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The problem of nonparametric inference on a monotone function has
been extensively studied in many particular cases. Estimators considered have
often been of so-called Grenander type, being representable as the left deriva-
tive of the greatest convex minorant or least concave majorant of an estima-
tor of a primitive function. In this paper, we provide general conditions for
consistency and pointwise convergence in distribution of a class of gener-
alized Grenander-type estimators of a monotone function. This broad class
allows the minorization or majoratization operation to be performed on a
data-dependent transformation of the domain, possibly yielding benefits in
practice. Additionally, we provide simpler conditions and more concrete dis-
tributional theory in the important case that the primitive estimator and data-
dependent transformation function are asymptotically linear. We use our gen-
eral results in the context of various well-studied problems, and show that
we readily recover classical results established separately in each case. More
importantly, we show that our results allow us to tackle more challenging
problems involving parameters for which the use of flexible learning strate-
gies appears necessary. In particular, we study inference on monotone density
and hazard functions using informatively right-censored data, extending the
classical work on independent censoring, and on a covariate-marginalized
conditional mean function, extending the classical work on monotone regres-
sion functions.

1. Introduction.

1.1. Background. In many scientific settings, investigators are interested in learning
about a function known to be monotone, either due to probabilistic constraints or in view of
existing scientific knowledge. The statistical treatment of nonparametric monotone function
estimation has a long and rich history. Early on, Grenander (1956) derived the nonparametric
maximum likelihood estimator (NPMLE) of a monotone density function, now commonly
referred to as the Grenander estimator. Since then, monotone estimators of many other pa-
rameters, including hazard and regression functions, have been proposed and studied.

In the literature, most monotone function estimators have been constructed via empirical
risk minimization. Specifically, these are obtained by minimizing the empirical risk over the
space of nondecreasing or nonincreasing candidate functions based on an appropriate loss
function. The theoretical study of these estimators has often hinged strongly on their char-
acterization as empirical risk minimizers. This is the case, for example, for the asymptotic
theory developed by Prakasa Rao (1969) and Prakasa Rao (1970) for the NPMLE of mono-
tone density and hazard functions, respectively, and by Brunk (1970) for the least-squares
estimator of a monotone regression function. Kim and Pollard (1990) unified the study of
these various estimators by studying the argmin process typically driving the pointwise dis-
tributional theory of monotone empirical risk minimizers.
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Many of the parameters treated in the literature on monotone function estimation can be
viewed as an index of the statistical model, in the sense that the model space is in bijection
with the product space corresponding to the parameter of interest and an additional variation-
independent parameter. In such cases, identifying an appropriate loss function is often easy,
and a risk minimization representation is therefore usually available. However, when the pa-
rameter of interest is a complex functional of the data-generating mechanism, an appropriate
loss function may not be readily available. This occurs often, for example, when identifica-
tion of the parameter of interest based on the observed data distribution requires adjustment
for sampling complications (e.g., informative treatment attribution, missing data or loss to
follow-up). It is thus imperative to develop and study estimation methods that do not rely
upon risk minimization.

It is a simple fact that the primitive of a nondecreasing function is convex. This observation
serves as motivation to consider as an estimator of the function of interest the derivative of
the greatest convex minorant (GCM) of an estimator of its primitive function. In the literature
on monotone function estimation, many estimators obtained as empirical risk minimizers can
alternatively be represented as the left derivative of the GCM of some primitive estimator.
This is because the definition of the GCM is intimately tied to the necessary and sufficient
conditions for optimization of certain risk functionals over the convex cone of monotone
functions (see, e.g., Chapter 2 of Groeneboom and Jongbloed (2014)). In particular, Grenan-
der’s NPMLE of a monotone density equals the left derivative of the GCM of the empirical
distribution function. In the recent literature, estimators obtained in this fashion have thus
been referred to as being of Grenander-type. Leurgans (1982) is an early example of a gen-
eral study of Grenander-type estimators for a class of regression problems.

In a seminal paper, Groeneboom (1985) introduced an approach to studying GCMs based
on an inversion operation. This approach has facilitated the theoretical study of certain
Grenander-type estimators without the need to utilize their representation as empirical risk
minimizers. For example, under the assumption of independent right-censoring, Huang and
Wellner (1995) used this approach to derive large-sample properties of a monotone hazard
function estimator obtained by differentiating the GCM of the Nelson–Aalen estimator of the
cumulative hazard function. This general strategy was also used by van der Vaart and van
der Laan (2006), who derived and studied an estimator of a covariate-marginalized survival
curve based on current-status data, including possibly high-dimensional and time-varying co-
variates. More recently, there has been interest in deriving general results for Grenander-type
estimators applicable to a variety of cases. For instance, Anevski and Hössjer (2006) derived
pointwise distributional limit results for Grenander-type estimators in a very general setting
including, in particular, dependent data. Durot (2007), Durot, Kulikov and Lopuhaä (2012)
and Lopuhaä and Musta (2018a) derived limit results for the estimation error of Grenander-
type estimators under Lp , supremum and Hellinger norms, respectively. Durot, Groeneboom
and Lopuhaä (2013) studied the problem of testing the equality of generic monotone func-
tions with K independent samples. Durot and Lopuhaä (2014), Beare and Fang (2017) and
Lopuhaä and Musta (2018b) studied properties of the least concave majorant of an arbitrary
estimator of the primitive function of a monotone parameter. The monograph of Groeneboom
and Jongbloed (2014) also summarizes certain large-sample properties for these estimators.

1.2. Contribution and organization of the article. In this paper, we wish to address the
following three key objectives:

1. to provide a unified framework for studying a large class of nonparametric monotone
function estimators that implies classical results but also applies in more complicated, modern
applications;
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2. to derive tractable sufficient conditions under which estimators in this class are known
to be consistent and have a nondegenerate limit distribution upon proper centering and scal-
ing;

3. to illustrate the use of this general framework to construct targeted estimators of mono-
tone parameters that are possibly complex summaries of the observed data distribution, and
whose estimation may require the use of data-adaptive estimators of nuisance functions.

Our first goal is to introduce a class of monotone estimators that allow the greatest convex
minorization process to be performed on a possibly data-dependent transformation of the
domain. For many monotone estimators in the literature, the greatest convex minorization is
performed on a transformation of the domain. A strategic domain transformation can lead
to significant benefits in practice, including in some cases the elimination of the need to
estimate challenging nuisance parameters. Unfortunately, to our knowledge, existing results
for general Grenander-type estimators do not apply in a straightforward manner in cases in
which a data-dependent transformation of the domain has been used. We will define a class
that permits such transformations, and demonstrate both how this class encompasses many
existing estimators in the literature and how a transformation can be strategically selected in
novel problems.

Our second goal is to derive sufficient conditions on the estimator of the primitive function
and domain transformation that imply consistency and pointwise convergence in distribution
of the monotone function estimator. As noted above, general results on pointwise conver-
gence in distribution for the class of Grenander-type estimators, applicable in a wide variety
of settings, were provided in Anevski and Hössjer (2006). Our work differs from that of
Anevski and Hössjer (2006) in a few important ways. First, the role and implications of do-
main transformations—which, as we show, are often important in practice—were not explic-
itly considered in Anevski and Hössjer (2006). To our knowledge, the class of generalized
Grenander-type estimators we consider in this paper, which allow for domain transforma-
tions, has not previously been studied in a unified manner, and hence, general results for
this class do not currently exist. Second, in addition to pointwise distributional results, we
study weak consistency. Third, in Sections 4 and 5, we pay special attention to parameters
for which asymptotically linear estimators of the primitive and transformation functions can
be constructed —in such cases, relatively straightforward sufficient conditions can be devel-
oped, and the limit distribution has a simpler form. While these results are weaker than those
in Section 3 and in Anevski and Hössjer (2006) because they apply only to a special case,
they are useful in many settings. We demonstrate the utility of these results for three groups
of examples—estimation of monotone density, hazard and regression functions—and show
that our results coincide with established results in these settings.

Our third goal is to discuss and illustrate Grenander-type estimation in cases in which non-
parametric estimation of the primitive function requires estimation of challenging nuisance
parameters. In this sense, our work follows the lead of van der Vaart and van der Laan (2006),
whose setting is of this type. More generally, such primitive functions arise frequently, for ex-
ample, when the observed data unit represents a coarsened version of an ideal data structure,
and the coarsening occurs randomly conditional on observed covariates (Heitjan and Rubin
(1991)). In our general results, we provide sufficient conditions that can be readily applied
to such primitive estimators. To demonstrate the application of our theory in coarsened data
structures, we consider extensions of the three classical monotone problems above to more
complex settings in which covariates must be accounted for, because either the censoring
process or the treatment allocation mechanism are informative, as is typical in observational
studies. Specifically, we derive novel estimators of monotone density and hazard functions for
use when the survival data are subject to right-censoring that may depend on covariates, and
a novel estimator of a monotone dose-response curve for use when the relationship between
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the exposure and outcome is confounded by recorded covariates. Unlike for their classical
analogues, in these more difficult problems, nonparametric estimation of the primitive func-
tion involves nuisance functions for which flexible estimation strategies must be employed.
As van der Vaart and van der Laan (2006) was able to achieve in a particular problem, our
general framework explicitly allows the integration of such strategies while still yielding es-
timators with a tractable limit theory.

Our paper is organized as follows. In Section 2, we define the class of estimators we con-
sider and briefly introduce our three working examples. In Section 3, we present our most
general results for the consistency and convergence in distribution of our class of estimators.
We provide refined results, including simpler sufficient conditions and distributional results,
for the special case in which the primitive and transformation estimators are asymptotically
linear in Section 4. In Section 5, we apply our general theory in three examples, both for
classical parameters and for the novel extensions we consider. We provide concluding re-
marks in Section 6. The proofs of all theorems, additional technical details and results from
simulation studies that evaluate the validity of the theory in two examples are provided in the
Supplementary Material (Westling and Carone (2020)).

2. Generalized Grenander-type estimators.

2.1. Statistical setup and definitions. Throughout, we make use of the following def-
initions. For intervals I, J ⊆ R, define �∞(I ) as the space of bounded, real-valued func-
tions on I , DI ⊂ �∞(I ) as the subset of nondecreasing and càdlàg (right-continuous with
left-hand limits) functions on I , and DI,J ⊂ DI as the further subset of functions whose
range is contained in J . The GCM operator GCMI : �∞(I ) → �∞(I ) is defined for any
G ∈ �∞(I ) as the pointwise supremum over all convex functions H ≤ G on I . We note that
GCMI (G) is necessarily convex. For G ∈DI , we denote by G− the generalized inverse map-
ping x �→ inf{u ∈ I : G(u) ≥ x}, and for a left-differentiable G, we denote by ∂−G the left
derivative of G.

We are interested in making inference about an unknown function θ0 ∈ DI determined
by the true data-generating mechanism P0 for an interval I ⊆ R. We denote the endpoints
of I by aI := inf I and bI := sup I . We define the primitive function �0 of θ0 pointwise
for each x ∈ I as �0(x) := ∫ x

aI
θ0(u) du, where if aI = −∞ we assume the integral exists.

The results we present in Section 3 apply in contexts with either independent or dependent
data. Starting in Section 4, we focus on contexts in which the data consist of independent
observations O1, . . . ,On from an unknown distribution P0 in a nonparametric model M. In
such cases, we denote by O a prototypical data unit, O(P ) the support of O under P ∈ M,
and O := ⋃

P∈MO(P ).
In its simplest formulation, a Grenander-type estimator of θ0 is given by ∂−GCMI (�n)

for some estimator �n of �0. However, as a critical step in unifying classical estimators
and constructing procedures with possibly improved properties, we wish to allow the GCM
procedure to be performed on a possibly data-dependent transformation of the domain I . To
do so, we first define for any interval J ⊆ R the operator IsoJ : �∞(J ) × DI,J → �∞(I ) as
IsoJ (�,�) := (∂−GCMJ (�)) ◦ � for each � ∈ �∞(I ) and � ∈ DI,J . We set J0 := [0, u0],
with u0 ∈ (0,∞) possibly depending on P0, and suppose that a domain transform �0 ∈ DI,J0

is chosen. We may then consider the domain-transformed parameter ψ0 := θ0 ◦ �−
0 , which

has primitive �0 defined pointwise as �0(t) := ∫ t
0 ψ0(u) du for t ∈ (0, u0]. As with θ0 and

�0, ψ0 is nondecreasing and �0 is convex. Thus, IsoJ0(�0,�0)(x) = θ0(x) for each x ∈ I

at which θ0 is left continuous and such that �0(u) < �0(x) for all u < x. This observation
motivates us to consider estimators of θ0 of the form IsoJn(�n,�n), where �n, �n and un

are estimators of �0, �0 and u0, respectively, and we define Jn := [0, un]. We refer to any



NONPARAMETRIC INFERENCE FOR MONOTONE FUNCTIONS 1005

such estimator as being of the generalized Grenander-type. This class, of course, contains
the standard Grenander-type estimators: setting �n = �n and �n = Id for Id the identity
mapping yields θn = ∂−GCMI (�n). We note that, in this formulation, we require the domain
J0 over which the GCM is performed to be bounded, but not so for the domain I of θ0.
Additionally, we assume that the left endpoint of J0 is fixed at 0, while the upper endpoint u0
may depend on P0. However, this entails no loss in generality, since if the desired domain is
instead [�0, u0], where now �0 also depends on P0, we can define ū0 := u0 − �0 and similarly
shift �0 by �0 to obtain the new domain [0, ū0].

Defining 	0 := �0 ◦ �0, we suppose that we have at our disposal estimators �n and 	n of
�0 and 	0, respectively, as well as a weakly consistent estimator un of u0. In this work, we
study the properties of a generic generalized Grenander-type estimator θn of θ0 of the form

(1) θn := IsoJn

(
	n ◦ �−

n ,�n

)
.

Our goal is to provide sufficient conditions on the triple (	n,�n,un) under which θn is con-
sistent, and under which a suitable standardization of θn converges in distribution to a non-
degenerate limit. As stated above, our only requirement for un is that it tends in probability
to u0. Therefore, our focus will be on the pair (	n,�n).

We note that estimators taking form (1) constitute a more restrictive class than the set of all
estimators of the form IsoJn(�n,�n) for arbitrary �n. Our focus on this slightly less general
form is motivated by two reasons. First, as we will see in various examples, 	0 often has
a simpler form than �0, and in such cases, it may be significantly easier to verify required
regularity conditions for 	n and to derive limit distribution properties based on 	n rather
than �n. Second, many celebrated monotone estimators in the literature follow this particular
form. This can be seen by noting that, if �n is a right-continuous step function with jumps
at points x1, x2, . . . , xm, then for each x ∈ I the estimator θn(x) given in (1) equals the slope
at �n(x) of the greatest convex minorant of the diagram of points {(�n(xj ),	n(xj )) : j =
0,1, . . . ,m}, where x0 = aI . We highlight well-known examples of estimators of this type
below. In brief, we sacrifice a little generality for a substantial gain in the ease of application
of our results, both for well known and novel monotone estimators. Nevertheless, conditions
on the pair (�n,�n) under which consistency and distributional results hold for θn can be
derived similarly.

2.2. Examples. Before proceeding to our main results, we briefly discuss the examples
we will use to illustrate how our framework allows us to not only obtain results on classical
estimators in the monotone estimation literature directly, but also tackle more complex prob-
lems for which no estimators are currently available. These examples will be studied further
in Section 5.

EXAMPLE 1 (Monotone density function). Suppose that T is a univariate positive ran-
dom variable with nondecreasing density function f0, and that T is right-censored by an
independent random censoring time C. The observed data unit is O := (Y,
), where
Y := min(T ,C) and 
 := I (T ≤ C), with distribution P0 implied by the marginal distri-
butions of T and C. The parameter of interest is θ0 := f0, the density function of T with
support I . Taking �0 to be the identity function, we get that ψ0 = θ0. Here, both �0 and �0
represent the distribution function F0 of T , and �0 plays no role. A natural estimator θn of θ0
can be obtained by taking �n to be the Kaplan–Meier estimator of the distribution function
�0. With �n := Id, 	n := �n and un := maxi Yi , the estimator θn := IsoJn(	n,�n) is pre-
cisely the estimator studied by Huang and Wellner (1995). When C = +∞ with probability
one, �n is the empirical distribution function based on Y1, Y2, . . . , Yn, and θn is precisely the
Grenander estimator.
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In Section 5, we extend estimation of a monotone density function to the setting in which
the data are subject to possibly informative right-censoring. Specifically, we only require
T and C to be independent conditionally upon a vector W of baseline covariates. We will
study the estimator defined by differentiating the GCM of a one-step estimator of �0. In
this context, estimation of �0 requires estimation of nuisance functions. We will use our
general results to provide conditions on the nuisance estimators that imply consistency and
distributional results for θn.

EXAMPLE 2 (Monotone hazard function). Suppose now that T is a univariate positive
random variable with nondecreasing hazard function λ0. In this example, we are interested
in θ0 := λ0. Setting S0 := 1 − F0 to be the survival function of T , we note that 	0(u) =∫ u

0 f0(v)/S0(v)�0(dv), and so, taking �0 to satisfy �0(dv) = S0(v) dv makes 	0 = F0. The
restricted mean lifetime function �0(u) := ∫ u

0 S0(v) dv satisfies this condition. Using this
transformation, the estimator of the monotone hazard function θ0 only requires estimation of
F0.

In Section 5, we again extend estimation of a monotone hazard function to allow the data
to be subject to possibly informative right-censoring using the same one-step estimator 	n

of 	0 = F0 that will be introduced in Example 1 and the data-dependent transformation
�n(u) := ∫ u

0 [1 − 	n(v)]dv. We will show that, once the simpler details regarding the es-
timation of a monotone density are established, the asymptotic properties of this estimator of
a monotone hazard are obtained essentially for free.

EXAMPLE 3 (Monotone regression function). As our last example, we study estimation
of a nondecreasing regression function. In the simplest setup, the data unit is O := (Y,A)

and we are interested in θ0 : x �→ E0(Y | A = x). Assume without loss of generality that
the data are sorted according to the observed values of A. Taking I to be the support of
A and �0 to be the marginal distribution function of A, we have that ψ0(u) = E0[Y |
�0(A) = u] for each u ∈ [0,1], and 	0(x) = E0[YI(−∞,x](A)] for each x ∈ I . Thus,
	n(x) := 1

n

∑n
i=1 YiI(−∞,x](Ai) and �n(x) := 1

n

∑n
i=1 I(−∞,x](Ai) are natural nonparamet-

ric estimators of 	0(x) and �0(x), respectively. Then θn := Iso[0,1](	n,�n) is the classical
monotone least-squares estimator of θ0.

In Section 5, we consider an extension of this example to estimation of a covariate-
marginalized regression function, for use when the relationship between exposure and out-
come of interest is confounded. Specifically, we will consider the data unit O := (Y,A,W),
with W representing a vector of potential confounders, and focus on θ0 : x �→ E0[E0(Y | A =
x,W)]. Under untestable causal identifiability conditions, θ0(x) is the mean of the counter-
factual outcome Y(x) obtained by setting exposure at level A = x. This parameter plays a
critical role in causal inference, particularly when the available data are obtained from an
observational study and the exposure assignment process may be informative. As before,
tackling this more complex parameter will require estimation of certain nuisance functions.

3. General results. We begin with our first set of results on the large-sample properties
of θn. Our goal is to establish conditions under which consistency and pointwise convergence
in distribution hold. First, we provide general results on the consistency of θn, both point-
wise and uniformly. We note that the results of Anevski and Hössjer (2006), Durot (2007),
Durot, Kulikov and Lopuhaä (2012) and Lopuhaä and Musta (2018a) imply conditions for
consistency of Grenander-type estimators. However, because the objective of their work is to
establish distributional theory for a global discrepancy between the estimated and true func-
tion, the conditions they require are stronger than needed for consistency alone. Also, their
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work is restricted to Grenander-type estimators, without data-dependent transformations of
the domain.

Below, we refer to the sets In := {z ∈ I : z = �−
n (u), u ∈ Jn} and In,β := {x ∈ I : 0 ≤

�0(x − β) ≤ �0(x + β) ≤ un} for β ≥ 0.

THEOREM 1 (Weak consistency).

(1) Suppose θ0 is continuous at x ∈ I and, for some δ > 0 such that [x − δ, x + δ] ⊂
�−1

0 (J0), �0 is strictly increasing and continuous on [x − δ, x + δ]. If ‖	n −	0‖∞,In , ‖�n −
�0‖∞,In and ‖�n − �0‖∞,[x−δ,x+δ] tend to zero in probability, then θn(x) = θ0(x) + oP(1).

(2) Suppose θ0 and �0 are uniformly continuous on I , and �0 is strictly increasing on I .
If ‖	n −	0‖∞,In and ‖�n −�0‖∞,I tend to zero in probability, then ‖θn −θ0‖∞,In,β = oP(1)

for each fixed β > 0.

We note that in part 1 of Theorem 1, we require uniform convergence of 	n and �n to
obtain a pointwise result for θn —this will also be the case for Theorem 2 below. This is
because the GCM is a global procedure, and so, the value of θn(x1) depends on 	n(x2) even
for x2 not near x1. Without uniform consistency of 	n, θn may indeed fail to be pointwise
consistent. Also, we note that in part 1 of Theorem 1, we require that 	n − 	0 and �n − �0
tend to zero uniformly over the set In. This requirement stems from the fact that θn only
depends on 	n through the composition 	n ◦ �−

n , and so, values of 	n only matter at points
in the range of �−

n . In part 1, we also require that �n − �0 tend to zero uniformly in a
neighborhood of x, while in part 2, we require that �n − �0 tend to zero uniformly over I .
These requirements allow us to obtain results for x values that are possibly outside In for all
n. In many applications, it may be the case that 	n − 	0 and �n − �0 both tend to zero in
probability uniformly over I , which implies convergence over In.

The weak conditions required for Theorem 1 are especially important for the extensions
of the classical parameters that we consider in Section 5. The estimators we propose require
estimating difficult nuisance parameters, such as conditional hazard, density and mean func-
tions. While under mild conditions it is typically possible to construct uniformly consistent
estimators of these nuisance parameters, ensuring a given local or uniform rate of conver-
gence often requires additional knowledge about the true function. Thus, Theorem 1 is useful
for guaranteeing consistency under weak conditions.

We now provide lower bounds on the convergence rate of θn, both pointwise and uniformly,
depending on (a) the uniform rates of convergence of 	n and �n, and (b) the moduli of
continuity of θ0 and �−

0 .

THEOREM 2 (Rates of convergence). Let x ∈ I be given. Suppose that, for some δ >

0, [x − δ, x + δ] ⊂ �−1
0 (J0) and �0 is strictly increasing and continuous on [x − δ, x +

δ]. Let rn be a fixed sequence such that rn‖	n − 	0‖∞,In , rn‖�n − �0‖∞,In and rn‖�n −
�0‖∞,[x−δ,x+δ] are bounded in probability.

(1) If there exist K1(x),K2(x) ∈ [0,∞) and α1, α2 ∈ (0,1] such that |θ0(u) − θ0(x)| ≤
K1(x)|u − x|α1 for all u ∈ I and |�−

0 (u) − �−(x)| ≤ K2(x)|u − x|α2 for all u ∈ J0, then

r

α1α2
1+α1α2
n

[
θn(x) − θ0(x)

] = OP(1).

(2) If θ0 is constant on [x − δ, x + δ], then rn[θn(x) − θ0(x)] = OP(1).

Let rn be a fixed sequence such that rn‖	n − 	0‖∞,In and rn‖�n − �0‖∞,I are bounded in
probability, and suppose that �0 is strictly increasing on I .
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(3) If there exist K1,K2 ∈ [0,∞) and α1, α2 ∈ (0,1] such that |θ0(u) − θ0(v)| ≤ K1|u −
v|α1 for all u, v ∈ I and |�−

0 (u) − �−
0 (v)| ≤ K2|u − v|α2 for all u, v ∈ J0, then

r

α1α2
1+α1α2
n ‖θn − θ0‖∞,In,βn

= OP(1)

for any random positive real sequence βn such that βnr
1/(1+α1α2)
n

P−→∞.

We note here that the uniform results only cover subintervals of the interval over which
the GCM procedure is performed. This should not be surprising given the poor behavior of
Grenander-type estimators at the boundary of the GCM interval, as discussed, for example,
in Woodroofe and Sun (1993), Kulikov and Lopuhaä (2006) and Balabdaoui et al. (2011).
Various boundary corrections have been proposed—applying these in our general framework
is an interesting avenue for future work.

We also note that, in Theorem 2, when θ0 and �0 are locally or globally Lipschitz, then
α1 = α2 = 1 and the resulting rate is OP(r

−1/2
n ), which yields OP(n−1/4) when rn = n1/2.

This rate is slower than the rate n−1/3 that is often achievable for pointwise convergence
when θ0 and �0 are differentiable at x and the primitive estimator converges at rate n−1/2,
as we discuss below. However, the assumptions in Theorems 2 are significantly weaker than
typically required for the n−1/3 rate of convergence: they constrain the supremum norm of
the estimation error rather than its modulus of continuity, and hold when the true function
is Lipschitz but not differentiable. Our results also cover situations in which θ0 or �0 are in
Hölder classes. The rates provided by Theorem 2 should thus be seen as lower bounds on the
true rate, for use when less is known about the properties of the estimation error or of the true
functions. The distributional results we provide below recover the usual rates under stronger
conditions.

For a fixed sequence rn of positive real numbers, we now study the pointwise convergence
in distribution of rn[θn(x) − θ0(x)] at an interior point x ∈ I at which �0 has a strictly
positive derivative. The rate rn depends on two interdependent factors. First, we suppose that
there exists some α > 0 such that |θ0(x + u) − θ0(x)| = π0(x)|u|α + o(1) as u → 0 for some
constant π0(x) > 0. Second, writing 	n,0 := 	n − 	0 and �n,0 := �n − �0, we suppose that
there exists a sequence of positive real numbers cn → ∞ such that the appropriately localized
process

Wn,x : u �→ cα+1
n

{
	n,0

(
x + uc−1

n

) − 	n,0(x)

− θ0(x)
[
�n,0

(
x + uc−1

n

) − �n,0(x)
]}

converges weakly. We note that Wn,x depends on α. As we formalize below, if rn = cα
n , then

rn[θn(x) − θ0(x)] has a nondegenerate limit distribution under some conditions. We now
introduce some of the conditions that we build upon:

(A1) for each M > 0, {Wn,x(u) : |u| ≤ M} converges weakly in �∞[−M,M] to a tight
limit process {Wx(u) : |u| ≤ M} with almost surely lower semi-continuous sample paths;

(A2) sup argmaxu∈R{Wx(u) + π0(x)�′
0(x)(α + 1)−1|u|α+1 + c�′

0(x)u} is bounded in
probability for every c ∈ R;

(A3) there exist β ∈ (1,1 + α), δ∗ > 0 and a sequence fn : R+ → R
+ such that

u �→ u−βfn(cnu) is decreasing, fn(1) = O(1), and for all large n and δ ≤ δ∗,
E0[sup|u|≤cnδ |Wn,x(u)|] ≤ fn(cnδ).

In addition, we introduce conditions on the uniform convergence of estimators �n and 	n:

(A4) cnE0[sup|v|<δ |�n(x + v) − �0(x + v)|] −→ 0 for some δ > 0;

(A5) ‖	n,0 − θ0(x) · �n,0‖∞,In

P−→0.
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THEOREM 3 (Convergence in distribution). If x is an interior point of I at which �0 is
continuously differentiable with positive derivative and limu→0 |θ0(x + u) − θ0(x)|/|u|α =
π0(x), conditions (A1)–(A5) imply that

rn
[
θn(x) − θ0(x)

] d−→�′
0(x)−1∂−GCMR{Mx,α}(0)

with rn := cα
n and

Mx,α : v �→ Wx(v) +
[
π0(x)�′

0(x)

α + 1

]
|v|α+1.

If also α = 1, π0(x) = θ ′
0(x) and Wx possesses stationary increments, then

rn
[
θn(x) − θ0(x)

] d−→−θ ′
0(x) argmin

u∈R

{
Wx(u) + 1

2
θ ′

0(x)�′
0(x)u2

}
.

Furthermore, if Wx = [κ0(x)]1/2W0 with W0 a standard two-sided Brownian motion process
satisfying W0(0) = 0, then

rn
[
θn(x) − θ0(x)

] d−→ τ0(x)Z

with τ0(x) := [4θ ′
0(x)κ0(x)/�′

0(x)2]1/3 and Z := argminu∈R{W0(u) + u2}.

The latter limit distribution is referred to as a scaled Chernoff distribution, since Z is said to
follow the standard Chernoff distribution. This distribution appears prominently in classical
results in nonparametric monotone function estimation and has been extensively studied (e.g.,
Groeneboom and Wellner (2001)). It can also be defined as the distribution of the slope at
zero of GCMR{u �→ W0(u) + u2}.

Theorem 3 applies in the common setting in which θ0 is differentiable at x with posi-
tive derivative, that is, when α = 1. However, as in Wright (1981) and Anevski and Hössjer
(2006), Theorem 3 also applies in additional situations, including when θ0 has α ∈ {2,3, . . .}
derivatives at x, with null derivatives of order j < α and positive derivative of order α. Nev-
ertheless, Theorem 3 does not cover situations in which θ0 is flat in a neighborhood of x.
The limit distribution of the Grenander estimator at flat points was studied in Carolan and
Dykstra (1999), but it appears that similar results have not been derived for Grenander-type
estimators.

We note the similarity of our Theorem 3 to Theorem 2 of Anevski and Hössjer (2006).
For the special case in which �0 is the identity transform, the consequents of the two results
coincide. Our result explicitly permits alternative transforms. Both results require weak con-
vergence of a stochastic part of the primitive process, and also require the same local rate of
growth of θ0. Additionally, condition (A2) is implied if for every ε and δ positive, there exists
a finite m ∈ (0,+∞) such that P0(sup|v|≥m |Wx(v)||v|−α−1 > ε) < δ, as in Assumption A5
of Anevski and Hössjer (2006). However, the remaining conditions and methods of proof dif-
fer. To prove our result, we first generalize the switch relation of Groeneboom (1985) and use
it to convert P0(rn[θn(x)−θ0(x)] > η) into the probability that the minimizer of a process in-
volving Wn,x falls below some value. After establishing weak convergence of this process, we
then use conditions (A2) through (A5) to justify application of the argmin continuous map-
ping theorem. In contrast, Anevski and Hössjer (2006) establish their result using a direct
appeal to convergence in distribution of ∂−GCMC(Yn)(0) to ∂−GCMC(Y0)(0), where Yn is a
local limit process and Y0 its weak limit. They also provide lower-level sufficient conditions
for this convergence. It may be possible to establish the consequent of Theorem 3, permit-
ting in particular the use of a nontrivial transformation �0, using Theorem 2 of Anevski and
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Hössjer (2006) or a suitable generalization thereof. We have specified our sufficient condi-
tions with applications to the setting α = 1 and cn = n1/3 in mind, as we discuss at length in
the next section.

Suppose that W 0
x is the limit process that arises when no domain transformation is used in

the construction of a generalized Grenander-type estimator, that is, when both �0 and �n are
taken to be the identity map. In this case, under (A1)–(A5), Theorem 3 indicates that

rn
[
θn(x) − θ0(x)

] d−→ ∂−GCMR

{
v �→ W 0

x (v) +
[
π0(x)

α + 1

]
|v|α+1

}
(0).

It is natural to ask how this limit distribution compares to the one obtained using a nontrivial
transformation �0. In particular, does using �0 change the pointwise distributional results for
θn? The answer is of course negative whenever Wx and �′

0(x)W 0
x are equal in distribution,

since GCMR is a homogeneous operator. A more detailed discussion of this question and
lower-level conditions are provided in the next section.

4. Refined results for asymptotically linear primitive and transformation estimators.

4.1. Distributional results. In applications of their main result, Anevski and Hössjer
(2006) focus primarily on providing lower-level conditions to characterize the relationship
between various dependence structures and asymptotic results for monotone regression and
density function estimation. Anevski and Soulier (2011), Dedecker, Merlevède and Peligrad
(2011) and Bagchi, Banerjee and Stoev (2016) provide additional applications of Anevski and
Hössjer (2006) to monotone function estimation with dependent data. Our Theorem 3 could
be used, for instance, to relax the common assumption of a uniform design in the analysis of
monotone regression estimators. Here, we pursue an alternative direction, focusing instead
on providing lower-level conditions for consistency of θn and convergence in distribution of
rn[θn(x)− θ0(x)] for use in the important setting in which α = 1, rn = cn = n1/3, the data are
independent and identically distributed, and 	n and �n are asymptotically linear estimators.
Such settings arise frequently, for instance, when the primitive and transformation parameters
are smooth mappings of the data-generating mechanism.

Below, we write Pf to denote
∫

f (o) dP (o) for any probability measure P and P -
integrable function f : O → R. We also use Pn to denote the empirical distribution of
independent observations O1,O2, . . . ,On from P0 so that Pnf = 1

n

∑n
i=1 f (Oi) for any

f : O →R.
Suppose that there exist functions D∗

x,0 : O →R and L∗
x,0 : O →R depending on P0 such

that, for each x ∈ I , P0D
∗
x,0 = P0L

∗
x,0 = 0 and both P0D

∗2
x,0 and P0L

∗2
x,0 are finite, and

(2) 	n(x) − 	0(x) = PnD
∗
x,0 + Hx,n, �n(x) − �0(x) = PnL

∗
x,0 + Rx,n,

where Hx,n and Rx,n are stochastic remainder terms. If n1/2 supx∈I |Hx,n| and
n1/2 supx∈I |Rx,n| tend to zero in probability, we say that 	n and �n are uniformly asymptot-
ically linear over I as estimators of 	0 and �0, respectively. The objects D∗

x,0 and L∗
x,0 are

referred to as the influence functions of 	n(x) and �n(x), respectively, under sampling from
P0.

Assessing consistency and uniform consistency of θn is straightforward when display (2)
holds. For example, if the classes {D∗

x,0 : x ∈ I } and {L∗
x,0 : x ∈ I } are P0-Donsker, and

n1/2 supx∈I |Hx,n| and n1/2 supx∈I |Rx,n| are bounded in probability, then n1/2‖	n − 	0‖∞,I

and n1/2‖�n − �0‖∞,I are both bounded in probability. Thus, Theorems 1 and 2 can be
directly applied with rn = n1/2 provided the required conditions on θ0 and �0 hold. As such,
we focus here on deriving a refined version of Theorem 3 for use whenever display (2) holds.
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It is reasonable to expect the linear terms PnD
∗
x,0 and PnL

∗
x,0 to drive the behavior of

the standardized difference rn[θn(x) − θ0(x)] in Theorem 3. The natural rate here is cn =
rn = n1/3, for which Kim and Pollard (1990) provide intuition. Our first goal in this section
is to provide sufficient conditions for weak convergence of the process {n1/6

Gngx,n−1/3u :
|u| ≤ M}, where Gn is the empirical process n1/2(Pn − P0) and we define the localized
difference function gx,v := D∗

x+v,0 − D∗
x,0 − θ0(x)(L∗

x+v,0 − L∗
x,0). Kim and Pollard (1990)

also provide detailed conditions for weak convergence of processes of this type. Building
upon their results, we are able to provide simplified sufficient conditions for convergence
in distribution of n1/3[θn(x) − θ0(x)] when 	n and �n are uniformly asymptotically linear
estimators.

We begin by introducing some conditions. First, we define Gx,R := {gx,u : |u| ≤ R} and
suppose that GR has envelope function Gx,R . The first two conditions concern the size of Gx,R

for small R in terms of bracketing or uniform entropy numbers, which for completeness we
define here; see van der Vaart and Wellner (1996) for a comprehensive treatment. Denote by
‖G‖P,2 = [P(G2)]1/2 the L2(P ) norm of a given P -square-integrable function G :O(P ) →
R. The bracketing number N[](ε,G,L2(P )) of a class G with respect to the L2(P ) norm is the
smallest number of ε-brackets needed to cover G, where an ε-bracket is any set of functions
{f : � ≤ f ≤ u} with � and u such that ‖�−u‖P,2 < ε. The covering number N(ε,G,L2(Q))

of G with respect to the L2(Q) norm is the smallest number of ε-balls in L2(Q) required to
cover G. The uniform covering number is the supremum of N(ε‖G‖2,Q,G,L2(Q)) over all
discrete probability measures Q such that ‖G‖2,Q > 0, where G is an envelope function for
G. We consider conditions on the size of Gx,R :

(B1) For some constants C > 0 and V ∈ [0,2), for all ε ∈ (0,1] and R small enough, either:

(B1a) logN[](ε‖Gx,R‖P0,2,Gx,R,L2(P0)) ≤ Cε−V or
(B1b) log supQ N(ε‖Gx,R‖Q,2,Gx,R,L2(Q)) ≤ Cε−V .

(B2) P0G
2
x,R = O(R), and P0G

2
x,R{RGx,R > η} = o(R) as R → 0 for all η > 0.

Condition (B1) replaces the notion of uniform manageability of the class Gx,R for small R

as defined in Kim and Pollard (1990), and condition (B2) corresponds to their condition (vi).
Since bounds on the bracketing and uniform entropy numbers have been derived for many
common classes of functions, condition (B1) can be readily checked in practice. Together,
conditions (B1) and (B2) ensure that Gx,R is a relatively small class, and this helps to establish
the weak convergence of the localized process {Wn,x(u) : |u| ≤ M}.

As in Kim and Pollard (1990), to guarantee that the covariance function of this lo-
calized process stabilizes, it suffices that δ−1 sup|u−v|<δ P0(gx,u − gx,v)

2 be bounded for
small enough δ > 0 and that, up to a scaling factor possibly depending on x, σx,α(u, v) :=
α−1P0[(gx,αu − P0gx,αu)(gx,αv − P0gx,αv)] tend to the covariance function σ 2(u, v) of a
two-sided Brownian motion as α → 0. Below, we provide simple conditions that imply these
two statements for a broad class of settings that includes our examples.

The covariance function of the Gaussian process to which {Gn[D∗
t,0 − θ0(x)L∗

t,0] : t} con-
verges weakly is defined pointwise as �0(s, t) := P0[D∗

s,0 − θ0(x)L∗
s,0][D∗

t,0 − θ0(x)L∗
t,0].

The behavior of �0 near (x, x) dictates the covariance of the local limit process Wx , and
hence the scale parameter κ0(x). If �0 is differentiable in (s, t) at (x, x), then κ0(x) = 0 and
θn converges at a faster rate, though possibly with an asymptotic bias. When instead Chernoff
asymptotics apply, the covariance function can typically be written as

(3) �0(s, t) = �∗
0(s, t) +

∫∫ s∧t

−∞
A0(s, t, v,w)H0(dv,w)Q0(dw)

for some functions �∗
0 : I ×I →R, A0 : I ×I ×I ×W →R and H0 : I ×W →R depending

on P0, where Q0 is a probability measure induced by P0 on some measurable space W . In
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this representation, �∗
0 is taken to be the differentiable portion of the covariance function,

which does not contribute to the scale parameter. The second summand is not differentiable
at (x, x) and makes σx,α(u, v) tend to a nonzero limit. We consider cases in which �∗

0 , A0
and H0 satisfy the following conditions:

(B3) Representation (3) holds, and for some δ > 0, setting Bδ(x) := (x − δ, x + δ), it is also
true that:

(B3a) �∗
0 is symmetric in its arguments and continuously differentiable on Bδ(x);

(B3b) A0 is symmetric in its first two arguments, and s �→ A0(s, t, v,w) is differ-
entiable for Q0-almost every w and each s, t, v ∈ Bδ(x), with derivative A′

0(s, t, v,w)

continuous in s, t , v each in Bδ(x) for Q0-almost every w and satisfying∫∫ x+δ

−∞
sup

s,t∈Bδ(x)

∣∣A′
0(s, t, v,w)

∣∣H0(dv,w)Q0(dw) < ∞;

(B3c) v �→ A0(x, x, v,w) is continuous at v = x uniformly in w over the support of
Q0;

(B3d) v �→ H0(v,w) is nondecreasing for all w and differentiable at each v ∈ Bδ(x),
with derivative H ′

0(v,w) continuous at v = x uniformly in w over the support of Q0.

Representation (3) is deliberately broad to encompass a wide variety of parameters, but in
many settings, the covariance function can be considerably simplified, leading then to sim-
pler conditions in (B3). For instance, when W is a vector of covariates over which marginal-
ization is performed to compute the parameter, Q0 typically plays the role of the marginal
distribution of W under P0. In classical problems in which there is no adjustment for covari-
ates, this feature of representation (3) is not needed and indeed vanishes. In other settings,
A0(s, t, v,w) depends on v and w but not on s and t .

Finally, we must ensure that the stochastic remainder terms Hx,n and Rx,n arising in
(2) do not contribute to the limit distribution. Defining H̃u,n := Hx+u,n − Hx,n, R̃u,n :=
Rx+u,n −Rx,n and Kn(δ) := n2/3 sup|u|≤δn−1/3 |H̃u,n − θ0(x)R̃u,n|, we consider the following
conditions for the asymptotic negligibility of these remainder terms:

(B4) Kn(δ) = oP(1) for each fixed δ > 0;
(B5) for some α ∈ (1,2), δ �→ δ−αE0[Kn(δ)] is decreasing for all δ small enough and n

large enough.

Condition (B4) guarantees that the remainder terms do not contribute to the weak conver-
gence of {Wn,x(u) : |u| ≤ M}, and condition (B5) guarantees that the remainder terms satisfy
condition (A3).

Combining the conditions above, we can state the following master theorem for pointwise
convergence in distribution when the monotone estimator is based upon asymptotically linear
primitive and transformation estimators.

THEOREM 4. Suppose that, at an interior point x ∈ I , θ0 is differentiable and �0 is con-
tinuously differentiable with positive derivative. Suppose also that 	n and �n satisfy display
(2), and that conditions (B1)–(B5) and (A4)–(A5) hold (with cn = n1/3). Then it holds that

n1/3[
θn(x) − θ0(x)

] d−→ τ0(x)Z,

where τ0(x) := [4θ ′
0(x)κ0(x)/�′

0(x)2]1/3 is a scale factor involving κ0(x) := ∫
A0(x, x, x,

w)H ′
0(x,w)Q0(dw) and Z follows the Chernoff distribution.
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4.2. Effect of domain transform on limit distribution. As was done briefly after Theo-
rem 3, it is natural to compare the limit distribution obtained by Theorem 4 when a trans-
formation of the domain is used and when it is not. We will consider θn := IsoI (�n, Id),
the estimator obtained by directly isotonizing an estimator �n of the primitive function �0
without use of a domain transformation. Denoting by �0 a candidate nondecreasing transfor-
mation function, and letting 	0 := �0 ◦�0 be as described in Section 2, we will also consider
θ∗
n := IsoJn(	n ◦ �−

n ,�n), where 	n and �n are estimators of 	0 and �0, respectively. Sup-
pose �n(x), 	n(x) and �n(x) are each asymptotically linear estimators of their respective
targets with influence functions M∗

x,0, D∗
x,0 and L∗

x,0, respectively, under sampling from P0.
We wish to compare the scale parameters κ0(x) and κ∗

0 (x) arising from the use of the
distinct estimators θn(x) and θ∗

n (x). To do so, we can use expression (B3) to examine the
covariance obtained in both cases. However, it appears difficult to say much without hav-
ing more specific forms for the involved influence functions. Unfortunately, it also appears
difficult to characterize these influence functions generally since they depend inherently on
the parameter of interest θ0, and we wish to remain agnostic to the form of θ0. Nevertheless,
in our next result, we describe a class of problems, characterized by the generated influence
functions and regularity conditions on these, in which domain transformation has no effect
on the limit distribution of the generalized Grenander-type estimator.

THEOREM 5. Suppose conditions (B1)–(B5) hold for (�n, Id) and (	n,�n), and the
observed data unit can be partitioned as O = (U,Z) with U ∈ R

+. Suppose that the influence
functions can be expressed as

M∗
x,0 : (u, z) �→ I[0,x](u)M

(1)
x,0(u, z) + M

(2)
x,0(u, z),

L∗
x,0 : (u, z) �→ I[0,x](u)L

(1)
x,0(u, z) + L

(2)
x,0(u, z),

D∗
x,0 : (u, z) �→ I[0,x](u)�′

0(u)M
(1)
x,0(u, z) + D

(2)
x,0(u, z) +

∫ x

0
θ0(v)L∗

dv,0(u, z),

and satisfy the smoothness conditions stated in the Supplementary Material. Suppose that the
density function h0 of the conditional distribution of U given Z exists and is continuous in a
neighborhood of x uniformly over the support of the marginal distribution QZ,0 of Z. Then
it follows that

κ0(x) =
∫ [

M
(1)
x,0(x, z)

]2
h0(x | z)QZ,0(dz) and

κ∗
0 (x) = [

�′
0(x)

]2
∫ [

M
(1)
x,0(x, z)

]2
h0(x | z)QZ,0(dz).

Consequently, n1/3[θn(x) − θ0(x)] and n1/3[θ∗
n (x) − θ0(x)] have the same limit distribution.

The forms of M∗
x,0 and L∗

x,0 arise naturally in a wide variety of settings because the pa-
rameters considered involve a primitive function. The supposed form of D∗

x,0 may seem re-
strictive at first glance but is in fact expected given the forms of M∗

x,0 and L∗
x,0. A heuristic

justification based on the product rule for differentiation is provided in the Supplementary
Material. In all of the examples we study in Section 5, the conditions of Theorem 5 apply.
This provides justification for why, in each of these examples, the use of a domain transform
has no impact on the limit distribution.

We remind the reader that, even if the domain transformation has no impact on the point-
wise limit distribution, use of a domain transformation is still of great practical value in many
circumstances. In complex problems, an estimator �n may not be readily available for the
primitive parameter �0 obtained without the use of a domain transformation. In some cases,
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�0 may not even be well defined, so that transformation of the domain is unavoidable. Even
when �0 is well defined and an estimator �n is available, with the use of a carefully chosen
transformation, it may be possible to avoid the need to estimate certain nuisance parame-
ters or to substantially simplify the verification of conditions (B1)–(B5). Examples of these
phenomena are presented in Section 5.

4.3. Negligibility of remainder terms. In some applications, the estimators 	n and �n

may be linear rather than simply asymptotically linear. In such situations, the remainder terms
Hx,n and Rx,n are identically zero, and conditions (B4) and (B5) are trivially satisfied. Oth-
erwise, these conditions must be verified. While in general the exact form of these remainder
terms depends upon the specific parameter under consideration and estimators used, it is
frequently the case that part of the remainder is an empirical process term arising from the
estimation of nuisance functions appearing in the influence functions D∗

x,0 and L∗
x,0, as we

illustrate below with one particular construction. To facilitate the verification of conditions
(B4) and (B5) for these empirical process terms, we outline sufficient conditions in terms of
uniform entropy and bracketing numbers.

In this subsection, we assume that 	0(x) and �0(x) arise as the evaluation at P0 of maps
from M to R, and denote by 	P (x) and �P (x) the evaluation of these maps at an arbi-
trary P ∈ M. Let π = π(P ) be a summary of P , and suppose that 	P (x), �P (x) and the
nonparametric efficient influence functions of P �→ 	P (x) and P �→ �P (x) at P each only
depend on P through π . Denote these efficient influence functions by D∗

x(π) and L∗
x(π),

respectively. Since M is nonparametric, it must be that D∗
x,0 = D∗

x(π0) and L∗
x,0 = L∗

x(π0)

for π0 := π(P0). To emphasize the fact that 	P (x) and �P (x) depend on P only through π ,
we will use the symbols 	π(x) and �π(x) to refer to 	P (x) and �P (x), respectively.

Under regularity conditions, the so-called one-step estimators

(4) 	n(x) := 	πn(x) + PnD
∗
x(πn) and �n(x) := �πn(x) + PnL

∗
x(πn)

are asymptotically linear and efficient estimators of 	0(x) and �0(x), even when πn is
a data-adaptive (e.g., machine learning) estimator of π0 (e.g., Pfanzagl (1982)). van der
Vaart and van der Laan (2006) pioneered the use of such one-step estimators in the con-
text of nonparametric monotone function estimation. When this one-step construction is
used, it can be shown that the remainder terms have the form Hx,n = H1,x,n + H2,x,n

and Rx,n = R1,x,n + R2,x,n, where H1,x,n := (Pn − P0)[D∗
x(πn) − D∗

x(π0)] and R1,x,n :=
(Pn − P0)[L∗

x(πn) − L∗
x(π0)] are empirical process terms, and H2,x,n and R2,x,n are so-

called second-order remainder terms arising from linearization of the corresponding parame-
ter. Similar representations exist when other constructive approaches, such as gradient-based
estimating equations methodology (e.g., Tsiatis (2006), van der Laan and Robins (2003)) and
targeted maximum likelihood estimation (e.g., van der Laan and Rose (2011)), are used. As
we will see in the examples of Section 5, these second-order terms can usually be shown to
be asymptotically negligible provided πn tends to π0 fast enough in some appropriate norm.
Here, we provide conditions on πn that ensure that the contribution of H2,x,n − θ0(x)R2,x,n

to Kn(δ) satisfies conditions (B4) and (B5).
A key benefit of decomposing the remainder terms as above is that the empirical pro-

cess terms can be controlled using empirical process theory, a strategy also used in van der
Vaart and van der Laan (2006). In particular, we can provide conditions under which H1,x,n

and R1,x,n satisfy conditions (B4) and (B5). Defining gx,u(π) := [D∗
x+u(π) − D∗

x(π)] −
θ0(x)[L∗

x+u(π)−L∗
x(π)], the relevant contribution of these empirical process terms to Kn(δ)

is

K1,n(δ) := n1/6 sup
|u|≤δ

∣∣Gn

[
gx,un−1/3(πn) − gx,un−1/3(π0)

]∣∣.
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Suppose that πn falls in a semimetric space (P, ρ), with probability tending to one, and that
Gx,P,R is an envelope function for Gx,P,R := {gx,u(π) : |u| ≤ R,π ∈ P}. We consider the
following the conditions:

(C1) for some constants C > 0 and V ∈ [0,2), for all ε ∈ (0,1] and R small enough, either
one of these conditions hold:

(C1a) logN[](ε‖Gx,P,R‖P0,2,Gx,P,R,L2(P0)) ≤ Cε−V ;
(C1b) log supQ N(ε‖Gx,P,R‖Q,2,Gx,P,R,L2(Q)) ≤ Cε−V ;

(C2) P0G
2
x,P,R = O(R), and for all η > 0, P0G

2
x,P,R{RGx,P,R > η} = o(R), as R → 0;

(C3) P0[gx,u(π1) − gx,u(π2)]2/ρ(π1, π2)
2 = O(|u|) uniformly for π1, π2 ∈ P and u ∈ I ,

and P0[gx,u(π) − gx,v(π)]2 = O(|u − v|) uniformly for π ∈ P ;
(C4) there exists some π̄ ∈P such that ρ(πn, π̄) = oP(1).

Our next result states that, under these conditions, the remainder term K1,n(δ) stated above
is asymptotically negligible in the sense of conditions (B4) and (B5).

THEOREM 6. Suppose that, with probability tending to one, πn ∈ P and conditions
(C1)–(C4) hold. Then, K1,n(δ) satisfies conditions (B4)–(B5).

We note that conditions (C1) and (C2) together imply conditions (B1) and (B2). As such,
if conditions (C1) and (C2) have been verified, there is no need to also verify conditions (B1)
and (B2).

5. Applications of the general theory. In this section, we demonstrate the use of our
general results for the three examples introduced in Section 2: estimation of monotone den-
sity, hazard and regression functions. For each of these functions, we consider various levels
of complexity of the relationship between the ideal and observed data units. This allows us
to illustrate that our general results (i) coincide with classical results in the simpler cases that
have already been studied, and (ii) suggest novel estimation procedures with well-understood
inferential properties, even in the context of complex problems that do not appear to have
been previously studied. Below, we focus on distributional results for the various estimators
considered. In each case, we state the main results in the text, and present additional technical
details in the Supplementary Material.

5.1. Example 1: Monotone density function. Let θ0 := f0 be the density function of an
event time T with support I := [0, u0], and suppose that f0 is known to be nondecreasing on
I . We will not use any transformation in this example, so we take �0 and �n to be the iden-
tity map. Thus, ψ0 = θ0 also corresponds to the density function of T , and �0 = �0 = 	0 to
its distribution function. Below, we consider various data settings that increase in complex-
ity. In the first setting, available observations are subject to independent right-censoring. In
the second, the right-censoring mechanism is allowed to be informative—only conditional
independence of the event and censoring times given a vector of observed covariates is as-
sumed. The first case has been studied in the literature—for this, we wish to verify that our
general results coincide with results already established. The second case is more difficult
and does not seem to have been studied before. Our work in this setting not only highlights
the generality of the theory in Sections 3 and 4, but also yields novel practical methodol-
ogy.
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5.1.1. Independent censoring. Suppose that C is a positive random variable indepen-
dent of T , and that the observed data unit is O = (Y,
), where Y = min(T ,C) and

 = I (T ≤ C). The NPMLE of a monotone density function based on independently right-
censored data was obtained in Laslett (1982) and McNichols and Padgett (1982), and distri-
butional results were derived in Huang and Zhang (1994). Huang and Wellner (1995) consid-
ered an estimator θn obtained by differentiating the GCM of the Kaplan–Meier estimator of
the distribution function. While this is not the NPMLE, Huang and Wellner (1995) showed
that it is asymptotically equivalent to the NPMLE, and it is an attractive estimator because it
is simple to construct and reduces to the Grenander estimator if T is fully observed, that is,
if C ≥ T almost surely.

Since �0 is the distribution function F0 = 1 −S0 with S0 denoting the survival function of
T , it is natural to consider �n := 1 − Sn, where Sn is the Kaplan–Meier estimator of S0. It is
well known that n1/2(Sn −S0) converges weakly in �∞([0, τ ]) to a tight zero-mean Gaussian
process as long as G0(τ ) > 0 and S0(τ ) < 1, where G0 denotes the survival function of C.
Denoting by �0 the cumulative hazard function corresponding to S0, the influence function
of the Kaplan–Meier estimator Sn(x) is known to be the nonparametric efficient influence
function

D∗
0,x : (y, δ) �→ S0(x)

[
− δI[0,x](y)

S0(y)G0(y)
+

∫ y∧x

0

�0(du)

G0(u)S0(u)

]

and so, the local difference gx,u(y, δ) can be written as

[S0(x) − S0(x + u)]δI[0,x+u](y)

S0(y)G0(y)
− S0(x)δI(x,x+u](y)

S0(y)G0(y)
+

∫ y

0

I(x,x+u](v)

S0(v)G0(v)
�0(dv).

In the Supplementary Material, we verify that condition (B2) is satisfied if S0 and G0
are positive in a neighborhood of x, and that condition (B3) is satisfied if θ0 is posi-
tive and continuous in a neighborhood of x. The covariance function is given by �0 :
(s, t) �→ ∫ s∧t

0 S0(s)S0(t)/{S0(u)G0(u)}�0(du). We then get κ0(x) = [S0(x)/G0(x)]λ0(x) =
f0(x)/G0(x), so that the scale parameter is τ0(x) = [4f ′

0(x)f0(x)/G0(x)]1/3. This agrees
with the results of Huang and Wellner (1995). In the Supplementary Material, we demon-
strate that conditions (B4) and (B5) are also satisfied. In the case of no censoring, �0(s, t)

simplifies to 	0(s ∧ t) − 	0(s)	0(t), so that �∗
0(s, t) = �0(s)�0(t), A0(s, t, y,w) = θ0(y),

H0(y,w) = y and κ0(x) = θ0(x). This agrees with the classical result of Prakasa Rao (1969)
concerning pointwise convergence in distribution of the Grenander estimator.

5.1.2. Conditionally independent censoring. In many cases, the censoring mechanism
may be informative but still independent of the event time process conditionally on a vector
of recorded covariates. For simplicity, we only consider the case in which these covariates
are defined at baseline, though the case of time-varying covariates can be tackled similarly.
The observed data unit is now O = (Y,
,W), and we assume that T and C are independent
given W . As long as P0(
 = 1 | W) is bounded away from zero almost surely, the survival
function S0 of T can be identified pointwise in terms of the distribution P0 of O via the
product-limit transform

S0(x) =
∫
t≤x

[
1 − F1,0(dt,w)

SY,0(t | w)

]
Q0(dw),

where F1,0(t | w) := P0(Y ≤ t,
 = 1 | W = w) is the conditional subdistribution function
of Y given W = w corresponding to 
 = 1, SY,0(t | w) := P0(Y ≥ t | W = w) is the con-
ditional proportion-at-risk at time t given W = w, and Q0 is the marginal distribution of W

under P0. This constitutes an example of coarsening at random, as described in Heitjan and
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Rubin (1991) and Gill, Van Der Laan and Robins (1997). Estimation of S0 in the context of
conditionally independent censoring has been studied before by Hubbard, van der Laan and
Robins (2000), Scharfstein and Robins (2002) and Zeng (2004), among others.

In this context, the nonparametric efficient influence function D∗
0,x of S0(x) has the form

D0,x − S0(x), where D0,x is given by

(y, δ,w) �→ −S0(x | w)

[
δI(−∞,x](y)

S0(y | w)G0(y | w)
−

∫ y∧x

0

�0(du | w)

S0(u | w)G0(u | w)
− 1

]

with S0(x | w) and G0(x | w) the conditional survival functions of T and C, respectively,
at x given W = w, and �0(x | w) is the conditional cumulative hazard function of T at x

given W = w. A simple one-step estimator of 	0(x) is given by 	n(x) := 1 −PnDn,x , where
Dn,x is obtained by substituting Sn and Gn for S0 and G0, respectively, in D0,x . Conditions
(B1) and (B2) are satisfied under uniform Lipschitz conditions on S0 and G0. As we show in
the Supplementary Material, condition (B3) holds, and we get κ0(x) = ∫ [f0(x | w)/G0(x |
w)]Q0(dw), where f0(x | w) is the conditional density of T at x given W = w. It follows
directly then that the Chernoff scale factor is

τ0(x) =
[
4f ′

0(x)

∫
f0(x | w)

G0(x | w)
Q0(dw)

]1/3
,

which reduces to the scale factor of Huang and Wellner (1995) when T and C are inde-
pendent. In the Supplementary Material, we demonstrate that satisfaction of condition (B4)
is highly dependent on the behavior of Sn and Gn. For instance, if Sn − S0 and Gn − G0
uniformly tend to zero in probability at rates faster than n−1/3, then conditions (B4) and
(B5) are satisfied. This is not a restrictive requirement if W only has few components—in
such cases, many nonparametric smoothing-based estimators satisfy such rates. Otherwise,
semiparametric estimators building upon additional structure (e.g., additivity on an appro-
priate scale) could be used. Alternatively, for higher-dimensional W , estimators of the form
Sn(x | w) = exp[− ∫ x

0 λn(v | w)dv] with λn an estimator of the conditional hazard λ0 may be
worth considering. For such Sn, we require the product of the convergence rates of λn − λ0
and Gn − G0 to be faster than n−1/3. In practice, with a moderate or high-dimensional co-
variate vector W , it seems desirable to leverage multiple candidate estimators using ensemble
learning (e.g., van der Laan, Polley and Hubbard (2007), van der Laan and Rose (2011)). In
the Supplementary Material (Westling and Carone (2020)), we conduct a simulation study
validating these results using Cox’s proportional hazard model for Sn and Gn.

5.2. Example 2: Monotone hazard function. We now consider estimation of θ0 := λ0, the
hazard function of T . The most obvious approach to tackle this problem would be to con-
sider an identity transformation as in the previous example. The primitive function of interest
is then the cumulative hazard function �0, which can be expressed as the negative logarithm
of the survival function S0 and estimated naturally using any asymptotically linear estima-
tor of S0, for example. The conditions of Theorems 3 and 4 can then be directly verified.
An alternative, more expeditious approach consists of taking the domain transform �0 to
be the restricted mean mapping u �→ ∫ u

0 S0(v) dv. In such cases, 	0 is simply the cumula-
tive distribution function F0, and u0 = ∫ ∞

0 S0(v) dv the mean of T . This particular choice of
domain transformation for estimating a monotone hazard function therefore yields the same
parameter 	0 as for estimating a monotone density with the identity transform. Denoting by
Sn the estimator of the survival function S0 based on the available data, the resulting gener-
alized Grenander-type estimator θn is defined by taking 	n := 1 − Sn and setting �n to be
u �→ ∫ u

0 Sn(v) dv over Jn = [0, un], where un = ∫ ∞
0 Sn(v) dv. As the result below suggests,

when this special domain transform is used, we can leverage some of the work performed
above in analyzing the Grenander-type estimator of a monotone density function under the
various right-censoring schemes considered. We recall that Id denotes the identity function.
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THEOREM 7. Suppose that E0[supu∈In
|Sn(u)−S0(u)|] = o(r−1

n ) and set 	n := 1 −Sn.
If the pair (	n, Id) satisfies conditions (A1)–(A3), then the pair (	n,�n) with �n : u �→∫ u

0 Sn(v) dv necessarily satisfies conditions (A1)–(A5). In particular, for θn := IsoJn(	n ◦
�−

n ,�n), this implies that

rn
[
θn(x) − θ0(x)

] d−→−θ ′
0(x) argmin

u∈R

{
Wx(u) + 1

2
θ ′

0(x)S0(x)u2
}
.

If Wx = [κ0(x)]1/2W0 for W0 a two-sided standard Brownian motion, then

rn
[
θn(x) − θ0(x)

] d−→ τ0(x)Z,

where Z follows the Chernoff distribution and τ0(x) := [4θ ′
0(x)κ0(x)/S0(x)2]1/3.

Denote by T(j) the j th order statistic of {T1, T2, . . . , Tn} and define T(0) := 0. When
there is no censoring, the choice (	n,�n) prescribed above indicates that 	n is the empiri-
cal distribution function based on Y1, Y2, . . . , Yn, and �n is defined pointwise as �n(x) :=
1
n

∑n
i=1 min(T(i), x), which is strictly increasing on [0, T(n)]. Therefore, θn(x) is the left

derivative at �n(x) of the GCM of the graph of {(�n(T(k)),	n(T(k))) : k = 0,1, . . . , n} =
{((n−k

n
)T(k) + 1

n

∑k
i=1 T(i),

k
n
) : k = 0,1, . . . , n}. This is the NPMLE of a nondecreasing haz-

ard function with uncensored data; see, for example, Chapter 2.6 of Groeneboom and Jong-
bloed (2014).

In the Supplementary Material, we verify conditions (A1)–(A3) for each of three right-
censoring schemes when �n = 1 − Sn, and �0 and �n are both equal to the identity. Thus,
to use Theorem 7, it would suffice to verify that E0[supu∈In

|Sn(u) − S0(u)|] tends to zero
faster than n−1/3. This is straightforward given the weak convergence of n1/2(Sn −S0). Thus,
the above theorem provides distributional results for monotone hazard function estimators in
each right-censoring scheme considered, as summarized below:

(i) no censoring: τ0(x) = [4λ′
0(x)λ0(x)/S0(x)]1/3, which agrees with results from

Prakasa Rao (1970);
(ii) independent right-censoring: τ0(x) = [λ′

0(x)λ0(x)/{G0(x)S0(x)}]1/3, which agrees
with results from Huang and Wellner (1995);

(iii) conditionally independent right-censoring, an important setting that does not seem to
have been previously studied in the literature:

τ0(x) =
{

4λ′
0(x)λ0(x)

G0(x)S0(x)

[
G0(x)

f0(x)

∫
f0(x | w)

G0(x | w)
Q0(dw)

]}1/3
.

If either T or C are independent of W , the unadjusted Kaplan–Meier estimator is consistent
for the true marginal survival function of T , and so, unadjusted estimators of the density and
hazard functions are consistent. In these cases, we may then ask how the asymptotic distri-
butions of the adjusted and unadjusted estimators compare. Since all limit distributions are
of the scaled Chernoff type, it suffices to compare the scale factors arising from the differ-
ent estimators. The second expression in (iii) is helpful to assess the impact of unnecessary
covariate adjustment. If C and W are independent, then G0(x | w) = G0(x) for each w,
and so, the scale factors in (ii) and (iii) are identical. If T and W are dependent, so that
f0(x | w) = f0(x) for each w, but C and W are not, then the scale factor in (iii) is generally
larger than the scale factor in (ii). In summary, when using an adjusted rather than unadjusted
estimator of the hazard function, there may only be a penalty in asymptotic efficiency when
adjusting for covariates that C depends on but T does not. The relative loss of efficiency
is given by {∫ [G0(x)/G0(x | w)]Q0(dw)}1/3. In the Supplementary Material, we conduct a
simulation study validating these results.
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5.3. Example 3: Monotone regression function. We finally consider estimation of a
monotone regression function. We first focus on the simple case in which the association
between the outcome and exposure of interest is not confounded. In such cases, the parame-
ter of interest is the conditional mean of the outcome given exposure level, and the standard
least-squares isotonic regression estimators can be used. We show that our general theory cov-
ers this classical case. We then consider the case in which the relationship between outcome
and exposure is confounded but the confounders of this relationship have been recorded. In
this more challenging case, we consider the marginalization (or standardization) of the con-
ditional mean outcome given exposure level and confounders over the marginal confounder
distribution. We study this problem using results from Section 4, which allow us to provide
theory for a novel estimator proposed for this important case.

5.3.1. No confounding. In the standard least-squares isotonic regression problem, we
observe independent replicates of O := (A,Y ), where Y ∈ R is an outcome and A ∈ R is
the exposure of interest. We are interested in the conditional mean function θ0 := μ0, where
μ0(x) := E0(Y | A = x) is the mean outcome at exposure level x. The primitive function of
θ0 can be written as �0(t) = E0[YI(−∞,t](A)/f0(A)] for each t , where f0 is the marginal
density of A. The corresponding primitive parameter at x is pathwise differentiable with
nonparametric efficient influence function (a, y) �→ yI(−∞,x](a)/f0(a)−�0(x). An obvious
approach to estimation of θ0 consists of constructing an asymptotically linear estimator of
�0—this involves nonparametric estimation of the nuisance density f0—and differentiating
the GCM of the resulting curve—this involves selecting the interval over which the GCM is
calculated.

By using a domain transformation, it is possible to avoid both the need for nonparametric
density estimation and the choice of isotonization interval. Let �0 be the marginal distri-
bution function of A. With this transformation, we note that �0(t) = E0[YI(−∞,t](�0(A))]
and 	0(t) = E0[YI(−∞,t](A)] for each t . This suggests taking �n to be the empirical dis-
tribution function based on A1,A2, . . . ,An and 	n(x) := 1

n

∑n
i=1 YiI(−∞,x](Ai). The re-

sulting estimator θn(x) is precisely the well-known least-squares isotonic regression es-
timator of θ0(x). Since �n is a step function with jumps at the observed values of A,
θn(x) is equal to the left-hand slope of the GCM at �n(x) of the so-called cusum diagram
{(�n(Ak),	n(Ak)) : k = 0,1, . . . , n} = {( k

n
, Sk

n
) : k = 0,1, . . . , n}, where we let A0 = −∞,

S0 = 0 and Sk = ∑k
i=1 Yi for k ≥ 1.

Because both 	n and �n are linear estimators, these estimators do not generate second-
order remainder terms to analyze. The influence functions of 	n and �n are, respectively,
D∗

0,x : (a, y) �→ yI(−∞,x](a) − 	0(x) and L∗
0,x : (a, y) �→ I(−∞,x](a) − �0(x). In the Sup-

plementary Material, we demonstrate that if in a neighborhood of x, the conditional variance
function, defined pointwise as σ 2

0 (t) := Var0(Y | A = t), is bounded and continuous, and �0
possesses a positive, continuous density, then Theorem 4 holds with

τ0(x) =
[

4μ′
0(x)σ 2

0 (x)

f0(x)

]1/3
,

coinciding with the classical results of Brunk (1970).

5.3.2. Confounding by recorded covariates. We now consider a scenario in which the
relationship between outcome Y and exposure A is confounded by a vector W of recorded
covariates. The observed data unit is thus O := (W,A,Y ). A more relevant estimand in
this scenario might be the marginalized regression function θ0 := ν0 with ν0(x) defined as
E0[E0(Y | A = x,W)]. We note that ν0(x) can be interpreted as a causal dose-response curve
if (i) W includes all confounders of the relationship between A and Y , and (ii) the probability
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of observing an individual subject to exposure level x is positive in P0-almost every stratum
defined by W . In many scientific settings, it may be known that the causal dose-response
curve is monotone in exposure level.

We again consider transformation by the marginal distribution function of A. In other
words, we set �0(x) := P0(A ≤ x) and take �n(x) := 1

n

∑n
i=1 I(−∞,x](Ai) for each x. We

then have that

	0(x) = E0

[
YI(−∞,x](A)

g0(A,W)

]
=

∫∫
I(−∞,x](a)μ0(a,w)�0(da)Q0(dw),

where g0 is the density ratio (a,w) �→ f0(a | w)/f0(a), with f0(a | w) denoting the condi-
tional density function of A at a given W = w and f0(a) the marginal density function of A

at a as before, and μ0 is the regression function (a,w) �→ E0(Y | A = a,W = w). While in
this case the domain transform does not eliminate the need to estimate nuisance functions,
it nevertheless results in a procedure for which there is no need to choose the interval over
which the GCM is calculated.

Setting η0(x,w) := ∫
I(−∞,x](a)μ0(a,w)�0(da) for each x and w, the nonparametric

efficient influence function of 	0(x) is

(w,a, y) �→ I(−∞,x](a)

[
y − μ0(a,w)

g0(a,w)
+ θ0(a)

]
+ η0(x,w) − 2	0(x).

Suppose that μn and gn are estimators of μ0 and g0, respectively. If the empirical distri-
butions �n and Qn based on A1,A2, . . . ,An and W1,W2, . . . ,Wn, respectively, are used as
estimators of �0 and Q0, it can be shown that

	n(x) := 1

n

n∑
i=1

I(−∞,x](Ai)

[
Yi − μn(Ai,Wi)

gn(Ai,Wi)
+ 1

n

n∑
j=1

μn(Ai,Wj )

]

is a one-step estimator of 	0(x), and that it is asymptotically efficient under regularity con-
ditions on the nuisance estimators μn and gn.

Conditions (B1)–(B5) can be verified with routine but tedious work. Here, we focus on
condition (B3), which allows us to obtain the scale parameter of the limit distribution, and
on condition (B4), which requires that the nuisance estimators converge sufficiently fast. We
find that condition (B4) is satisfied if, for some ε > 0,

sup
|x−u|≤ε

E0
[
μn(u,W) − μ0(u,W)

]2 sup
|x−u|≤ε

E0

[
g0(u,W)

gn(u,W)
− 1

]2
= oP

(
n−1/3)

,

and additional empirical process conditions hold. Turning to condition (B3), under smooth-
ness conditions, κ0(x) = f0(x)2 ∫ [σ 2

0 (x,w)/f0(x | w)]Q0(dw), where σ 2
0 : (a,w) �→

Var0(Y | A = a,W = w) denotes the conditional variance function of Y given A and W .
We then find that the scale parameter of the limit Chernoff distribution is

τ0(x) =
{

4ν′
0(x)

∫ [
σ 2

0 (x,W)

f0(x | W)

]
Q0(dw)

}1/3
.

The marginalized and marginal regression functions exactly coincide, that is, ν0 = μ0 –
if, for example, (i) Y and W are conditionally independent given A, or (ii) A and W are
independent. It is natural then to ask how the limit distribution of estimators of these two
parameters compare under scenarios (i) and (ii), when the parameters in fact agree with each
other. In scenario (i), the scale parameter obtained based on the estimator accounting for
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potential confounding reduces to

τ0,red(x) =
{

4μ′
0(x)σ 2

0 (x)

∫
Q0(dw)

f0(x | w)

}1/3

≥
{

4μ′
0(x)σ 2

0 (x)∫
f0(x | w)Q0(dw)

}1/3
=

{
4μ′

0(x)σ 2
0 (x)

f0(x)

}1/3

by Jensen’s inequality. Thus, if Y and W are conditionally independent given A, in which case
there is no need to adjust for potential confounders, the marginal isotonic regression estimator
has a more concentrated limit distribution than the marginalized isotonic regression estimator.
In scenario (ii), the scale parameter of the estimator accounting for potential confounding is

τ0,red(x) =
{

4μ′
0(x)

f0(x)

∫
σ 2

0 (x,W)Q0(dw)

}1/3
≤

{
4μ′

0(x)σ 2
0 (x)

f0(x)

}1/3

given that
∫

σ 2
0 (x,w)Q0(dw) ≤ σ 2

0 (x) by the law of total variance. Thus, if A and W are
independent, the marginal isotonic regression estimator has a less concentrated limit distri-
bution than the marginalized isotonic regression estimator. In both scenarios (i) and (ii), the
difference in concentration between the limit distributions of the two estimators varies with
the amount of dependence between A and W . We note that these observations are analogous
to those obtained in linear regression.

6. Concluding remarks. We have studied a broad class of estimators of monotone func-
tions based on differentiating the greatest convex minorant of a preliminary estimator of a
primitive parameter. A novel aspect of the class we have considered is its allowance for the
primitive parameter to involve a possibly data-dependent transformation of the domain. The
class we have defined is useful because it generalizes classical approaches for simple mono-
tone functions, including density, hazard and regression functions, facilitates the integration
of flexible, data-adaptive learning techniques, and allows valid asymptotic statistical infer-
ence. We have provided general asymptotic results for estimators in this class and have also
derived refined results for the important case wherein the primitive estimator is uniformly
asymptotically linear. We have proposed novel estimators of extensions of classical monotone
parameters that deal with common sampling complications, and described their large-sample
properties using our general results.

Our primary goal in this paper has been to establish general theoretical results that can
be applied to study many specific estimators, and as such, there are numerous potential ap-
plications of our results. There are also a multitude of useful properties and modifications
of Grenander-type estimators that have been studied in the literature and whose extension to
our class would be important. For instance, kernel smoothing of a Grenander-type estimator
yields a monotone estimator that possesses many of the properties of usual kernel smoothing
estimators, including possibly faster convergence to a normal distribution (e.g., Groeneboom,
Jongbloed and Witte (2010), Mammen (1991), Mukerjee (1988)). The asymptotic distribu-
tion of the supremum norm error of Grenander-type estimators has also been derived (e.g.,
Durot, Kulikov and Lopuhaä (2012)), and extending this result to our class would refine fur-
ther our pointwise results. Asymptotic results at the boundaries of the domain and corrections
for poor behavior there have been developed and would further enhance the utility of these
methods (e.g., Balabdaoui et al. (2011), Woodroofe and Sun (1993), Kulikov and Lopuhaä
(2006)).

There have also been various proposals for constructing asymptotically valid pointwise
confidence intervals for Grenander-type estimators without the need to compute the compli-
cated scale parameters appearing in their limit distribution. In regular statistical problems,
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the bootstrap is one of the most widely used such methods; unfortunately, the nonparametric
bootstrap is known to fail for Grenander-type estimators (e.g., Kosorok (2008), Sen, Banerjee
and Woodroofe (2010)). However, these articles have demonstrated that the m-out-of-n boot-
strap can be valid for Grenander-type estimators, and that bootstrapping smoothed versions of
Grenander-type estimators can also be an effective strategy for performing inference. Asymp-
totically pivotal distributions based on likelihood ratios have also been used to avoid the need
to estimate nuisance parameters in the limit distribution and to provide a basis for improved
finite-sample inference (e.g., Banerjee and Wellner (2001), Banerjee (2005a, 2005b, 2007),
Groeneboom and Jongbloed (2015)). Considering these strategies in our setting would be
particularly interesting.
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