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HURST FUNCTION ESTIMATION
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This paper considers a wide range of issues concerning the estimation
of the Hurst function of a multifractional Brownian motion when the pro-
cess is observed on a regular grid. A theoretical lower bound for the minimax
risk of this inference problem is established for a wide class of smooth Hurst
functions. We also propose a new nonparametric estimator and show that it is
rate optimal. Implementation issues of the estimator including how to over-
come the presence of a nuisance parameter and choose the tuning parameter
from data will be considered. An extensive numerical study is conducted to
compare our approach with other approaches.

1. Introduction. Since the introduction by Mandelbrot and Van Ness [13], fractional
Brownian motion (fBm) has found many applications, in hydrology, financial mathematics,
network analysis, to name a few. Specifically, a fBm with Hurst parameter H ∈ (0,1) is a
Gaussian process BH(t), t ≥ 0, with stationary increments and satisfying E[BH(t)] = 0 and
E[B2

H(t)] = t2H , t ≥ 0. In spatial statistics, the latter expression is referred to as a power var-
iogram (cf. [16]). One of the appealing features of fBm is that the Hurst index characterizes
the nature of dependence or, equivalently, sample path smoothness of the process globally.
The book by Nourdin [14] contains a detailed introduction of the properties of fBm.

However, in many circumstances, a more flexible model is desirable that allows sample
path smoothness to vary with time or location while retains some of the other key features
of fBm. The multifractional Brownian motion (mBm) is such an example. The mBm was
independently introduced in [11] using a moving average type construction and in [2] based
on a harmonizable integral representation. Cohen [6] proved that these two definitions are
equivalent up to a multiplicative deterministic function. Stoev and Taqqu [17] proposed a
generalizations of these two definitions. In this paper, we use the definition of mBm in a
general dimension d introduced in [9].

For convenience, let | · | denote both absolute value and the Euclidean norm in Rd . Let

D(H) =
(∫

Rd

1 − cosx1

|x|2H+d
dx

) 1
2
, H ∈ (0,1),

where x1 is the first component of the vector x.

DEFINITION 1.1. The multifractional Brownian motion {X(t), t ∈ (0,1)d} is a zero-
mean Gaussian process with covariance function

C(t, s)

= σ 2D
(
H(t),H(s)

)(|t |H(t)+H(s) + |s|H(t)+H(s) − |s − t |H(t)+H(s)),(1.1)

where σ 2 ∈ (0,∞), H(t) is a Hölder continuous function with range in (0,1), and

D
(
H(t),H(s)

) = {
2D

(
H(t)

)
D
(
H(s)

)}−1
D2

(
H(t) + H(s)

2

)
.
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The function H in this definition will be referred to as the Hurst function of the mBm. Note
that the covariance function C(t, s) in (1.1) is normalized such that Var(X(t)) = σ 2|t |2H(t).
The sample paths of a mBm are still Hölder continuous but the degree of smoothness varies
from point to point according to H . Also, properties of self-similarity and stationary incre-
ments only hold in a local sense.

In this paper, our primary concern is the estimation of H . We will address both cases where
σ is known and unknown. We view σ as a nuisance parameter if it is unknown, in which case
we also consider its estimation. While we focus on the case where σ is constant over the
entire domain of {X(t)}, we will discuss some extensions where σ is allowed to vary with t .

The problem of estimating H(t) is challenging, at least nonstandard for time series or
spatial statistics due to the nonstationarity of the process mentioned above. Fortunately, self-
similarity and stationary increments still hold locally in some sense for the mBm, which
ensures that H can be identified with probability one if the entire path of X is observed.
Of course, one never observes the whole path in applications. Instead, we will follow the
convention for this problem and assume for the most part that the data are observed on a
regular grid. However, a brief discussion will be provided to address how this restriction
might be relaxed.

A number of papers in the literature address the estimation of H . All of them focus on
the case d = 1 and the estimators are formulated by considering the relationship between
H and moments of functions of generalized differences of gridded data. With no intention
to provide a complete list, we mention [1, 5] and [3]. To the best of our understanding, [1]
contains the most comprehensive results to date that unify the approaches of [5] and [3];
furthermore, it discusses the extension to a class of processes that behave like the mBm in
a local sense. More details on these will be given in Sections 2 and 3. None of these papers
approach the inference of H in a principled manner so as to thoroughly address issues such
as how higher-order smoothness of H should be accounted for in the inference problem and
how to formulate rate optimal estimators.

In the context of spatial data, a general framework for nonstationarity termed local intrinsic
stationarity is developed in [10]. The mBm falls in that framework. However, they focus on
the scenario that H is twice continuously differentiable and the estimator introduced is not
tailored to the mBm and consequently leads to suboptimal rates. More importantly, their
estimator does not satisfactorily address the subtle but important computational issues of the
problem.

The main contributions and organization of the paper are summarized as follows. Our goal
is to explore a range of issues concerning the inference of the Hurst function. First, we for-
mulate the nonparametric estimation of H based on gridded data in a general dimension d ,
taking into account the degree of smoothness of H , for both cases of known σ 2 (Section 2)
and unknown σ 2 (Section 4). The existing results focus on d = 1 and essentially do not
consider the smoothness of H beyond Hölder continuity with index 2. Second, we provide
thorough asymptotic theories (e.g., Theorem 3.4 and Theorem 4.3) for our estimators under
different scenarios. In that vein, we also establish for d = 1 a lower bound for the minimax
risk of estimating H by all possible estimators assuming a broad class of H . This is the first
time such a lower bound is developed in the mBm context. With properly tuned parameters,
the rate of our estimator matches the lower bound, which makes it rate optimal. We also
address the issue of data-driven bandwidth selection (Section 5), which is important for the
implementation of the procedures. Some extensions are given in Section 7. Section 7.1 con-
siders a nongridded data scenario under which some of the key results established for gridded
data continue to hold. Section 7.2 relaxes the assumption of constant σ by replacing σ 2 in
(1.1) with σ(t)σ (s) for some smooth, nonconstant function σ(·). A numerical study is con-
ducted (Section 6) to illustrate the results and compare with existing approaches. For clarity
of presentation and to keep the paper under page limit, all proofs and technical details are
given in Section 8 and the Supplementary Material [15].
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2. Basic formulation of the estimator. In this section, we consider the estimation of the
Hurst function H(t), t ∈ (0,1)d in the covariance of the mBm in (1.1). We first assume that
σ 2 ∈ (0,∞) is known. In Section 4, we will address the case where σ 2 is unknown and, in
Section 7.2, some extensions to nonconstant σ 2.

Assume that we observe X(t) for all t belonging to the grid

�n = {
(i1, i2, . . . , id)/n,with is = (j − 0.5)/n for s = 1, . . . , d, j = 1, . . . , n

}
.

For convenience, the generic notion t i = (ti1, . . . , tid) will be used to denote the grid points.
Define the differencing operator in the direction h: for a function w,

�hw(t) := w(t) − w(t + h) and �
j

hw(t) := �h�
j−1
h w(t), j ≥ 1.

It follows that, for any q ∈ N,

�
q

hw(t) =
q∑

i=0

(−1)i

(
q

i

)
w(t + ih).

For the rest of this section let q be fixed and define

g(H,u,h) := −1

2

q∑
i=0

q∑
j=0

(−1)i+j

(
q

i

)(
q

j

)∣∣u + (i − j)h
∣∣2H

.(2.1)

The choice of q will be discussed later in condition [A3] and in Section 5.
Let us consider the properties of X around a fixed t . It is well known (cf. [7]) that, as

n → ∞,

Un(h) := nH(t)�h/nX(t)
d−→ σBH(t)(h),(2.2)

where BH(t) is fBm with index H(t), and
d−→ stands for convergence in distribution for the

process Un(h) in the space of continuous functions endowed with the uniform metric on any
compact set. Consequently,

nH(t)�
q

h/nX(t) = nH(t)
q∑

i=0

(−1)i

(
q

i

)(
X(t + ih/n) − X(t)

)
d−→ σ

q∑
i=0

(−1)i

(
q

i

)
BH(t)(ih).

Recall that

Cov
(
BH(t)(s1),BH(t)(s2)

) = 1

2

(|s1|2H(t) + |s2|2H(t) − |s1 − s2|2H(t)).
Thus, for any direction h,

E
(
�

q

h/nX(t)
)2 ∼ n−2H(t)σ 2g

(
H(t),0,h

)
.(2.3)

Note that the right-hand side is a one-to-one function in H(t). Thus, a plausible approach
might be that, for large n, if we could estimate E(�

q

h/nX(t))2 well using a nonparametric

approach based on differenced data �
q

h/nX(t i ) for t i in a small neighborhood of t , then in
principle we could also estimate H(t) by inverting g. The choice of the direction h is relevant
in two ways in multiple dimensions. Most importantly, since we consider gridded data, we
must make sure that the h picked will lead to the full utilization of the data as differences are
formed. Given that this is fulfilled, the choice of h may affect the asymptotics in a minor way
but not the rate of convergence. An alternative approach is to consider a more general notion
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of differencing as in [5] and [1] but that is unlikely to improve the rate either. In our setting,
we conjecture that the optimal choice of h is a unit vector that parallels any of the d axes. We
shall fix h to be such a vector in the remainder of this paper.

Approaches similar in spirit to what was proposed above have been considered in the
literature. For instance, in the case d = 1, [5] considers a kernel approach to estimate
E(�

q

h/nX(t))2 by averaging those (�
q

h/nX(t i ))
2 for which t i in a small neighborhood of t .

Unfortunately, the paper contains some technical issues which were later corrected by [1].
On the other hand, [10] considers a larger class of model for a general d and adopts local
linear estimation. As explained in Section 1, none of the existing works satisfactorily address
the wide range of statistical issues explored in this paper.

A major problem with the approach motivated by (2.3) described earlier is that since the
quantity in (2.3) is small for large n, a smoothing approach such as local polynomial regres-
sion that takes into account of higher-order smoothness could yield negative values. When
that happens, there is no sensible way to define an estimate for H(t). Note that the issue is
nonexistent if ones uses the Nadaraya–Watson estimator with a nonnegative kernel, but the
approach would not account for higher-order smoothness and the usual associated boundary
issues would be exaggerated in higher dimensions. A natural remedy is to consider instead
the estimation of E log(�

q

h/nX(t))2 = 2E log |�q

h/nX(t)|. For H ∈ (0,1), define

G(H ;n,h) := −2H logn + logσ 2 + logg(H,0,h) +E logχ2
1 ,(2.4)

with χ2
1 denoting a χ2 random variable with one degree of freedom. Note that g(H,0,h) >

0 for any Hurst index H ∈ (0,1) and direction h by Lemma S.2.1 in the Supplementary
Material [15]. We can also define G(0;n,h) as limH↓0 G(H ;n,h). It is easy to see (cf.
Lemma 8.3) that

2E log
∣∣�q

h/nX(t)
∣∣ ≈ G

(
H(t);n,h

)
.(2.5)

Thus, our basic strategy is to estimate E log |�q

h/nX(t)|, and hence the quantity G(H(t);n,h)

nonparametrically based on log |�q

h/nX(t i )| for t i in a small neighborhood of t .
The nonparametric approach of our choice will be local polynomial regression (cf. [8]).

The advantages of the approach have been extensively documented in the literature. For vec-
tors x = (x1, . . . , xd)T ∈Rd and i = (i1, . . . , id)T ∈ {0,1,2, . . .}d , let

xi =
d∏

l=1

x
il
l and i! =

d∏
l=1

il!.(2.6)

Fix p ∈ [1,∞) and let 	p
 be the smallest integer no smaller than p. Sort the finite set
{(j1, . . . , jd)T : jl ∈ {0,1,2, . . .},∑d

l=1 jl ≤ 	p
−1} in any manner and denote the sorted set
as {jm,m = 1, . . . , S}. However, we set j1 = 0 for convenience. Then solve

(β̂j1
, . . . , β̂jS

)

= argmin
βj1 ,...,βjS

∑
i

K

(
t i − t

b

){
2 log

∣∣�q

h/nX(t i )
∣∣− S∑

m=1

βjm

(
t i − t

b

)jm

}2

,

where K is a kernel function and b > 0 is bandwidth. The local polynomial regression esti-
mator of G(H(t);n,h) is ̂G(H(t);n,h) := β̂j1

. Define

A(x) = (
xj1, . . . ,xjS

)T ∈RS,

and let st,p,b(s) be the first element of the vector

K

(
s − t

b

)(∑
i

K

(
t i − t

b

)
A
(

t i − t

b

)
A
(

t i − t

b

)T )−1
A
(

s − t

b

)
.
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It follows that
̂G

(
H(t);n,h

) = ∑
i

2st,p,b(t i ) log
∣∣�q

h/nX(t i )
∣∣.(2.7)

Finally, the estimator of H(t) that we will focus on is

Ĥ (t) = G−1( ̂G
(
H(t);n,h

));n,h).(2.8)

When n is sufficiently large, the upper bound for G(H ;n,h) is G(0;n,h) < ∞ and the lower
bound is −∞. As it is possible to have

̂G
(
H(t);n,h

)
> G(0;n,h) = logσ 2 + logg(0,0,h) +E logχ2

1 ,

we define G−1(x;n,h) = 0 for all the x ≥ G(0;n,h). The asymptotic properties of Ĥ (t)
will be considered in Section 3.

3. Asymptotic properties. This section contains two major asymptotic results as n →
∞. Since we consider gridded data on a fixed bounded set, these results belong to the realm
of the so-called fixed-domain or infill asymptotics (cf. [16]). Our first result is a uniform
lower bound for the risk of estimating the Hurst function H that belongs to a class of smooth
functions. The second result addresses the properties of the estimator Ĥ defined in (2.8).

We begin by presenting a minimax bound for the risk of estimating H for the case d = 1.
For functions f on (0,1), define

‖f ‖s =
[∫ 1

0

∣∣f (t)
∣∣s dt

]1/s

, s ∈ [1,∞), and ‖f ‖∞ = sup
t∈(0,1)

∣∣f (t)
∣∣.

Let 
x� be the largest integer no larger than x. For open set B ∈ Rd and constants p ≥ 0 and
M ∈ (0,∞), define Hp(B,M) as the space of 
p�-times differentiable functions f : B �→R

such that f (
p�) is Hölder continuous on B with |f (
p�)(x) − f (
p�)(y)| ≤ M|x − y|p−
p�
for all x,y ∈ B .

THEOREM 3.1. Consider all estimator H̃n of H based on data {X((i − 1/2)/n), i =
1, . . . , n}. Then for any γ ∈ (0,1), s ∈ [1,∞), p > 1 and M ∈ (0,∞), there exists a δ ∈
(0,∞) that only depends on s, p, M , γ such that

lim inf
n→∞ inf

H̃n

sup
H∈Hp((0,1),M)

PH

(‖H̃n − H‖s > δ
(
n log2 n

)− p
2p+1

)
> γ,(3.1)

where PH denotes the probability measure under H .

To the best of our knowledge, (3.1) is the first bound of the kind for the inference H .
The proof borrows a familiar strategy from the development of minimax bounds in density
and regression function estimation (cf. Chapter 2 of [19]). The core of the proof is to com-
pute a tight bound for the Kullback–Leibler (KL) divergence between two mBms with Hurst
functions that are close. It is interesting to note that the minimax bound established in Theo-
rem 3.1 is slightly faster, due to presence of the logn term, than the corresponding bounds in
classical problems such as density and regression function estimation. While the lower bound
is only established for d = 1, we conjecture the corresponding lower bound for d = 2 has the

rate (n2 log2 n)
− p

2p+2 . Unfortunately, we have not been able to establish it so far. Below we
will see that the lower bound for d = 1 can be attained by the estimator Ĥ defined in (2.8) in
Section 2.

We next proceed to consider the asymptotic properties of the estimator Ĥ (t). For clarity,
we list below the assumptions that will be frequently referred to in this and future sections.
Let Hp(B) := ⋃∞

M=1 Hp(B,M).
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[K] K is a nonnegative kernel function with support B1(0) and has continuous second-
order partial derivatives, where Br(t0) = {t : |t − t0| < r}.

[A1] H ∈Hp((0,1)d) and is bounded away from 0 and 1.
[A2] b = bn is a bandwidth parameter varying with n, such that nb → ∞ and b logk n → 0

for all k > 0 as n → ∞.
[A3] p ≥ q ≥ 1, where q is the order of differencing in defining ̂G(H(t);n,h).

We also collect some common notations here for easy reference. Define

ψ(t) := 2q − 2H(t), ψ̄ = inf
t

ψ(t) and ρn(t) = log(n)/n + n−ψ(t).

Also, let

�δ = (0,1)d − Bδ(0),

where Bδ(0) is the d-dimensional ball centered at 0 with radius δ > 0. We will focus on δ

that are close to 0 (see next paragraph).
To investigate the asymptotic properties of Ĥ (t), we consider the decomposition

̂G
(
H(t);n,h

)− G
(
H(t);n,h

)
= { ̂G

(
H(t);n,h

)−E
( ̂G

(
H(t);n,h

))}
+ {

E
( ̂G

(
H(t);n,h

))− G
(
H(t);n,h

)}
.

The first term on the right-hand side is a centered random variable, which determines the
variance of the estimator. The second term corresponds to the bias. We will address the
asymptotic behavior of these terms in the following two results. In doing so, our approach
is to establish uniform bounds with respect to t , which requires us to focus on t ∈ �δ for
an arbitrarily small but fixed δ. This is due to the fact that, since Var(X(t)) = σ 2|t |H(t), the
information contained in X(t) becomes increasingly scarce as t approaches zero, and conse-
quently, the asymptotic theory for ̂G(H(t);n,h) and Ĥ (t) with t close to 0 has to be dealt
with differently. This is completely unrelated to the usual boundary-effect issues in nonpara-
metric estimation.

Our first result considers the rates of bias and variance of ̂G(H(t);n,h). For convenience
of presentation, define

T1(n, b, t) = log(n)
(
bp + (nb)−2∧p)+ ρn(t)(3.2)

and

T2(n, b, t) =

⎧⎪⎪⎨⎪⎪⎩
(nb)−d if 2ψ(t) > d,

(nb)−d log(nb) if 2ψ(t) = d,

(nb)−2ψ(t) if 2ψ(t) < d.

(3.3)

In the remaining part of the paper, the statement f (n, b, t) = O(g(n, b, t)) uniformly for
t ∈ �δ means supt∈�δ

∣∣f (n,b,t)
g(n,b,t)

∣∣ ≤ Cδ for some finite constant Cδ .

THEOREM 3.2. Suppose that the conditions [K], [A1]–[A3] hold. Then for any δ ∈
(0,1), we have uniformly for any t ∈ �δ ,

E
( ̂G

(
H(t);n,h

))− G
(
H(t);n,h

) = O
(
T1(n, b, t)

)
,(3.4)

and

Var
( ̂G

(
H(t);n,h

)) = O
(
T2(n, b, t)

)
.
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REMARKS.

(i) In the result for bias, (3.4), the term ρn(t) stands out as one that is absent in a clas-
sical nonparametric regression context. In some situations, for example, when the dimension
d exceeds 3, ρn(t) could play a major role in deciding the estimation rate (cf. Remark (i)
following Theorem 3.4 below).

(ii) Consider the case where p ∈ N and the term log(n)bp dominates in T1(n, b, t), that
is,

1

n2∧pbp+2∧p
→ 0 and

ρn(t)

log(n)bp
→ 0.(3.5)

The proof of Theorem 3.2 shows that if

R(t) := eT
1

(∫
B1(0)

K(z)A(z)AT (z) dz
)−1

×
∫
B1(0)

K(z)A(z)
( ∑

|α|=p

DαH(t)

α! zα
)

dz
(3.6)

is well-defined in (0,∞), where e1 stands for (1,0, . . . ,0)T , then

Bias
( ̂G

(
H(t);n,h

)) ∼ −2 log(n)bpR(t).(3.7)

This bias expression is useful for deriving the asymptotic distribution of ̂G(H(t);n,h) and
Ĥ (t) (cf. Corollary 3.5).

(iii) The variance in Theorem 3.2 was derived by analyzing the dependence of the process
nH(t)�

q

h/nX(t) in t . The cases 2ψ(t) > d and 2ψ(t) < d can be referred to as the short and
long memory cases while 2ψ(t) = d is the borderline of the two. Limit theorems in those
cases are related to classical limit theorems in, for instance, [4] and [18]. This remark also
applies to Theorem 3.3 below.

Next, we turn attention to the asymptotic distribution of ̂G(H(t);n,h). Let the function
F(x) := log(x2) −E logχ2

1 have the Hermite polynomial decomposition (cf. [18])

F(x) =
∞∑
l=2

clHl(x),(3.8)

where Hl denotes the Hermite polynomial of order l. Define

σ 2
H =

∞∑
l=2

c2
l l!

∑
j∈Zd

(
g(H,j ,h)

g(H,0,h)

)l

.(3.9)

THEOREM 3.3. Assume that the conditions [K], [A1]–[A3] hold. Then, for all t ∈
(0,1)d ,

an,b,t
( ̂G

(
H(t);n,h

)−E ̂G
(
H(t);n,h

)) d−→ Z(t),

where the normalizing constant an,b,t and the limit Z(t) depend on ψ(t), as follows:

(i) If 2ψ(t) > d , then an,b,t = (nb)d/2 and Z(t) ∼ N(0, ξ2(t)) where

ξ2(t) = σ 2
H(t)

∫
B1(0)

ω2(z) dz,(3.10)

with

ω(z) = eT
1

(∫
B1(0)

A(ν)A(ν)T K(ν) dν

)−1
A(z)K(z);
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(ii) if 2ψ(t) = d , then an,b,t = (nb)d/2 log−1/2(nb) and Z(t) ∼ N(0, ξ2(t)), where

ξ2(t) = Vdω2(0)

g2(H(t),0,h))

∫
B1(0)

c2
h(t,x)

|x|d−1 dx,

Vd is the volume of a d-dimensional unit ball and ch(t,u) is the coefficient of |u|−ψ(t) in

− ∂2q

∂φq∂ηq

1

2

∣∣u + (φ − η)h
∣∣H(t+φh)+H(t+ηh)

∣∣∣∣
φ=0,η=0

;

(iii) if 2ψ(t) < d , then an,b,t = (nb)ψ(t) and the characteristic function of Z(t) is

φ(u) = exp

{
1

2

∞∑
k=2

(2iu)k

k
Sk

}
,

where

Sk =
∫
(B1(0))⊗k

∏k
i=1 ch(t, zi − zi+1)|zi − zi+1|−ψ(t)ω(zi )

gk(H(t),0,h)
dz1 · · ·dzk,

in which zk+1 denotes z1 for notational convenience.

REMARKS. Recall that we let h be any unit vector parallel to one of the axes. It is worth
pointing out that, by Lemma S.2.2 in the Supplementary Material [15], ch(t,u) is actually a
polynomial of H(t) and 〈u,h〉/|u|. Thus, ch(t,u) depends on u only through its direction
u/|u|. For instance, for d = 1,

ch(t, u) = (−1)q−1
2q−1∏
l=0

(
2H(t) − l

)
.

As a consequence of this and symmetry in integration, taking into account that g(H,0,h)

does not depend on the direction of h, the limits in (i)–(iii) do not depend on the direction of
h either.

The combination of Theorems 3.2 and 3.3 leads to the following result for Ĥ (t).

THEOREM 3.4. Suppose that the conditions [K], [A1]–[A3] hold. Then, uniformly for
t ∈ �δ , where δ is an arbitrary constant in (0,1), we have

E
(
Ĥ (t) − H(t)

) = −(2 logn)−1E
( ̂G

(
H(t);n,h

)− G
(
H(t);n,h

))
+ O

((
T1(n, b, t) + T2(n, b, t)

)
/ log2 n

)
and

E
(
Ĥ (t) − H(t)

)2 = O
((

T 2
1 (n, b, t) + T2(n, b, t)

)
/ log2 n

)
,

where T1, T2 are as defined in (3.2) and (3.3). Moreover, for any t ∈ (0,1)d , 2an,b,t ×
log(n)(Ĥ (t) − G−1(E ̂G(H(t);n,h))) has the same asymptotic distribution as an,b,t ×
( ̂G(H(t);n,h) −E ̂G(H(t);n,h)), where an,b,t and the corresponding limits are the same
as given in Theorem 3.3.

REMARKS.

(i) To compute the rate of Ĥ (t) in various situations using Theorems 3.2 and 3.4, we

focus on the case where 2ψ(t) > d and (3.5) holds. Letting b ∼ (nd log2 n)
− 1

2p+d then
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leads to the rate (nd log2 n)
− p

2p+d . The following are some key scenarios for which this rate
holds:

• d = 1, p ≥ q = 1 and supt H(t) < 0.75,
• d = 2, p ≥ q = 1 and supt H(t) < 0.5,
• d ≤ 2, p ≥ q ≥ 2 and any H ,
• d = 3, p ∈ [1.5,3), q = 1 and supt H(t) < 0.25,
• d = 3, 3 > p ≥ q = 2 and any H .

If d > 3, the term ρn(t) dominates the bias when picking the bandwidth b above and the rate
calculations above does not apply (i.e., (3.5) fails). In future results, we will return to these 5
scenarios for comparisons.

(ii) For d = 1, p ≥ q ≥ 2 and any H or d = 1, p ≥ q = 1 and ‖H‖∞ < 0.75, the rate

(n log2 n)
− p

2p+1 matches the rate in the lower bound of Theorem 3.1 and, therefore, Ĥ (t) is
minimax optimal.

The following corollary describes the asymptotic distributions under the scenarios in Re-
mark (i) above.

COROLLARY 3.5. Suppose that the conditions [K], [A1] and [A3] hold. For t ∈ (0,1)d ,

assume additionally that 2ψ(t) > d , p ∈ N, (3.5) holds for b ∼ (nd log2 n)
− 1

2p+d and that the
quantity R(t) in (3.6) is well-defined in [0,∞). Then(

np log−1 n
) d

2p+d
( ̂G

(
H(t);n,h

)− G
(
H(t);n,h

)) d−→ N
(
R(t), ξ2(t)

)
and

2
(
nd log2 n

) p
2p+d

(
Ĥ (t) − H(t)

) d−→ N
(
R(t), ξ2(t)

)
,

where ξ2(t) is as given in (3.10).

4. Backfitting estimation when σ 2 is unknown. We have so far assumed that σ 2 in
(1.1) is known. In this section, we will address the case where σ 2 is unknown and construct
a slightly different estimator than Ĥ (t).

The construction consists of three steps:

(i) First, consider a less efficient estimator, Ĥ1(t), that does not require the knowledge
of σ 2 to crudely estimate H(t).

(ii) Based on Ĥ1(t), estimate logσ 2 by an estimator denoted by l̂ogσ 2.

(iii) Finally, estimate H(t) again by Ĥ (t) by plugging in l̂ogσ 2 for logσ 2. The final
estimator is denoted as Ĥ2(t).

The details are given below.
The estimator of H(t) in step (i) is defined as

Ĥ1(t) =
̂G(H(t);n,2h) − ̂G(H(t);n,h)

2 log 2
,(4.1)

where ̂G(H(t);n,2h) and ̂G(H(t);n,h) use the same bandwidth denoted as b1. The proof
of the following result is similar to that for Theorems 3.2 and 3.3.
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THEOREM 4.1. Assume that [K], [A1]–[A3] hold with b in [A2] replaced by b1. Then,
for any δ ∈ (0,1), we have uniformly for t ∈ �δ ,

E
(
Ĥ1(t) − H(t)

) = O
(
b

p
1 + ρn(t)

)
and

Var
(
Ĥ1(t)

) = O
(
T2(n, b1, t)

)
,

where T2 is defined in (3.3). Additionally, if 2ψ(t) ≥ d , Ĥ1(t) − E[H(t)] is asymptotically
normal.

REMARKS. Under the 5 scenarios listed in remark (i) following Theorem 3.4, Theo-
rem 4.1 entails that Ĥ1(t) has asymptotic bias O(b

p
1 ) and variance O((nb1)

−d). Thus, taking

b1 ∼ n
− d

2p+d leads to the optimal rate n
− dp

2p+d . Note that this rate is slower than that of Ĥ (t)
for the case where σ 2 is known.

Next, we proceed to estimate σ 2. For some m = 1,2, . . . , obtain all of Ĥ1(t) for t ∈ �m =
{(i1, i2, . . . , id)/m,with is = (j − 1/2)/m for s = 1, . . . , d, j = 1, . . . ,m}. Note that, in this
step, we are still using the estimate Ĥ1 obtained in the previous step based on data observed
on �n. Thus, m could be viewed as another tuning parameter. While it is possible to present
our asymptotic results below for any choice of m, to streamline presentation we will fix
m ∼ 1/b1 (which is the optimal choice in some sense) from this point on.

Define

G̃(H ;n,h) := G(H ;n,h) − logσ 2

= − 2H logn + logg(H,0,h) +E logχ2
1 .

(4.2)

Intuitively, we could estimate logσ 2 by ̂G(H(t);n,h) − G̃(Ĥ1(t);n,h). However, while
rare, numerically it is possible that Ĥ1(t) /∈ (0,1), in which case the computation of
logg(Ĥ1(t),0,h) would be problematic (e.g., g(1,0,h) = 0). By [A1], there exists a con-
stant γ > 0 such that

inf
t∈[0,1]d

{
H(t) ∧ (

1 − H(t)
)}

> γ.(4.3)

Define the thresholded estimator

Ĥ
γ
1 (t) = Ĥ1(t) · I (Ĥ1(t) ∈ [0,1 − γ /2])+ (1 − γ /2) · I (Ĥ1(t) > 1 − γ /2

)
,

and estimate logσ 2 by

l̂ogσ 2 := 1

#(�m ∩ �δ)

∑
t∈�m∩�δ

( ̂G
(
H(t);n,h

)+ 2Ĥ1(t) logn

− logg
(
Ĥ

γ
1 (t),0,h

)−E logχ2
1
)
.

In the following results, let

T ′
1(n, b1) = logn

(
b

p
1 + (nb1)

−2∧p)+ n−1 log2 n + n−ψ̄ logn,(4.4)

T ′
2(n, b1) =

⎧⎪⎪⎨⎪⎪⎩
(nb1)

−d if 2ψ̄ > d,

(nb1)
−d log(nb1) if 2ψ̄ = d,

(nb1)
−2ψ̄ if 2ψ̄ < d.

(4.5)
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THEOREM 4.2. Assume that the conditions [K], [A1]–[A3] hold with b in [A2] replaced
by b1. We have

E
[(

l̂ogσ 2 − logσ 2)2] = O
((

T ′
1(n, b1)

)2 + T ′
2(n, b1)

)
.

Furthermore, if T ′
2(n, b1) = O(T ′

1(n, b1)), then we have

E
(
l̂ogσ 2 − logσ 2) = O

(
T ′

1(n, b1)
)
.

REMARKS. For the cases 2ψ̄ > d , d ≤ 2 and p ≥ q ≥ 2 or d = 3 and 3 > p ≥ q = 2, it

can be seen that the convergence rate of l̂ogσ 2 based on Theorem 4.2 is n
− dp

2p+d (logn)
d

2p+d

if b1 ∼ (nd log2 n)
− 1

2p+d .

Finally, we proceed to the final step and estimate H(t) by

Ĥ2(t) = G̃−1( ̂G
(
H(t);n,h

)− l̂ogσ 2;n,h
)
,

where the bandwidth used in ̂G(H(t);n,h) in this step is denoted as b2.

THEOREM 4.3. Assume that the conditions [K], [A1]–[A3] hold with b in [A2] replaced
by b1 and b2. Then uniformly for t ∈ �δ , δ ∈ (0,1),

E
(
Ĥ2(t) − H(t)

)2

= O
(((

T ′
1(n, b1)

)2 + T ′
2(n, b1) + T 2

1 (n, b2, t) + T2(n, b2, t)
)
/ log2 n

)
.

Furthermore, if b1 and b2 are picked so that T ′
2(n, b1) = O(T ′

1(n, b1)) and T2(n, b2, t) =
O(T1(n, b2, t)), then we have

E
(
Ĥ2(t) − H(t)

) = O
((

T ′
1(n, b1) + T1(n, b2, t)

)
/ logn

)
.

REMARKS.

(i) Under the 5 scenarios listed in the first remark after Theorem 3.4, if 2ψ̄ > d and

b1 = b2 ∼ (
nd log2 n

)− 1
2p+d ,

the convergence rate of Ĥ2(t) will be (nd log2 n)
− p

2p+d , which is the same as the convergence
rate of Ĥ (t) when σ 2 is known.

(ii) To the best of our knowledge, up to this point, the most complete asymptotic theory
in the existing literature for the estimation of H when σ 2 is unknown were established for
the estimators QV and IR in [1] for d = 1. If p = 2, the rate obtained in their equation (4.14)
is Op(n−2/5+ε) for any ε > 0. This is slower than the optimal rate described in (i) for Ĥ2,
which is Op(n−2/5(logn)−4/5). As explained before, [1] essentially does not take higher-
order smoothness into account in defining the estimators.

5. Selection of q and b. In this section, we consider the selection of q and b in Ĥ .
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FIG. 1. Plots of σ 2
H for q = 1,2,3,4.

5.1. Selection of q . To consider the choice of q , we examine the asymptotic mean
squared error of Ĥ (t), or equivalently, the asymptotic bias and variance of ̂G(H(t);n,h)

given by Theorem 3.4 under the assumption that the bandwidth b is chosen optimally. We
will focus on the 5 scenarios in the first remark after Theorem 3.4 and p ∈ N.

Let b ∼ (nd log2 n)
− 1

2p+1 , which is the bandwidth that leads to the optimal rate for Ĥ .
When p ∈ N, it can be seen from (8.11) that the dominant term of the bias is R(b, t) which
does not depend on q . Thus, we only need to check the effect of q on variance In all of the 5
scenarios, the variance is proportional to σ 2

H(t) by Theorem 3.3. As σ 2
H(t) depends on both q

and H(t), the effect of q may be different for different values of H(t).
In Figure 1, we present plots of σ 2

H versus H for d = 1 and q = 1,2,3,4, where the values
of σ 2

H are numerically computed using 80 terms in the expansion. One observes from this
plot that the values of σ 2

H for q = 3,4 are uniformly larger than those for q = 2. For q > 4,
σ 2

H increases progressively but the plots for those are omitted for clarity of presentation.
Consequently, there is no need to let q > 2. We also observe that for H ≤ 0.66, σ 2

H is the
smallest when q = 1. However, for H > 0.66, σ 2

H increases rapidly if q = 1. To conclude,
q = 2 is generally a safe choice, but if H(t) < 0.66 for most of t , q = 1 may lead to better
estimation results. The discussions for d ≥ 2 are similar.

5.2. Selection of b. In this subsection, we aim to construct a bandwidth selection method
for Ĥ when d = 1 and q = 2. For a fixed δ > 0, define

MISE(b) = E

(∫
�δ

[
Ĥn,b(t) − H(t)

]2
dt

)
,

which is a common criterion for measuring goodness of the fit. Denote by b∗ the optimal
bandwidth based on MISE(b). By Theorem 3.4 and the remarks that follow, we conclude that

b∗ := O(n log2 n)
− 1

2p+1 . Instead of minimizing MISE(b) directly, minimizing a discretized
version of MISE(b) is usually preferable for computations. Clearly, we can drop the term
H 2(t) which does not depend on b. These lead to the objective function

R(b) = 1

#(�m ∩ �δ)

∑
t∈�m∩�δ

(
Ĥ 2

n,b(t) − 2Ĥn,b(t)H(t)
)

for some large m where, as usual, �m = {(i − 1/2)/m, j = 1, . . . ,m}. Note that we highlight
the dependence on data and bandwidth in the notion Ĥ 2

n,b(t).
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However, R(b) is still not calculable as H(t) is unknown. We follow an idea from [5] and
replace H(t) by an undersmoothed estimate. Specifically, let

R̂(b) = 1

#(�m ∩ �δ)

∑
t∈�m∩�δ

(
Ĥ 2

n,b(t) − 2Ĥn,b(t)H̃n,b2(t)
)
,

where

H̃n,b2(t) = 1

#(Bb2p(t) ∩ �m ∩ �δ)

∑
t ′∈B

b2p (t)∩�m∩�δ

Ĥn,b2
(
t ′
)
,

and Bb2p(t) is the interval centered at t with radius b2p . Now, we can select our bandwidth
to be

b̂∗ = argmin
b∈E

R̂(b),

where E is the interval defined by

E = [
κ1n

− p+1
4p+2 (logn)

p
2p+1 , κ2

(
n log2 n

)− 1
2p+1

]
,(5.1)

with κ1, κ2 being any two positive constants. We will refer to this as the LSCV approach,
a terminology borrowed from the density estimation literature. We expect R̂(b̂∗) to closely
approximate R(b∗) if m is chosen large enough. For Ĥ2, with b1 = b2, we can adopt the same
strategy to select the bandwidth.

6. A simulation study. We primarily focus on the case d = 1 but will also briefly discuss
the d = 2 case.

First, let d = 1 and assume that H(t) = 0.5 + 0.4 sin(4πt), t ∈ [0,1], and σ 2 = 1. The
estimators that we compare are Ĥ , H̃ , Ĥ1, Ĥ2, H̃2 plus the approaches QV and IR considered
by [1, 5] and [3], where H̃ , H̃2 are Ĥ and Ĥ2 with bandwidth b selected by the LSCV
approach in Section 5. Note that σ 2 is assumed known for Ĥ and H̃ but unknown for the other
procedures. To implement our approaches, we set p = 3, q = 2 and use the Epanechnikov
kernel. QV and IR do not produce estimation results in the boundary areas while all our
approaches do. As such, all the ISEs are computed on the interval [0.1,0.9] to make the
comparisons fair.

In the first set of simulations, we compare the four procedures that do not require the
knowledge of σ 2, Ĥ1, Ĥ2 and QV and IR. The bandwidth parameter b for all estimators is
taken from the set 0.3×0.80:19, and the results reported are based on the b’s having the small-
est MISEs. Obviously, this requires the knowledge of H and is not a data-driven bandwidth
selector. The plots in Figure 2 are the empirical pointwise quartiles based on n = 10,000 and
1000 simulation runs; the true H is also plotted in red. Among the four approaches, Ĥ2 is the
clearly winner and actually substantially improves upon its preliminary procedure Ĥ1. One
could also see that the performance of IR significantly lags the other procedures for small
values of H(t).

To visualize the convergence rates of all eight estimators, we let the number of observations
vary from 1000 to 10,000 and compute the

√
MISEs based on 1000 simulation runs. The

results are displayed in Table 1 and Figure 3, where Figure 3 contains the plots for the log
MISEs. The bandwidths for Ĥ , Ĥ1, Ĥ2, QV and IR are selected optimally as described in
the previous paragraph while H̃ and H̃2 use data-driven bandwidth determined by LCSV.
By conducting linear regression on the log

√
MISEs, we arrive at very crude estimates of

the convergence rates, which are n−0.54, n−0.52, n−0.44, n−0.49, n−0.47, n−0.39 and n−0.37 for
Ĥ , H̃ , Ĥ1, Ĥ2, H̃2, QV and IR, respectively. It is important to note that although Ĥ and H̃
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FIG. 2. Empirical quantiles of Ĥ1(t), Ĥ2(t), QV(t), IR(t) with n = 10,000 based on 1000 simulation runs;
green curves are 5% and 95% pointwise empirical quantiles, respectively; blue curves are 25% and 75% empirical
quantiles, respectively; black curves are empirical means.

performs the best in this experiment assuming the true σ 2, they will have a large bias when
σ 2 is misspecified. The performance of all other methods are not affected by the change of
σ 2.

To evaluate the bandwidth selector LCSV in detail, we focus on Ĥ with n = 1000 and
select b from the set 0.3×0.80:8. This is done 1000 times. We compare our selection approach
with the “oracle” bandwidth, which is obtained by assuming we know the true H(t) and
select the bandwidth with smallest MISE for each run. Table 2 contains the number of times
the individual bandwidths in 0.3 × 0.80:8 are selected by oracle and LSCV. Figure 4 contains
the empirical histograms of the integrated squared errors of Ĥ and H̃ . It can be seen that the
bandwidths selected by two approaches are fairly close. The result for H̃2 are very similar,
and we omit them here. However, the bandwidth selection method does not work well for H̃1
and tends to select the smallest bandwidth in the range of candidate bandwidths.

Finally, we present some simulation results for the case d = 2 to illustrate the performance
of our three estimators Ĥ , Ĥ1 and Ĥ2. The model that we consider is the mBm on [0,1] ×
[0,1] with Hurst function H(x,y) = 0.5 + 0.4 sin(4πx) sin(2πy), where we assume that the

TABLE 1√
MISE for all estimators with a range of sample sizes

n QV IR Ĥ1 Ĥ2 Ĥ H̃2 H̃

1000 0.1849 0.1792 0.1602 0.0576 0.01574 0.0604 0.0186
2000 0.1451 0.1388 0.1131 0.0408 0.01060 0.0431 0.0131
3000 0.1214 0.1201 0.0951 0.0328 0.00845 0.0365 0.0106
4000 0.1085 0.1071 0.0845 0.0290 0.00736 0.0308 0.0091
5000 0.0993 0.0987 0.0774 0.0263 0.00656 0.0285 0.0082
6000 0.0926 0.0932 0.0720 0.0243 0.00595 0.0264 0.0074
7000 0.0869 0.0866 0.0671 0.0221 0.00545 0.0241 0.0068
8000 0.0821 0.0834 0.0628 0.0212 0.00504 0.0236 0.0064
9000 0.0790 0.0800 0.0595 0.0193 0.00473 0.0216 0.0059

10,000 0.0751 0.0758 0.0558 0.0183 0.00449 0.0206 0.0057
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FIG. 3. Plot of log(MISE) versus logn.

process is observed on a regular grid of size 166 × 166. For ease of presentation, we only
show the estimation results on the circle (x − 0.5)2 + (y − 0.5)2 = 0.252. As before, we let
p = 3 and q = 2 where the direction of differencing is taken as h = (0,1). With bandwidths
equal to 0.15 × 0.80:5, 300 runs of simulations were carried out. Figure 5 presents the the
empirical quantiles of the estimation results for this simulation experiment using the optimal
bandwidths based on MISE. One can see that Ĥ continues to perform quite well assuming
that σ 2 is known, whereas for Ĥ1, Ĥ2 that do not require a priori knowledge of σ 2, Ĥ2
outperforms Ĥ1 by a wide margin.

7. Discussions and extensions. In this section, we briefly discuss the problems of relax-
ing the assumptions of gridded data and constant variance.

7.1. Nongridded data. So far, we have focused on the estimation of the Hurst function of
the mBm based on gridded data. In some specialized non-gridded settings, our approach can
be readily modified to produce estimators that have essentially the same rates of convergence
as for the gridded case. To demonstrate, we focus on d = 1 and follow the approach of [12].
Assume that we have observations X(ti), 1 ≤ i ≤ n, with ti = ϕ((i − 1/2)/n), where ϕ

satisfies the following condition:

[B] ϕ ∈ Hp+1([0,1]), p ≥ 1, is a strictly monotone and surjective mapping from [0,1] to
[0,1], with its first order derivative ϕ(1) bounded away from 0.

Observe that [B] guarantees that the gaps between neighboring ti ’s are of the order n−1. De-
note the modified estimators of Ĥ , Ĥ1 and Ĥ2 for this setting as Ĥ ′, Ĥ ′

1 and Ĥ ′
2, respectively,

whose definitions involve some new notation to be introduced below. For any given t ∈ (0,1)

and q = 1,2, . . . , define xi(t) = ϕ(ϕ−1(t) + i/n), i = 0, . . . , q , and ai = (−1)i
(q
i

)
. Also,

let the symbol �
q
1/nX(t) stand for the quantity

∑q
i=0 aiX(xi(t)). Observe that xi(tj ) = ti+j ,

TABLE 2
Frequencies with which various bandwidths are picked by LSCV and oracle for Ĥ based on 1000 simulation runs

0.3 × 0.83 0.3 × 0.84 0.3 × 0.85 0.3 × 0.86 0.3 × 0.87 0.3 × 0.88

LSCV 434 413 115 29 4 5
Oracle 60 584 328 27 1 0
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FIG. 4. Empirical histograms of log(
√

ISE) based on Ĥ with the oracle bandwidth and that selected by LSCV.

which shows that �
q
1/nX(tj ) can be computed from data. It can be shown (cf. (2.5)) that

2E log
∣∣�q

1/nX(t)
∣∣ ≈ G

(
H(t);n,�(t)

)
,

where �(t) := ϕ(1)(ϕ−1(t)). Thus, G(H(t);n,�(t)) can be estimated nonparametri-
cally by the local polynomial estimator based on the log-transformed differenced data
2 log |�q

1/nX(tj )|, as was done for the gridded case. This motivates the new estimators Ĥ ′,
Ĥ ′

1 and Ĥ ′
2.

Specifically, the definition of Ĥ ′
1(t) is unchanged from Ĥ1(t) since the definition does

not involve inversion of G(H ;n,h). For Ĥ ′ and Ĥ ′
2, however, since we need to solve

̂G(H ;n,�(t)) for H , the function �(t) must be estimated. The condition [B] implies that
�(t) is differentiable, from which it is easily concluded that �(t) can be estimated with
precision O(1/n) using the pairs (i/n, ti); for instance, a smoothed version of the naive es-
timator

∑
i n(ti+1 − ti)I(ti ,ti+1](t) will suffice. Thus, to define Ĥ ′ and Ĥ ′

2, we first estimate
�(t) by some �̂ (t) and then proceed to estimate H(t) in much the same way as in Ĥ and Ĥ2
using �̂ (t) and the �

q
1/nX(tj ). Section S.6 in the Supplementary Material [15] shows that

the rates of convergence of Ĥ ′, Ĥ ′
1 and Ĥ ′

2 are largely unchanged from their gridded-data

FIG. 5. Empirical quantiles of Ĥ , Ĥ1, Ĥ2 on the circle (x −0.5)2 + (y −0.5)2 = 0.252 based on 300 simulation
runs; θ = arctan((y − 0.5)/(x − 0.5)); red curves are the true function; green curves are 5% and 95% pointwise
empirical quantiles, respectively; blue curves are 25% and 75% empirical quantiles, respectively; black curves
are empirical means.
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counterparts Ĥ , Ĥ1 and Ĥ2. A simulation study is also included there to demonstrate this
numerically.

We could go beyond the setting of [B] and consider data locations that are less regular; for
instance, the ti’s are distributed as i.i.d. uniform [0,1] or belong to a Poisson point process.
In that case, one might be able to exclude those data for which the gaps are not of the order
n−1 and also improvise in some ways in Ĥ ′, Ĥ ′

1 and Ĥ ′
2 to still obtain meaningful estimators.

However, much of what we know so far in that regard is still preliminary and will require
more investigations.

7.2. Nonconstant variance. Consider the model

Y(t) = σ(t)X(t),

where X is mBm as defined in Definition 1.1 with σ = 1, and σ(t) a function that determines
the variance of Y(t). Allowing σ(t) to vary with t broadens the mBm process considerably.
As before, assume that Y is observed on a grid.

First, consider the case that σ(t) is known. Define

G(H ;n,h, σ ) := −2H logn + logσ 2 + logg(H,0,h) +E logχ2
1 .

As the constant variance case, one can first obtain ̂G(H(t);n,h, σ (t)) by local polynomial
regression based on data �

q

h/nY (t i) and then estimate H(t) by

Ĥ ′(t) := G−1( ̂G
(
H(t);n,h, σ (t)

);n,h, σ (t)
)
.(7.1)

Intuitively, the properties of Ĥ ′(t) should be quite similar to those of Ĥ (t) in the constant
variance case so long as σ(t) is sufficiently smooth. To that end, we define

[S] σ(·) ∈Hp((0,1)d) and inft σ(t) > δ for some δ > 0.

Propositions S.7.1 and S.7.2 of the Supplementary Material [15] show that the essence of
Theorem 8.2 and Theorem 3.2 established for the constant variance assumption continues to
hold for the nonconstant variance case under [S]. In particular, it can be seen that Ĥ ′(t) con-

tinues to achieve the minimax convergence rate of (nd log2 n)
− p

2p+d under the two scenarios:

• d ≤ 2, p ≥ q ≥ 2 and any H ,
• d = 3, 3 > p ≥ q = 2 and any H .

Next, we discuss the case where σ(t) is unknown. First, we consider Ĥ1 which does not
require knowing σ(t). Following the same steps as in the proof of Theorem 4.1 and Proposi-
tion S.7.2, it is straightforward to conclude that the optimal convergence rate of Ĥ1 based on

Y is the same as that based on X when d ≤ 3 and q ≥ 2, which is n
− dp

2p+d . This is somewhat

worse than the minimax rate (nd log2 n)
− p

2p+d . One possible way to improve upon Ĥ1 is to
consider a modified version of Ĥ2 obtained as follows. Step 1: estimate H(t) by Ĥ1(t), step 2:
based on Ĥ1, estimate σ(t) nonparametrically by some σ̂ (t), and step 3: based on σ̂ (t), es-
timate H(t) by Ĥ (t). There are a few challenges in making this approach work. First, it in-
volves the choices of three smoothing parameters, one for each of Ĥ1, σ̂ and Ĥ . This makes

the implementation difficult. Also, in order for Ĥ2(t) to achieve the rate (nd log2 n)
− p

2p+d , it

is necessary that σ̂ (t) first achieves the rate n
− dp

2p+d (logn)
− d

2p+d . We conjecture that this is
possible only if H(t) ≤ 0.5; see additional discussions and simulation results in Section S.7
of the Supplementary Material [15]. A complete solution of this problem is beyond the scope
of this paper.
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8. Proofs. Due to space limitation, we only include proofs of Theorem 3.1, Theorem 3.2
and Theorem 3.3 in this section. Proofs for other results can be found in the Supplementary
Material [15].

8.1. Proof of Theorem 3.1. The proof is based on the general approach introduced in
Theorem 2.5 of [19], which, in our context, can be described as follows. For candidate Hurst
functions H1 and H2, let K(H1‖H2) be the Kullback–Leibler divergence between mBms
with Hurst functions H1 and H2 observed on �n = {(j − 1/2)/n, j = 1, . . . , n}. Suppose
that Hiδ , i = 0,1, . . . ,Nδ are Nδ + 1 candidate Hurst functions in Hp((0,1),M) satisfying

‖Hjδ − Hkδ‖q ≥ 2δ > 0, 0 ≤ j, k ≤ Nδ,(8.1)

and

1

Nδ

Nδ∑
i=1

K(Hiδ‖H0δ) ≤ α log(Nδ),(8.2)

where α ∈ (0,1/8). Then

inf
H̃n

sup
H∈Hp((0,1),M)

PH

(‖H̃n − H‖q ≥ δ
) ≥

√
Nδ

1 + √
Nδ

(
1 − 2α −

√
2α

logNδ

)
> 0.

We proceed to construct a set of functions that satisfy the conditions (8.1) and (8.2) above
where δ and Nδ depend on n, and δ corresponds to the rate in the theorem.

First, let H0,δ ≡ 1/2, which is the Hurst function of the standard Brownian motion. Define

κ(x) =
⎧⎪⎨⎪⎩

exp
{
− 1

x + 1
2

− 1

x − 1
2

}
−1

2
< x <

1

2
,

0 otherwise.

It is clear that κ is a nonnegative function with support (−1/2,1/2) and has derivatives of all
orders. Let

M1 = sup
x

∣∣κ(
p�+1)(x)
∣∣/M and φ(x) = κ(x)/M1.

Also, for some sequence m = mn, set

φmj (x) = m−pφ(mx − j), j = 1, . . . ,m − 1.

We will specify m later and define δ and Nδ in terms of m.
It is clear that the support of φmj is ((j − 1/2)/m, (j + 1/2)/m), and therefore the φmj ’s

have nonoverlapping supports. For any vector a = (a1, . . . , am−1) with each aj = 0 or 1,
define

Ha(t) = 1

2
+

m−1∑
j=1

ajφmj (x).(8.3)

Clearly, for sufficiently large m and all a,

sup
x,y∈(0,1)

|H(
p�)
a (x) − H

(
p�)
a (y)|

|x − y|p−
p�

≤ sup
x,y∈[1/(2m),3/(2m)]

m−(p−
p�)|φ(
p�)(mx − 1) − φ(
p�)(my − 1)|
|x − y|p−
p�



856 J. SHEN AND T. HSING

≤ M sup
x,y∈[1/(2m),3/(2m)]

m−(p−
p�)|mx − my|
|x − y|p−
p�

≤ M sup
x,y∈[1/(2m),3/(2m)]

m−(p−
p�)|mx − my|p−
p�

|x − y|p−
p� = M.

For different a and a′, we have

‖Ha − Ha′‖q =
∥∥∥∥∑

j

(
aj − a′

j

)
φmj

∥∥∥∥
q

= m−p−1/q

(∑
j

∣∣aj − a′
j

∣∣)1/q

‖φ‖q .

Denote by D1 the set of all vectors a such that if a,a′ ∈ D1,∑
j

∣∣aj − a′
j

∣∣ > m − 1

4
.

By the Varshamov–Gilbert bound, we have

#(D1) ≥ exp
{
(m − 1)/8

}
.

Now take the Hiδ’s to be the Ha, a ∈ D1, and Nδ = #(D1). It follows that

‖Hiδ − Hjδ‖q ≥ m−p

(
m − 1

4m

)1/q

‖φ‖q .

Then let

δ = m−p

(
m − 1

4m

)1/q

‖φ‖q = O
(
m−p).

It follows from Proposition 8.1 below with an = O(m−p) and bn = O(m−(p−1)) that there
exists some C ∈ (0,∞) such that, uniformly in i,

K(Hiδ‖H0δ) ≤ C
(
m−2(p−1) + nm−2p) log2 n

for large n. Fix any α ∈ (0,1/8). To ensure that (8.2) holds, it suffices to find m such that

α log(Nδ) ≥ α
m − 1

8
≥ C

(
m−2(p−1) + nm−2p) log2 n.

To achieve the slowest rate δ, we pick the smallest m for each n such that this inequality
holds, in which case

m ∼ (C/α)
(
n log2 n

) 1
2p+1 .

The proof is complete. �
The proof of Theorem 3.1 now hinges on the computation of K(Hiδ‖H0δ), which is ac-

complished in the proposition below.

PROPOSITION 8.1. Let H0(t) ≡ 1/2 and H(t) = 1/2+φ(t), where supt |φ(t)| ≤ an and
supt |φ′(t)| ≤ bn with (an + bn) logn → 0. Then there is a finite (universal) constant C such
that

lim sup
n→∞

{(
b2
n + na2

n

)
log2 n

}−1
K(H‖H0) ≤ C.(8.4)
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A detailed proof for this proposition can be found in the Supplementary Material [15]. The
general idea is the following.

Denote by X the mBm with Hurst function H . To simplify notation, we assume that the
data is observed on {i/n, i = 1, . . . , n} instead of on �n. This does not change the conclusion
in the result. Define

Yi = √
n

(
X

(
i

n

)
− X

(
i − 1

n

))
, i = 1, . . . , n.

Let � be covariance matrix of (Y1, . . . , Yn). It is well known that

K(H‖H0) = 1

2

[− log |�| − n + tr(�)
]
.(8.5)

Let D = (dij )n×n = � − I and λi the eigenvalues of D. Intuitively, D will be a matrix
shrinking to 0-matrix with n increasing. Under some conditions for the shrinking speed, we
have

− log |�| = −∑
i

log(1 + λi) = − tr(D) + O
(
tr
(
D2)).(8.6)

Now by (8.5), we can obtain

K(H‖H0) = O
(
tr
(
D2)) = O

(‖D‖2
F

)
.

Therefore, to prove this proposition, we need to carefully study how fast D converges to 0,
for which a through proof is given in the Supplementary Material [15].

8.2. Proofs of Theorem 3.2 and Theorem 3.3. We begin by developing a few technical
results needed for the proof. For convenience, let

Wn(t,h) := σ−1nH(t)�
q

h/nX(t),

Cn(t, s,h) := Cov
(
Wn(t,h),Wn(s,h)

)
.

Clearly,

Cn(t, s,h) = σ−2nH(t)+H(s)�
q

h/n,t�
q

h/n,sC(t, s),

where �
q

h/n,t and �
q

h/n,s denote differencing with respect to t and s, respectively.
The following theorem addresses the behavior of the covariance of Wn(t,h) for different

ranges of the gap. There are some similarities between this theorem and Theorem 1 in [10] or
Propositions 1 and 2 in [1]. However, the results here focus more on the mBm and provides
the level of precision needed for our results. As noted before, the differencing direction h
in this paper is generally assumed to be a unit vector that parallels an axis. The following
theorem is one instance where this is not assumed. The proof is included in the Supplementary
Material [15].

THEOREM 8.2. In the following, let t, t +u/n ∈ �δ . Under assumptions [A1]–[A3], for
any δ ∈ (0,1) and M > 0, there exist finite constants Cδ , Cδ,M such that uniformly in n, t :

(i) |Cn(t, t + u/n,h) − g(H(t),u,h)| ≤ Cδ,Mρn(t) for |u| ≤ M ;
(ii) |Cn(t, t + u/n,h)| ≤ Cδ|u|−ψ(t) for u satisfying q|h| + 1 < |u| < 2bn;

(iii) |Cn(t, t + u/n,h)| ≤ Cδ|u|−ψ̄ for u satisfying |u| > q|h| + 1;
(iv) for |u| → ∞ and |u| < 2bn,

Cn(t, t + u/n,h) = (
ch(t,u) + O(b logb)

)|u|−ψ(t),

where ch(t,u) is defined in Theorem 3.3.
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Our approach for proving Theorems 3.2 and 3.3 starts from the following decomposition:

̂G
(
H(t);n,h

) = ∑
i

2st,p,b(t i ) log
∣∣�q

h/nX(t i )
∣∣

= I1(t, n, b) + β̃1(t,h;n,b) + logσ 2,

(8.7)

where

I1(t, n, b) = −2 logn
∑
i

st,p,b(t i )H(t i )

and

β̃1(t,h;n,b) = 2
∑
i

st,p,b(t i ) log
∣∣Wn(t i ,h)

∣∣.
Denote

g̃(H,h) = log
(
g(H,0,h)

)+E logχ2
1 .(8.8)

It is easy to see if H(t) bounded away from 1 and H(t) ∈ Hp((0,1)d), then g̃(H(t),h) ∈
Hp((0,1)d). Clearly, I1(t, n, b) approximates −2(logn)H(t). Similarly, the following
lemma suggests that β̃1(t,h;n,b) could be a reasonable estimator of g̃(H(t),h).

LEMMA 8.3. Under assumption [A3], we have

E
[
2 log

∣∣Wn(t,h)
∣∣] = g̃

(
H(t),h

)+ O
(
ρn(t)

)
.

Thus, the asymptotic properties of ̂G(H(t);n,h) can be understood by conducting a care-
ful analysis of β̃1(t,h;n,b) and I1(t, n, b), where both I1(t, n, b) and β̃1(t,h;n,b) con-
tribute to the asymptotic bias whereas β̃1(t,h;n,b) determines the asymptotic variance and
asymptotic distribution. This will be done in the following two lemmas whose proofs along
with the proof of Lemma 8.3 are given in the Supplementary Material [15].

LEMMA 8.4. Assume that [K], [A1], [A2] and [A3] hold. We have, uniformly for all
t ∈ [0,1]d ,

I1(t, n, b) = −2 log(n)
(
H(t) + R(t, b)

)+ O

(
log(n)

(nb)2∧p

)
and

R(t, b) = O
(
bp).

Furthermore, if p ∈ N, we have

R(t, b) = eT
1

(∫
Dt,b

K(z)A(z)AT (z) dz
)−1

×
∫
Dt,b

K(z)A(z)
( ∑

|α|=p

Rα(t)(bz)α
)

dz,

where e1 = (1,0, . . . ,0)T , zα is as defined in (2.6),

Dt,b = {z : t + bz ∈ �δ} ∩ [0,1]d,

and

Rα(t) = |α|
α!

∫ 1

0
(1 − s)|α|−1DαH(t + sbz) ds.
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LEMMA 8.5. For t ∈ (0,1)d , define

Z(t, n)

:= (nb)−
d
2

{∑
i

K

(
t i − t

b

)(
2 log

∣∣Wn(t i ,h)
∣∣− g̃

(
H(t i ),h

))
A
(

t i − t

b

)}
.

Assume that [A1], [A2] and [A3] hold. If 2ψ(t) > d , then

Z(t, n)
d→ N

(
0, σ 2

H(t)

∫
Rd

f(z)fT (z) dz
)
,

where f(z) = K(z)A(z) and σ 2
H(t) is defined by (3.9); if 2ψ(t) = d , then

log− 1
2 (nb)Z(t, n)

d→ N(0,�),

where

� = Vd f(0)fT (0)

g2(H(t,0,h))

∫
B1(0)

c2
h(t,x)

|x|d−1 dx;

if 2ψ(t) < d , then the characteristic function for (nb)− d
2 +ψ(t)aT Z(t, n) converges to

φ(u) = exp

{
1

2

∞∑
k=2

(2iu)k

k
Sk

}
,

where

Sk =
∫
(B1(0))⊗k

∏k
i=1 ch(t, zi − zi+1)|zi − zi+1|−ψ(t)fa(zi )

gk(H(t),0,h)
dz1 · · ·dzk,

in which zk+1 := z1 and fa = aT f. In addition, for each δ ∈ (0,1) and a ∈ Rd , there exist
constants Cδ and Cδ,a such that all t ∈ �δ ,∣∣E[Z(t, n)

]∣∣ ≤ Cδ(nb)
d
2 ρn(t),

and

Var
(
aT Z(t, n)

) ≤

⎧⎪⎪⎨⎪⎪⎩
Cδ,a if 2ψ(t) > d,

Cδ,a log(nb) if 2ψ(t) = d,

Cδ,a(nb)d−2ψ(t) if 2ψ(t) < d.

PROOFS FOR THEOREMS 3.2 AND 3.3. To simplify notation, write g̃(t) := g̃(H(t),h),
where g̃(H(t),h) is defined by (8.8), and

β̃ := argmin
βj1 ,...,βjS

∑
i

K

(
t i − t

b

){
2 log

∣∣Wn(t i ,h)
∣∣− S∑

m=1

βjm

(
t i − t

b

)jm

}2

.

Thus we have∑
i

K

(
t i − t

b

){
2 log

∣∣Wn(t i ,h)
∣∣− β̃

T
A
(

t i − t

b

)}
A
(

t i − t

b

)
= 0.

Plug this equation into the definition of Z(t, n), basically replacing 2 log |Wn(t i ,h)| by β̃
T

A
there, and we obtain

Z(t, n) = (nb)−
d
2

{∑
i

K

(
t i − t

b

)(
β̃

T
A
(

t i − t

b

)
− g̃(t i )

)
A
(

t i − t

b

)}
.
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If p ∈ N, denote the Taylor expansion of g̃(t + bν) at t up to degree p − 1 by ğ(t, bν). Then
we have

ğ(t, bν) − g̃(t + bν) = −bp

p!
∑

|i|=p

[
νiDi g̃(t)

]+ o
(
(bν)p

)
.

Define

Mn(b, t) = (nb)−d
∑

ν= i
nb

,i∈�t

A(ν)A(ν)T K(ν),

where �t = {i : i ∈ Zd, t + i/n ∈ (0,1)d}. On one hand,

(nb)−d
∑

ν= i
nb

,i∈�t

A(ν)K(ν)
(
β̃

T
A(ν) − ğ(t, bν)

)

= (nb)−d
∑

ν= i
nb

,i∈�t

A(ν)A(ν)T K(ν)

⎛⎜⎜⎜⎜⎜⎜⎝
β̃1 − b|j1|

j1!
∂j1 g̃(t)

∂tj1

...

β̃S − b|jS |

jS !
∂jS g̃(t)

∂tjS

⎞⎟⎟⎟⎟⎟⎟⎠

= Mn(b, t)

⎛⎜⎜⎜⎜⎜⎜⎝
β̃1 − b|j1|

j1!
∂j1 g̃(t)

∂tj1

...

β̃S − b|jS |

jS !
∂jS g̃(t)

∂tjS

⎞⎟⎟⎟⎟⎟⎟⎠ .

On the other hand,

(nb)−d
∑

ν= i
nb

,i∈�t

A(ν)K(ν)
(
β̃

T
A(ν) − ğ(t, bν)

)

= (nb)−
d
2 Z(t, n) + B(t, b) + o

(
bp),

where

B(t, b) = −bp

p!
∑

|i|=p

[
(nb)−d

∑
ν∈{ j

nb
,j∈�t }

A(ν)K(ν)νiDi g̃(t)

]
= O

(
bp).

If p /∈ N, denote the Taylor expansion of g̃(t + bν) at t up to degree 
p� by ğ(t, bν). Then
we have

ğ(t, bν) − g̃(t + bν) = O
(
(bν)p

)
.

From this, we can still get B(t, b) = O(bp), although an explicit form is not available. Thus⎛⎜⎜⎜⎜⎜⎜⎝
β̃1 − b|j1|

j1!
∂j1 g̃(t)

∂tj1

...

β̃S − b|jS |

jS !
∂jS g̃(t)

∂tjS

⎞⎟⎟⎟⎟⎟⎟⎠ = Mn(b, t)−1((nb)−
d
2 Z(t, n) + B(t, b) + o

(
bp)).
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It is easily shown that

Mn(b, t) → M :=
∫
B1(0)

A(ν)A(ν)T K(ν) dν

uniformly. Therefore,

β̃1 = g̃(t) + (
1 + o(1)

)
eT

1 M−1((nb)−
d
2 Z(t, n) + B(t, b)

)
.(8.9)

Combining this with equation (8.7) and Lemma 8.4, we obtain

̂G
(
H(t);n,h

)
= g̃

(
H(t),h

)− 2 log(n)H(t) + logσ 2 − 2 log(n)R(t, b) + O

(
log(n)

(nb)2∧p

)
+ eT

1 M−1((nb)−
d
2 Z(t, n) + B(t, b)

)(
1 + o(1)

)
= G

(
H(t);n,h

)− 2 log(n)R(t, b) + O

(
log(n)

(nb)2∧p

)
+ eT

1 M−1((nb)−
d
2 Z(t, n) + B(t, b)

)(
1 + o(1)

)
,

(8.10)

where the last line uses the definitions of G and g̃ in equations (2.4) and (8.8). As such, the
bias of ̂G(H(t);n,h) is

Bias
( ̂G

(
H(t);n,h

))
= O

(
log(n)R(t, b) + log(n)

(nb)2∧p
+ (nb)−

d
2
∣∣EZ(t, n)

∣∣+ eT
1 M−1B(t, b)

)
= O

(
log(n)

(
bp + (nb)−2∧p)+ ρn(t)

) = O
(
T1(n, b, t)

)
,

(8.11)

where the last line use facts that R(t, b),B(t, b) = O(bp) and |EZ(t, n)| = O((nb)
d
2 ρn(t))

in Lemma 8.5. Similarly,

Var
( ̂G

(
H(t);n,h

)) = O
(
(nb)−d Var

(
eT

1 M−1Z(t, n)
))

= O
(
T2(n, b, t)

)
,

(8.12)

where the last step uses the result on the variance of Z in Lemma 8.5. The two bounds, (8.11)
and (8.12), complete the proof for Theorem 3.2.

Finally, in view of (8.10), ̂G(H(t);n,h) − E ̂G(H(t);n,h) has the same asymptotic dis-
tribution as that of eT

1 M−1(Z(t, n) − EZ(t, n)). Applying Lemma 8.5, it is straightforward
to obtain those asymptotic distributions listed in Theorem 3.3. This completes the proofs of
Theorem 3.2 and Theorem 3.3. �

Due to space limitation, the proofs of Theorem 3.4 and Corollary 3.5 are deferred to
the Supplementary Material [15]. However, the general idea behind those is the simple fact
∂G(H ;n,h)/∂H = −2 logn+O(1). Intuitively, G(H ;n,h) behaves increasingly like a lin-
ear function with slope −2 logn as n increases. Therefore, solving the inversion problem in
obtaining Ĥ will have the effect of shrinking the estimation error of ̂G(H(t);n,h) by the rate
logn, and the asymptotic linearity of G(H ;n,h) also allows Ĥ to preserve the asymptotic
distribution of ̂G(H(t);n,h). Detailed justifications of these can be found in the Supplemen-
tary Material [15].
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