(w) = −E0β(X,w) =
∫ ∞
−∞

β(t,w)φ(t) dt

and further denote

m1(τ,w) = Eτ

[
β(X,w)

] =
∫ ∞
−∞

β(t,w)φ(t − τ) dt.(63)

m2(τ,w) = Eτ

[
β(X,w)2] =

∫ ∞
−∞

(
β(t,w)

)2
φ(t − τ) dt.(64)
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These expectations are well defined and studied in detail in Section S-5, refining previous
results established in [30].

In order to study the FDR of a procedure ϕ, we introduce the notation

V (ϕ) = ∑
i:θ0,i=0

ϕi, S(ϕ) = ∑
i:θ0,i �=0

ϕi,(65)

counting for ϕ the number of false and true discoveries, respectively.

8.2. Heuristic. Why should the marginal empirical Bayes choice of w lead to a correct
control of the FDR? Here is an informal argument that will give a direction for our proofs.
We consider the case of ϕq-val here as it is expected to reject more nulls than ϕ�-val and thus
to have a larger FDR.

First, let us note that, when there is enough signal, one can expect ŵ to be approximately
equal to the solution w� of the score equation in expectation Eθ0(S(w�)) = 0, that is, by using
(28), ∑

i:θ0,i �=0

m1
(
θ0,i ,w

�) = (n − sn)m̃
(
w�),

where m̃ and m1 are defined by (62) and (63), respectively, if there θ0 has exactly sn nonzero
coordinates. As seen in Section S-5, up to log terms,

∑
i:θ0,i �=0

m1
(
θ0,i ,w

�) ≈ ∑
i:θ0,i �=0

(ζ(w�) − θ0,i) + (ζ(w�) + θ0,i )

w�
;

m̃
(
w�) ≈ 2G

(
ζ
(
w�)).

Now, consider the FDR and assume that all quantities are well concentrated (in particular,
take the expectation both in the numerator and denominator in (9)). Then, by using (61) we
have, denoting ϕq-val(α; ŵ, g) the q-value procedure at level α with parameters ŵ, g,

FDR
(
θ0, ϕ

q-val(α; ŵ, g)
)

≈ FDR
(
θ0, ϕ

q-val(α;w�,g
))

≈
∑

i:θ0,i=0 Pθ0,i
(q�

i (X) ≤ α)∑
i:θ0,i=0 Pθ0,i

(q�
i (X) ≤ α) + ∑

i:θ0,i �=0 Pθ0,i
(q�

i (X) ≤ α)

≈ (n − sn)r(w
�,α)2G(ζ(w�))

(n − sn)r(w�,α)2G(ζ(w�)) + ∑
i:θ0,i �=0 Pθ0,i

(q�
i (X) ≤ α)

,

where we denoted q�
i (X) = q(Xi;w�,g) and we used that χ(r(w�, t)) is close to ζ(w�), as

seen in Section S-4. Now, by using the definition of q�
i (X),

∑
i:θ0,i �=0

Pθ0,i

(
q�
i (X) ≤ α

) = ∑
i:θ0,i �=0


(
χ

(
r
(
w�,α

)) − θ0,i

) + 
(
χ

(
r
(
w�,α

)) + θ0,i

)

≈ ∑
i:θ0,i �=0


(
ζ
(
w�) − θ0,i

) + 
(
ζ
(
w�) + θ0,i

)
,

where we used again χ(r(w�, t)) ≈ ζ(w�). Now, using the above properties of w�, the latter
is

≈ w�
∑

i:θ0,i �=0

m1
(
θ0,i ,w

�) = (n − sn)w
�m̃

(
w�) ≈ (n − sn)w

�2G
(
ζ
(
w�)).
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Putting the previous estimates together yields

FDR
(
θ0, ϕ

q-val(α; ŵ, g)
)

≈ (n − sn)r(w
�,α)2G(ζ(w�))

(n − sn)r(w�,α)2G(ζ(w�)) + (n − sn)w�2G(ζ(w�))

= r(w�,α)

r(w�,α) + w�
=

w�

1−w�
α

1−α

w�

1−w�
α

1−α
+ w�

≈
α

1−α
α

1−α
+ 1

= α.

We will see that this heuristic holds, up to some constant terms that may come in as constant
multipliers of the target level α.

We note that one main challenge in the proof below is to show that the above estimates
hold true for any sparse signal, in particular for “intermediate” signals θ0 that are neither close
to 0 nor large enough (e.g., do not belong to L0[sn] as in (37)). Among others, we prove in
Lemma S-5 that ŵ ∈ [w2,w1] with w2 
 w1, thereby obtaining a sharp concentration of the
marginal maximum likelihood estimate (uniformly over sparse vectors) that was not observed
before in high-dimensional settings, to the best of our knowledge. To derive some of the
approximations ≈ above, we also sharpen several of the estimates for the moments m1, m̃

obtained in [30]; see; for example, Lemmas S-24 and S-27 for sharp upper and lower bounds
on m1.

8.3. Proof of Theorems 1 and 2. We prove results for �- and q-values together. The proof
for EBayesq.0 is given at the end of this section. First, let w0 be the solution of the equation,

(66) nw0m̃(w0) = M

for M to be chosen below in the range [1, logn] (more precisely, equal to either C log(1/t)

or Ct−1 log logn for a constant C independent of t and large enough, both bounds belong to
the previous interval for n large enough). For any M ∈ [1, logn], this equation has always a
unique solution, as m̃ is continuous increasing (see Lemma S-21) so the map w → wm̃(w)

increases from 0 at w = 0 to a constant at w = 1 and, in particular, has a continuous inverse.
This implies that w0 goes to 0 with n, which we use freely in the sequel. Also, we note that
w0 is larger than 1/n for C in the choice of M large enough. Indeed, w0 ≥ m̃(1)−1M/n by
monotonicity of m̃. But m̃(1) is at most a constant, so, provided M is large enough, w0 ≥ 1/n.
Thus, w0 is always inside the interval [n−1,1] over which the maximiser ŵ is defined.

Let ν ∈ (0,1) be a fixed constant and θ0 ∈ �0[sn]. Recall that S0 denotes the support of θ0
and that σ0 = |S0| denotes the exact number of nonzero coefficients of θ0, so that 0 ≤ σ0 ≤ sn.
The next equation, depending on the configuration θ0 and on the just defined w0, plays a key
role in the proof:

(67)
∑
i∈S0

m1(θ0,i ,w) = (1 − ν)(n − σ0)m̃(w), w ∈ [w0,1).

This equation may or may not have a solution, depending on the true θ0 and the values of n

and ν. We will now assume n ≥ N0 for some universal constant N0 to be determined below.

8.3.1. Case 1: (67) has no solution. For a given value of n, let us consider the case where
(67) has no solution in w ∈ [w0,1).

First, the maps w ∈ [0,1] → m̃(w) and w ∈ [0,1] → m1(μ,w) (μ ∈ R) are continuous
(see Lemmas S-21 and S-23) and, for any μ ∈ R,

∣∣m1(μ,1)
∣∣ ≤

∫ ∣∣∣∣ β(x)

1 + β(x)

∣∣∣∣φ(x − μ)dx ≤ max
x∈R

∣∣∣∣ β(x)

1 + β(x)

∣∣∣∣,
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so that
∑

i∈S0
m1(θ0,i ,1) ≤ Cσ0 < (1 − ν)(n − σ0)m̃(1) for n ≥ N0, where we use σ0 ≤ sn ≤

nυ and m̃(1) > 0 and N0 = N0(g,υ). This means

(68)
∑
i∈S0

m1(θ0,i ,w) < (1 − ν)(n − σ0)m̃(w) for w ∈ [w0,1),

as otherwise by the intermediate value theorem (e.g., Theorem 4.23 in [36]) the graphs of the
functions on the two sides of the previous inequality would have to cross on [w0,1) and (67)
would have a solution. Lemma S-3 shows that, under (68), we have

(69) Pθ0(ŵ > w0) ≤ e−C0ν
2M

for some constant C0 = C0(g,υ). Now, consider ϕ being either ϕ�-val or ϕq-val, and denote
by ϕ(t; ŵ, g) such a procedure with cut-off t and parameters ŵ, g, as defined in (30)–(32).
Let us upper bound the FDR by the so-called family-wise error rate by distinguishing the two
cases ŵ ≤ w0 and ŵ > w0:

FDR
(
θ0, ϕ(t; ŵ, g)

) ≤ Pθ0

(∃i : θ0,i = 0, ϕi(t; ŵ, g) = 1
)

≤ Pθ0

(∃i : θ0,i = 0, ϕi(t;w0, g) = 1
) + Pθ0(ŵ > w0)

≤ (n − σ0)Pθ0,i=0
(
ϕi(t;w0, g) = 1

) + e−C0ν
2M,(70)

where we use that w → ϕi(t;w,g) is nondecreasing; see Lemma S-7, together with a union
bound.

�-value part. Let ξ0 = ξ(r(w0, t)) and ζ0 = ζ(w0); then, (59) leads to (provided r(w0, t) ≤
(φ/g)(0), which holds for, for example, t ≤ 3/4 and w0 ≤ 1/4)

FDR
(
θ0, ϕ

�-val(t; ŵ, g)
) ≤ 2

nw0

1 − w0

t

1 − t

g(ξ0)

ξ0
+ e−C0ν

2M.

Combining the definition of w0 and Lemma S-23 and taking n large enough so that w0 is
appropriately small, with t ≤ 3/4,

FDR
(
θ0, ϕ

�-val(t; ŵ, g)
) ≤ 5M

ξ0

g(ξ0)

G(ζ0)
t + e−C0ν

2M.

Noting that |ξ0 − ζ0|� 1, g(ξ0) ≤ Dg(ζ0) and G(ζ0) 
 ζ κ−1
0 g(ζ0) by Lemma S-16 and S-23,

one obtains

(71) FDR
(
θ0, ϕ

�-val(t; ŵ, g)
) ≤ C(g)M

ζκ
0

t + e−C0ν
2M.

q-value part. For the q-value case we come back to (70) and use (61) instead of (59) to get,
setting χ0 = χ(r(w0, t)),

FDR
(
θ0, ϕ

q-val(t; ŵ, g)
) ≤ 2

nw0

1 − w0

t

1 − t
G(χ0) + e−C0ν

2M.

As a result, by (66) and Lemma S-23, one gets for n large enough, t ≤ 3/4,

FDR
(
θ0, ϕ

q-val(t; ŵ, g)
) ≤ 5Mt

G(χ0)

G(ζ0)
+ e−C0ν

2M.

Now, by the last assertion of Lemma S-16, the ratio in the last display is bounded by 2 (say),
provided n is large enough, which gives

FDR
(
θ0, ϕ

q-val(t; ŵ, g)
) ≤ 10Mt + e−C0ν

2M.(72)



2568 I. CASTILLO AND É. ROQUAIN

8.3.2. Case 2: (67) has a solution. In this case we denote the solution by w1 ∈ [w0,1) so
that one can write

(73)
∑
i∈S0

m1(θ0,i ,w1) = (1 − ν)(n − σ0)m̃(w1).

Now, consider the slightly different equation in w

(74)
∑
i∈S0

m1(θ0,i ,w) = (1 + ν)(n − σ0)m̃(w), w ∈ [0,1).

Equation (74) always has a (unique) solution w2 ∈ [0,w1). To see this, first note that the
case θ0 = 0 is excluded from (73), as m1(0,w) = −m̃(w) < 0 if w �= 0. By Lemma S-21,
w → m1(μ,w) and w → m̃(w) are continuous and, respectively, decreasing and increasing
(both strictly), and m̃(0) = 0, while it can be seen that m1(μ,0) > 0 if μ �= 0; see Lemma S-
21. On the other hand, the value at w = 1 of the left-hand side of (74) is at most σ0C/w � σ0,
and so is of smaller order than (1 + ν)(n − σ0)m̃(1) 
 n.

The purpose of w1,w2 is to provide (implicit) deterministic upper and lower bounds for
the random ŵ; this is the content of Lemma S-4. Additionally, the key Lemma S-5 shows
that, in case where the solution w1 of (73) exists, we have w1 
 w2; that is, the bounds are of
the same order.

q-value part. Recall the notation (65). We focus on the case of q-values first. We come back
to the case of �-values at the end, its proof being similar. For simplicity, we write Vq(w) =
V (ϕq-val(t;w,g)) and Sq(w) = S(ϕq-val(t;w,g)). By definition of the FDR,

FDR
(
θ0, ϕ

q-val(t; ŵ, g)
) = Eθ0

[
Vq(ŵ)

(Vq(ŵ) + Sq(ŵ)) ∨ 1

]

≤ Eθ0

[
Vq(ŵ)

(Vq(ŵ) + Sq(ŵ)) ∨ 1
1{w2 ≤ ŵ ≤ w1}

]

+ Pθ0

[
ŵ /∈ [w2,w1]].

The last expectation in the previous display is now bounded by, using first the monotonicity
of the maps w → Vq(w), w → Sq(w), x → x/(1+x) and x → 1/(1+x), then bounding the
indicator variable by 1 and finally combining with Lemma S-44 applied to the independent
variables T = Vq(w1) and U = Sq(w2),

Eθ0

[
Vq(ŵ)

(Vq(ŵ) + Sq(ŵ)) ∨ 1
1{w2 ≤ ŵ ≤ w1}

]

≤ Eθ0

[
Vq(w1)

(Vq(w1) + Sq(w2)) ∨ 1

]

≤ exp
{−Eθ0Sq(w2)

} + 12
Eθ0Vq(w1)

Eθ0Sq(w2)
.

Next, by using the definition of Vq , one writes

Eθ0Vq(w1) = ∑
i:θ0,i=0

2
(
χ

(
r(w1, t)

)) = 2(n − σ0)
(
χ

(
r(w1, t)

))
.

Using the definition of χ , we have (χ(u)) = G(χ(u))u for u ∈ (0,1), so


(
χ

(
r(w1, t)

)) = r(w1, t)G
(
χ

(
r(w1, t)

))
.
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Then, (S-21) in Lemma S-16 implies, for small enough w1,

G
(
χ

(
r(w1, t)

)) ≤ 2G
(
ζ(w1)

)
.

Combining (S-3) in Lemma S-5, that is, w1/C ≤ w2 ≤ w1, for a constant C = C(ν,υ, g) > 0
and Lemma S-18, we have (with, say, ε = 1/2),

(1/2)G
(
ζ(w1)

) ≤ G
(
ζ(w1/C)

) ≤ G
(
ζ(w2)

)
.

Next, using Lemma S-23, one obtains G(χ(r(w1, t))) ≤ 3m̃(w2) so that

Eθ0Vq(w1) ≤ 3(n − σ0)
w1

1 − w1
m̃(w2)

t

1 − t

≤ 3C(n − σ0)
w2

1 − Cw2
m̃(w2)

t

1 − t

≤ C∗(n − σ0)w2m̃(w2)t,

because t ≤ 3/4 for some constant C∗ = C∗(ν, υ, g) > 0. On the other hand, by definition of
Sq , one can write

Eθ0Sq(w2) = ∑
i:θ0,i �=0


(
χ

(
r(w2, t)

) − θ0,i

) + 
(
χ

(
r(w2, t)

) + θ0,i

)
.

Let us introduce the set of indices, for K1 = 2/(1 − υ),

(75) C0(w,K1) =
{

1 ≤ i ≤ n : |θ0,i | ≥ ζ(w)

K1

}
.

Moreover, χ(r(w2, t)) ≤ ζ(w2) by Lemma S-15. Hence,

Eθ0Sq(w2) ≥ ∑
i∈C0(w2,K1)


(
ζ(w2) − θ0,i

) + 
(
ζ(w2) + θ0,i

)

≥ ∑
i∈C0(w2,K1)


(
ζ(w2) − |θ0,i |).(76)

First, we apply Corollary S-25 with K = K1, w = w2 to bound each term in the sum in
terms of m1, noting that |θ0,i | ≥ ζ(w2)/K1 by definition of the set C0(w2,K1). Next, one
uses Lemma S-30, restricting the suprema to w = w2 (which is in the prescribed interval
by Lemmas S-1, S-2 and S-5) and K = K1, to get for n large enough and constants C =
C(υ,g) > 0, C′ = C′(υ, g) > 0, D = D(υ,g) ∈ (0,1),∑

i∈C0(w2,K1)


(
ζ(w2) − |θ0,i |) ≥ Cw2

∑
i∈C0(w2,K1)

m1(θ0,i ,w2)

≥ Cw2

{∑
i∈S0

m1(θ0,i ,w2) − C′n1−Dm̃(w2)

}

= Cw2
{
(1 + ν)(n − σ0)m̃(w2) − C′n1−Dm̃(w2)

}
,

where the last equality comes from (74). As a consequence, for n large enough, for a positive
constant C∗ = C∗(υ, g) > 0, we have

Eθ0Sq(w2) ≥ C∗(n − σ0)w2m̃(w2).

Combining the previous bounds leads to

Eθ0

[
Vq(ŵ)

Vq(ŵ) + Sq(ŵ) ∨ 1
1{w2 ≤ ŵ ≤ w1}

]
≤ e−C∗(n−σ0)w2m̃(w2) + 12

C∗

C∗
t.
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As w → wm̃(w) is increasing, and w1/C ≤ w2 by Lemma S-5, we have w2m̃(w2) ≥
(w1/C)m̃(w1/C). Recall that w1 ≥ w0 by definition, so Lemma S-23 together with (S-24)
of Lemma S-18 imply

m̃(w1/C) ≥ (1/2)m̃(w1) ≥ (1/2)m̃(w0).

Combining the obtained inequalities leads to

(77) (n − σ0)w2m̃(w2) ≥ C ′(n − σ0)w0m̃(w0) ≥ C ′M,

where the last inequality follows from the definition of w0. Now, turning to a bound on the
FDR, Lemma S-4 and the above inequality imply, with ν = 1/2,

(78) Pθ0

[
ŵ /∈ [w1,w2]] ≤ 2e−C1ν

2nw2m̃(w2) ≤ 2e−CM

for some C = C(υ,g) > 0. Conclude that in the considered case, for some constants c1 =
c1(υ, g), c2 = c2(υ, g) > 0,

FDR
(
θ0, ϕ

q-val(t; ŵ, g)
) ≤ c2t + 3e−c1M.(79)

�-value part. In the case of �-values, one can follow a similar argument. We write V�(w) =
V (ϕ�-val(t;w,g)) and S�(w) = S(ϕ�-val(t;w,g)). Again, the maps w → V�(w) and w →
S�(w) are monotone. So, as above for q-values,

FDR
(
θ0, ϕ

�-val(t; ŵ, g)
) ≤ exp

{−Eθ0S�(w2)
} + 12

Eθ0V�(w1)

Eθ0S�(w2)

+ Pθ0

[
ŵ /∈ [w2,w1]].

By definition of V� and ξ , one can write

Eθ0V�(w1) = 2(n − σ0)
(
ξ
(
r(w1, t)

))
.

The bound (u) ≤ φ(u)/u for u > 0 (see Lemma S-40), combined with the definition of ξ

and that |ξ(r(w1, t)) − ζ(w1)|� 1 by Lemma S-16 leads to

Eθ0V�(w1) ≤ 3(n − σ0)ζ(w1)
−1r(w1, t)g

(
ξ
(
r(w1, t)

))
.

Lemma S-16 then implies g(ξ(r(w1, t))) ≤ 2g(ζ(w1)) (say), for n large enough. Using
w1/C ≤ w2 ≤ w1 and (S-24) in Lemma S-18, we have

(1/2)g
(
ζ(w1)

) ≤ g
(
ζ(w1/C)

) ≤ g
(
ζ(w2)

)
.

Next, using the relation ζ κ−1g(ζ ) 
 m̃(w) from Lemma S-23, one obtains g(ξ(r(w1, t))) �
ζ(w2)

1−κm̃(w2)� ζ(w1)
1−κm̃(w2) so that

Eθ0V�(w1) ≤ Ct(n − σ0)w1m̃(w2)ζ(w1)
−κ

≤ c∗t (n − σ0)w2m̃(w2)ζ(w1)
−κ

for a constant c∗ = c∗(υ, g) > 0. On the other hand, by definition of S�,

Eθ0S�(w2) = ∑
i:θ0,i �=0


(
ξ
(
r(w2, t)

) − θ0,i

) + 
(
ξ
(
r(w2, t)

) + θ0,i

)
.

Lemma S-17 now enables to bound from below the two terms in the previous display in terms
of ζ(w2), and further restricting the sum to the set of indices C0(w2,K1) defined by (75) with
the same choice of K1 leads to

Eθ0S�(w2) ≥ Ct
∑

i∈C0(w2,K1)


(
ζ(w2) − |θ0,i |).
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Apart from the Ct term in factor, it is the same bound as for q-values; see (76). Hence, using
the bound obtained above, for n large enough and c∗ = c∗(υ, g) > 0,

Eθ0S�(w2) ≥ c∗t (n − σ0)w2m̃(w2).

Combining the previous bounds leads to

Eθ0

[
V�(ŵ)

V�(ŵ) + S�(ŵ) ∨ 1
1{w2 ≤ ŵ ≤ w1}

]
≤ e−c∗t (n−σ0)w2m̃(w2) + 12

c∗

c∗
1

ζ(w1)κ
.

As in (77), we have (n − σ0)w2m̃(w2) ≥ C′(n − σ0)w0m̃(w0) ≥ C′M . One concludes that,
in Case 2, for some constants d1 = d1(υ, g), d2 = d2(υ, g) > 0 and taking ν = 1/2, setting
ζ(w1) = ζ1,

FDR
(
θ0, ϕ

�-val(t; ŵ, g)
) ≤ d2ζ

−κ
1 + e−C′Mc∗t + 2e−CM

≤ d2ζ
−κ
1 + 3e−d1Mt .(80)

8.3.3. Combining Cases 1 and 2. For q-values, for ν = 1/2 and t ≤ 3/4 we get by com-
bining (72) and (79)

FDR
(
θ0, ϕ

q-val(t; ŵ, g)
) ≤ max

{
10Mt + e−C0M,c2t + 3e−c1M

}
.

Taking M = (C0 ∧ c1)
−1 log(1/t) gives the upper bound

FDR
(
θ0, ϕ

q-val(t; ŵ, g)
) ≤ max

{
C′t log(1/t) + e− log(1/t), c2t + 3e− log 1/t},

which is smaller than Ct log(1/t), giving the result for q-values.
In the �-values case, with ζ1 ≤ ζ0 and setting ν = 1/2, we get by combining (71) and (80)

FDR
(
θ0, ϕ

�-val(t; ŵ, g)
) ≤ max

{
CMζ−κ

0 t + e−C0M,d2ζ
−κ
1 + 3e−d1tM

}
≤ d3

{
Mζ−κ

1 t + ζ−κ
1 + e−d4tM

}
.

The announced bound is obtained upon setting M = t−1d−1
4 log(ζ κ

1 ) and noting that ζ 2
1 �

log(1/w1) � logn and ζ 2
1 � log(1/w1) � logn by using Lemmas S-1, S-2 to bound w1 and

Lemma S-14 to bound ζ(w1). This concludes the proof of Theorem 1 for �-values and The-
orem 2 for q-values.

8.3.4. Proof for EBayesq.0. First, notice that

FDR
(
θ0, ϕ

q-val.0(t; ŵ, g)
) = Eθ0

[∑n
i=1 1{θ0,i = 0}ϕq-val.0(t; ŵ, g)

1 ∨ ∑n
i=1 ϕq-val.0(t; ŵ, g)

]

= Eθ0

[∑n
i=1 1{θ0,i = 0}ϕq-val(t; ŵ, g)

1 ∨ ∑n
i=1 ϕq-val(t; ŵ, g)

1{ŵ > ωn}
]
,(81)

by definition of algorithm EBayesq.0. The strategy of proof is similar to the q-value case.
Let us take M in the definition (66) of w0 equal to Ln from the statement of Theorem 2 (see
(33)) and suppose Ln ∈ [1, logn]. Let us show for n large enough,

(82) ωn ≥ w0.

As ζ(w0) ≤ ζ(1/n) ≤ √
2.1 logn for n large enough by Lemmas S-1, S-14,

ωn = Ln

nG(
√

2.1 logn)
≥ Ln

nG(ζ(1/n))
≥ Ln

nG(ζ(w0))
.
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Now, by using Lemma S-23, for n large enough,

Ln

nG(ζ(w0))
≥ 0.9

2Ln

nm̃(w0)
≥ Ln

nm̃(w0)
= w0,

leading to (82). Next, on the one hand, in Case 1 the FDR is bounded by

FDR
(
θ0, ϕ

q-val.0(t; ŵ, g)
) ≤ Pθ0(ŵ > ωn) ≤ Pθ0(ŵ > w0).

By using (69), the last display is at most e−C0ν
2Ln . On the other hand, in Case 2 we simply

use that by (81),

FDR
(
θ0, ϕ

q-val.0(t; ŵ, g)
) ≤ FDR

(
θ0, ϕ

q-val(t; ŵ, g)
) ≤ c2t + 3e−c1Ln,

which concludes the proof.
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