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This article considers simultaneous variable selection and parameter es-
timation as well as hypothesis testing in censored survival models where a
parametric likelihood is not available. For the problem, we utilize certain
growing dimensional general estimating equations and propose a penalized
generalized empirical likelihood, where the general estimating equations are
constructed based on the semiparametric efficiency bound of estimation with
given moment conditions. The proposed penalized generalized empirical like-
lihood estimators enjoy the oracle properties, and the estimator of any fixed
dimensional vector of nonzero parameters achieves the semiparametric effi-
ciency bound asymptotically. Furthermore, we show that the penalized gen-
eralized empirical likelihood ratio test statistic has an asymptotic central chi-
square distribution. The conditions of local and restricted global optimality
of weighted penalized generalized empirical likelihood estimators are also
discussed. We present a two-layer iterative algorithm for efficient implemen-
tation, and investigate its convergence property. The performance of the pro-
posed methods is demonstrated by extensive simulation studies, and a real
data example is provided for illustration.

1. Introduction. Semiparametric regression models are widely used for the analysis of
censored data. The commonly used models include the Cox proportional hazards model (Cox
(1972)), the additive risk model (Lin and Ying (1994)), and the accelerated failure time
model (AFT, Kalbfleisch and Prentice (1980)). Under these models, the likelihood functions
have complicated forms and contain both unknown functions and regression parameters. To
avoid estimating unknown functions, a partial likelihood approach was developed for the Cox
model (Andersen and Gill (1982)), an estimating equation-based method was designed for the
additive risk model (Lin and Ying (1994)), and a rank-based estimation method was proposed
for AFT model (Tsiatis (1990) and Jin, Lin, Wei and Ying (2003)). When a parametric like-
lihood is unspecified, the empirical likelihood (EL) approach is widely used for inference.
Qin and Lawless (1994) were the first to study the EL and general estimating equations.
Owen (2001) and Chen and Van Keilegom (2009) among others provided a comprehensive
review about the attractive advantages and extensive applications of the EL. The EL method
has been developed for making inference under the AFT model with a completely unknown
error distribution. For example, Li and Wang (2003) constructed the synthetic data empirical
likelihood, while Zhou and Li (2008) and Fang, Li, Lu and Qin (2013) used the empirical like-
lihood method to make inference based on the Buckley–James estimator (Buckley and James
(1979)). However, these methods show that the limiting distribution of −2 log(empirical like-
lihood ratio) is a scaled chi-square distribution, where the scale parameter is a function of
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the unknown asymptotic variance and must be estimated for making inference. This would
increase estimation errors. Zhou (2005) studied the empirical likelihood coupled with the
rank-based estimating equation under the AFT model and showed that the −2 log(empirical
likelihood ratio) converges to a standard chi-square distribution. Recently, using certain in-
fluence functions in an estimating equation, He, Liang, Shen and Yang (2016) proposed an
empirical likelihood with censored data and concluded that the asymptotic distribution of
−2 log(empirical likelihood ratio) is a standard chi-square distribution. This method is de-
signed for making inference on linear functionals of the distribution function of the survival
time, but it could not be applicable to make inference for semiparametric censored regression
models.

High-dimensional sparse modeling with censored survival data is of great practical im-
portance. Several regularization methods originally developed for a linear regression model
with a complete response have been adapted to survival models with a censored response.
For example, penalized methods have been developed for variable selection in the Cox
model, including a Lasso (Tibshirani (1997)), a nonconcave penalized likelihood (Fan and Li
(2002)), an adaptive Lasso (Zhang and Lu (2007)), an efficient-adaptive-shrinkage method
(Zou (2008)), and the Dantzig selector (Antoniadis, Fryzlewicz and Letué (2010)). In the
context of the additive hazards model (Lin and Ying (1994)), Leng and Ma (2007) proposed
a weighted L1 approach and Martinussen and Scheike (2009) considered the ridge, the Lasso,
the adaptive Lasso and the Dantzig selector, while Lin and Lv (2013) developed regulariza-
tion methods using a class of concave penalties. For parameter estimation and variable selec-
tion in the AFT model, Wu, Li and Tang (2015) developed an empirical likelihood method
using the estimating equation of Tsiatis (1990) and Ritov (1990), and also obtained the central
chi-square distributed empirical likelihood ratio.

To the best of our knowledge, there is no research on the EL approach based on growing di-
mensional general estimating equations with censored data in the literature. Clearly, this work
is challenging due to the presence of censoring, dependence among estimating equations and
high correlation among variables. Growing dimensional estimating equations means that the
dimension of estimating equations depends on the sample size n and grows to infinity as
n → ∞. It is motivated by censored regression. The existing estimating equation-based ap-
proach is commonly used for the estimation of covariate effects on survival times in censored
linear regression models. In general, increasing the dimension of estimating equations can im-
prove the estimation efficiency. A real data example will be given in the application section.
The high dimensionality of parameters means that the dimension of unknown parameters of
interest depends on the sample size n and grows to infinity as n → ∞ (Chen, Peng and Qin
(2009)). This situation often occurs in gene expression data and consumer financial history
data (Fan and Peng (2004)). One also needs to deal with such case in the analysis of genomic
data sets with censored survival outcome data and nonparametric regression. For example,
it is commonly known that the bilirubin predictor has a nonlinear effect on the risk function
based on the primary biliary cirrhosis data (Fleming and Harrington (1991) and Grambsch,
Therneau and Fleming (1995)). In this case, we can use splines to approximate the nonlinear
effect where the dimension of basis functions depends on n so that the dimension of unknown
coefficients grows to infinity as n → ∞. This example will be analyzed with more details in
the application section. In this article, we develop a penalized generalized empirical likeli-
hood (PGEL) procedure for parameter estimation, variable selection and hypothesis testing
based on growing dimensional general estimating equations with high-dimensional censored
survival data. In particular, the proposed PGEL estimator has the oracle properties (Fan and Li
(2001)) and attains the semiparametric efficiency bound with the given estimating equation.
The PGEL ratio test statistic follows asymptotically a standard chi-square distribution, which
can be used to conduct hypothesis testing and to construct confidence regions of parameters
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of interest. The unscaled form based on the PGEL avoids estimation of a scale parameter and
also simplifies intensive computations for censored data. The new PGEL method can provide
a nice framework for statistical inference when a parametric likelihood is not available under
a high-dimensional censored survival model.

The rest of this paper is organized as follows. We begin with presenting the semiparametric
efficiency bound with the given estimating equation and the construction of general estimat-
ing equations, and then propose GEL and PGEL procedures for growing estimating equations
in Section 2. We establish the theoretical properties of the resulting estimator in Section 3,
and develop a penalized generalized empirical likelihood ratio test which has an asymptotic
standard χ2 distribution in Section 4. Moreover, computing procedures of the new method
are provided in Section 5. Simulation and application results are reported in Sections 6 and 7,
respectively. Some concluding remarks are made in Section 8. Proofs of theorems are given
in the Supplementary Material (Tang, Yan and Zhao (2019)).

2. Methods.

2.1. General estimating equations. Consider a survival study with right-censored data.
Let T and C denote survival and censoring times, respectively. However, we can only ob-
serve Y = min(T ,C) and � = I (T ≤ C) where I (·) denotes the indicator function. Let
X be a r-dimensional vector of covariates. Let {(Xi, Yi,�i) : i = 1, . . . , n} consist of in-
dependent copies of (X,Y,�). Assume that the joint distribution F(t, x) of (T ,X) is un-
known with (t, x) ∈ T × X ⊂ R1 × Rr , and θ ∈ � ⊂ Rp is a p-dimensional param-
eter vector of interest. Without assuming a specific form of F(t, x), we are interested
in making statistical inference on θ via k functionally independent estimating functions
g(T ,X; θ) = (g1(T ,X; θ), . . . , gk(T ,X; θ))T satisfying

(2.1) E
{
g(Ti,Xi; θ0)

} = 0

uniquely at some unknown parameter θ0 ∈ �, a compact subset of Rp , where g(·) is a k × 1-
vector of known moment functions that may be nonlinear in θ0. First, we present the semi-
parametric efficiency bound for the estimation of θ0 implicitly defined by the moment con-
dition (2.1). The following condition is commonly used for right-censored data.

(C1) T and C are conditionally independent given X.

Define

(2.2) ξ(X; θ) = E
{
g(T ,X; θ) | X}

to be the conditional expectation of the moment conditions given X, and define

V
(
g(T ,X; θ) | X) = E

{
g(T ,X; θ)T g(T ,X; θ) | X} − ξ(X; θ)T ξ(X; θ)

to be the conditional variance of the moment conditions given X. In addition, define

G(T | X) = P(C > T | X), �(θ) = E∂g(T ,X; θ)/∂θT

and

�(θ) = E

{
1

G(T | X)
V

(
g(T ,X; θ) | X) + ξ(X; θ)ξ(X; θ)T

}
.

In the following, the “regular estimators” are as defined in Newey (1990).

THEOREM 2.1. Let θ0 be defined by the moment condition (2.1). Suppose that Condi-
tion (C1) holds, and �(θ) has full column rank equal to p and k ≥ p. Then the asymptotic
variance lower bound for all regular estimators of θ0 is

K(θ0) = (
�(θ0)

T �(θ0)
−1�(θ0)

)−1
.
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In the proof, we present explicit expressions for the efficient score functions correspond-
ing to the asymptotic variance lower bounds in Theorem 2.1. To attain the semiparametric
efficiency bound given in Theorem 2.1, we propose the following estimating function:

(2.3) ψ(Z; θ) = �

G(Y | X)

{
g(Y,X; θ) − ξ(X; θ)

} + ξ(X; θ),

where Z = (Y,X,�).
The first term of the proposed estimating function is the adjusted version with inverse

probability weighting. The inverse probability weighting method is actually popular in the lit-
erature of time-to-event analysis. Among others, Li and Wang (2003) constructed a synthetic
response with the inverse probability weighting, Zhou et al. (2006) considered the empirical
likelihood inference based on the inverse probability weighted estimating equations proposed
by Lin (2003), and He et al. (2016) utilized the inverse probability weighting to construct the
estimating functions for the empirical likelihood inference with censored data.

Direct calculations yield

E
(
ψ(Z; θ)

) = Eg(T ,X; θ),

Var
(
ψ(Z; θ)

) = E

{
1

G(T | X)
V

(
g(T ,X; θ) | X) + ξ(X; θ)ξ(X; θ)T

}
= �(θ).

Clearly, if the true parameter θ0 satisfies Eg(T ,X; θ0) = 0, then Eψ(Z; θ0) = 0. In practice,
G(y | x) = P(C ≥ y | x) and ξ(x; θ) in (2.3) are unknown. We can estimate G(y | x) by
the local Kaplan–Meier estimator Gn(y | x) (Dabrowska (1989) and He, Wang and Hong
(2013)). More specifically,

(2.4) Gn(y | x) =
n∏

i=1

{
1 − Bni(x)∑n

j=1 I (Yj ≥ Yi)Bnj (x)

}I (Yi≤y,δi=0)

,

where Bnj (x) = K(
x−Xj

h
)/{∑n

i=1 K(x−Xi

h
)}, j = 1, . . . , n, are the Nadaraya–Watson

weights, h is the bandwidth, and K(·) is a probability density function. Since ξ(X; θ) =
E{ �

G(T |X)
g(T ,X; θ) | X}, we can estimate ξ(x; θ) by

(2.5) ξn(x; θ) =
n∑

i=1

Bni(x)�i

Gn(Yi | Xi)
g(Yi,Xi; θ).

The uniform consistency of Gn(y | x) and ξn(x; θ) with Condition (C2) is presented in the
Supplementary Material (Tang, Yan and Zhao (2019)).

Now we propose to approximate ψ(Z; θ) in (2.3) by

(2.6) ψn(Z; θ) = �

Gn(Y | X)

{
g(Y,X; θ) − ξn(X; θ)

} + ξn(X; θ).

The price to pay for the approximation is that {ψn(Zi; θ)}ni=1 are not independent which
complicates the ensuing analysis due to censoring.

2.2. Generalized empirical likelihood. To investigate the parameter estimation under
the constructed general estimating equations (2.6), we present a more general alternative
to GMM, that is, the generalized empirical likelihood (GEL) (Newey and Smith (2004)). The
GEL can be described as a function of a general concave function ρ(s), whose domain is an
open interval S containing zero. For convenience, let ρj (s) = ∂jρ(s)/∂sj and ρj = ρj (0)

(j = 0,1,2, . . .), where ρ1 �= 0, ρ2 < 0 for concavity. Similar to Newey and Smith (2004), it
is normalized such that ρ1 = ρ2 = −1 and ρ(0) = 0. Define

(2.7) �(λ, θ) = n−1
n∑

i=1

ρ
(
λT ψn(Zi; θ)

)
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and

�̂n(θ) = {
λ : λT ψn(Zi; θ) ∈ S, i = 1, . . . , n

}
.

The GEL estimator is the solution to a saddle point problem (Chang, Chen and Chen (2015))

θ̃ = arg min
θ∈�

max
λ∈�̂n(θ)

�(λ, θ).

The GEL includes the empirical likelihood of Owen (2001) with ρ(s) = log(1 − s) and S =
(−∞,1), the exponentially tilting (ET) likelihood estimator of Kitamura and Stutzer (1997)
with ρ(s) = 1 − exp(s), the continuous updating (CU) GMM of Hansen, Heaton and Yaron

(1996) with a quadratic ρ(s) = 1
2 − (1+s)2

2 as special cases.

2.3. Penalized generalized empirical likelihood. Under the sparsity assumption on a p-
dimensional parameter, we need to identify the zero components and estimate the nonzero
parameters. To this end, we consider the following penalized generalized empirical likelihood
function

(2.8) �p(λ, θ) = �(λ, θ) +
p∑

j=1

pγ

(|θj |),
where pγ (s), s ≥ 0 is a penalty function and its amount of penalty depends on the regular-
ization parameter γ controlling the trade-off between the bias and the model complexity. For
convenience, we rewrite the penalty function as pγ (·) = γ �γ (·) and �γ (·) as �(·) when it
is free of γ . Here, pγ (s) is taken to be the penalties as defined in the following family of
functions (Lv and Fan (2009) and Fan and Lv (2011)):

P = {
pγ (·) : �γ (s) is increasing in s ∈ [0,∞), and the derivative �′

γ (s)

is continuous on (0,∞). In addition, �′
γ (s) is increasing(2.9)

in γ and �′
γ (0+) ≡ �′(0+) > 0 is independent of γ

}
.

The commonly used penalties in the family P include L1 (Lasso) penalty (Tibshirani (1996)),
the SCAD penalty (Fan and Li (2001)) and MCP (Zhang (2010)).

In the next section, we study the large sample properties of the following penalized gener-
alized empirical likelihood (PGEL) estimator:

θ̂ = arg min
θ∈�

max
λ∈�̂n(θ)

�p(λ, θ)

under some regularity conditions.

2.4. Examples. We illustrate the moment conditions through two examples: the acceler-
ated failure time model and the censored partially linear model.

EXAMPLE 1 (Accelerated failure time model). Consider the accelerated failure time
model for the survival time Ti : log(Ti) = β0 + X�

i β + εi with E(εi | Xi) = 0, where the
covariates Xi = (xi1, . . . , xir )

�. The observed data consist of {(Xi, Yi,�i) : i = 1, . . . , n}.
Let X̃i = (1,X�

i )� and θ = (β0,β
�)�.

(i) We take g(T ,X; θ) = X̃{log(T ) − X̃�θ} and construct the influence function through
(2.3) such that the estimators can attain the semiparametric efficiency bound asymptotically.
Here, the dimension of the moment functions is the same as the dimension of unknown pa-
rameters, that is, k = p = r + 1.
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(ii) We consider increasing the dimension of the moment functions to improve the esti-
mation efficiency. If covariate xj is continuous, we take a qn-dimensional vector of known
B-spline basis functions {Bs, s = 1, . . . , qn} that can approximate any smooth functions of
xj , and then construct over-identified restrictions by using these spline basis functions. For
this, we can take additional moment functions as follows:

gjs(T ,X; θ) = Bs(xj )
{
log(T ) − X̃�θ

}
, s = 1, . . . , qn.

Correspondingly, we construct the estimating functions through (2.3) based on the overi-
dentified moment restrictions.

EXAMPLE 2 (Censored partially linear model). Suppose that the survival time Ti follows
the model

H(Ti) = β0 + U�
i β +

r2∑
j=1

qn∑
s=1

γjsBs(vij ) + εi, i = 1, . . . , n,

where E(εi | Xi) = 0, Xi = (U�
i , V �

i )� with Ui = (ui,1, . . . , ui,r1)
� and Vi = (vi,1, . . . ,

vi,r2)
�, and H(·) is a known transformation function. The observed data consist of

{(Xi, Yi,�i) : i = 1, . . . , n}. Here, r = r1 + r2 and p = 1 + r1 + r2qn.

(i) Let Ũ = (1,U�)�, θ1 = (β0,β
�)�, γ j = (γj,1, . . . , γj,qn)

�, θ2 = (γ �
j , j = 1, . . . ,

r2)
�, θ = (θ�

1 , θ�
2 )�, and B(·) = (B1(·), . . . ,Bqn(·))�. We take

gu(T ,X; θ) = Ũ

{
H(T ) − Ũ�θ1 −

r2∑
j=1

Bn(vj )
�γ j

}

and

gvl(T ,X; θ) = Bn(vl)

{
H(T ) − X̃�θ1 −

r2∑
j=1

Bn(vj )
�γ j

}
, l = 1, . . . , r2.

Set g(T ,X; θ) = (gu(T ,X; θ)�, gvj (T ,X; θ)�, j = 1, . . . , r2)
�. Then we can construct

the estimating function through (2.3).
(ii) Similarly, we can increase the dimension of the moment restrictions for each continu-

ous component of covariate vector U to improve the estimation efficiency.

3. Asymptotic properties of the PGEL estimator. We first introduce some notation.
Let J= {j : θ0j �= 0} be the index set of nonzero components of the true parameter vector θ0,
and denote the cardinality of J as q = |J|, which is unknown. Assume q ≤ k. Without loss of
generality, we write θ = (θT

1 , θT
2 )T , where θ1 ∈ Rq and θ2 ∈Rp−q correspond to the nonzero

and zero components of θ , respectively, which implies that the true parameter vector θ0 has
the following form θ0 = (θT

10,0T )T . The corresponding decomposition of θ̂ can be written

as θ̂ = (̂θ
T

1 , θ̂
T

2 )T . Let ‖A‖ denote its Frobenius-norm, E(A) be its eigenvalues, Emin(A)

and Emax(A) denote its minimum and maximum eigenvalues, respectively. “w.p.a.1” denotes
“with probability approaching one.” Define

�(θ) = E
{
g(T ,X; θ)T g(T ,X; θ)

}
, ψ̄(θ) = n−1

n∑
i=1

ψ(Zi; θ),

ψ̄n(θ) = n−1
n∑

i=1

ψn(Zi; θ), �1(θ) = E∂g(T ,X; θ)/∂θT
1 ,
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and K(θ) = (�1(θ)T �(θ)−1�1(θ))−1. Let �, �, � and �1 denote �(θ0), �(θ0), �(θ0) and
�1(θ0), respectively.

To establish the consistency of the PGEL estimator, we need the following conditions:

(C3) (i) max1≤j≤k(supθ∈� E|gj (T ,X; θ)|ν) < ∞ with ν > 2;
(ii) B−1 ≤ infθ∈�Emin{�(θ)} ≤ supθ∈�Emax{�(θ)} ≤ B for B > 1;

(iii) B−1
1 ≤ infθ∈�Emin{��(θ)�(θ)} ≤ supθ∈�Emax{��(θ)�(θ)} ≤ B1 for B1 > 1.

(C4) (i) There are positive functions π1(k), π2(ε) such that for any ε,

inf
θ∈�:‖θ−θ0‖≥ε

∥∥Eg(T ,X; θ)
∥∥ ≥ π1(k)π2(ε) > 0,

where lim infk→∞ π1(k) > 0;
(ii) supθ∈� ‖ḡ(θ) − Eg(T ,X; θ)‖ = op{π1(k)} where ḡ(θ) = n−1 ∑n

i=1 g(Ti,

Xi; θ).
(C5) The penalty function pγ (t) and the tuning parameter γ satisfy that pγ (0) = 0, and

maxj∈J pγ (|θ0j |) ≤ B2k logn/(nhrq).

Condition (C3)(i) is utilized to control the tail probability behavior of the influence func-
tion, which is the same as that required by Chang, Chen and Chen (2015). Conditions (C3)(ii)
and (iii) allows for bounding the eigenvalues of the matrixes. Condition (C4)(i) is the pop-
ulation identification condition for the case of the diverging parameter space, and Condi-
tion (C4)(ii) is the uniform convergence; the detailed interpretation can be found in Chang,
Chen and Chen (2015). Condition (C5) on penalty function is a technical condition for con-
trolling the impact of the penalty on the nonzero components and deriving the consistency of
the PGEL estimators.

THEOREM 3.1 (Consistency). Suppose that Conditions (C1)–(C5) hold. If k =
o(n1/2−1/ν

√
hr/ log(n)), then there is a strict local maximizer θ̂ of the PGEL likelihood

�p(λ, θ) such that ‖θ̂ − θ0‖ = Op(
√

k logn/(nhr)).

To establish the oracle property of the proposed PGEL estimator, we need more condi-
tions:

(C6) (i) max1≤l,j≤k supθ∈� E|gl(T ,X; θ)gj (T ,X; θ)|2 < H1 for a constant H1;
(ii) max1≤r≤k,1≤j≤p supθ∈� E|∂gr(T ,X; θ)/∂θj |2 ≤ H2 for a constant H2;

(iii) max1≤r≤k,1≤j,l≤p supθ∈� E|∂2gr(T ,X; θ)/∂θj ∂θl|2 ≤ H3 for a constant H3.
(C7) (i) As n → ∞, lim infγ→0 lim infs→0+ �′

γ (s) > 0 and the tuning parameter γ satis-
fies γ /

√
k logn/(nhr) → ∞;

(ii) The derivative of the penalty function pγ (t) satisfies
γ maxj∈J �′

γ (|θ0j |) = o( 1√
nq

) and supθ∈� maxj∈J p′′
γ (|θj |) = o(

√
hr/(k logn)).

(C8) For l = 1, . . . , k and j = 1, . . . , q , let

Al =

⎛⎜⎜⎜⎜⎝
E

[
gl(T ,X; θ)g(T ,X; θ)gT (T ,X; θ)

]
E

[
g(T ,X; θ)

∂gl(T ,X; θ)

∂θT
1

]
E

[
∂gl(T ,X; θ)

∂θ1
gT (T ,X; θ)

]
E

[
∂2gl(T ,X; θ)

∂θ1∂θT
1

]
⎞⎟⎟⎟⎟⎠

and

Aj =

⎛⎜⎜⎜⎜⎝
E

[
∂g(T ,X; θ)

∂θ1j

gT (T ,X; θ)

]
E

[
∂2g(T ,X; θ)

∂θ1j ∂θT
1

]
E

[
∂2gT (T ,X; θ)

∂θ1j ∂θ1

]
0

⎞⎟⎟⎟⎟⎠ .
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The eigenvalues of the matrixes Al’s and Aj ’s are bounded by

B−1
3 ≤ min

1≤l≤k
inf
θ∈�

Emin(Al) ≤ max
1≤l≤k

sup
θ∈�

Emax(Al) ≤ B3 and

B−1
4 ≤ min

1≤j≤q
inf
θ∈�

Emin(Aj ) ≤ max
1≤j≤q

sup
θ∈�

Emax(Aj ) ≤ B4

for constants B3 > 1 and B4 > 1.

Condition (C6) is a standard assumption for the asymptotic normality of the GEL-based
estimator. Condition (C7)(i) combined with the penalty function defined in (2.9), is needed to
ensure the sparsity property of the PGEL estimator because of the singularity of the penalty
function at the origin; Condition (C7)(ii) is designed to reduce the impact of the penalty
function on the nonzero parameter estimators. The similar assumptions about the penalty
were also required by Chang, Chen and Chen (2015). Condition (C7) holds for the com-
monly used penalty functions such as the SCAD penalty, the MCP and the hard-threshold
penalty. However, for L1 penalty, γ = γ maxj∈J �′

γ (|θ0j |) = o( 1√
nq

) is incompatible with

γ � √
k logn/(nhr), which suggests that the PGEL estimator of θ̂1 with L1 penalty gen-

erally cannot achieve the oracle property given in Theorem 3.2 below. Condition (C8) is
required to control the order of the remaining terms in the high-order Taylor expansion of the
objective function through bounding the eigenvalues of the related matrixes.

THEOREM 3.2 (Oracle property). Suppose Conditions (C1)–(C7) hold and k =
o[n1/2−1/ν

√
hr/ logn]. As n → ∞, we have the following conclusions:

(i) (Sparsity) θ̂2 = 0 with probability tending to one.
(ii) (Asymptotic normality) For a fixed q ,

√
nK−1/2(̂θ1 − θ10)→N (0, Iq) in distribution

when k5 = o(nh2r/ log2 n), where K =K(θ10).

In addition, if Condition (C8) holds, then the asymptotic normality still holds when k3 =
o(nh2r/ log2 n).

REMARK 1. It follows from Theorems 2.1 and 3.2 that the proposed PGEL estimator θ̂1
of the true nonzero parameter θ10 achieves the semiparametric efficiency bound asymptoti-
cally.

For the case of completed data with no censoring, we replace ψn with g and get the fol-
lowing results under some regularity conditions:

(C5*) The penalty function pγ (t) and the tuning parameter γ satisfy that pγ (0) = 0, and
maxj∈J pγ (|θ0j |) ≤ B2k/(nq).

(C7*) (i) As n → ∞, lim infγ→0 lim infs→0+ �′
γ (s) > 0 and the tuning parameter γ sat-

isfies γ /
√

k/n → ∞.
(ii) The derivative of the penalty function pγ (t) satisfies

γ maxj∈J �′
γ (|θ0j |) = o(1/

√
nq) and supθ∈� maxj∈J p′′

γ (|θj |) = o(1/
√

k).

THEOREM 3.3 (Consistency). Suppose that Conditions (C3)–(C4) and (C5*) hold. If
k = o(n1/2−1/ν), then there is a strict local maximizer θ̂ of the PGEL likelihood �p(λ, θ)

such that ‖θ̂ − θ0‖ = Op(
√

k/n).

THEOREM 3.4 (Oracle property). Suppose Conditions (C3)–(C4), (C5*), (C6) and (C7*)
hold and k = o[n1/2−1/ν]. As n → ∞, we have the following conclusions:
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(i) (Sparsity) θ̂2 = 0 with probability tending to one.
(ii) (Asymptotic normality)

√
nAnK−1/2(̂θ1 − θ10)→N (0,V ) in distribution when k5 =

o(n), where An is a d × q matrix such that AnA
T
n → V , V is a d × d nonnegative symmetric

matrix with the fixed d , and K =K(θ10).

In addition, if Condition (C8) holds, then the asymptotic normality still holds when k3 =
o(n).

The proofs of Theorems 3.3 and 3.4 are omitted since they are the simplified versions of
Theorems 3.1 and 3.2.

REMARK 2. Taking ρ(s) = log(1 + s), the proposed PGEL reduces to the PEL consid-
ered in Leng and Tang (2012). Under weaker conditions, we obtain the same conclusion as
those in Leng and Tang (2012). In particular, we remove the assumption p/k → κ ∈ (0,1) re-
quired by Leng and Tang (2012). Under the sparsity assumption, we only need q ≤ k, while p

can be larger than k. Furthermore, the required condition k5 = o(n) by Leng and Tang (2012)
can be relaxed to k3 = o(n).

REMARK 3. Theorem 3.4 also relaxes the diverging rate k3p2 = o(n) required by Chang,
Chen and Chen (2015) as k3 = o(n). It is easy to see that the proposed PGEL estimator of
nonzero parameters can attain the semiparametric efficiency bound asymptotically.

4. Penalized generalized empirical likelihood ratio test. In this section, we present a
unified framework for testing hypothesis and constructing confidence regions of θ1, nonzero
elements of parameters, via our proposed PGEL. Now we consider the following hypothesis
H0 : Bnθ1 = 0 versus H1 : Bnθ1 �= 0, where Bn is a d × q matrix such that BnB

T
n = Id for a

fixed d , and Id is a d × d identity matrix. Such hypothesis includes many hypotheses as its
special cases, for example, H0j : θ1j = 0, j ∈ {1, . . . , q} which can be used to construct the
confidence region for θ1j ; H0j : θ1j + θ1l = 0, j, l ∈ {1, . . . , q} which can be used to test the
linear relation between covariates under a linear regression model.

Next, we propose a PGEL ratio test statistic for testing H0: Bnθ1 = 0:

�̂p(Bn) = −2n
{
�(̃θ) − min

θ∈�:Bnθ1=0
�p(θ)

}
,

where �(θ) = �(λ(θ), θ) with λ(θ) = arg maxλ∈�̂n(θ){
∑n

i=1 ρ(λT ψn(Zi; θ))}, and �p(θ) =
�p(λ(θ), θ). One may ask why we take �(̃θ) rather than �p(̂θ). This is because the test statistic
�p(̂θ) − minθ∈�:Bnθ1=0 �p(θ) only makes sense when the restrictions are imposed on the
nonzero coefficients. On the other hand, if the restrictions with the matrix Bn are on the
zero coefficients, then the likelihood ratio test equals zero with probability approaching 1,
implying the test degenerates.

THEOREM 4.1. Suppose that Conditions (C1)–(C8) hold. Under the null hypothesis,
we have �̂p(Bn)→χ2

d in distribution, where χ2
d denotes the chi-square distribution with d

degrees of freedom.

Theorem 4.1 indicates that the well-known Wilks’ theorem holds for the proposed PGEL
method. Using the PGEL ratio test, an approximate 100(1 −α)% confidence region for Bnθ1
is

(4.1) Rα =
{
φ : −2n

{
�(̃θ) − min

Bnθ1=φ
�p(θ)

}
≤ χ2

d (1 − α)
}
,

where χ2
d (1−α) is the (1−α)-quantile of the standard chi-square distribution with d degrees

of freedom.
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5. Computation. In this section, we present a nonlinear optimization procedure for
the implementation of minimizing the PGEL, the convergence properties, and the se-
lection of tuning parameters. In the following, let vi(λ, θ) = λT ψn(Zi; θ), wij (λ, θ) =
λT ∂θj

ψn(Zi; θ), πij (λ, θ) = λT ∂2
θj

ψn(Zi; θ), wiA(λ, θ) = {λT ∂θj
ψn(Zi; θ) : j ∈ A}T ,

πiA(λ, θ) = {λT ∂2
θ l ,θj

ψn(Zi; θ) : l, j ∈ A}T , and if A = {1, . . . , p}, wi(λ, θ) = wiA(λ, θ)

and πi(λ, θ) = πiA(λ, θ).

5.1. Algorithm. To balance the regularization strengths on different components of θ , we
minimize the weighted version of the objective function,

(5.1) �̃p(θ) = �(θ) +
p∑

j=1

Wjj (θ)pγ

(|θj |),
where �(θ) = �(λ(θ), θ) with λ(θ) = arg maxλ∈�̂n(θ){

∑n
i=1 ρ(λT ψn(Zi; θ))}, Wjj (θ) is the

j th diagonal element of W(θ) and

W(θ) = ∂2
θ �(θ) = n−1

n∑
i=1

ρ2
{
vi

(
λ(θ), θ

)}
wi

(
λ(θ), θ

)
wi

(
λ(θ), θ

)T
+ n−1

n∑
i=1

ρ1
{
vi

(
λ(θ), θ

)}
πi

(
λ(θ), θ

)
.

For simplicity, we assume that Wjj (θ) > 0 and adopt its absolute value if Wjj (θ) < 0 for
all j . The main difficulty in implementing the nonlinear optimization procedure to mini-
mize �̃p(θ) given in equation (5.1) is the involved nonconcave penalty function pγ (|θj |).
For tackling this issue, we conduct the local quadratic approximation of the penalty func-
tion (Fan and Li (2001)) at θ

(m−1)
j , the iterative value of θj at the (m − 1)th step, that is,

pγ (|θj |) ≈ pγ (|θ(m−1)
j |) + 1

2{p′
γ (|θ(m−1)

j |)/|θ(m−1)
j |}{θ2

j − (θ
(m−1)
j )2}. Therefore, the first

and second derivatives are approximated by ∂θj
pγ (|θj |) = {p′

γ (|θ(m−1)
j |)/|θ(m−1)

j |}θj and

∂2
θj

pγ (|θj |) = p′
γ (|θ(m−1)

j |)/|θ(m−1)
j |. Motivated by Chang, Tang and Wu (2017), we address

the computational challenge with the high-dimensionality through a modified two-layer iter-
ative algorithm. The inner layer searches the optimal λ by maximizing the concave function
�(λ, θ) with respect to λ for given θ . The outer layer also uses coordinate descent algorithm
to search for optimizer θ̂ by cycling through and updating each of the coordinates.

Specifically, in the inner layer, we adopt the strategy of Owen (2001) and generate a proper
step size to update λ repeatedly until convergence. Note that the objective function needs to
be checked to get optimized in each step. If not, the step size continues to be halved until the
objective function gets driven in the right direction. The iterative updating procedure is stable
because this layer only involves maximizing a concave function.

The outer layer of the algorithm utilizes the coordinate descent algorithm to optimize the
objective function with respect to θ . We update θj (j = 1, . . . , p) at a given λ and other fixed
θl’s (l �= j ). Specifically, we obtain the (m + 1)th update for θj by

θ
(m+1)
j = θ

(m)
j −

{
n∑

i=1

ρ1
(
vi

(
λ, θ (m)))wij

(
λ, θ (m)) + nWjj

(
θ (m))∂θj

pγ

(∣∣θ(m)
j

∣∣)}

×
[

n∑
i=1

{
ρ1

(
vi

(
λ, θ (m)))πij

(
λ, θ (m)) + ρ2

(
vi

(
λ, θ (m)))wij

(
λ, θ (m))2}

+ nWjj

(
θ (m))∂2

θj
pγ

(∣∣θ(m)
j

∣∣)]−1

,
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where θ (m) = (θ
(m)
1 , . . . , θ

(m)
p )T . During the nonlinear optimization procedure, we set θ

(m)
j

as zero whenever it is less than a threshold level in an iteration. Repeating the two-layer
nonlinear optimization procedures until convergence yields the PGEL estimate θ̂ of θ .

5.2. Convergence analysis. Denote θ (m) as the mth result updated by the two-layer it-
erative sparsity estimate of our method. We control the convexity of the whole optimization
problem (2.8) through introducing the “local concavity” of the penalty function �γ (s) at
a = (a1, . . . , aq)

T ∈ Rq , that is,

(5.2) κ(�γ ;a) = max
1≤j≤q

lim
ε→0+ sup

|aj |−ε<s1<s2<|aj |+ε

−�′
γ (s2) − �′

γ (s1)

s2 − s1
,

and define the maximum concavity of the penalty function pγ (·) by

κ(pγ ) = sup
0<s1<s2<∞

{
−p′

γ (s2) − p′
γ (s1)

s2 − s1

}
.

One can refer to Lv and Fan (2009) and Fan and Lv (2011) for the detailed interpretation of
κ(�γ ;a) and κ(pγ ). For the penalty functions Lasso, SCAD and MCP, we have κ(pγ ) = 0,

1
a−1 and 1

a
, respectively. The concavity of pγ (·) ensures the nonconvex of �̃p(θ).

Let ⊕ denote the Hadamard (entrywise) product, and diag(A) be the diagonal elements of
matrix A. Write

BĴ(̂λ, θ̂) = 1

n

n∑
i=1

ρ1
[
vi (̂λ, θ̂)

]
wiĴ(̂λ, θ̂),BĴc (̂λ, θ̂)

= 1

n

n∑
i=1

ρ1
(
vi (̂λ, θ̂)

)
wiĴc (̂λ, θ̂),

WĴ(̂λ, θ̂) = 1

n

n∑
i=1

ρ2
[
vi (̂λ, θ̂)

]
wiĴ(̂λ, θ̂)wiĴ(̂λ, θ̂)T

+ 1

n

n∑
i=1

ρ1
[
vi (̂λ, θ̂)

]
πiĴ(̂λ, θ̂).

The following theorem gives a sufficient and necessary condition on the strict local mini-
mizer of �̃p and its restricted global optimality.

THEOREM 5.1.

(i) (Characterization of PGEL). θ̂ ∈ Rp is a strict local minimizer of the objective func-
tion in (5.1) if and only if the following conditions hold:

BĴ(̂λ, θ̂) + γ �′
γ

(|̂θ Ĵ|) ⊕ sgn(̂θ Ĵ) ⊕ diag
(
WĴ(̂λ, θ̂)

) = 0,(5.3) ∥∥BĴc (̂λ, θ̂)
∥∥∞ < γ�′

γ

(|0+|) min
j∈Ĵc

Wjj (̂θ),(5.4)

Emin
(
WĴ(̂λ, θ̂)

)
> γκ(�γ ; θ̂ Ĵ)max

j∈Ĵ
Wjj (̂θ),(5.5)

λ̂ = arg max
λ∈�̂n(̂θ)

1/n

n∑
i=1

ρ
[
vi(λ, θ̂)

]
.(5.6)
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(ii) (Restricted global optimality). Let θ̂ be a local minimizer of �̃p(θ). For any subset of
{1, . . . , p}, denote the |J|-dimensional subspace {θ ∈ Rp : θj = 0, j ∈ Jc} by EJ. If θ̂ lies in
EJ and Emin{WJ(̂λ, θ̂)} > κ(pγ )maxj∈J Wjj (̂θ), then θ̂ is a global minimizer of �̃p(θ) in EJ.

Note that if we relax the strict inequalities in (5.3)–(5.6) by the nonstrict inequalities in
the necessity of Theorem 5.1 (i), the strict local minimizer becomes the local minimizer.
Conditions (5.3) and (5.5) imply that θ̂ is a strict local minimizer of (5.1) when constrained on
the ‖θ̂‖0-dimensional subspace of {θ ∈ Rp : θc = 0} of Rp , where θc denotes the subvector
of θ formed by the components in the complement of supp(̂θ). Condition (5.4) makes sure
that the sparse vector is indeed a strict local minimizer of (5.1) on the whole space Rp .
Condition (5.6) ensures the achievement of a saddle point.

The condition for gaining global optimality in Theorem 5.1(ii) is trivially satisfied for
the L1-penalty. For the SCAD and MCP, the condition can be satisfied with some J if the
correlation among covariates is not too strong and the concavity of the penalty function is not
too large. Following Fan and Lv (2011), under some mild regularity conditions we can further
establish the global optimality of θ̂ on the union of all |J|-dimensional coordinate subspaces
of Rp .

Based on the Karush–Kuhn–Tucker (KKT) conditions in Theorem 5.1, we can explore
the convergence of the two-layer iterative sparsity estimator. Assuming the sequence {θ (m)}
resulted from the two-layer iterative sparsity estimate of our method is bounded, we have
the following conclusions: (i) If the penalty function pγ (·) satisfies κ(pγ ) < 1, then every

cluster point of {θ (m)} is a local minimizer of �̃p(θ). Note that the condition κ(pγ ) < 1 is
always satisfied for the L1-penalty, SCAD (a > 2), and MCP (a > 1). (ii) If the sequence
{θ (m)} eventually drops in a compact neighborhood � of θ∗ such that θ∗ is the unique local
minimizer of �̃p(θ) in �, then the sequence {θ (m)} converges to θ∗. (iii) If the sequence
{θ (m)} generated by the two-layer iterative sparsity estimator algorithm eventually lies in EJ,
and Emin(WJ) > κ(pγ )maxj∈J Wjj , then �̃p(θ) has a unique global minimizer θ∗ in EJ and
the sequence {θ (m)} converges to θ∗.

5.3. Selection of tuning parameters. To implement the proposed PGEL procedure, it is
necessary to find a data-driven approach to select the penalty parameter γ . Then we consider
the following BIC criterion:

BIC(γ ) = 2n�(̂θγ ) + Cn log(n)dfγ ,

where θ̂γ is the PGEL estimator of θ depending on the penalty parameter γ , dfγ is the number
of nonzero components in θ representing the “degrees of freedom” of the estimated estimat-
ing equations, and Cn is a scaling factor diverging to infinity at a slow rate for k → ∞. When
k is fixed, we set Cn = 1; otherwise we take Cn = max{log log k,1} (Tang and Leng (2010)).
Although the proposed BIC shows good performance, a rigorous proof of the consistency of
the BIC for the PGEL objective function merits further theoretical investigation.

5.4. Dimension reduction. When the dimension r of covariate vector is large, to handle
a curse of dimensionality, instead of using all components of X in the kernel smoothing, we
can apply some dimension reduction techniques for ensuring the properties of Gn(y | x) and
ξn(x; θ). For this, we assume that the survival time follows a general index model

Pr(T ≤ t | X) = Pr
(
T ≤ t | α�X

)
,

where the α is a r × m index regression coefficient matrix with m < r . Then we adopt the
counting process-based dimension reduction strategy developed by Sun, Zhu, Wang and Zeng
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(2019) using the semiparametric inverse regression approach and employ R Package “or-
thoDr” (Zhu et al. (2018)) for computation to obtain the estimator α̂. Correspondingly, all the
estimators involving the kernel smoothing need to be modified, that is,

Gn(y | x) =
n∏

i=1

{
1 − B̃ni(x)∑n

j=1 I (Yj ≥ Yi)B̃nj (x)

}I (Yi≤y,δi=0)

and

ξn(x; θ) =
n∑

i=1

B̃ni(x)�i

Gn(Yi | Xi)
g(Yi,Xi; θ),

where B̃nj (x) = K(
α̂�x−α̂�Xj

h
)/{∑n

i=1 K(α̂�x−α̂�Xi

h
)}, j = 1, . . . , n, are the Nadaraya–

Watson weights, h is the bandwidth and K(·) is a probability density function.

6. Simulation studies. We conducted simulation studies to evaluate the finite-sample
performance of the new method. To apply the proposed PGEL procedure, we took ρ(s) =
log(1 − s),1 − exp(s),1/2 − (1 + s)2/2, denoted by PEL, PET, PCU, respectively, based on
two penalties SCAD and Lasso. The goal of the study is to examine the parameter estimation
and sparsity recovery of the proposed method and the performance of the PGEL ratio test.
For the purpose, we considered the accelerated failure time model

log(Ti) = X̃T
i θ + εi, i = 1, . . . , n,

where X̃i = (x̃i1, . . . , x̃ip)T was generated from a multivariate normal distribution with
zero mean and covariance matrix D = {djl} with djl = σ |j−l|, and εi was taken from the
standard normal distribution N (0,1). The censoring time Ci was generated from a uni-
form distribution Unif(0, κ exp(|x̃i1 − x̃i2|)), where κ was chosen to achieve censoring
rates of 20% and 40%. Set θ0 = (3,1.5,0,0,2,0, . . . ,0) including three nonzero com-
ponents and p − 3 zero components. For dimensionality p and sample size n, we took
(n,p) = (50,7), (100,10), (200,14), where p is the integer part of (8(3n)1/5.1 − 14). We
choose the bandwidth h = σ̂Xn−1/5, where σ̂X is the estimated standard deviation of X in
the sample and adopt standard multivariate normal distribution as the kernel density function
K(·). For each setting, 200 repetitions were conducted to investigate the accuracy of our pro-
posed estimates in terms of the root mean square error (RMSE) and the performance of our
proposed variable selection method.

To illustrate our proposed approach to overidentified general estimating equations, we in-
troduce an instrumental variable Ui = (ui1, . . . , uip)T generated from the following models:

MODEL C : uij
iid∼ x̃ij +N (0,1), j = 1, . . . , p, ε ∼ N (0,1),

MODEL M : uij
iid∼ x̃ij +N (1,1), j = 1, . . . , p, ε ∼ N (0.5,1).

We set X = (X̃T ,UT ) and utilize influence functions g(T ,X; θ):

g(T ,X; θ) = (
x̃1

(
log(T ) − X̃T θ

)
, . . . , x̃p

(
log(T ) − X̃T θ

)
,

u1
(
log(T ) − X̃T θ

)
, . . . , up

(
log(T ) − X̃T θ

))T
.

Tables 1 and 2 report the RMSE values of nonzero components in θ0 and the average
numbers of zero coefficients that are correctly and incorrectly identified using three PGEL
methods with the SCAD and Lasso penalties under two censoring rates, respectively. The
corresponding oracle estimates are also included in the tables for comparison. It can be seen
from the tables that the estimation and selection results by the proposed PGEL methods with
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TABLE 1
Simulation results of the PGEL estimates in AFT model with σ = 0.7 and a censoring rate of 20% under Model C

PEL PET PCU

(n,p) Oracle SCAD Lasso Oracle SCAD Lasso Oracle SCAD Lasso

(50,7) θ̂1 0.119 0.160 0.208 0.114 0.150 0.201 0.125 0.161 0.219
θ̂2 0.105 0.140 0.186 0.102 0.136 0.183 0.106 0.143 0.203
θ̂5 0.112 0.143 0.195 0.109 0.147 0.192 0.115 0.148 0.205
T 4 3.74 2.2 4 3.78 3.08 4 3.63 3.02
F 0 0.02 0.00 0 0 0 0 0.04 0.00

(100,10) θ̂1 0.110 0.121 0.155 0.113 0.125 0.160 0.115 0.123 0.166
θ̂2 0.090 0.116 0.145 0.091 0.118 0.152 0.095 0.119 0.155
θ̂5 0.106 0.117 0.150 0.107 0.120 0.151 0.110 0.124 0.155
T 7 6.81 5.99 7 6.81 5.90 7 6.78 5.90
F 0 0 0 0 0 0 0 0 0

(200,14) θ̂1 0.081 0.090 0.118 0.084 0.091 0.120 0.088 0.093 0.124
θ̂2 0.064 0.067 0.115 0.068 0.070 0.119 0.073 0.078 0.120
θ̂5 0.068 0.072 0.116 0.072 0.077 70.117 0.076 0.080 0.121
T 11 11.00 10.02 11 11.00 10.08 11 10.97 10.08
F 0 0 0 0 0 0 0 0 0

“T” represents the average number of correctly estimated zero coefficients, “F” denotes the average number of
incorrectly estimated zero coefficients. Other values are root mean square errors. PEL: penalized empirical likeli-
hood; PET: penalized exponentially tilted likelihood; PCU: penalized continuous updating method.

TABLE 2
Simulation results of the PGEL estimates in AFT model with σ = 0.7 and a censoring rate of 40% under Model C

PEL PET PCU

(n,p) Oracle SCAD Lasso Oracle SCAD Lasso Oracle SCAD Lasso

(50,7) θ̂1 0.130 0.168 0.221 0.126 0.166 0.214 0.132 0.172 0.226
θ̂2 0.118 0.150 0.197 0.109 0.145 0.196 0.115 0.152 0.212
θ̂5 0.121 0.157 0.207 0.120 0.156 0.201 0.123 0.159 0.217
T 4 3.44 2.01 4 3.50 2.10 4 3.44 2.03
F 0 0.08 0.00 0 0 0 0 0.09 0.00

(100,10) θ̂1 0.120 0.129 0.163 0.121 0.131 0.165 0.123 0.132 0.175
θ̂2 0.095 0.121 0.154 0.096 0.125 0.160 0.103 0.128 0.165
θ̂5 0.112 0.124 0.160 0.115 0.127 0.161 0.119 0.131 0.165
T 7 6.42 4.89 7 6.40 4.93 7 6.36 4.90
F 0 0 0 0 0 0 0 0 0

(200,14) θ̂1 0.092 0.098 0.130 0.095 0.100 0.132 0.101 0.105 0.131
θ̂2 0.074 0.076 0.122 0.078 0.082 0.120 0.080 0.083 0.124
θ̂5 0.079 0.083 0.128 0.082 0.086 0.128 0.087 0.092 0.130
T 11 10.72 9.57 11 10.60 9.42 11 10.56 9.39
F 0 0 0 0 0 0 0 0 0

“T” represents the average number of correctly estimated zero coefficients, “F” denotes the average number of
incorrectly estimated zero coefficients. Other values are root mean square errors. PEL: penalized empirical likeli-
hood; PET: penalized exponentially tilted likelihood; PCU: penalized continuous updating method.



PENALIZED GENERALIZED EMPIRICAL LIKELIHOOD 621

the SCAD are close to oracle results, whilst PGEL with the Lasso yields biased estimates
due to the large penalty on nonzero parameters, indicating that our simulation results are
consistent with those given in Theorem 3.2.

To exam the behavior of the proposed PGEL ratio test in Theorem 4.1, we constructed
confidence regions using the PEL method with the SCAD penalty based on three types of
estimating functions. These include the proposed, the synthetic-data method (Li and Wang
(2003)) and the Buckley–James method (Fang et al. (2013)) as follows:

ψn(Zi; θ) = �i

Gn(Yi | Xi)

{
g(Yi,Xi; θ) − ξn(Xi; θ)

} + ξn(Xi; θ),

ψSD
n (Zi; θ) = �ig(Yi,Xi; θ)

Gn(Yi)
,

ψBJ
n (Zi; θ) = �ig(Yi,Xi; θ) + (1 − �i)Xi

∫ ∞
log(Yi)−X̃T

i θ
t dFn(t | θ)

1 − Fn(log(Yi) − X̃T
i θ | θ)

,

where Fn(t | θ) denotes the Kaplan–Meier estimator of distribution function of ε. Setting
different vector forms of Bn in (4.1) leads to a confidence set for θ1, θ2 and θ5, at the 1 − α

level. Table 3 summarizes the coverage percentages of the confidence intervals estimated
by three methods based on 200 replicates. The simulation results indicate that the proposed
method outperforms the methods in Li and Wang (2003) and Fang et al. (2013) in each setting.

The results in Tables 1 and 2 show that PEL, PET and PCU under Model C have simi-
lar performance. This confirms the conclusion made in Theorem 3.2 with different concave

TABLE 3
Coverage probabilities (%) of estimated confidence intervals from the PEL ratio test statistic with the SCAD

penalty based on three estimating functions from the proposed method, the Synthetic-data method and
Buckley–James method, for θ1, θ2 and θ5 over 200 simulated data sets with σ = 0.7 under Model C

α = 10% α = 5%

Par. CR (n,p) Proposed S-D B–J Proposed S-D B–J

θ1 20% (50,7) 88.8 87.5 88.1 92.8 91.8 91.9
(100,10) 89.5 88.1 88.3 94.1 93.0 93.1
(200,14) 89.7 88.6 89.0 94.7 93.5 93.6

40% (50,7) 87.1 85.7 85.9 91.9 89.5 89.8
(100,10) 88.0 86.4 86.8 93.0 90.6 91.1
(200,14) 89.2 87.0 87.3 93.9 92.3 92.6

θ2 20% (50,7) 88.4 86.5 87.1 92.5 90.1 91.2
(100,10) 88.9 86.9 87.6 93.7 91.7 92.5
(200,14) 89.7 87.5 88.3 94.6 92.5 93.1

40% (50,7) 87.5 85.2 86.2 91.2 89.2 89.8
(100,10) 87.9 85.9 86.8 92.4 90.1 91.1
(200,14) 89.2 86.6 87.4 93.7 91.3 92.2

θ5 20% (50,7) 88.9 87.2 88.0 92.8 91.4 91.9
(100,10) 89.8 87.8 88.2 94.1 91.8 92.6
(200,14) 89.9 88.2 88.7 94.8 92.5 93.3

40% (50,7) 87.4 85.1 85.7 91.9 89.0 89.5
(100,10) 88.2 85.8 86.6 92.9 90.3 90.8
(200,14) 89.1 86.5 87.2 94.2 91.8 92.1

Note: “Par.” stands for parameter; “CR” denotes censoring rate; “S-D” stands for the Synthetic-data method (Li
and Wang (2003)) and “B–J” stands for Buckley–James method (Fang et al. (2013)).
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TABLE 4
Performance of the three PGEL estimates with SCAD penalty under Model M with n = 50 and p = 7 based on

200 replicates

PET PEL PCU

σ = 0.3 σ = 0.7 σ = 0.3 σ = 0.7 σ = 0.3 σ = 0.7

BIAS SSD BIAS SSD BIAS SSD BIAS SSD BIAS SSD BIAS SSD

θ̂1 0.058 0.114 0.056 0.104 0.750 0.840 0.642 1.220 0.579 0.442 0.534 0.318

θ̂2 0.133 0.165 0.120 0.158 0.673 1.236 0.534 1.223 0.610 0.536 0.603 0.316

θ̂3 0.000 0.008 0.001 0.005 0.241 0.832 0.224 0.522 0.211 0.180 0.202 0.176

θ̂4 0.001 0.007 0.000 0.003 0.233 0.633 0.223 0.422 0.224 0.160 0.212 0.150

θ̂5 0.121 0.196 0.125 0.193 0.850 1.033 0.643 1.216 0.746 0.336 0.741 0.318

θ̂6 0.001 0.004 0.000 0.001 0.240 0.532 0.224 0.422 0.250 0.178 0.230 0.189

θ̂7 0.001 0.005 0.000 0.003 0.234 0.630 0.214 0.520 0.234 0.190 0.221 0.168

T 3.62 3.71 1.52 1.70 1.56 1.80
F 0 0 1.10 0.92 1.30 1.02

function ρ. Next, we turn to investigate the performance of the PEL, PET and PCU proce-
dures in misspecified estimating equations (i.e., Model M). Table 4 includes the estimated
bias (BIAS) given by the average of the estimates minus the true value, the sample standard
deviation (SSD) of the estimates, and the average numbers of zero coefficients that are cor-
rectly and incorrectly identified under (n,p) = (50,7) from 200 independent runs. From the
table, we observe that the PET estimates of parameters are robust to misspecified estimating
equations in terms of BIAS, while the PEL and PCU estimates of parameters are sensitive to
misspecified estimating equations in the sense that their corresponding biases deviate from
zero. Additionally, the PET variable selection procedure performs better than the PEL and
PCU in the sense that the average number of correctly identify nonzero components by the
PET method is quite close to the true number 3 of nonzero components even though estimat-
ing equations are misspecified.

7. An application. In this section, we analyzed an example taken from the Mayo Clinic
trial in primary biliary cirrhosis (PBC) of the liver to illustrate our proposed PGEL method.
The PBC data have been analyzed by many authors (e.g., Fleming and Harrington (1991) and
Grambsch, Therneau and Fleming (1995)). The data set, which can be downloaded from R

package survival, consists of 424 observations and 19 variables including censored survival
time (T ), censoring indicator (�), and 17 covariates X = (x1, . . . , x17)

T . The 17 covariates
include treatment code (x1), age in years (x2), sex (x3), presence of ascites (x4), presence of
hepatomegaly (x5), presence of spiders (x6), presence of edema (x7), serum cholesterol (x8),
log(albumin) (x9), urine copper (x10), alkaline phosphatase (x11), SGOT (x12), triglycerides
(x13), platelet count (x14), log(prothrombin time) (x15), histologic stage of disease (x16) and
log(serum bilirubin) (x17). Here, the log-transformation of the three covariates was made
according to the analysis in Fleming and Harrington (1991) and Grambsch, Therneau and
Fleming (1995); a transformation was further made for each covariate such that all covariates
took values in [0,1] for convenience.

We only considered n = 276 observations through deleting ones with some missing co-
variates. The observed data consist of {Zi = (Yi,Xi,�i, ) : i = 1, . . . ,276}, where Yi =
min(Ti,Ci) and �i = I (Ti ≤ Ci) with Ci being the censoring time for patient i.

Before fitting an AFT model to the PBC data, we obtained the Kaplan–Meier estimates
of the survival functions based on the three groups in the presence of edema (0,0.5,1), as
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FIG. 1. The Kaplan–Meier estimates of survival functions based on three groups in the presence of edema
(x7 = 0,0.5,1) with the PBC data.

shown in Figure 1. It can be seen that three survival curves are overlapping. This implies that
the Cox model may not be suitable for the PBC data. In addition, log(serum bilirubin) still
has a nonlinear effect on the survival time (Cao, Huang, Liu and Zhao (2016)). Thus, we
considered the following AFT model for analyzing the PBC data:

log(Ti) = β0 +
16∑

j=1

xi,jβj +
qn∑

s=1

γsBs(xi,17) + εi,

where {Bs, s = 1, . . . , qn} are cubic B-spline basis functions on [0,1] with the knots
{0,0,0,1/3,2/3,1,1,1,1} and qn = 5.

Let θ = (β0, β1, . . . , β16, γ1, . . . , γ5)
�. We applied the proposed approach to the PBC data

through increasing the dimension k of moment function g(T ,X; θ) for parameter estimation
and variable selection.

Case I. Consider the moment functions:

g1(T ,X, θ) = log(T ) − β0 −
16∑

j=1

xjβj −
qn∑

s=1

γsBs(x17),

gj+1(T ,X, θ) = xj

{
log(T ) − β0 −

16∑
j=1

xjβj −
qn∑

s=1

γsBs(x17)

}
,

j = 1, . . . ,16,

g17+l(T ,X, θ) = Bl(x17)

{
log(T ) − β0 −

16∑
j=1

xjβj −
qn∑

s=1

γsBs(x17)

}
,

l = 1, . . . ,5.

Case II. Increase the dimension of the moment functions g by taking

g22+l(T ,X, θ) = Bl(x3)

{
log(T ) − β0 −

16∑
j=1

xjβj −
qn∑

s=1

γsBs(x17)

}
,

l = 1, . . . ,5,

and

g27+l(T ,X, θ) = Bl(x11)

{
log(T ) − β0 −

16∑
j=1

xjβj −
qn∑

s=1

γsBs(x17)

}
,

l = 1, . . . ,5.
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TABLE 5
Estimated coefficients for the PBC data by various methods. The numbers in parentheses are p-values of the

estimated nonzero coefficients

PEL PET PCU
Param-

eter SCAD MCP SCAD MCP SCAD MCP

Case I β1 0 0 0 0 0 0
β2 −1.35 (0.00) −1.30 (0.00) −1.47 (0.00) −1.42 (0.00) −1.62 (0.00) −1.57 (0.00)
β3 0.03 (0.08) 0 0.07 (0.03) 0.09 (0.03) 0.12 (0.01) 0.15 (0.01)
β4 −0.32 (0.00) −0.27 (0.00) −0.43 (0.00) −0.38 (0.00) −0.31 (0.00) −0.28 (0.00)
β5 0 0 0 0 0 0
β6 0 0 0 0 0 0
β7 −0.86 (0.00) −0.92 (0.00) −1.06 (0.00) −1.10 (0.00) −0.96 (0.00) −1.02 (0.00)
β8 0 0 0 0 0 0
β9 0.47 (0.00) 0.42 (0.00) 0.64 (0.00) 0.62 (0.00) 0.50 (0.00) 0.44 (0.00)
β10 −0.76 (0.00) −0.73 (0.00) −0.93 (0.00) −0.87 (0.00) −0.69 (0.00) −0.67 (0.00)
β11 0.05 (0.12) 0 0.11 (0.22) 0.08 (0.30) 0.18 (0.10) 0
β12 −1.43 (0.00) −1.36 (0.00) −1.65 (0.00) −1.58 (0.00) −1.55 (0.00) −1.47 (0.00)
β13 0.18 (0.00) 0.16 (0.00) 0.26 (0.00) 0.20 (0.00) 0.28 (0.00) 0.25 (0.00)
β14 0 0 0 0 0 0
β15 −0.80 (0.00) −0.83 (0.00) −0.95 (0.00) −0.98 (0.00) −0.91 (0.00) −0.93 (0.00)
β16 −0.82 (0.00) −0.85 (0.00) −0.86 (0.00) −0.90 (0.00) −0.97 (0.00) −0.99 (0.00)
γ1 1.73 (0.00) 1.75 (0.00) 1.83 (0.00) 1.89 (0.00) 1.86 (0.00) 1.90 (0.00)
γ2 0.81 (0.00) 0.82 (0.00) 0.71 (0.00) 0.77 (0.00) 0.90 (0.00) 0.93 (0.00)
γ3 0 0 0 0 0 0
γ4 0 0 0 0 0 0
γ5 −0.14 (0.00) −0.18 (0.00) −0.33 (0.00) −0.38 (0.00) −0.23 (0.00) −0.24 (0.00)

Case II β1 0 0 0 0 0 0
β2 −1.17 (0.00) −1.13 (0.00) −1.32 (0.00) −1.28 (0.00) −1.25 (0.00) −1.18 (0.00)
β3 0.19 (0.00) 0.17 (0.00) 0.29 (0.00) 0.26 (0.00) 0.25 (0.00) 0.21 (0.00)
β4 −0.32 (0.00) −0.28 (0.00) −0.35 (0.00) −0.27 (0.00) −0.44 (0.00) −0.37 (0.00)
β5 0 0 0 0 0 0
β6 0 0 0 0 0 0
β7 −0.42 (0.00) −0.47 (0.00) −0.71 (0.00) −0.78 (0.00) −0.60 (0.00) −0.64 (0.00)
β8 0 0 0 0 0 0
β9 0.48 (0.00) 0.43 (0.00) 0.81 (0.00) 0.77 (0.00) 0.67 (0.00) 0.63 (0.00)
β10 −0.79 (0.00) −0.75 (0.00) −0.84 (0.00) −0.75 (0.00) −0.62 (0.00) −0.57 (0.00)
β11 0 0 0 0 0 0
β12 −1.45 (0.00) −1.36 (0.00) −1.52 (0.00) −1.46 (0.00) −1.76 (0.00) −1.55 (0.00)
β13 0.27 (0.00) 0.24 (0.00) 0.42 (0.00) 0.39 (0.00) 0.35 (0.00) 0.33 (0.00)
β14 0 0 0 0 0 0
β15 −0.89 (0.00) −0.96 (0.00) −1.01 (0.00) −1.09 (0.00) −1.02 (0.00) −1.06 (0.00)
β16 −0.84 (0.00) −0.90 (0.00) −0.98 (0.00) −1.01 (0.00) −0.87 (0.00) −0.92 (0.00)
γ1 1.61 (0.00) 1.65 (0.00) 1.74 (0.00) 1.80 (0.00) 1.62 (0.00) 1.70 (0.00)
γ2 0.87 (0.00) 0.91 (0.00) 0.91 (0.00) 0.98 (0.00) 0.89 (0.00) 0.93 (0.00)
γ3 −0.39 (0.00) −0.34 (0.00) −0.57 (0.00) −0.50 (0.00) −0.48 (0.00) −0.42 (0.00)
γ4 0 0 0 0 0 0
γ5 −0.20 (0.00) −0.23 (0.00) −0.52 (0.00) −0.55 (0.00) −0.30 (0.00) −0.33 (0.00)

For the estimation of Gn and ξn, we utilized the dimension reduction method given in
Section 5.4. and calculated the estimate of a 17 × 2 projection matrix α. For each case, we
used the three PGEL methods with the SCAD and MCP penalties to estimate θ and to select
important covariates with the initial value of θ taken from its GEL estimate without penalties.
Estimates of nonzero regression coefficients in θ identified by our proposed PGEL methods
are presented in Table 5. Furthermore, we conducted tests for covariate effects. To this end,
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we considered the null hypothesis H0j : θ1j = 0, that is, H0j : Bnjθ1 = 0, where Bnj is a
1 × q̂ vector with j th component being 1 and others being 0’s, j = 1, . . . , q̂ , and q̂ is the
number of nonzero estimates. Using the asymptotic distribution of the proposed PGEL ratio
test statistics in Theorem 4.1, we obtained the p-values for all cases, as shown in Table 5.

From the estimation results in Case I, we note that some nonzero coefficients are not statis-
tically significant. However, from the estimation results in Case II with increasing the dimen-
sion of moment functions, we find that all regression coefficients of unimportant covariates
are estimated as zero, while all nonzero coefficients are statistically significant. This finding
demonstrates that increasing the dimension of estimating functions can improve estimation
efficiency.

8. Concluding remarks. When a parametric likelihood is unspecified for censored sur-
vival models, we develop a penalized generalized empirical likelihood approach for simul-
taneous variable selection and parameter estimation problems. The oracle properties of the
proposed PGEL estimator are established, and the estimators of nonzero parameters attains
the semiparametric efficiency bound asymptotically. Also the proposed PGEL ratio is asymp-
totically distributed as the standard chi-square distribution. In particular, for complete data,
the condition k/p → κ ∈ (0,1) required by Leng and Tang (2012) is removed, and also the
condition k5 = o(n) or k3p2 = o(n) required by Leng and Tang (2012) and Chang, Chen and
Chen (2015) is relaxed to k3 = o(n) for deriving the oracle properties of estimators.

Note that for censored data, general estimating functions involve two unknown functions:
conditional survival function of censoring variable C given covariate X and conditional mean
of moment function g given X. The convergence rates of their nonparametric estimators
given in Section 2 depend on the dimension r of covariate vector so that the PGEL estimator
converges slowly when r is large in the presence of censoring. For this situation, we can
utilize some dimension reduction methods for ensuring the properties of Gn (e.g., Sun et
al. (2019)). Another possible solution is to first reduce the dimension of covariate vector by
using the well-developed model-free screening procedures (e.g., He, Wang and Hong (2013))
and then the proposed approach can be used. Some other solutions deserve further research.

Note that the proposed new approach is different from the Buckley–James method. The es-
timating function is constructed based on the general moment condition E(g(T ,X; θ0)) = 0
and the semiparametric efficiency with this condition, while the Buckley–James method
is based on the imputation approach. If we use the idea of the Buckley–James method,
g(T ,X; θ) should be estimated by its conditional expectation E{g(T ,X; θ) | Y,X,�} =
�g(T ,X; θ) + (1 − �)E{g(T ,X; θ) | Y,X,�}.

Also note that differentiability of moment functions is required. For nonsmooth moment
functions g with respect to θ , the definitions of the GEL and the PGEL estimators should be
modified. Following Parente and Smith (2011), the GEL estimator is defined to satisfy

�(̃λ, θ̃) ≤ inf
θ∈�

sup
λ∈�̂n(θ)

�(λ, θ)) + op

(
n−τ )

,

where �(λ, θ) is as defined in (2.7), τ is nonnegative, and

λ̃ = arg max
λ∈�̂n(̃θ)

�(λ, θ̃).

Similarly, for nonsmooth moment functions, the PGEL estimator is defined to satisfy

�p(̂λ, θ̂) ≤ inf
θ∈�

sup
λ∈�̂n(θ)

�p(λ, θ) + op

(
n−τ )

,

where �p(λ, θ) is as defined in (2.8), and λ̂ = arg maxλ∈�̂n(̂θ) �p(λ, θ̂).
Note that the proofs of the theoretical results in this article rely on differentiability of

moment functions, and these cannot be straightforwardly extended to the case of nonsmooth
moment functions. Further research is needed to investigate the theoretical properties of θ̂
with nonsmooth moment functions for censored data.
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